Weyl symmetry for curve counting invariants via spherical twists

Miguel Moreira
ETHZ
Joint with Tim Buelles

Harvard-MIT
Algebraic Geometry Seminar 28 September 2021

Gromov-Witten invariants

Given a smooth projective variety X, Gromov-Witten theory uses the moduli of stable maps and its virtual fundamental class

$$
\left[M_{g}(X, \beta)\right]^{\text {vir }} \in A_{\text {virdim }}\left(M_{g}(X, \beta)\right)
$$

A special case is when X is a Calabi-Yau 3-fold (CY3): the virtual dimension of is 0 for all $g \geq 0, \beta \in H_{2}(X ; \mathbb{Z})$ so we get numbers

$$
\mathrm{GW}_{g, \beta}^{X}=\int_{\left[M_{g}(X, \beta)\right]^{\mathrm{ir}}} 1 \in \mathbb{Q} .
$$

Goal:

Compute all numbers $\mathrm{GW}_{g, \beta}^{X}$. Equivalently, understand the partition function

$$
Z_{X}=\exp \left(\sum_{g, \beta} \mathrm{GW}_{g, \beta}^{X} u^{2 g-2} z^{\beta}\right)
$$

Stable pairs

Stable pairs provide an alternative approach to curve counting on CY3.

Definition (Pandharipande-Thomas '09)

A stable pair on X is an object $\left\{\mathcal{O}_{X} \xrightarrow{s} F\right\} \in D^{b}(X)$ in the derived category where F is a coherent sheaf and s a section satisfying the following two stability conditions:
(1) F is pure of dimension 1: every non-trivial coherent sub-sheaf of F has dimension 1 .
(2) The cokernel of s has dimension 0 .

We associate two discrete invariants:

$$
\beta=[\operatorname{supp}(F)] \in H_{2}(X ; \mathbb{Z}) \text { and } n=\chi(X, F)
$$

The space $P_{n}(X, \beta)$ parametrizing stable pairs with fixed discrete invariants is a projective fine moduli space.

Pandharipande-Thomas invariants

The moduli of stable pairs $P_{n}(X, \beta)$ also has a virtual fundamental class, and when X is a CY3 its virtual dimension is 0 , producing again numbers

$$
\mathrm{PT}_{n, \beta}^{X}=\int_{\left[P_{n}(X, \beta)\right]^{\mathrm{vir}}} 1 \in \mathbb{Z}
$$

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande '06)

The Gromov-Witten and Pandharipande-Thomas invariants determine each other:

$$
\exp \left(\sum_{g, \beta} \mathrm{GW}_{g, \beta}^{X} u^{2 g-2} z^{\beta}\right)=\sum_{n, \beta} \mathrm{PT}_{n, \beta}^{X}(-q)^{n} z^{\beta}
$$

after the change of variables $q=e^{i u}$.

Rationality and symmetry

To even make sense of the change of variables $q=e^{i u}$ an important structural result is required:

Theorem (Bridgeland '16)

For each β the generating function

$$
\sum_{n \in \mathbb{Z}} \mathrm{PT}_{n, \beta}^{X}(-q)^{n}
$$

is the expansion of a rational function f_{β} satisfying the symmetry

$$
f_{\beta}(1 / q)=f_{\beta}(q) .
$$

Typical example (contribution of isolated rational curve):

$$
f(q)=\frac{q}{(1-q)^{2}}
$$

Proof of rationality

The proof of rationality illustrates a very general principle:
Symmetry of the derived category $\phi \in \operatorname{Aut}\left(D^{b}(X)\right)$

Constraints on curve counting on X.

The proof of rationality uses the derived dual

$$
\phi=\mathbb{D}=\operatorname{RHom}\left(-, \mathcal{O}_{X}\right)[2] .
$$

Basic idea: use wall-crossing in the derived category to relate

$$
P_{n}(X, \beta) \nLeftarrow \phi\left(P_{n}(X, \beta)\right) \subseteq D^{b}(X) .
$$

Geometric setting

Let Y be a Calabi-Yau 3-fold containing a smooth divisor $E \subseteq Y$ isomorphic to a Hirzebruch surface (so E is a \mathbb{P}^{1} bundle $\left.E \rightarrow C=\mathbb{P}^{1}\right)$.
Let $B=\left[\mathbb{P}^{1}\right] \in H_{2}(Y ; \mathbb{Z})$ be the curve class of the fibers of $E \rightarrow C$.
(Key examples: $Y=K_{E}, Y$ elliptic fibration over E,
$Y=S T U$)

K3 monodromy

A key source of examples are elliptic fibrations (with section) over Hirzebruch surface E. Let $\pi: Y \rightarrow E$ be the fibration and F the fiber class. Each fiber $\pi^{-1}(B)$ is a $K 3$ surface. The monodromy of $K 3$ implies the symmetry

$$
\mathrm{GW}_{g, h F+i B}^{Y}=\mathrm{GW}_{g, h F+(h-i) B}^{Y}
$$

For more general β, our work is about some symmetry relating

$$
\mathrm{GW}_{g, \beta}^{Y} \sim \mathrm{GW}_{g, \beta^{\prime}}^{Y}
$$

where $\beta^{\prime}=\beta+(E \cdot \beta) B$ (note that $\beta \mapsto \beta^{\prime}$ is an involution since $E \cdot B=-2)$.

Weyl symmetry for PT invariants

Let

$$
\operatorname{PT}_{\beta}(q, Q)=\sum_{n, j \in \mathbb{Z}} P_{n, \beta+j B}(-q)^{n} Q^{j}
$$

The generating series PT_{0} of multiples of B is computed (for example via the topological vertex) as

$$
\mathrm{PT}_{0}(q, Q)=\prod_{j \geq 1}\left(1-q^{j} Q\right)^{-2 j}
$$

Weyl symmetry for PT invariants

Theorem (Buelles-M. '21)

Let Y be a Calabi-Yau 3-fold containing a smooth divisor E isomorphic to a Hirzebruch surface and satisfying a few assumptions (to explain later). Then

$$
\frac{\operatorname{PT}_{\beta}(q, Q)}{\operatorname{PT}_{0}(q, Q)} \in \mathbb{Q}(q, Q)
$$

is the expansion of a rational function $f_{\beta}(q, Q)$ which satisfies the functional equations

$$
f_{\beta}\left(q^{-1}, Q\right)=f_{\beta}(q, Q) \text { and } f_{\beta}\left(q, Q^{-1}\right)=Q^{-E \cdot \beta} f_{\beta}(q, Q)
$$

Weyl symmetry for GW invariants

Corollary

For all $(g, \beta) \neq(0, m B),(1, m B)$ the series

$$
\sum_{j \in \mathbb{Z}} \mathrm{GW}_{g, \beta+j B} Q^{j}
$$

is the expansion of a rational function $f_{\beta}(Q)$ with functional equation

$$
f_{\beta}\left(Q^{-1}\right)=Q^{-E \cdot \beta} f_{\beta}(Q) .
$$

Predicted by physics, at least in the local case K_{E} (Katz-Klemm-Vafa '97).
If f_{β} were a Laurent polynomial (as in the case of $K 3$ classes), the functional equation means symmetry holds on the nose

$$
\mathrm{GW}_{g, \beta}^{Y}=\mathrm{GW}_{g, \beta^{\prime}}^{Y}
$$

Assumptions on Y

Our proofs at the moment assume the following:

- The curve B generates an extremal ray in the cone of curves of Y. I.e. there is a nef divisor A such that

$$
\operatorname{ker}\left(A_{1}(Y) \xrightarrow{A \cdot} \mathbb{Q}\right)=\mathbb{Q} \cdot B .
$$

Holds for any elliptic fibration.

- $-K_{E}$ is nef, i.e. $E \cong \mathbb{F}_{r}$ with $r=0,1,2$ (probably not really necessary).
- For the Gromov-Witten corollary we assume the GW/PT correspondence holds.

Examples

Example

Let $Y=K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}$ and let C be the other \mathbb{P}^{1} in the product. A computation with the topological vertex shows:

$$
\begin{aligned}
\frac{\mathrm{PT}_{C}(q, Q)}{\mathrm{PT}_{0}(q, Q)} & =\frac{2 q}{(1-q)^{2}(1-Q)^{2}} \\
\frac{\mathrm{PT}_{2}(q, Q)}{\mathrm{PT}_{0}(q, Q)} & =\frac{2 q^{4}}{(1-q)^{2}\left(1-q^{2}\right)^{2}(1-q Q)^{2}(1-Q)^{2}} \\
& +\frac{2 q^{4}}{(1-q)^{2}\left(1-q^{2}\right)^{2}(q-Q)^{2}(1-Q)^{2}} \\
& +\frac{2 q^{4}}{(1-q)^{4}(1-q Q)^{2}(q-Q)^{2}}
\end{aligned}
$$

Spherical twists

The main ingredient of our symmetry is the existence of a certain anti-equivalence $\rho \in \operatorname{Aut}\left(D^{b}(Y)\right)$ promoting the involution

$$
\beta \mapsto \beta^{\prime}=\beta+(E \cdot \beta) B
$$

on $H_{2}(Y ; \mathbb{Z})$ to the derived category. Its construction uses spherical twists.

Definition

An object $G \in D^{b}(Y)$ is a spherical object if

$$
\operatorname{Ext}^{i}(G, G)= \begin{cases}\mathbb{C} & \text { if } i=0,3 \\ 0 & \text { otherwise }\end{cases}
$$

Given a spherical object G, Seidel-Thomas define a spherical twist $\mathrm{ST}_{G} \in \operatorname{Aut}\left(D^{b}(Y)\right)$ by the exact triangle

$$
\bigoplus \operatorname{Ext}^{i}(F, G) \otimes G[-i] \rightarrow F \rightarrow \operatorname{ST}_{G}(F)
$$

Anti-equivalence ρ

Denote by $C \subseteq E \subseteq Y$ the class of one of the sections of the projection $E \rightarrow C$. For every $k \in \mathbb{Z}$,

$$
\mathcal{O}_{E}(-C+k B) \in D^{b}(Y)
$$

is a spherical object.

Definition

Let

$$
\rho=\mathbb{D} \circ \mathrm{ST}_{O_{E}(-C+k B)} \circ \mathrm{ST}_{O_{E}(-C+(k+1) B)} \in \operatorname{Aut}\left(D^{b}(Y)\right) .
$$

(the definition doesn't depend on k)

Properties of ρ

(1) ρ is an involution, i.e. $\rho \circ \rho=$ id.
(2) $\rho\left(\mathcal{O}_{Y}\right)=\mathcal{O}_{Y}[2]$.
(3) If F is supported away from E then $\rho(F)=\mathbb{D}(F)$.
(9) $\rho\left(\mathcal{O}_{B}(-2)\right)=\mathcal{O}_{B}(-2)[1]$ and $\rho\left(\mathcal{O}_{B}(-1)\right)=\mathcal{O}_{B}(-1)[-1]$.
(5) If F is a sheaf of dimension 1 and $\operatorname{ch}_{2}(F)=\beta, \chi(F)=n$ then

$$
\begin{aligned}
\mathrm{ch}_{2}(\rho(F)) & =\beta+(E \cdot \beta) B \\
\chi(\rho(F)) & =-n .
\end{aligned}
$$

Orbifold inspiration

When Y arises as a crepant resolution $Y \rightarrow \mathcal{X}$ of an orbifold with $\mathbb{Z} / 2$-singularities along a \mathbb{P}^{1} so that E is the exceptional divisor (and the fibers B are contracted to points), the main result is a consequence of the DT crepant resolution conjecture proven by Beentjes-Calabrese-Rennemo ('18).

Orbifold inspiration

Their proof uses $\mathbb{D}^{\mathcal{X}}$ to prove the symmetry of PT invariants in \mathcal{X}.

Proposition

Under the McKay correspondence

$$
\Phi: D^{b}(Y) \xrightarrow{\sim} D^{b}(\mathcal{X})
$$

the derived dual $\mathbb{D}^{\mathcal{X}}$ corresponds to ρ, i.e.

$$
\rho=\Phi^{-1} \circ \mathbb{D}^{\mathcal{X}} \circ \Phi
$$

Important examples (e.g. the STU) don't arise as such crepant resolution.

Perverse stable pairs

Stable pairs are equivalently described as follows:

Proposition

Let $I \in\left\langle\mathcal{O}_{Y}[1], \mathrm{Coh}_{\leq 1}\right\rangle_{\mathrm{ex}}$. Then I is a stable pair if and only if $\operatorname{rk}(I)=-1$ and
$\operatorname{Hom}\left(\operatorname{Coh}_{0}(Y), I\right)=0=\operatorname{Hom}\left(I, \operatorname{Coh}_{1}(Y)\right)$.
Bridgeland's proof of rationality with the derived dual uses

$$
\mathbb{D}\left(\operatorname{Coh}_{1}(Y)\right)=\operatorname{Coh}_{1}(Y) \text { and } \mathbb{D}\left(\operatorname{Coh}_{0}(Y)\right)=\operatorname{Coh}_{0}(Y)[-1] .
$$

Gives description of the image of $\mathbb{D}\left(P_{n}(X, \beta)\right)$ and helps finding wall-crossing back to $P_{n}(X, \beta)$.

Perverse sheaves

The derived equivalence ρ doesn't respect $\operatorname{Coh}(Y)$ and the dimension filtration so well.

Example

If $x \in E$ is a point in the divisor lying in a fiber B then

$$
\rho\left(\mathcal{O}_{x}\right)=\left\{\mathcal{O}_{B}(-1)[-1] \rightarrow \mathcal{O}_{B}(-2)\right\} .
$$

We use instead a tilting of $\operatorname{Coh}(Y)$.

$$
\begin{aligned}
\mathcal{T} & =\left\{T \in \operatorname{Coh}(Y): R^{1} p_{*} T_{\mid E}=0\right\} \\
\mathcal{F} & =\{F \in \operatorname{Coh}(Y): \operatorname{Hom}(\mathcal{T}, F)=0\} \\
\mathcal{A} & =\langle\mathcal{F}[1], \mathcal{T}\rangle_{\mathrm{ex}} .
\end{aligned}
$$

\mathcal{A} is a heart of $D^{b}(Y)$.

Dimension filtration

Together with \mathcal{A} comes a modified dimension defined by:

$$
\operatorname{dim}(F)=\max \left\{\operatorname{dim}\left(\operatorname{supp}\left(F_{\mid Y \backslash E}\right)\right), \operatorname{dim}\left(p\left(\operatorname{supp}\left(F_{\mid E}\right)\right)\right)\right\}
$$

The modified dimension is used to define $\mathcal{A}_{0}, \mathcal{A}_{1}$ which are analogous to $\operatorname{Coh}_{0}(Y), \operatorname{Coh}_{1}(Y)$:

$$
\rho\left(\mathcal{A}_{1}\right)=\mathcal{A}_{1} \text { and } \rho\left(\mathcal{A}_{0}\right)=\mathcal{A}_{0}[-1] .
$$

Example

(1) $\mathrm{Coh}_{0} \subseteq \mathcal{A}_{0}$;
(2) $\mathcal{O}_{B}(-1), \mathcal{O}_{B}(-2)[1] \in \mathcal{A}_{0}$;
(3) If $F \in \operatorname{Coh}_{1}(Y)$ and $F_{I E}$ is 0-dimensional then $F \in \mathcal{A}_{1}$;
(3) $\mathcal{O}_{E}(-C), \mathcal{O}_{E}(-2 C)[1] \in \mathcal{A}_{1}$.

Perverse stable pairs

Definition

A perverse stable pair is an object $I \in\left\langle\mathcal{O}_{Y}[1], \mathcal{A}_{\leq 1}\right\rangle_{\text {ex }}$ such that $\operatorname{rk}(I)=-1$ and

$$
\operatorname{Hom}\left(\mathcal{A}_{0}, I\right)=0=\operatorname{Hom}\left(I, \mathcal{A}_{1}\right)
$$

We define the virtual counts of perverse stable pairs: for

$$
\gamma=(\beta, \ell[E]) \in H_{2}(Y) \oplus \mathbb{Z} \cdot[E]
$$

we have

$$
\begin{gathered}
{ }^{p} \mathrm{PT}_{n, \gamma} \in \mathbb{Z}, \\
{ }^{p} \mathrm{PT}_{\gamma}(q, Q)=\sum_{n, j \in \mathbb{Z}}{ }^{p} \mathrm{PT}_{n, \gamma+j B}(-q)^{n} Q^{j} .
\end{gathered}
$$

Rationality for ${ }^{P} \mathrm{PT}$

Theorem

The series ${ }^{p} \mathrm{PT}_{\gamma}(q, Q)$ is the expansion of a rational function $f_{\gamma} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$
f_{\gamma}\left(q^{-1}, Q^{-1}\right)=Q^{-E \cdot \beta+2 \ell} f_{\gamma}(q, Q)
$$

- Rationality of $\mathrm{PT}_{\beta}(q)$
- Anti-equivalence \mathbb{D}
- Torsion pair $\left\langle\mathrm{Coh}_{0}\right.$, Coh $\left._{1}\right\rangle$
- Usual slope stability
- Vanishing of Poisson brackets $\left\{\mathrm{Coh}_{\leq 1}, \mathrm{Coh}_{\leq 1}\right\}=0$
- Rationality of ${ }^{p} \mathrm{PT}_{\gamma}(q, Q)$
- Anti-equivalence ρ
- Torsion pair $\left\langle\mathcal{A}_{0}, \mathcal{A}_{1}\right\rangle$
- Nironi slope stability
- No vanishing, extra combinatorial difficulty (dealt with in $[B C R]$).

Wall-crossing

We proved rationality of perverse PT invariants, but now need to relate them to classical stable pairs.

Proposition

For any $\beta \in H_{2}(Y ; \mathbb{Z})$ we have the following identity of rational functions:

$$
{ }^{p} \mathrm{PT}_{\beta}(q, Q)=\frac{\mathrm{PT}_{\beta}(q, Q)}{\mathrm{PT}_{0}(q, Q)}
$$

The wall-crossing establishing the equality has two steps and uses the counting of a third type of objects: Bryan-Steinberg invariants.

Wall-crossing PT/BS

When Y arises as a crepant resolution $Y \rightarrow \mathcal{X}$, Bryan-Steinberg introduced ('12) invariants $\mathrm{BS}_{n, \beta}$. Roughly speaking, they count sheafs+sections $\left\{\mathcal{O}_{X} \xrightarrow{s} F\right\}$ but allowing the cokernel to have support on fibers of B.
They provide a natural interpretation for the quotient $\mathrm{PT}_{\beta} / \mathrm{PT}_{0}$ via a DT/PT type wall-crossing.

Proposition

$$
\mathrm{BS}_{\beta}(q, Q) \equiv \sum_{n, j \in \mathbb{Z}} \mathrm{BS}_{n, \beta+j B}(-q)^{n} Q^{j}=\frac{\mathrm{PT}_{\beta}(q, Q)}{\mathrm{PT}_{0}(q, Q)}
$$

Unlike ${ }^{p} \mathrm{PT}, \mathrm{BS}$ are defined using the heart $\operatorname{Coh}(Y)$, no need to tilt.

Wall-crossing ${ }^{p} \mathrm{PT} / \mathrm{BS}$

Final step is comparing ${ }^{p} \mathrm{PT}$ and BS .

Proposition

We have the following identity of rational functions:

$$
\mathrm{BS}_{\beta}(q, Q)={ }^{p} \mathrm{PT}(q, Q)
$$

The identity above is strictly of rational functions, the coefficients are not the same on the nose. When we cross a wall in the path of stability conditions we change the direction in which we expand the same rational function.

Crossing a wall - re-expansion

Example

The rational function $\frac{1}{q-Q}$ can be expanded in two different ways:

$$
\begin{aligned}
\frac{1}{q-Q} & =\frac{q^{-1}}{1-Q q^{-1}}=\sum_{i \geq 0} Q^{i} q^{-1-i} \\
\frac{1}{q-Q} & =-\frac{Q^{-1}}{1-Q^{-1} q}=-\sum_{i \geq 0} Q^{-1-i} q^{i}
\end{aligned}
$$

Thank you!

