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Gromov-Witten invariants

Given a smooth projective variety X , Gromov-Witten theory uses
the moduli of stable maps and its virtual fundamental class

[Mg (X , β)]vir ∈ Avirdim(Mg (X , β)).

A special case is when X is a Calabi-Yau 3-fold (CY3): the virtual
dimension of is 0 for all g ≥ 0, β ∈ H2(X ;Z) so we get numbers

GWX
g ,β =

∫
[Mg (X ,β)]vir

1 ∈ Q.

Goal:

Compute all numbers GWX
g ,β. Equivalently, understand the

partition function

ZX = exp

∑
g ,β

GWX
g ,βu

2g−2zβ

 .
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Stable pairs

Stable pairs provide an alternative approach to curve counting on
CY 3.

Definition (Pandharipande-Thomas ’09)

A stable pair on X is an object {OX
s→ F} ∈ Db(X ) in the derived

category where F is a coherent sheaf and s a section satisfying the
following two stability conditions:

1 F is pure of dimension 1: every non-trivial coherent sub-sheaf
of F has dimension 1.

2 The cokernel of s has dimension 0.

We associate two discrete invariants:

β = [supp(F )] ∈ H2(X ;Z) and n = χ(X ,F ).

The space Pn(X , β) parametrizing stable pairs with fixed discrete
invariants is a projective fine moduli space.
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Pandharipande-Thomas invariants

The moduli of stable pairs Pn(X , β) also has a virtual fundamental
class, and when X is a CY3 its virtual dimension is 0, producing
again numbers

PTX
n,β =

∫
[Pn(X ,β)]vir

1 ∈ Z.

Conjecture (Maulik-Nekrasov-Okounkov-Pandharipande ’06)

The Gromov-Witten and Pandharipande-Thomas invariants
determine each other:

exp

∑
g ,β

GWX
g ,βu

2g−2zβ

 =
∑
n,β

PTX
n,β(−q)nzβ

after the change of variables q = e iu.
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Rationality and symmetry

To even make sense of the change of variables q = e iu an
important structural result is required:

Theorem (Bridgeland ’16)

For each β the generating function∑
n∈Z

PTX
n,β(−q)n

is the expansion of a rational function fβ satisfying the symmetry

fβ(1/q) = fβ(q).

Typical example (contribution of isolated rational curve):

f (q) =
q

(1− q)2
.
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Proof of rationality

The proof of rationality illustrates a very general principle:

Symmetry of the derived category φ ∈ Aut(Db(X ))

Constraints on curve counting on X .

The proof of rationality uses the derived dual

φ = D = RHom(−,OX )[2].

Basic idea: use wall-crossing in the derived category to relate

Pn(X , β) ! φ(Pn(X , β)) ⊆ Db(X ).
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Geometric setting

Let Y be a Calabi-Yau 3-fold
containing a smooth divisor
E ⊆ Y isomorphic to a
Hirzebruch surface (so E is a
P1 bundle E → C = P1).
Let B = [P1] ∈ H2(Y ;Z) be
the curve class of the fibers of
E → C .
(Key examples: Y = KE , Y
elliptic fibration over E ,
Y = STU)
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K3 monodromy

A key source of examples are elliptic fibrations (with section) over
Hirzebruch surface E . Let π : Y → E be the fibration and F the
fiber class. Each fiber π−1(B) is a K3 surface. The monodromy of
K3 implies the symmetry

GWY
g ,hF+iB = GWY

g ,hF+(h−i)B .

For more general β, our work is about some symmetry relating

GWY
g ,β ∼ GWY

g ,β′

where β′ = β + (E · β)B (note that β 7→ β′ is an involution since
E · B = −2).
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Weyl symmetry for PT invariants

Let
PTβ(q,Q) =

∑
n,j∈Z

Pn,β+jB (−q)nQ j .

The generating series PT0 of multiples of B is computed (for
example via the topological vertex) as

PT0(q,Q) =
∏
j≥1

(1− qjQ)−2j .
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Weyl symmetry for PT invariants

Theorem (Buelles-M. ’21)

Let Y be a Calabi-Yau 3-fold containing a smooth divisor E
isomorphic to a Hirzebruch surface and satisfying a few
assumptions (to explain later).Then

PTβ(q,Q)

PT0(q,Q)
∈ Q(q,Q)

is the expansion of a rational function fβ(q,Q)which satisfies the
functional equations

fβ(q−1,Q) = fβ(q,Q) and fβ(q,Q−1) = Q−E ·βfβ(q,Q).
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Weyl symmetry for GW invariants

Corollary

For all (g , β) 6= (0,mB) , (1,mB) the series∑
j∈Z

GWg ,β+jB Q j

is the expansion of a rational function fβ(Q) with functional
equation

fβ(Q−1) = Q−E ·βfβ(Q) .

Predicted by physics, at least in the local case KE

(Katz-Klemm-Vafa ’97).
If fβ were a Laurent polynomial (as in the case of K3 classes), the
functional equation means symmetry holds on the nose

GWY
g ,β = GWY

g ,β′ .
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Assumptions on Y

Our proofs at the moment assume the following:

The curve B generates an extremal ray in the cone of curves
of Y . I.e. there is a nef divisor A such that

ker
(
A1(Y )

A·−→ Q
)

= Q · B.

Holds for any elliptic fibration.

−KE is nef, i.e. E ∼= Fr with r = 0, 1, 2 (probably not really
necessary).

For the Gromov-Witten corollary we assume the GW/PT
correspondence holds.
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Examples

Example

Let Y = KP1×P1 and let C be the other P1 in the product. A
computation with the topological vertex shows:

PTC (q,Q)

PT0(q,Q)
=

2q

(1− q)2(1− Q)2

PT2C (q,Q)

PT0(q,Q)
=

2q4

(1− q)2(1− q2)2(1− qQ)2(1− Q)2

+
2q4

(1− q)2(1− q2)2(q − Q)2(1− Q)2

+
2q4

(1− q)4(1− qQ)2(q − Q)2
.
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Spherical twists

The main ingredient of our symmetry is the existence of a certain
anti-equivalence ρ ∈ Aut(Db(Y )) promoting the involution

β 7→ β′ = β + (E · β)B

on H2(Y ;Z) to the derived category.Its construction uses spherical
twists.

Definition

An object G ∈ Db(Y ) is a spherical object if

Exti (G ,G ) =

{
C if i = 0, 3

0 otherwise

Given a spherical object G , Seidel-Thomas define a spherical twist
STG ∈ Aut(Db(Y )) by the exact triangle⊕

i

Exti (F ,G )⊗ G [−i ]→ F → STG (F ).
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Anti-equivalence ρ

Denote by C ⊆ E ⊆ Y the class of one of the sections of the
projection E → C . For every k ∈ Z,

OE (−C + kB) ∈ Db(Y )

is a spherical object.

Definition

Let

ρ = D ◦ STOE (−C+kB) ◦ STOE (−C+(k+1)B) ∈ Aut(Db(Y )).

(the definition doesn’t depend on k)
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Properties of ρ

1 ρ is an involution, i.e. ρ ◦ ρ = id.

2 ρ(OY ) = OY [2].

3 If F is supported away from E then ρ(F ) = D(F ).

4 ρ(OB(−2)) = OB(−2)[1] and ρ(OB(−1)) = OB(−1)[−1].

5 If F is a sheaf of dimension 1 and ch2(F ) = β, χ(F ) = n then

ch2(ρ(F )) = β + (E · β)B

χ(ρ(F )) = −n.
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Orbifold inspiration

When Y arises as a crepant resolution Y → X of an orbifold with
Z/2-singularities along a P1 so that E is the exceptional divisor
(and the fibers B are contracted to points), the main result is a
consequence of the DT crepant resolution conjecture proven by
Beentjes-Calabrese-Rennemo (’18).
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Orbifold inspiration

Their proof uses DX to prove the symmetry of PT invariants in X .

Proposition

Under the McKay correspondence

Φ : Db(Y )
∼→ Db(X )

the derived dual DX corresponds to ρ, i.e.

ρ = Φ−1 ◦ DX ◦ Φ.

Important examples (e.g. the STU) don’t arise as such crepant
resolution.
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Perverse stable pairs

Stable pairs are equivalently described as follows:

Proposition

Let I ∈ 〈OY [1],Coh≤1〉ex. Then I is a stable pair if and only if
rk(I ) = −1 and

Hom(Coh0(Y ), I ) = 0 = Hom(I ,Coh1(Y )).

Bridgeland’s proof of rationality with the derived dual uses

D(Coh1(Y )) = Coh1(Y ) and D(Coh0(Y )) = Coh0(Y )[−1].

Gives description of the image of D(Pn(X , β)) and helps finding
wall-crossing back to Pn(X , β).
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Perverse sheaves

The derived equivalence ρ doesn’t respect Coh(Y ) and the
dimension filtration so well.

Example

If x ∈ E is a point in the divisor lying in a fiber B then

ρ(Ox) = {OB(−1)[−1]→ OB(−2)}.

We use instead a tilting of Coh(Y ).

T = {T ∈ Coh(Y ) : R1p∗T|E = 0}
F = {F ∈ Coh(Y ) : Hom(T ,F ) = 0}
A = 〈F [1], T 〉ex.

A is a heart of Db(Y ).
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Dimension filtration

Together with A comes a modified dimension defined by:

dim(F ) = max{dim(supp(F|Y \E )), dim(p(supp(F|E )))}

The modified dimension is used to define A0,A1 which are
analogous to Coh0(Y ), Coh1(Y ):

ρ(A1) = A1 and ρ(A0) = A0[−1].

Example

1 Coh0 ⊆ A0;

2 OB(−1),OB(−2)[1] ∈ A0;

3 If F ∈ Coh1(Y ) and F|E is 0-dimensional then F ∈ A1;

4 OE (−C ),OE (−2C )[1] ∈ A1.
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Perverse stable pairs

Definition

A perverse stable pair is an object I ∈ 〈OY [1],A≤1〉ex such that
rk(I ) = −1 and

Hom(A0, I ) = 0 = Hom(I ,A1).

We define the virtual counts of perverse stable pairs: for

γ = (β, `[E ]) ∈ H2(Y )⊕ Z · [E ]

we have
pPTn,γ ∈ Z,

pPTγ(q,Q) =
∑
n,j∈Z

pPTn,γ+jB(−q)nQ j .
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Rationality for pPT

Theorem

The series pPTγ(q,Q) is the expansion of a rational function
fγ ∈ Q(q,Q) satisfying the symmetry

fγ(q−1,Q−1) = Q−E ·β+2`fγ(q,Q).

Rationality of PTβ(q)

Anti-equivalence D
Torsion pair 〈Coh0,Coh1〉
Usual slope stability

Vanishing of Poisson brackets
{Coh≤1,Coh≤1} = 0

Rationality of pPTγ(q,Q)

Anti-equivalence ρ

Torsion pair 〈A0,A1〉
Nironi slope stability

No vanishing, extra
combinatorial difficulty
(dealt with in [BCR]).
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Wall-crossing

We proved rationality of perverse PT invariants, but now need to
relate them to classical stable pairs.

Proposition

For any β ∈ H2(Y ;Z) we have the following identity of rational
functions:

pPTβ(q,Q) =
PTβ(q,Q)

PT0(q,Q)
.

The wall-crossing establishing the equality has two steps and uses
the counting of a third type of objects: Bryan-Steinberg invariants.
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Wall-crossing PT/BS

When Y arises as a crepant resolution Y → X , Bryan-Steinberg
introduced (’12) invariants BSn,β. Roughly speaking, they count

sheafs+sections {OX
s→ F} but allowing the cokernel to have

support on fibers of B.
They provide a natural interpretation for the quotient PTβ/PT0

via a DT/PT type wall-crossing.

Proposition

BSβ(q,Q) ≡
∑
n,j∈Z

BSn,β+jB(−q)nQ j =
PTβ(q,Q)

PT0(q,Q)
.

Unlike pPT, BS are defined using the heart Coh(Y ), no need to
tilt.
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Wall-crossing pPT/BS

Final step is comparing pPT and BS.

Proposition

We have the following identity of rational functions:

BSβ(q,Q) = pPT(q,Q).

The identity above is strictly of rational functions, the coefficients
are not the same on the nose. When we cross a wall in the path of
stability conditions we change the direction in which we expand the
same rational function.
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Crossing a wall – re-expansion

Example

The rational function 1
q−Q can be expanded in two different ways:

1

q − Q
=

q−1

1− Qq−1
=
∑
i≥0

Q iq−1−i

1

q − Q
= − Q−1

1− Q−1q
= −

∑
i≥0

Q−1−iqi .
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Thank you!

PT BS pPT

ρ(pPT)

quotient re−expansion
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