Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing

Weyl symmetry for curve counting invariants via spherical twists

Miguel Moreira ETHZ Joint with Tim Buelles

Harvard-MIT Algebraic Geometry Seminar 28 September 2021

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs Wall	Wall-crossing
	• • •			

Gromov-Witten invariants

Given a smooth projective variety X, Gromov-Witten theory uses the moduli of stable maps and its virtual fundamental class

$$[M_g(X,\beta)]^{\mathsf{vir}} \in A_{\mathsf{virdim}}(M_g(X,\beta)).$$

A special case is when X is a Calabi-Yau 3-fold (CY3): the virtual dimension of is 0 for all $g \ge 0$, $\beta \in H_2(X; \mathbb{Z})$ so we get numbers

$$\operatorname{GW}_{g,\beta}^{X} = \int_{[M_{g}(X,\beta)]^{\operatorname{vir}}} 1 \in \mathbb{Q}.$$

Goal:

Compute all numbers $\mathrm{GW}_{g,\beta}^{X}.$ Equivalently, understand the partition function

$$Z_X = \exp\left(\sum_{g,\beta} \operatorname{GW}_{g,\beta}^X u^{2g-2} z^\beta\right)$$

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 00000	Perverse stable pairs 00000	Wall-crossing
Stable pairs				

Stable pairs provide an alternative approach to curve counting on CY3.

Definition (Pandharipande-Thomas '09)

A stable pair on X is an object $\{\mathcal{O}_X \xrightarrow{s} F\} \in D^b(X)$ in the derived category where F is a coherent sheaf and s a section satisfying the following two stability conditions:

- *F* is pure of dimension 1: every non-trivial coherent sub-sheaf of *F* has dimension 1.
- The cokernel of s has dimension 0.

We associate two discrete invariants:

$$\beta = [\operatorname{supp}(F)] \in H_2(X; \mathbb{Z}) \text{ and } n = \chi(X, F).$$

The space $P_n(X,\beta)$ parametrizing stable pairs with fixed discrete invariants is a projective fine moduli space.

Pandharipande-Thomas invariants

The moduli of stable pairs $P_n(X,\beta)$ also has a virtual fundamental class, and when X is a CY3 its virtual dimension is 0, producing again numbers

$$\mathrm{PT}_{n,\beta}^{X} = \int_{[P_n(X,\beta)]^{\mathrm{vir}}} 1 \in \mathbb{Z}.$$

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande '06)

The Gromov-Witten and Pandharipande-Thomas invariants determine each other:

$$\exp\left(\sum_{g,\beta} \operatorname{GW}_{g,\beta}^{X} u^{2g-2} z^{\beta}\right) = \sum_{n,\beta} \operatorname{PT}_{n,\beta}^{X} (-q)^{n} z^{\beta}$$

after the change of variables $q = e^{iu}$.

 Curve counting on CY3
 Results
 Anti-equivalence ρ Perverse stable pairs
 Wall-crossing

 00000 00000 00000 00000 00000 00000

Rationality and symmetry

To even make sense of the change of variables $q = e^{iu}$ an important structural result is required:

Theorem (Bridgeland '16)

For each β the generating function

$$\sum_{n\in\mathbb{Z}}\operatorname{PT}_{n,\beta}^X(-q)^n$$

is the expansion of a rational function f_{β} satisfying the symmetry

$$f_{eta}(1/q) = f_{eta}(q).$$

Typical example (contribution of isolated rational curve):

$$f(q)=\frac{q}{(1-q)^2}.$$

The proof of rationality illustrates a very general principle:

Symmetry of the derived category $\phi \in \operatorname{Aut}(D^b(X))$ \downarrow Constraints on curve counting on X.

The proof of rationality uses the derived dual

 $\phi = \mathbb{D} = \mathsf{RHom}(-, \mathcal{O}_X)[2].$

Basic idea: use wall-crossing in the derived category to relate

$$P_n(X,\beta) \iff \phi(P_n(X,\beta)) \subseteq D^b(X).$$

Let Y be a Calabi-Yau 3-fold containing a smooth divisor $E \subset Y$ isomorphic to a Hirzebruch surface (so E is a \mathbb{P}^1 bundle $E \to C = \mathbb{P}^1$). Let $B = [\mathbb{P}^1] \in H_2(Y; \mathbb{Z})$ be the curve class of the fibers of $E \rightarrow C$. (Key examples: $Y = K_F$, Y elliptic fibration over E, Y = STU

Curve counting on CY3	Results 0●00000	Anti-equivalence $ ho$ 00000	Perverse stable pairs 00000	Wall-crossing
K3 monodrom	y			

A key source of examples are elliptic fibrations (with section) over Hirzebruch surface E. Let $\pi : Y \to E$ be the fibration and F the fiber class. Each fiber $\pi^{-1}(B)$ is a K3 surface. The monodromy of K3 implies the symmetry

$$\mathrm{GW}_{g,hF+iB}^{Y} = \mathrm{GW}_{g,hF+(h-i)B}^{Y}.$$

For more general β , our work is about some symmetry relating

$$\mathrm{GW}_{g,\beta}^{Y} \sim \mathrm{GW}_{g,\beta'}^{Y}$$

where $\beta' = \beta + (E \cdot \beta)B$ (note that $\beta \mapsto \beta'$ is an involution since $E \cdot B = -2$).

 Curve counting on CY3
 Results
 Anti-equivalence ρ Perverse stable pairs
 Wall-crossing

 Weyl symmetry for PT invariants
 Weyl symmetry
 Weyl symmetry
 Weyl symmetry
 Weyl symmetry

Let

$$\operatorname{PT}_{\beta}(q,Q) = \sum_{n,j\in\mathbb{Z}} P_{n,\beta+jB} (-q)^n Q^j.$$

The generating series PT_0 of multiples of *B* is computed (for example via the topological vertex) as

$$\operatorname{PT}_{0}(q, Q) = \prod_{j \ge 1} (1 - q^{j}Q)^{-2j}.$$

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
00000	000●000	00000	00000	00000
Weyl symmetry	for PT i	nvariants		

Theorem (Buelles-M. '21)

Let Y be a Calabi-Yau 3-fold containing a smooth divisor E isomorphic to a Hirzebruch surface and satisfying a few assumptions (to explain later). Then

$$rac{\mathrm{PT}_eta(q,Q)}{\mathrm{PT}_0(q,Q)}\in\mathbb{Q}(q,Q)$$

is the expansion of a rational function $f_{\beta}(q, Q)$ which satisfies the functional equations

$$f_eta(q^{-1},Q)=f_eta(q,Q)$$
 and $f_eta(q,Q^{-1})=Q^{-E\cdoteta}f_eta(q,Q).$

Curve counting on CY3 Results ODDOO Anti-equivalence ρ Perverse stable pairs ODDOO Weyl symmetry for GW invariants

Corollary

For all $(g, \beta) \neq (0, mB), (1, mB)$ the series

$$\sum_{j\in\mathbb{Z}}\mathrm{GW}_{m{g},eta+jm{B}}\;m{Q}^{j}$$

is the expansion of a rational function $f_{\beta}(Q)$ with functional equation

$$f_{\beta}(Q^{-1}) = Q^{-E \cdot \beta} f_{\beta}(Q)$$
.

Predicted by physics, at least in the local case K_E (Katz-Klemm-Vafa '97). If f_β were a Laurent polynomial (as in the case of K3 classes), the functional equation means symmetry holds on the nose

$$\mathrm{GW}_{g,\beta}^{Y} = \mathrm{GW}_{g,\beta'}^{Y}.$$

Our proofs at the moment assume the following:

• The curve *B* generates an extremal ray in the cone of curves of *Y*. I.e. there is a nef divisor *A* such that

$$\operatorname{\mathsf{ker}}\left(A_1(Y) \stackrel{A\cdot}{\longrightarrow} \mathbb{Q}\right) = \mathbb{Q} \cdot B.$$

Holds for any elliptic fibration.

- $-K_E$ is nef, i.e. $E \cong \mathbb{F}_r$ with r = 0, 1, 2 (probably not really necessary).
- For the Gromov-Witten corollary we assume the GW/PT correspondence holds.

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	000000●	00000	00000	00000
Examples				

Example

Let $Y = K_{\mathbb{P}^1 \times \mathbb{P}^1}$ and let *C* be the other \mathbb{P}^1 in the product. A computation with the topological vertex shows:

$$\begin{split} \frac{\mathrm{PT}_{C}(q,Q)}{\mathrm{PT}_{0}(q,Q)} &= \frac{2q}{(1-q)^{2}(1-Q)^{2}}\\ \frac{\mathrm{PT}_{2C}(q,Q)}{\mathrm{PT}_{0}(q,Q)} &= \frac{2q^{4}}{(1-q)^{2}(1-q^{2})^{2}(1-qQ)^{2}(1-Q)^{2}}\\ &+ \frac{2q^{4}}{(1-q)^{2}(1-q^{2})^{2}(q-Q)^{2}(1-Q)^{2}}\\ &+ \frac{2q^{4}}{(1-q)^{4}(1-qQ)^{2}(q-Q)^{2}}. \end{split}$$

Curve counting on CY3	Results 0000000	Anti-equivalence ρ ●0000	Perverse stable pairs 00000	Wall-crossing
Spherical twists	5			

The main ingredient of our symmetry is the existence of a certain anti-equivalence $\rho \in Aut(D^b(Y))$ promoting the involution

 $\beta \mapsto \beta' = \beta + (E \cdot \beta)B$

on $H_2(Y; \mathbb{Z})$ to the derived category. Its construction uses spherical twists.

Definition

An object $G \in D^b(Y)$ is a spherical object if

$$\operatorname{Ext}^{i}(G,G) = egin{cases} \mathbb{C} & ext{ if } i = 0,3 \ 0 & ext{ otherwise} \end{cases}$$

Given a spherical object G, Seidel-Thomas define a spherical twist $ST_G \in Aut(D^b(Y))$ by the exact triangle

$$\bigoplus_{i} \operatorname{Ext}^{i}(F, G) \otimes G[-i] \to F \to \operatorname{ST}_{G}(F).$$

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	00000	00000	00000
Anti-equivalenc	e $ ho$			

Denote by $C \subseteq E \subseteq Y$ the class of one of the sections of the projection $E \to C$. For every $k \in \mathbb{Z}$,

$$\mathcal{O}_E(-C+kB)\in D^b(Y)$$

is a spherical object.

Definition

Let

$$\rho = \mathbb{D} \circ \operatorname{ST}_{O_E(-C+kB)} \circ \operatorname{ST}_{O_E(-C+(k+1)B)} \in \operatorname{Aut}(D^b(Y)).$$

(the definition doesn't depend on k)

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	00000	00000	00000
Properties of ρ				

- $\ \, {\bf 0} \ \, \rho \ \, {\rm is \ an \ involution, \ \, i.e.} \ \, \rho \circ \rho = {\rm id}.$
- $(\mathcal{O}_Y) = \mathcal{O}_Y[2].$
- **③** If *F* is supported away from *E* then $\rho(F) = \mathbb{D}(F)$.
- $\rho(\mathcal{O}_B(-2)) = \mathcal{O}_B(-2)[1]$ and $\rho(\mathcal{O}_B(-1)) = \mathcal{O}_B(-1)[-1].$
- So If F is a sheaf of dimension 1 and $ch_2(F) = \beta, \chi(F) = n$ then

$$\operatorname{ch}_2(\rho(F)) = \beta + (E \cdot \beta)B$$

 $\chi(\rho(F)) = -n.$

When Y arises as a crepant resolution $Y \to \mathcal{X}$ of an orbifold with $\mathbb{Z}/2$ -singularities along a \mathbb{P}^1 so that *E* is the exceptional divisor (and the fibers *B* are contracted to points), the main result is a consequence of the DT crepant resolution conjecture proven by Beentjes-Calabrese-Rennemo ('18).

00000	0000000		00000	00000		
Orbifold inspiration						

Their proof uses $\mathbb{D}^{\mathcal{X}}$ to prove the symmetry of PT invariants in \mathcal{X} .

Proposition

Under the McKay correspondence

 $\Phi: D^b(Y) \stackrel{\sim}{\to} D^b(\mathcal{X})$

the derived dual $\mathbb{D}^{\mathcal{X}}$ corresponds to ρ , i.e.

$$\rho = \Phi^{-1} \circ \mathbb{D}^{\mathcal{X}} \circ \Phi.$$

Important examples (e.g. the STU) don't arise as such crepant resolution.

00000	0000000	00000	00000	00000
Perverse stab	le pairs			

Stable pairs are equivalently described as follows:

Proposition

Let $I \in \langle \mathcal{O}_Y[1], Coh_{\leq 1} \rangle_{ex}$. Then I is a stable pair if and only if rk(I) = -1 and

$$\operatorname{Hom}(\operatorname{Coh}_0(Y), I) = 0 = \operatorname{Hom}(I, \operatorname{Coh}_1(Y)).$$

Bridgeland's proof of rationality with the derived dual uses

 $\mathbb{D}(\mathsf{Coh}_1(Y)) = \mathsf{Coh}_1(Y) \text{ and } \mathbb{D}(\mathsf{Coh}_0(Y)) = \mathsf{Coh}_0(Y)[-1].$

Gives description of the image of $\mathbb{D}(P_n(X,\beta))$ and helps finding wall-crossing back to $P_n(X,\beta)$.

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 00000	Perverse stable pairs 0●000	Wall-crossing
Perverse sheav	/es			

The derived equivalence ρ doesn't respect Coh(Y) and the dimension filtration so well.

Example

If $x \in E$ is a point in the divisor lying in a fiber B then

$$\rho(\mathcal{O}_{\times}) = \{\mathcal{O}_B(-1)[-1] \to \mathcal{O}_B(-2)\}.$$

We use instead a tilting of Coh(Y).

$$\mathcal{T} = \{T \in \operatorname{Coh}(Y) : R^1 p_* T_{|E} = 0\}$$
$$\mathcal{F} = \{F \in \operatorname{Coh}(Y) : \operatorname{Hom}(\mathcal{T}, F) = 0\}$$
$$\mathcal{A} = \langle \mathcal{F}[1], \mathcal{T} \rangle_{ex}.$$

 \mathcal{A} is a heart of $D^b(Y)$.

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
	0000000	00000	00●00	00000
Dimension filtr	ation			

Together with ${\mathcal A}$ comes a modified dimension defined by:

$$\dim(F) = \max\{\dim(\operatorname{supp}(F_{|Y \setminus E})), \dim(p(\operatorname{supp}(F_{|E})))\}$$

The modified dimension is used to define A_0, A_1 which are analogous to $Coh_0(Y)$, $Coh_1(Y)$:

$$\rho(\mathcal{A}_1) = \mathcal{A}_1 \text{ and } \rho(\mathcal{A}_0) = \mathcal{A}_0[-1].$$

Example

- $\ \ \, Oh_0\subseteq \mathcal{A}_0;$
- ② $O_B(-1), O_B(-2)[1] ∈ A_0;$
- If $F \in \operatorname{Coh}_1(Y)$ and $F_{|E}$ is 0-dimensional then $F \in \mathcal{A}_1$;
- $\mathcal{O}_E(-C), \mathcal{O}_E(-2C)[1] \in \mathcal{A}_1.$

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 00000	Perverse stable pairs 00000	Wall-crossing
Perverse stable	pairs			

Definition

A perverse stable pair is an object $I \in \langle \mathcal{O}_Y[1], \mathcal{A}_{\leq 1} \rangle_{\mathsf{ex}}$ such that $\mathrm{rk}(I) = -1$ and

 $\operatorname{Hom}(\mathcal{A}_0, I) = 0 = \operatorname{Hom}(I, \mathcal{A}_1).$

We define the virtual counts of perverse stable pairs: for

$$\gamma = (\beta, \ell[E]) \in H_2(Y) \oplus \mathbb{Z} \cdot [E]$$

we have

$${}^p \mathrm{PT}_{n,\gamma} \in \mathbb{Z},$$

 ${}^p \mathrm{PT}_{\gamma}(q,Q) = \sum_{n,j \in \mathbb{Z}} {}^p \mathrm{PT}_{n,\gamma+jB}(-q)^n Q^j.$

Curve counting on CY3	Results 0000000	Anti-equivalence $ ho$ 00000	Perverse stable pairs 0000●	Wall-crossing
Rationality for	· PT			

Theorem

The series ${}^{p}\mathrm{PT}_{\gamma}(q, Q)$ is the expansion of a rational function $f_{\gamma} \in \mathbb{Q}(q, Q)$ satisfying the symmetry

$$f_\gamma(q^{-1},Q^{-1})=Q^{-E\cdoteta+2\ell}f_\gamma(q,Q).$$

- Rationality of $\operatorname{PT}_{\beta}(q)$
- Anti-equivalence $\mathbb D$
- Torsion pair $\langle Coh_0, Coh_1 \rangle$
- Usual slope stability
- Vanishing of Poisson brackets $\{Coh_{\leq 1},Coh_{\leq 1}\}=0$

- Rationality of ${}^{p}\mathrm{PT}_{\gamma}(q,Q)$
- Anti-equivalence ρ
- \bullet Torsion pair $\langle \mathcal{A}_0, \mathcal{A}_1 \rangle$
- Nironi slope stability
- No vanishing, extra combinatorial difficulty (dealt with in [BCR]).

Curve counting on CY3	Results	Anti-equivalence ρ	Perverse stable pairs	Wall-crossing
	0000000	00000	00000	●0000
Wall-crossing				

We proved rationality of perverse PT invariants, but now need to relate them to classical stable pairs.

Proposition

For any $\beta \in H_2(Y; \mathbb{Z})$ we have the following identity of rational functions:

$${}^{p}\mathrm{PT}_{\beta}(q,Q) = rac{\mathrm{PT}_{\beta}(q,Q)}{\mathrm{PT}_{0}(q,Q)}.$$

The wall-crossing establishing the equality has two steps and uses the counting of a third type of objects: Bryan-Steinberg invariants.

When Y arises as a crepant resolution $Y \to \mathcal{X}$, Bryan-Steinberg introduced ('12) invariants $BS_{n,\beta}$. Roughly speaking, they count sheafs+sections $\{\mathcal{O}_X \xrightarrow{s} F\}$ but allowing the cokernel to have support on fibers of B.

They provide a natural interpretation for the quotient PT_{β}/PT_0 via a DT/PT type wall-crossing.

Proposition

$$\mathrm{BS}_{\beta}(q,Q)\equiv\sum_{n,j\in\mathbb{Z}}\mathrm{BS}_{n,\beta+j\mathcal{B}}(-q)^nQ^j=rac{\mathrm{PT}_{\beta}(q,Q)}{\mathrm{PT}_0(q,Q)}.$$

Unlike p PT, BS are defined using the heart Coh(Y), no need to tilt.

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
	0000000	00000	00000	00●00
Wall-crossing	^p PT/BS			

Final step is comparing $^{p}\mathrm{PT}$ and BS .

Proposition

We have the following identity of rational functions:

$$BS_{\beta}(q, Q) = {}^{p}PT(q, Q).$$

The identity above is strictly of rational functions, the coefficients are not the same on the nose. When we cross a wall in the path of stability conditions we change the direction in which we expand the same rational function.

C				
00000	0000000	00000	00000	00000
Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing

Crossing a wall – re-expansion

Example

The rational function $\frac{1}{q-Q}$ can be expanded in two different ways:

$$\frac{1}{q-Q} = \frac{q^{-1}}{1-Qq^{-1}} = \sum_{i\geq 0} Q^i q^{-1-i}$$
$$\frac{1}{q-Q} = -\frac{Q^{-1}}{1-Q^{-1}q} = -\sum_{i\geq 0} Q^{-1-i}q^i.$$

Curve counting on CY3	Results	Anti-equivalence $ ho$	Perverse stable pairs	Wall-crossing
	0000000	00000	00000	0000●
Thank you!				

