Virasoro constraints for stable pairs and for Hilbert schemes of points of surfaces

Miguel Moreira

ETHZ

Zoominar
26 June 2020

Introduction

Based on joint work with A. Oblomkov, A. Okounkov and R. Pandharipande.

- Theory of stable pairs (PT) provides a (sheaf theoretical) way to:
- Compactify the space of nonsigular embedded curves on a 3-fold X.
- Define numerical invariants ("curve counts").
- Conjecturally equivalent to other curve counting theories like Gromov-Witten (GW) and Donaldson-Thomas (DT). ${ }^{1}$
- Virasoro conjecture predicts universal constraints on Gromov-Witten invariants. ${ }^{2}$

[^0]
Introduction

- Expect: GW/PT correspondence + GW Virasoro \Rightarrow PT Virasoro.
- Precise form of the conjecture for $X=\mathbb{P}^{3}$ was found in ~ 2007 by Oblomkov, Okounkov, Pandharipande (OOP).
- Recent progress (together with OOP): precise formulation of the conjecture for any simply-connected 3-fold (at least when it doesn't have $(0, p)$ cohomology).
- (With OOP) Proof of the PT Virasoro for toric 3-folds in the stationary regime.
- Verification of the PT Virasoro for the cubic 3-fold in the curve class of lines.
- Proof of a certain specialization that gives a new set of relations satisfied by tautological classes in the Hilbert scheme of points of a surface.

Stable pairs

Let X be a smooth projective 3 -fold over \mathbb{C}.

Definition (Pandharipande-Thomas)

A stable pair on X is a coherent sheaf F on X together with a section $\mathcal{O}_{X} \xrightarrow{s} F$ satisfying the following two stability conditions:
(1) F is pure of dimension 1: every non-trivial coherent sub-sheaf of F has dimension 1.
(2) The cokernel of s has dimension 0 .

We associate two discrete invariants:

$$
\beta=[\operatorname{supp}(F)] \in H_{2}(X ; \mathbb{Z}) \text { and } n=\chi(X, F)
$$

The space $P_{n}(X, \beta)$ parametrizing stable pairs with fixed discrete invariants is a projective fine moduli space.

Geometric locus

If $C \subseteq X$ is a smooth curve and D is an effective divisor on C

$$
\mathcal{O}_{x} \xrightarrow{s} \iota_{*} \mathcal{O}_{C}(D)
$$

is a stable pair with support C and .

$$
\operatorname{coker}(s)=\mathcal{O}_{D}
$$

Roughly speaking: stable pair is a curve decorated with finite number of points contained in the curve (zeros of the section). In general $P_{n}(X, \beta)$ has more degenerate objects (supported in singular curves).

Geometric locus

Example

For $t \neq 0$ consider the embedded curve

$$
C_{t}=\{x=z=0\} \cup\{y=z-t=0\} \subseteq \mathbb{C}^{3}
$$

As a stable pair:

$$
\mathbb{C}[x, y, z] \xrightarrow{s} \mathbb{C}[x, y, z] /(x, z) \oplus \mathbb{C}[x, y, z] /(y, z-t) .
$$

In the limit $t \rightarrow 0$:

$$
\mathbb{C}[x, y, z] \xrightarrow{s} \mathbb{C}[x, y, z] /(x, z) \oplus \mathbb{C}[x, y, z] /(y, z) \rightarrow \underbrace{\mathbb{C} /(x, y, z)}_{\text {coker }} .
$$

Not surjective anymore.

Deformation theory

The moduli space $P_{n}(X, \beta)$ admits a 2-term perfect obstruction theory (Pandharipande-Thomas). Associate to a stable pair $\mathcal{O}_{X} \xrightarrow{s} F$ the 2-term complex

$$
I^{\bullet}=\left\{\mathcal{O}_{X} \xrightarrow{s} F\right\} \in D^{b}(X) .
$$

The (fixed-determinant) obstruction theory on $D^{b}(X)$ provides a deformation theory on $P_{n}(X, \beta)$:

- Tangent space: $\operatorname{Ext}^{1}\left(I^{\bullet}, I^{\bullet}\right)_{0}$.
- Obstruction space: $\operatorname{Ext}^{2}\left(I^{\bullet}, I^{\bullet}\right)_{0}$.

Virtual fundamental class

Higher Ext* $\left(I^{\bullet}, I^{\bullet}\right)_{0}$ vanish $\rightsquigarrow 2$ 2-term perfect deformation theory \rightsquigarrow virtual fundamental class

$$
\left[P_{n}(X, \beta)\right]^{\mathrm{vir}} \in A_{d_{\beta}}(X)
$$

where d_{β} is the expected dimension:

$$
d_{\beta}=-\chi\left(\operatorname{RHom}\left(\left.\right|^{\bullet},\left.\right|^{\bullet}\right)_{0}\right)=\int_{\beta} c_{1}(X) .
$$

Remark

For the vanishing of the higher Ext's we need X to be 3-dimensional.

Remark

The virtual dimension depends only on the support of the stable pair and not on the number of points decorating the curve.

Descendents

When X is Calabi-Yau the virtual dimension is 0 . Can define the curve count

$$
\langle 1\rangle_{n, \beta}^{X, \mathrm{PT}} \stackrel{\text { def }}{=} \int_{\left[P_{n}(X, \beta)\right]^{\text {vir }}} 1 \in \mathbb{Z} .
$$

If $d_{\beta}>0$ one needs to impose constraints on the curve to get meaningful counts.

Definition

For $\gamma \in H^{*}(X), k \geq 0$ define the descendents

$$
\operatorname{ch}_{k}(\gamma)=\left(\pi_{P}\right)_{*}\left(\operatorname{ch}_{k}(\mathbb{F}-\mathcal{O}) \cdot \pi_{X}^{*}(\gamma)\right) \in H^{*}\left(P_{n}(X, \beta)\right)
$$

$$
X \stackrel{\pi_{X}}{\stackrel{\mathbb{F}}{\downarrow} X \times P_{n}(X, \beta) \xrightarrow{\pi_{P}} P_{n}(X, \beta)}
$$

PT invariants

Remark

Since \mathbb{F} is supported in codimension 2

$$
\operatorname{ch}_{0}(\gamma)=-\int_{X} \gamma \in H^{0}(P) \text { and } \operatorname{ch}_{1}(\gamma)=0 .
$$

Given a product of descendent classes $D=\prod_{j=1}^{m} \operatorname{ch}_{k_{j}}\left(\gamma_{j}\right)$ we denote integration against the virtual fundamental class by

$$
\langle D\rangle_{n, \beta}^{X, \mathrm{PT}}=\int_{\left[P_{n}(X, \beta)\right]_{\mathrm{yir}}} D \in \mathbb{Q} .
$$

We assemble the information of all n in the partition function

$$
\langle D\rangle_{\beta}^{X, \mathrm{PT}}=\sum_{n \in \mathbb{Z}} q^{n}\langle D\rangle_{n, \beta}^{X, \mathrm{PT}} \in \mathbb{Q}((q)) .
$$

Rationality and functional equation

Conjecture

Let $D=\prod_{j=1}^{m} \operatorname{ch}_{k_{j}}\left(\gamma_{j}\right)$. Then $\langle D\rangle_{\beta}^{X, \mathrm{PT}}$ is the Laurent expansion of a rational function $f(q)$ satisfying the symmetry functional equation

$$
f\left(q^{-1}\right)=(-1)^{\sum_{j=1}^{m} k_{j}} q^{-d_{\beta}} f(q) .
$$

Evidence for the conjecture:
(1) Both rationality and the functional equation hold for Calabi-Yau 3-folds (Bridgeland, Toda).
(2) Rationality holds for toric 3-folds (Pandharipande-Pixton). The functional equation is known when $k_{j}=2$.
(3) Rationality holds for complete intersections in products of projective spaces for cohomology classes γ_{i} restricted from the ambient space (Pandharipande-Pixton).

Gromov-Witten compactification

On the Gromov-Witten side we compactify the moduli of embedded curves in a different way:

$$
\bar{M}_{g, m}(X, \beta)=\left\{\left(C, p_{1}, \ldots, p_{m}, f\right)\right\}
$$

parametrizes maps $f: C \rightarrow X$ from a nodal curve of genus g with m marked points to X such that $f_{*}[C]=\beta$.
(We take here a slight variation of the usual GW moduli space by allowing C to be disconnected without collapsed components of genus 0 and 1.) This moduli space has a virtual fundamental class $\left[\bar{M}_{g, m}(X, \beta)\right]^{\text {vir }}$ in virtual dimension

$$
\operatorname{virdim}=d_{\beta}+m
$$

Gromov-Witten descendents

In Gromov-Witten theory descendents are defined by

$$
\tau_{k}(\gamma)=\psi_{i}^{k} \mathrm{ev}_{i}^{*}(\gamma)
$$

where

- $\psi_{i}=c_{1}\left(\mathbb{L}_{i}\right)$ and \mathbb{L}_{i} is the cotangent line bundle associated to the i-th point. The fiber of \mathbb{L}_{i} over $\left(C, p_{1}, \ldots, p_{m}, f\right)$ is $T_{p_{i}}^{\vee} C$.
- $\mathrm{ev}_{i}: \bar{M}_{g, m}(X, \beta) \rightarrow X$ is evaluation at the i-th point, $f\left(p_{i}\right)$.

Gromov-Witten invariants

Gromov-Witten invariants are defined by integrating against virtual fundamental class:

$$
\left\langle\prod_{i=1}^{m} \tau_{k_{i}}\left(\gamma_{i}\right)\right\rangle_{g, \beta}^{X, \mathrm{GW}}=\int_{\left[\bar{M}_{g, m}(X, \beta)\right]^{\mathrm{jir}}} \prod_{i=1}^{m} \psi_{i}^{k_{i}} \mathrm{ev}_{i}^{*}\left(\gamma_{i}\right) \in \mathbb{Q} .
$$

The associated partition function is

$$
\left\langle\prod_{i=1}^{m} \tau_{k_{i}}\left(\gamma_{i}\right)\right\rangle_{\beta}^{x, \mathrm{GW}}=\sum_{g \in \mathbb{Z}}\left\langle\prod_{i=1}^{m} \tau_{k_{i}}\left(\gamma_{i}\right)\right\rangle_{g, \beta}^{x, \mathrm{GW}} u^{2 g-2}
$$

GW/PT correspondence

Conjecturally, the collections of GW invariants and of PT invariants determine each other.This is easiest to state for primary fields:
$(-q)^{-d_{\beta} / 2}\left\langle\operatorname{ch}_{2}\left(\gamma_{1}\right) \ldots \operatorname{ch}_{2}\left(\gamma_{m}\right)\right\rangle_{\beta}^{X, \mathrm{PT}}=(-\imath u)^{d_{\beta}}\left\langle\tau_{0}\left(\gamma_{1}\right) \ldots \tau_{0}\left(\gamma_{m}\right)\right\rangle_{\beta}^{X, \mathrm{GW}}$
after the change of variables $-q=e^{\imath u}$.
In general the correspondence is much more complicated. To state it let $\mathbb{D}_{\mathrm{PT}}^{X}, \mathbb{D}_{\mathrm{GW}}^{X}$ be the algebras generated by formal symbols $\operatorname{ch}_{k}(\gamma)$ and $\tau_{k}(\gamma)$, respectively.

Conjecture (MNOP)

There is a universally defined invertible transformation
$\mathfrak{C}^{\bullet}: \mathbb{D}_{\mathrm{PT}}^{X} \rightarrow \mathbb{D}_{\mathrm{GW}}^{X}$ such that

$$
(-q)^{-d_{\beta} / 2}\langle D\rangle_{\beta}^{X, \mathrm{PT}}=(-\imath u)^{d_{\beta}}\left\langle\mathbb{C}^{\bullet}(D)\right\rangle_{\beta}^{X, \mathrm{GW}}
$$

for every $D \in \mathbb{D}_{\mathrm{PT}}^{X}$ after the change of variable $-q=e^{\imath u}$.

Explicit GW/PT correspondence

Oblomkov-Okounkov-Pandharipande found explicit (partial) formulas for \mathfrak{C}^{\bullet}. To state them we introduce modified descendents:

$$
\begin{gathered}
\tilde{\mathrm{h}}_{k}(\gamma)=\mathrm{ch}_{k}(\gamma)+\frac{1}{24} \mathrm{ch}_{k-2}\left(\gamma c_{2}\right) . \\
\frac{(\imath u)^{k} \mathfrak{a}_{k+1}(\gamma)}{(k+1)!}=\tau_{k}(\gamma)+\left(\sum_{i=1}^{k} \frac{1}{i}\right) \tau_{k-1}\left(\gamma c_{1}\right)+\left(\sum_{1 \leq i<j \leq k} \frac{1}{i j}\right) \tau_{k-2}\left(\gamma c_{1}^{2}\right) .
\end{gathered}
$$

Then the transformation has the form

$$
\mathfrak{C}^{\bullet}\left(\tilde{\operatorname{ch}}_{k_{1}}\left(\gamma_{1}\right) \ldots \tilde{\mathrm{ch}}_{k_{m}}\left(\gamma_{m}\right)\right)=\sum_{P} \prod_{S \in P} \mathfrak{C}^{\circ}\left(\prod_{i \in S} \tilde{\mathrm{ch}}_{k_{i}}\left(\gamma_{i}\right)\right)
$$

where the sum runs over partitions P of $\{1, \ldots, m\}$ and \mathfrak{C}° is...

Explicit GW/PT correspondence

$$
\begin{aligned}
& \mathfrak{C}^{\circ}\left(\tilde{c h}_{k+2}(\gamma)\right)=\frac{1}{(k+1)!} \mathfrak{a}_{k+1}(\gamma)+\frac{(\imath u)^{-1}}{k!} \sum_{|\mu|=k-1} \frac{\mathfrak{a}_{\mu_{1}} \mathfrak{a}_{\mu_{2}}\left(\gamma c_{1}\right)}{\operatorname{Aut}(\mu)} \\
& \quad+\frac{(\imath u)^{-2}}{k!} \sum_{|\mu|=k-2} \frac{\mathfrak{a}_{\mu_{1}} \mathfrak{a}_{\mu_{2}}\left(\gamma c_{1}^{2}\right)}{\operatorname{Aut}(\mu)}+\frac{(\imath u)^{-2}}{(k-1)!} \sum_{|\mu|=k-3} \frac{\mathfrak{a}_{\mu_{1}} \mathfrak{a}_{\mu_{2}} \mathfrak{a}_{\mu_{3}}\left(\gamma c_{1}^{2}\right)}{\operatorname{Aut}(\mu)}+\ldots \\
& \mathfrak{C}^{\circ}\left(\tilde{c h}_{k_{1}+2}(\gamma) \tilde{c h}_{k_{2}+2}\left(\gamma^{\prime}\right)\right)= \\
& \quad-\frac{(\imath u)^{-1}}{k_{1}!k_{2}!} \mathfrak{a}_{k_{1}+k_{2}}\left(\gamma \gamma^{\prime}\right)-\frac{(\imath u)^{-2}}{k_{1}!k_{2}!} \mathfrak{a}_{k_{1}+k_{2}-1}\left(\gamma \gamma^{\prime} c_{1}\right) \\
& \quad-\frac{(\imath u)^{-2}}{k_{1}!k_{2}!} \sum_{|\mu|=k_{1}+k_{2}-2} \max \left(k_{1}, k_{2}, \mu_{1}+1, \mu_{2}+1\right) \frac{\mathfrak{a}_{\mu_{1}} \mathfrak{a}_{\mu_{2}}}{\operatorname{Aut}(\mu)}\left(\gamma \gamma^{\prime} \cdot c_{1}\right)+\ldots
\end{aligned}
$$

$\mathfrak{C}^{\circ}\left(\tilde{\mathrm{c}}_{k_{1}+2}(\gamma) \tilde{\mathrm{c}}_{k_{2}+2}\left(\gamma^{\prime}\right) \tilde{\mathrm{c}}_{k_{3}+2}\left(\gamma^{\prime \prime}\right)\right)=\frac{(\imath u)^{-2} k}{k_{1}!k_{2}!k_{3}!} \mathfrak{a}_{k-1}\left(\gamma \gamma^{\prime} \gamma^{\prime \prime}\right)+\ldots$
for $k=k_{1}+k_{2}+k_{3}$. To control the entire transformation we would need the expression of \mathfrak{C}° for arbitrarily long monomials. However, if we restrict ourselves to the stationary descendents

$$
\left\{\operatorname{ch}_{k}(\gamma): k \geq 0, \gamma \in H^{\geq 2}(X)\right\}
$$

the higher \mathfrak{C}° and the \ldots terms vanish by degree reasons. Denote by $\mathbb{D}_{\mathrm{PT}}^{X+} \subseteq \mathbb{D}_{\mathrm{PT}}^{X}$ the stationary sub-algebra.

Upshot

We have a (very complicated) completely explicit way to write the GW/PT correspondence for stationary descendents.

Gromov-Witten Virasoro

The Virasoro constraints (first proposed by Eguchi, Hori and Xiong in '97) are a conjectured set of relations satisfied by GW invariants. For each $k \geq-1$ there is an operator $L_{k}^{\mathrm{GW}}: \mathbb{D}_{\mathrm{GW}}^{X} \rightarrow \mathbb{D}_{\mathrm{GW}}^{X}$. The Virasoro conjecture predicts:

$$
\left\langle L_{k}^{\mathrm{GW}}(D)\right\rangle_{g, \beta}^{X, \mathrm{GW}}=0 \text { for } D \in \mathbb{D}_{\mathrm{GW}}^{X} .
$$

The operators satisfy the Virasoro relation:

$$
\left[L_{k}^{\mathrm{GW}}, L_{m}^{\mathrm{GW}}\right]=(k-m) L_{k+m}^{\mathrm{GW}}
$$

The first equation $(k=-1)$ is the string equation:

$$
\left\langle\tau_{0}(1) \tau_{k_{1}}\left(\gamma_{1}\right) \ldots \tau_{k_{m}}\left(\gamma_{m}\right)\right\rangle=\sum_{j=1}^{m}\left\langle\tau_{k_{1}}\left(\gamma_{1}\right) \ldots \tau_{k_{j}-1}\left(\gamma_{j}\right) \ldots \tau_{k_{m}}\left(\gamma_{m}\right)\right\rangle
$$

Stable pairs Virasoro

The stable pairs Virasoro have a similar form: it predicts

$$
\left\langle L_{k}^{\mathrm{PT}}(D)\right\rangle_{n, \beta}^{X, \mathrm{PT}}=0 \text { for } D \in \mathbb{D}_{\mathrm{PT}}^{X}, k \geq-1
$$

for certain operators $L_{k}^{\mathrm{PT}}: \mathbb{D}_{\mathrm{PT}}^{X} \rightarrow \mathbb{D}_{\mathrm{PT}}^{X}$.
The cases $k=-1,0$ follow from the string and the divisor equations:
(1) $\mathrm{ch}_{2}(1)=0$. (string equation)
(2) $\operatorname{ch}_{2}(D)=\int_{\beta} D$ for $D \in H^{2}(X)$. (divisor equation)
(3) $\mathrm{ch}_{3}(1)=n-\frac{d_{\beta}}{2}$. (dilation equation)

Virasoro operators: R_{k}

To describe the operators L_{k}^{PT} we need several constructions:

- Define derivations $R_{k}: \mathbb{D}_{\mathrm{PT}}^{X} \rightarrow \mathbb{D}_{\mathrm{PT}}^{X}$ by their values on the generators:

$$
R_{k} \operatorname{ch}_{i}(\gamma)=\left(\prod_{j=0}^{k}(i+p-3+j)\right) \operatorname{ch}_{k+i}(\gamma)
$$

for γ having Hodge type (p, q).
In particular

$$
R_{-1} \operatorname{ch}_{i}(\gamma)=\operatorname{ch}_{i-1}(\gamma)
$$

Virasoro operators: T_{k}

- We use the abbreviation

$$
\operatorname{ch}_{a} \operatorname{ch}_{b}(\gamma)=\sum_{i} \operatorname{ch}_{a}\left(\gamma_{i}^{L}\right) \operatorname{ch}_{b}\left(\gamma_{i}^{R}\right)
$$

where $\sum_{i} \gamma_{i}^{L} \otimes \gamma_{i}^{R}$ is the Kunneth decomposition of $\Delta_{*} \gamma \in H^{*}(X \times X)$.

- The notation

$$
(-1)^{p^{L} p^{R}}\left(a+p^{L}-3\right)!\left(b+p^{R}-3\right)!\mathrm{ch}_{a} \mathrm{ch}_{b}\left(c_{1}\right)
$$

means

$$
\sum_{i}(-1)^{p_{i}^{L} p_{i}^{R}}\left(a+p_{i}^{L}-3\right)!\left(b+p_{i}^{R}-3\right)!\operatorname{ch}_{a}\left(\gamma_{i}^{L}\right) \operatorname{ch}_{b}\left(\gamma_{i}^{R}\right)
$$

where $\sum_{i} \gamma_{i}^{L} \otimes \gamma_{i}^{R}$ is the Kunneth decomposition of $\Delta_{*} c_{1} \in H^{*}(X \times X)$ and $\gamma_{i}^{L} \in H^{p_{i}^{L}, q_{i}^{L}}(X)$.

Virasoro operators: T_{k}

- Define the operator $T_{k}: \mathbb{D}_{\mathrm{PT}}^{X} \rightarrow \mathbb{D}_{\mathrm{PT}}^{X}$ as multiplication by

$$
\begin{aligned}
T_{k} & =-\frac{1}{2} \sum_{a+b=k+2}(-1)^{p^{L} p^{R}}\left(a+p^{L}-3\right)!\left(b+p^{R}-3\right)!\operatorname{ch}_{a} \operatorname{ch}_{b}\left(c_{1}\right) \\
& +\frac{1}{24} \sum_{a+b=k} a!b!\operatorname{ch}_{a} \operatorname{ch}_{b}\left(c_{1} c_{2}\right) .
\end{aligned}
$$

When X doesn't have any ($0, p$) cohomology (for example: X toric, X cubic 3 -fold) we can already say what L_{k}^{PT} is:

$$
L_{k}^{\mathrm{PT}}=R_{k}+T_{k}+(k+1)!R_{-1} \mathrm{ch}_{k+1}(\mathrm{p})
$$

Virasoro operators: S_{k}

In the general case (we think)

$$
L_{k}^{\mathrm{PT}}=R_{k}+T_{k}+S_{k} .
$$

- Given $\alpha \in H^{0, q}(X)$ define the derivation $R_{-1}[\alpha]: \mathbb{D}_{\mathrm{PT}}^{X} \rightarrow \mathbb{D}_{\mathrm{PT}}^{X}$ by its value on the generators:

$$
R_{-1}[\alpha] \operatorname{ch}_{i}(\gamma)=\operatorname{ch}_{i-1}(\alpha \gamma)
$$

- $S_{k}: \mathbb{D}_{\mathrm{PT}}^{X} \rightarrow \mathbb{D}_{\mathrm{PT}}^{X}$ is given by

$$
S_{k}=(k+1)!\sum_{p_{i}^{L}=0} R_{-1}\left[\gamma_{i}^{L}\right] \operatorname{ch}_{k+1}\left(\gamma_{i}^{R}\right)
$$

The sum runs over the terms $\gamma_{i}^{L} \otimes \gamma_{i}^{R}$ in the Kunneth decomposition of the diagonal $\Delta_{*} 1$ such that $p_{i}^{L}=0$.

Virasoro conjecture

Conjecture

For any X (simply-connected?), $n \in \mathbb{Z}, \beta \in H_{2}(X ; \mathbb{Z})$ and $D \in \mathbb{D}_{\mathrm{PT}}^{X}$ we have

$$
\left\langle L_{k}^{\mathrm{PT}}(D)\right\rangle_{n, \beta}^{X, \mathrm{PT}}=0 .
$$

A striking feature of this conjecture is that, unlike the GW conjecture, the relations predicted are all defined in the same moduli space $P_{n}(X, \beta)$.

Vanishing of descendents of $(2,0),(3,0)$ classes

Remark

By (Hodge) degree reasons if $\alpha \in H^{p, 0}(X)$ then $\operatorname{ch}_{2}(\alpha)=0$. An easy computation:

$$
\left[L_{k}^{\mathrm{PT}}, \operatorname{ch}_{2}(\alpha)\right]=\frac{(p-1+k)!}{(p-2)!} \operatorname{ch}_{2+k}(\alpha)
$$

Hence the conjecture implies the surprising vanishing

$$
\left\langle\operatorname{ch}_{k}(\alpha) D\right\rangle_{\beta}^{X, \mathrm{PT}}=0 \text { for every } D \in \mathbb{D}_{\mathrm{PT}}^{X} .
$$

Examples

- For $k=-1$, after setting $\mathrm{ch}_{1}=0$:

$$
L_{-1}^{\mathrm{PT}}=R L_{1}+\operatorname{ch}_{0}(\mathrm{p}) R_{-1}
$$

- For $k=0$:
$L_{0}^{\mathrm{PT}}=R_{0}+\operatorname{ch}_{0}(\mathrm{p}) \operatorname{ch}_{2}\left(c_{1}\right)+\frac{1}{24} \operatorname{ch}\left(\epsilon_{1} c_{2}\right) \mathrm{ch}_{0}(\mathrm{p})+\sum_{p_{i}^{L}=0} \operatorname{ch}_{0}\left(\mathcal{Z}_{i}^{l} \gamma_{i}^{R}\right)$.
- Take $X=\mathbb{P}^{3}, H, L$ the classes of hyperplanes and lines, respectively, $\beta=L$. Then $L_{1} \mathrm{ch}_{4}(L)$ predicts:

$$
4 \underbrace{\left\langle\operatorname{ch}_{3}(H) \operatorname{ch}_{4}(L)\right\rangle}_{\frac{5\left(q^{4}-3 q^{3}+3 q^{2}-q\right)}{4(q+1)}}+12 \underbrace{\left\langle\operatorname{ch}_{5}(L)\right\rangle}_{-\frac{q^{4}-9 q^{3}+9 q^{2}-q}{6(q+1)}}+2 \underbrace{\left\langle\operatorname{ch}_{2}(p) \operatorname{ch}_{3}(L)\right\rangle}_{\frac{3}{2}\left(q^{3}-q\right)}=0
$$

Evidence for the conjecture

Theorem (Oblomkov-Okounkov-Pandharipande-M)

If X is a toric 3 -fold

$$
\left\langle L_{k}^{\mathrm{PT}}(D)\right\rangle_{\beta}^{X, \mathrm{PT}}=0
$$

for every $D \in \mathbb{D}_{\mathrm{PT}}^{X+}$.

Theorem (M)

If X is the cubic 3 -fold and β is the line class

$$
\left\langle L_{k}^{\mathrm{PT}}(D)\right\rangle_{\beta}^{X, \mathrm{PT}}=0
$$

for every $D \in \mathbb{D}_{\mathrm{PT}}^{X}$.

Evidence for the conjecture

Theorem (M)

If S is a simply-connected surface then

$$
\left\langle L_{k}^{\mathrm{PT}}(D)\right\rangle_{n, n\left[\mathbb{P}^{1}\right]}^{\left.S \times \mathbb{P}^{1}\right]}=0
$$

for every $D \in \mathbb{D}_{\mathrm{PT}}^{S \times \mathbb{P}^{1}}$.

Toric case

In the toric case the proof follows from 3 key ingredients:

- Virasoro for GW is known (Givental-Teleman theory).
- The stationary GW/PT correspondence is known (Pandharipande-Pixton, Oblomkov-Okounkov-Pandharipande).
- The GW and PT Virasoro operators are intertwined by the GW/PT correspondence:

Theorem (MOOP)

For $k \geq-1$ and $D \in \mathbb{D}_{\mathrm{PT}}^{X+}$ not containing descendents of $(0, p)$ classes we have

$$
\mathfrak{C}^{\bullet} \circ L_{k}^{\mathrm{PT}}(D)=(\imath u)^{-k} L_{k}^{\mathrm{GW}} \circ \mathfrak{C}^{\bullet}(D) .
$$

A special case

From now on S is a simply-connected smooth projective surface. We denote by $S^{[n]}$ the Hilbert scheme of points on S parametrizing 0 dimensional subschemes of length n.
A stable pair supported in the curve class $\beta=n\left[\mathbb{P}^{1}\right]$ has Euler characteristic at least n. The stable pairs with minimal Euler characteristic have the form

$$
\mathcal{O}_{S \times \mathbb{P}^{1}} \rightarrow \iota_{*} \mathcal{O}_{\xi \times \mathbb{P}^{1}}
$$

for $\xi \in S^{[n]}$. So we have an identification

$$
P_{n}\left(S \times \mathbb{P}^{1}, n\left[\mathbb{P}^{1}\right]\right) \cong S^{[n]}
$$

The virtual dimension agrees with the true dimension:

$$
\int_{n\left[\mathbb{P}^{1}\right]} c_{1}\left(S \times \mathbb{P}^{1}\right)=2 n=\operatorname{dim} S^{[n]}
$$

Descendents

Definition

Let $\Sigma_{n} \subseteq S^{[n]} \times S$ be the universal subscheme.
We define descendents on the Hilbert scheme by

$$
\operatorname{ch}_{k}(\gamma)=\left(\pi_{2}\right)_{*}\left(\operatorname{ch}_{k}\left(-\mathcal{I}_{\Sigma_{n}}\right) \cdot \pi_{1}^{*} \gamma\right) \in H^{*}\left(S^{[n]}\right)
$$

for $k \geq 0, \gamma \in H^{*}(S)$.

We have:

$$
\operatorname{ch}_{k}^{\mathrm{PT}}(\gamma \times 1)=0 \text { and } \operatorname{ch}_{k}^{\mathrm{PT}}(\gamma \times \mathrm{p})=\operatorname{ch}_{k}^{\text {Hilb }}(\gamma)
$$

Virasoro operators

Denote by \mathbb{D}^{S} the algebra of descendents.

- Define derivations $R_{k}: \mathbb{D}^{S} \rightarrow \mathbb{D}^{S}$ by their values on the generators:

$$
R_{k} \operatorname{ch}_{i}(\gamma)=\left(\prod_{j=0}^{k}(i+p-2+j)\right) \operatorname{ch}_{k+i}(\gamma)
$$

for γ having Hodge type (p, q).

- Define the operator $T_{k}: \mathbb{D}^{S} \rightarrow \mathbb{D}^{S}$ as multiplication by

$$
\begin{aligned}
T_{k} & =-\frac{1}{2} \sum_{a+b=k+2}(-1)^{p^{L} p^{R}}\left(a+p^{L}-2\right)!\left(b+p^{R}-2\right)!\operatorname{ch}_{a} \operatorname{ch}_{b}(1) \\
& +\frac{1}{12} \sum_{a+b=k} a!b!\operatorname{ch}_{a} \operatorname{ch}_{b}\left(c_{1}^{2}+c_{2}\right) .
\end{aligned}
$$

Virasoro operators

- $S_{k}: \mathbb{D}^{S} \rightarrow \mathbb{D}^{S}$ is given by

$$
S_{k}=(k+1)!\sum_{p_{i}^{L}=0} R_{-1}\left[\gamma_{i}^{L}\right] \operatorname{ch}_{k+1}\left(\gamma_{i}^{R}\right) .
$$

The sum runs over the terms $\gamma_{i}^{L} \otimes \gamma_{i}^{R}$ in the Kunneth decomposition of the diagonal $\Delta_{*} 1 \in H^{*}(S \times S)$ such that $p_{i}^{L}=0$.

- Define

$$
L_{k}^{S}=R_{k}+T_{k}+S_{k} .
$$

Theorem (M)

Let S be simply-connected. For $D \in \mathbb{D}^{S}, k \geq-1$ we have

$$
\int_{S^{[n]}} L_{k}^{S} D=0 .
$$

A lot is known about $H^{*}\left(S^{[n]}\right)$:

- The Betti numbers of $S^{[n]}$ were determined by Göttsche.
- Nakajima described $\bigoplus_{n \geq 0} H^{*}\left(S^{[n]}\right)$ as a module over the Heisenberg algebra.
- The descendents $c h_{k}(\gamma)$ generate $H^{*}\left(S^{[n]}\right)$ (Li-Qin-Wang).
- Ring structure on $H^{*}\left(S^{[n]}\right)$ can be algorithmically described (Ellingsrud-Göttsche-Lehn, Li-Qin-Wang).

Path of the proof

(1) The integrals $\int_{\text {[}[n]} L_{k} D$ admit universal formulas.
(2) The conjecture behaves well with respect to disjoint unions.
(3) If D only has (p, p) descendents then (disconnected) toric surfaces provide enough data to show that the universal formulas vanish.
(4) If D has $(0,2),(2,0)$ classes we add connected components and replace those classes by $(0,0)$ and $(2,2)$ classes.

Universal formulas for integrals

Theorem (EGL, LQW)

The integral

$$
\int_{S_{[n]}} \operatorname{ch}_{k_{1}}\left(\gamma_{1}\right) \ldots \operatorname{ch}_{k_{m}}\left(\gamma_{m}\right)
$$

admits a universal formula depending only on n, k_{1}, \ldots, k_{m} and (polynomially) on the integrals

$$
\int_{S} c_{1}^{\varepsilon_{1}} c_{2}^{\varepsilon_{2}} \prod_{i \in I} \gamma_{i}
$$

This is done by relating integrals in $S^{[n]}$ to integrals in S^{n}.

$$
\underset{\substack{n: 1 \\ S^{[n]}}}{\substack{[n-1, n]}} \xrightarrow{\text { blowup } \sum_{n-1}} S^{[n-1]} \times S
$$

Universal formulas for Virasoro integrals

Proposition

Let $\gamma_{i} \in H^{p_{i}, q_{i}}(S)$. The integral

$$
\int_{S^{[n]}} L_{k}\left(\operatorname{ch}_{k_{1}}\left(\gamma_{1}\right) \ldots \operatorname{ch}_{k_{m}}\left(\gamma_{m}\right)\right)
$$

admits a universal formula depending only on
$n, k, k_{1}, \ldots, k_{m}, p_{1}, \ldots, p_{m}$ and (polynomially) on the integrals

$$
\int_{S} c_{1}^{\varepsilon_{1}} c_{2}^{\varepsilon_{2}} \prod_{i \in I} \gamma_{i}
$$

Key observation:

$$
\sum_{p_{i}^{L}=p} \int_{S} \gamma_{i}^{L} \gamma_{i}^{R}=\chi\left(S, \Omega^{p}\right)= \begin{cases}\frac{1}{12} \int_{S}\left(c_{1}^{2}+c_{2}\right) & \text { if } p=0,2 \\ \frac{1}{6} \int_{S}\left(-c_{1}^{2}+5 c_{2}\right) & \text { if } p=1\end{cases}
$$

Disconnected surfaces

The Virasoro operators are still well defined with disconnected surfaces. If $S=S_{1} \sqcup S_{2}$ then

$$
\begin{aligned}
\mathbb{D}^{S}= & \mathbb{D}^{S_{1}} \otimes \mathbb{D}^{S_{2}} \\
L_{k}^{S}=\operatorname{id}_{\mathbb{D}^{S_{1}}} \otimes & L_{k}^{S_{2}}+L_{k}^{S_{1}} \otimes \mathrm{id}_{\mathbb{D}^{S_{2}}} \\
\int_{S_{[n]}} L_{k}^{S}\left(D_{1} \otimes D_{2}\right)=\sum_{n_{1}+n_{2}=n} & \left(\int_{S_{1}^{\left[n_{1}\right]}} D_{1}\right)\left(\int_{S_{2}^{\left[n_{2}\right]}} L_{k}^{S_{2}}\left(D_{2}\right)\right) \\
& +\left(\int_{S_{1}^{\left[n_{1}\right]}} L_{k}^{S_{1}}\left(D_{1}\right)\right)\left(\int_{S_{2}^{\left[n_{2}\right]}} D_{2}\right) .
\end{aligned}
$$

Thus: if the Virasoro holds for S_{1} and S_{2} it also holds for S.

$(1,1)$-classes

Suppose that D has no $(0,2)$ and no $(2,0)$ classes:

$$
D=\prod_{i=1}^{s} \operatorname{ch}_{k_{i}}(1) \prod_{i=1}^{t} \operatorname{ch}_{\ell_{i}}(\mathrm{p}) \prod_{i=1}^{m} \operatorname{ch}_{m_{i}}\left(\gamma_{i}\right)
$$

where $\gamma_{i} \in H^{1,1}(X)$.
Then the integral

$$
\int_{S^{[n]}} L_{k}^{S}(D)
$$

depends only on $n, k, s, t, m, k_{i}, \ell_{i}, m_{i}$ and on the data $\left(\binom{m+1}{2}+m+2\right)$-tuple of rational numbers

$$
\left\{\int_{S} \gamma_{i} \gamma_{j}\right\}_{1 \leq i \leq j \leq m} \cup\left\{\int_{S} \gamma_{i} c_{1}\right\}_{1 \leq i \leq m} \cup\left\{\int_{S} c_{1}^{2}, \int_{S} c_{2}\right\} .
$$

Zariski density

We know that the previous integral vanishes if S is toric, so it's enough to prove that toric surfaces give enough data points:

Proposition

By varying the (possibly disconnected) toric surface and classes $\gamma_{j} \in H^{2}(S)$, the set of possible $\left(\binom{m+1}{2}+m+2\right)$-tuples

$$
\left\{\int_{S} \gamma_{i} \gamma_{j}\right\}_{1 \leq i \leq j \leq m} \cup\left\{\int_{S} \gamma_{i} c_{1}\right\}_{1 \leq i \leq m} \cup\left\{\int_{S} c_{1}^{2}, \int_{S} c_{2}\right\} .
$$

is Zariski dense in $\mathbb{Q}\binom{m+1}{2}+m+2$.

Zariski density

Proof.

Start with N disjoint copies of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.Perform M successive toric blow-ups of points in one of the copies in a way that the last m blow-ups have disjoint exceptional divisors D_{1}, \ldots, D_{m}. Pick D_{0} in another copy of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Set

$$
\gamma_{i}=\sum_{j=0}^{m} a_{i j} D_{j}
$$

and vary $a_{i j} \in \mathbb{Q}$.

$$
\begin{aligned}
& \int_{S} c_{2}=4 N+M \text { and } \int_{S} c_{1}^{2}=8 N-M \\
& \int_{S} \gamma_{i} \gamma_{j}=\left(-A A^{t}\right)_{i j} .
\end{aligned}
$$

$(0,2)$ and $(2,0)$-classes

Pick a basis $\alpha_{1}, \ldots, \alpha_{h^{0,2}} \in H^{0,2}(S)$ and $\beta_{1}, \ldots, \beta_{h^{0,2}} \in H^{2,0}(S)$ such that

$$
\int_{S} \alpha_{i} \beta_{j}=\delta_{i j}
$$

We add new connected components to S

$$
T=S \sqcup E_{1} \sqcup \ldots \sqcup E_{N}
$$

and replace appearances of α_{j}, β_{j} by $(0,0)$ and $(2,2)$ classes supported in the new connected components such that all the integrals appearing in the universal formula agree. Let $\omega=e^{2 \pi i / N}$ and

$$
\alpha=\sum_{i=0}^{N-1} \omega^{i} 1_{i} \in H^{0}(T ; \mathbb{C}) \text { and } \beta=\frac{1}{N} \sum_{i=0}^{N-1} \omega^{-i} \mathrm{p}_{i} \in H^{4}(T ; \mathbb{C})
$$

satisfy for example

$$
\int_{S} \alpha^{j} \beta=\delta_{j 1} \text { and } \alpha \gamma=\beta \gamma=0 \text { for all } \gamma \in H^{1,1}(S) .
$$

Thank you for your attention!

[^0]: ${ }^{1}$ Contributions by Maulik, Nekrasov, Okounkov, Pandharipande, Pixton, Oblomkov, Thomas, Stoppa, Bridgeland and many others.
 ${ }^{2}$ Contributions by Witten, Kontsevich, Eguchi, Hori, Xiong, Getzler, Givental, Teleman, Okounkov, Pandharipande and many others.

