Stable pairs	GW/PT correspondence	PT Virasoro	Virasoro for Hilbert scheme	Proof of Virasoro for

Virasoro constraints for stable pairs and for Hilbert schemes of points of surfaces

Miguel Moreira

ETHZ

Zoominar 26 June 2020

Stable pairs	GW/PT correspondence	PT Virasoro	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n]
00000000	0000000	000000000000	00000	00000000
المعادية والم	at an			

Based on joint work with A. Oblomkov, A. Okounkov and R. Pandharipande.

• Theory of stable pairs (PT) provides a (sheaf theoretical) way to:

– Compactify the space of nonsigular embedded curves on a 3-fold X.

- Define numerical invariants ("curve counts").

- Conjecturally equivalent to other curve counting theories like Gromov-Witten (GW) and Donaldson-Thomas (DT).¹
- Virasoro conjecture predicts universal constraints on Gromov-Witten invariants.²

¹Contributions by Maulik, Nekrasov, Okounkov, Pandharipande, Pixton, Oblomkov, Thomas, Stoppa, Bridgeland and many others.

²Contributions by Witten, Kontsevich, Eguchi, Hori, Xiong, Getzler, Givental, Teleman, Okounkov, Pandharipande and many others.

Stable pairs 00000000	GW/PT correspondence	PT Virasoro 000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n] 000000000
Introdu	ction			

- Expect: GW/PT correspondence + GW Virasoro ⇒ PT Virasoro.
- Precise form of the conjecture for X = P³ was found in ~ 2007 by Oblomkov, Okounkov, Pandharipande (OOP).
- Recent progress (together with OOP): precise formulation of the conjecture for any simply-connected 3-fold (at least when it doesn't have (0, *p*) cohomology).
- (With OOP) Proof of the PT Virasoro for toric 3-folds in the stationary regime.
- Verification of the PT Virasoro for the cubic 3-fold in the curve class of lines.
- Proof of a certain specialization that gives a new set of relations satisfied by tautological classes in the Hilbert scheme of points of a surface.

Stable pairs •0000000	GW/PT correspondence	PT Virasoro 000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n] 000000000
Stahle	nairs			

Let X be a smooth projective 3-fold over \mathbb{C} .

Definition (Pandharipande-Thomas)

A stable pair on X is a coherent sheaf F on X together with a section $\mathcal{O}_X \xrightarrow{s} F$ satisfying the following two stability conditions:

- *F* is pure of dimension 1: every non-trivial coherent sub-sheaf of *F* has dimension 1.
- The cokernel of s has dimension 0.

We associate two discrete invariants:

$$\beta = [\operatorname{supp}(F)] \in H_2(X; \mathbb{Z}) \text{ and } n = \chi(X, F).$$

The space $P_n(X,\beta)$ parametrizing stable pairs with fixed discrete invariants is a projective fine moduli space.

Stable pairs 0000000	GW/PT correspondence	PT Virasoro 000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for S ^{[n} 000000000
Geomet	ric locus			

If $C \subseteq X$ is a smooth curve and D is an effective divisor on C

$$\mathcal{O}_X \stackrel{s}{\to} \iota_* \mathcal{O}_C(D)$$

is a stable pair with support C and .

 $\operatorname{coker}(s) = \mathcal{O}_D.$

Roughly speaking: stable pair is a curve decorated with finite number of points contained in the curve (zeros of the section). In general $P_n(X,\beta)$ has more degenerate objects (supported in singular curves).

			00000	00000000
Stable pairs 0000000	GW/PT correspondence	PT Virasoro 000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[//] 000000000

Example

For $t \neq 0$ consider the embedded curve

$$C_t = \{x = z = 0\} \cup \{y = z - t = 0\} \subseteq \mathbb{C}^3.$$

As a stable pair:

$$\mathbb{C}[x,y,z] \stackrel{s}{\rightarrow} \mathbb{C}[x,y,z]/(x,z) \oplus \mathbb{C}[x,y,z]/(y,z-t).$$

In the limit $t \rightarrow 0$:

$$\mathbb{C}[x,y,z] \xrightarrow{s} \mathbb{C}[x,y,z]/(x,z) \oplus \mathbb{C}[x,y,z]/(y,z) \to \underbrace{\mathbb{C}/(x,y,z)}_{\text{coker}}.$$

Not surjective anymore.

Stable pairs 000●0000	GW/PT correspondence	PT Virasoro 000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n] 000000000
Deform	ation theory			

The moduli space $P_n(X,\beta)$ admits a 2-term perfect obstruction theory (Pandharipande-Thomas). Associate to a stable pair $\mathcal{O}_X \xrightarrow{s} F$ the 2-term complex

$$I^{\bullet} = \{\mathcal{O}_X \xrightarrow{s} F\} \in D^b(X).$$

The (fixed-determinant) obstruction theory on $D^b(X)$ provides a deformation theory on $P_n(X, \beta)$:

- Tangent space: $Ext^1(I^{\bullet}, I^{\bullet})_0$.
- Obstruction space: Ext²(I[●], I[●])₀.

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro
 Virasoro for Hilbert scheme
 Proof of Virasoro for S^[n]

 00000000
 0000000000
 000000000
 000000000
 000000000

Virtual fundamental class

Higher $Ext^*(I^{\bullet}, I^{\bullet})_0$ vanish \rightsquigarrow 2-term perfect deformation theory \rightsquigarrow virtual fundamental class

$$[P_n(X,\beta)]^{\mathsf{vir}} \in A_{d_\beta}(X)$$

where d_{β} is the expected dimension:

$$d_{\beta} = -\chi(\mathsf{R}\operatorname{Hom}(I^{\bullet}, I^{\bullet})_{0}) = \int_{\beta} c_{1}(X).$$

Remark

For the vanishing of the higher Ext's we need X to be 3-dimensional.

Remark

The virtual dimension depends only on the support of the stable pair and not on the number of points decorating the curve.

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro for Hilbert scheme
 Proof of Virasoro for S^[n]

 00000000
 000000000
 00000
 00000
 00000000

Descendents

When X is Calabi-Yau the virtual dimension is 0. Can define the curve count

$$\langle 1
angle^{X,\mathsf{PT}}_{n,eta} \stackrel{\mathsf{def}}{=} \int_{[P_n(X,eta)]^{\mathsf{vir}}} 1 \in \mathbb{Z}.$$

If $d_{\beta} > 0$ one needs to impose constraints on the curve to get meaningful counts.

Definition

For $\gamma \in H^*(X)$, $k \ge 0$ define the descendents

$$\mathsf{ch}_k(\gamma) = (\pi_{\mathcal{P}})_* \left(\mathsf{ch}_k\left(\mathbb{F} - \mathcal{O}\right) \cdot \pi^*_X(\gamma)\right) \in H^*(\mathcal{P}_n(X, eta)).$$

$$X \xleftarrow{\pi_X} X \times P_n(X,\beta) \xrightarrow{\pi_P} P_n(X,\beta)$$

Stable pairs	GW/PT correspondence	PT Virasoro	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n]
00000000				
	ariante			

Remark

Since ${\mathbb F}$ is supported in codimension 2

$$\mathsf{ch}_0(\gamma) = -\int_X \gamma \in H^0(P) \text{ and } \mathsf{ch}_1(\gamma) = 0.$$

Given a product of descendent classes $D = \prod_{j=1}^{m} \operatorname{ch}_{k_j}(\gamma_j)$ we denote integration against the virtual fundamental class by

$$\langle D \rangle_{n,eta}^{X,\mathsf{PT}} = \int_{[P_n(X,eta)]^{\mathsf{vir}}} D \in \mathbb{Q}$$

We assemble the information of all n in the partition function

$$\langle D
angle_{eta}^{X,\mathsf{PT}} = \sum_{n \in \mathbb{Z}} q^n \langle D
angle_{n,eta}^{X,\mathsf{PT}} \in \mathbb{Q}((q)).$$

Rationality and functional equation

Conjecture

Let $D = \prod_{j=1}^{m} \operatorname{ch}_{k_j}(\gamma_j)$. Then $\langle D \rangle_{\beta}^{X, \mathsf{PT}}$ is the Laurent expansion of a rational function f(q) satisfying the symmetry functional equation

$$f(q^{-1}) = (-1)^{\sum_{j=1}^{m} k_j} q^{-d_{\beta}} f(q).$$

Evidence for the conjecture:

- Both rationality and the functional equation hold for Calabi-Yau 3-folds (Bridgeland, Toda).
- Rationality holds for toric 3-folds (Pandharipande-Pixton).
 The functional equation is known when k_j = 2.
- Sationality holds for complete intersections in products of projective spaces for cohomology classes γ_i restricted from the ambient space (Pandharipande-Pixton).

Gromov-Witten compactification

On the Gromov-Witten side we compactify the moduli of embedded curves in a different way:

$$\overline{M}_{g,m}(X,\beta) = \{(C,p_1,\ldots,p_m,f)\}$$

parametrizes maps $f : C \to X$ from a nodal curve of genus g with m marked points to X such that $f_*[C] = \beta$.

(We take here a slight variation of the usual GW moduli space by allowing C to be disconnected without collapsed components of genus 0 and 1.) This moduli space has a virtual fundamental class $[\overline{M}_{g,m}(X,\beta)]^{\text{vir}}$ in virtual dimension

virdim =
$$d_{\beta} + m$$
.

In Gromov-Witten theory descendents are defined by

$$\tau_k(\gamma) = \psi_i^k \mathsf{ev}_i^*(\gamma)$$

where

- ψ_i = c₁(L_i) and L_i is the cotangent line bundle associated to the *i*-th point. The fiber of L_i over (C, p₁,..., p_m, f) is T[∨]_{pi}C.
- $\operatorname{ev}_i : \overline{M}_{g,m}(X,\beta) \to X$ is evaluation at the *i*-th point, $f(p_i)$.

Stable pairs GW/PT correspondence PT Virasoro Virasoro for Hilbert scheme Proof of Virasoro for S^[n] 00000000 0000000000 0000000000 0000000000 0000000000 Gromov-Witten invariants 0000000000 0000000000 0000000000

Gromov-Witten invariants are defined by integrating against virtual fundamental class:

$$\left\langle \prod_{i=1}^m \tau_{k_i}(\gamma_i) \right\rangle_{g,\beta}^{X,\mathsf{GW}} = \int_{[\overline{M}_{g,m}(X,\beta)]^{\mathsf{vir}}} \prod_{i=1}^m \psi_i^{k_i} \mathsf{ev}_i^*(\gamma_i) \in \mathbb{Q}.$$

The associated partition function is

$$\left\langle \prod_{i=1}^m \tau_{k_i}(\gamma_i) \right\rangle_{\beta}^{X, \mathsf{GW}} = \sum_{g \in \mathbb{Z}} \left\langle \prod_{i=1}^m \tau_{k_i}(\gamma_i) \right\rangle_{g, \beta}^{X, \mathsf{GW}} u^{2g-2}.$$

Stable pairs GW/PT correspondence PT Virasoro Virasoro for Hilbert scheme Proof of Virasoro for $S^{[n]}$ 00000000 0000000000 0000000000 0000000000 0000000000

GW/PT correspondence

Conjecturally, the collections of GW invariants and of PT invariants determine each other. This is easiest to state for primary fields:

$$(-q)^{-d_{eta}/2} \langle \mathsf{ch}_2(\gamma_1) \dots \mathsf{ch}_2(\gamma_m) \rangle^{X,\mathsf{PT}}_eta = (-\imath u)^{d_eta} \langle au_0(\gamma_1) \dots au_0(\gamma_m)
angle^{X,\mathsf{GW}}_eta$$

after the change of variables $-q = e^{iu}$.

In general the correspondence is much more complicated. To state it let \mathbb{D}_{PT}^X , \mathbb{D}_{GW}^X be the algebras generated by formal symbols

 $ch_k(\gamma)$ and $\tau_k(\gamma)$, respectively.

Conjecture (MNOP)

There is a universally defined invertible transformation $\mathfrak{C}^\bullet:\mathbb{D}^X_{\mathsf{PT}}\to\mathbb{D}^X_{\mathsf{GW}}$ such that

$$(-q)^{-d_{\beta}/2}\langle D \rangle_{\beta}^{X,\mathsf{PT}} = (-\imath u)^{d_{\beta}} \langle \mathfrak{C}^{\bullet}(D) \rangle_{\beta}^{X,\mathsf{GW}}$$

for every $D \in \mathbb{D}_{\mathsf{PT}}^X$ after the change of variable $-q = e^{\iota u}$.

GW/PT correspondence 0000000 Explicit GW/PT correspondence

PT Virasoro

Stable pairs

Oblomkov-Okounkov-Pandharipande found explicit (partial) formulas for \mathfrak{C}^{\bullet} . To state them we introduce modified descendents:

Virasoro for Hilbert scheme

Proof of Virasoro for $S^{[n]}$

$$\widetilde{\mathsf{ch}}_k(\gamma) = \mathsf{ch}_k(\gamma) + \frac{1}{24}\mathsf{ch}_{k-2}(\gamma c_2).$$

$$\frac{(\imath u)^k \mathfrak{a}_{k+1}(\gamma)}{(k+1)!} = \tau_k(\gamma) + \left(\sum_{i=1}^k \frac{1}{i}\right) \tau_{k-1}(\gamma c_1) + \left(\sum_{1 \le i < j \le k} \frac{1}{ij}\right) \tau_{k-2}(\gamma c_1^2).$$

Then the transformation has the form

$$\mathfrak{C}^{\bullet}\left(\tilde{ch}_{k_{1}}(\gamma_{1})\ldots\tilde{ch}_{k_{m}}(\gamma_{m})\right)=\sum_{P}\prod_{S\in P}\mathfrak{C}^{\circ}\left(\prod_{i\in S}\tilde{ch}_{k_{i}}(\gamma_{i})\right)$$

where the sum runs over partitions P of $\{1, \ldots, m\}$ and \mathfrak{C}° is...

Stable pairs GW/PT correspondence PT Virasoro Virasoro for Hilbert scheme Proof of Virasoro for S^[n] 0000000 0 000000000 0000000000 0000000000

Explicit GW/PT correspondence

$$\mathfrak{C}^{\circ}\left(\tilde{ch}_{k+2}(\gamma)\right) = \frac{1}{(k+1)!}\mathfrak{a}_{k+1}(\gamma) + \frac{(\imath u)^{-1}}{k!}\sum_{|\mu|=k-1}\frac{\mathfrak{a}_{\mu_{1}}\mathfrak{a}_{\mu_{2}}(\gamma c_{1})}{\operatorname{Aut}(\mu)} \\ + \frac{(\imath u)^{-2}}{k!}\sum_{|\mu|=k-2}\frac{\mathfrak{a}_{\mu_{1}}\mathfrak{a}_{\mu_{2}}(\gamma c_{1}^{2})}{\operatorname{Aut}(\mu)} + \frac{(\imath u)^{-2}}{(k-1)!}\sum_{|\mu|=k-3}\frac{\mathfrak{a}_{\mu_{1}}\mathfrak{a}_{\mu_{2}}\mathfrak{a}_{\mu_{3}}(\gamma c_{1}^{2})}{\operatorname{Aut}(\mu)} + \dots$$

$$\begin{aligned} \mathfrak{E}^{\circ} \Big(\tilde{ch}_{k_{1}+2}(\gamma) \tilde{ch}_{k_{2}+2}(\gamma') \Big) &= \\ &- \frac{(\iota u)^{-1}}{k_{1}! k_{2}!} \mathfrak{a}_{k_{1}+k_{2}}(\gamma \gamma') - \frac{(\iota u)^{-2}}{k_{1}! k_{2}!} \mathfrak{a}_{k_{1}+k_{2}-1}(\gamma \gamma' c_{1}) \\ &- \frac{(\iota u)^{-2}}{k_{1}! k_{2}!} \sum_{|\mu|=k_{1}+k_{2}-2} \max(k_{1},k_{2},\mu_{1}+1,\mu_{2}+1) \frac{\mathfrak{a}_{\mu_{1}}\mathfrak{a}_{\mu_{2}}}{\operatorname{Aut}(\mu)} (\gamma \gamma' \cdot c_{1}) + \dots \end{aligned}$$

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro for Hilbert s

 0000000●
 00000000
 0000000
 000000

$$\mathfrak{C}^{\circ}\left(\tilde{\mathsf{ch}}_{k_{1}+2}(\gamma)\tilde{\mathsf{ch}}_{k_{2}+2}(\gamma')\tilde{\mathsf{ch}}_{k_{3}+2}(\gamma'')\right) = \frac{(\imath u)^{-2}k}{k_{1}!k_{2}!k_{3}!}\mathfrak{a}_{k-1}(\gamma\gamma'\gamma'') + \dots$$

for $k = k_1 + k_2 + k_3$. To control the entire transformation we would need the expression of \mathfrak{C}° for arbitrarily long monomials. However, if we restrict ourselves to the stationary descendents

$$ig\{ \mathsf{ch}_k(\gamma) : k \geq 0, \gamma \in H^{\geq 2}(X) ig\}$$

the higher \mathfrak{C}° and the ... terms vanish by degree reasons. Denote by $\mathbb{D}_{PT}^{X+} \subseteq \mathbb{D}_{PT}^{X}$ the stationary sub-algebra.

Upshot

We have a (very complicated) completely explicit way to write the GW/PT correspondence for stationary descendents.

Gromov-Witten Virasoro

The Virasoro constraints (first proposed by Eguchi, Hori and Xiong in '97) are a conjectured set of relations satisfied by GW invariants. For each $k \ge -1$ there is an operator $L_k^{\text{GW}} : \mathbb{D}_{\text{GW}}^X \to \mathbb{D}_{\text{GW}}^X$. The Virasoro conjecture predicts:

$$\langle L_k^{\mathsf{GW}}(D)
angle_{g,eta}^{X,\mathsf{GW}} = 0 ext{ for } D \in \mathbb{D}_{\mathsf{GW}}^X.$$

The operators satisfy the Virasoro relation:

$$[L_k^{\rm GW}, L_m^{\rm GW}] = (k-m)L_{k+m}^{\rm GW}$$

The first equation (k = -1) is the string equation:

$$\langle \tau_0(1) \tau_{k_1}(\gamma_1) \dots \tau_{k_m}(\gamma_m) \rangle = \sum_{j=1}^m \langle \tau_{k_1}(\gamma_1) \dots \tau_{k_j-1}(\gamma_j) \dots \tau_{k_m}(\gamma_m) \rangle.$$

The stable pairs Virasoro have a similar form: it predicts

$$\langle L_k^{\mathsf{PT}}(D)
angle^{X,\mathsf{PT}}_{n,eta} = 0 ext{ for } D \in \mathbb{D}^X_{\mathsf{PT}}, k \geq -1$$

for certain operators $L_k^{\mathsf{PT}} : \mathbb{D}_{\mathsf{PT}}^X \to \mathbb{D}_{\mathsf{PT}}^X$. The cases k = -1, 0 follow from the string and the divisor equations:

To describe the operators L_k^{PT} we need several constructions:

Define derivations R_k : D^X_{PT} → D^X_{PT} by their values on the generators:

$$R_k \operatorname{ch}_i(\gamma) = \left(\prod_{j=0}^k (i+p-3+j)\right) \operatorname{ch}_{k+i}(\gamma)$$

for γ having Hodge type (p, q). In particular

$$R_{-1}\mathrm{ch}_i(\gamma) = \mathrm{ch}_{i-1}(\gamma).$$

• We use the abbreviation

$$ch_a ch_b(\gamma) = \sum_i ch_a(\gamma_i^L) ch_b(\gamma_i^R)$$

where $\sum_{i} \gamma_{i}^{L} \otimes \gamma_{i}^{R}$ is the Kunneth decomposition of $\Delta_{*}\gamma \in H^{*}(X \times X)$.

The notation

$$(-1)^{p^L p^R} (a + p^L - 3)! (b + p^R - 3)! ch_a ch_b(c_1)$$

means

$$\sum_{i}(-1)^{p_i^L p_i^R} (a + p_i^L - 3)! (b + p_i^R - 3)! \mathrm{ch}_a(\gamma_i^L) \mathrm{ch}_b(\gamma_i^R)$$

where $\sum_{i} \gamma_{i}^{L} \otimes \gamma_{i}^{R}$ is the Kunneth decomposition of $\Delta_{*}c_{1} \in H^{*}(X \times X)$ and $\gamma_{i}^{L} \in H^{p_{i}^{L},q_{i}^{L}}(X)$.

• Define the operator $T_k : \mathbb{D}_{\mathsf{PT}}^X \to \mathbb{D}_{\mathsf{PT}}^X$ as multiplication by

$$T_{k} = -\frac{1}{2} \sum_{a+b=k+2} (-1)^{p^{L}p^{R}} (a+p^{L}-3)! (b+p^{R}-3)! ch_{a} ch_{b}(c_{1})$$

+ $\frac{1}{24} \sum_{a+b=k} a! b! ch_{a} ch_{b}(c_{1}c_{2}).$

When X doesn't have any (0, p) cohomology (for example: X toric, X cubic 3-fold) we can already say what L_k^{PT} is:

$$L_{k}^{\mathsf{PT}} = R_{k} + T_{k} + (k+1)!R_{-1}ch_{k+1}(\mathsf{p})$$

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro
 Proof of Virasoro for S^[n]

 0000000
 000000
 000000
 00000
 00000
 000000

 Virasoro operators:
 S_k

In the general case (we think)

$$L_k^{\mathsf{PT}} = R_k + T_k + \frac{S_k}{S_k}.$$

Given α ∈ H^{0,q}(X) define the derivation R₋₁[α] : D^X_{PT} → D^X_{PT} by its value on the generators:

$$R_{-1}[\alpha] \mathsf{ch}_i(\gamma) = \mathsf{ch}_{i-1}(\alpha \gamma).$$

• $S_k : \mathbb{D}_{\mathsf{PT}}^X \to \mathbb{D}_{\mathsf{PT}}^X$ is given by $S_k = (k+1)! \sum_{p_i^L = 0} R_{-1}[\gamma_i^L] \mathsf{ch}_{k+1}(\gamma_i^R).$

The sum runs over the terms $\gamma_i^L \otimes \gamma_i^R$ in the Kunneth decomposition of the diagonal Δ_*1 such that $p_i^L = 0$.

Stable pairs GW/PT correspondence PT Virasoro Virasoro fo

Virasoro for Hilbert scheme

Proof of Virasoro for $S^{[n]}$ 00000000

Virasoro conjecture

Conjecture

For any X (simply-connected?), $n \in \mathbb{Z}$, $\beta \in H_2(X; \mathbb{Z})$ and $D \in \mathbb{D}_{\mathsf{PT}}^X$ we have $\langle L_k^{\mathsf{PT}}(D) \rangle_{\mathbf{n},\beta}^{X,\mathsf{PT}} = 0.$

A striking feature of this conjecture is that, unlike the GW conjecture, the relations predicted are all defined in the same moduli space $P_n(X, \beta)$.

Vanishing of descendents of (2,0), (3,0) classes

Remark

By (Hodge) degree reasons if $\alpha \in H^{p,0}(X)$ then $ch_2(\alpha) = 0$. An easy computation:

$$[L_k^{\mathsf{PT}}, \mathsf{ch}_2(\alpha)] = \frac{(p-1+k)!}{(p-2)!} \mathsf{ch}_{2+k}(\alpha).$$

Hence the conjecture implies the surprising vanishing

 $\langle \mathsf{ch}_k(\alpha)D\rangle_{\beta}^{X,\mathsf{PT}} = 0 \text{ for every } D \in \mathbb{D}_{\mathsf{PT}}^X.$

Evampl	ec			
Stable pairs 00000000	GW/PT correspondence	PT Virasoro 00000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[//] 000000000

• For
$$k = -1$$
, after setting $ch_1 = 0$:

$$L_{-1}^{PT} = R_{-1} + ch_0(p)R_{-1}$$

• For *k* = 0:

$$L_0^{\mathsf{PT}} = \mathcal{R}_0 + \operatorname{ch}_0(\mathsf{p})\operatorname{ch}_2(c_1) + \frac{1}{24}\operatorname{ch}_0(e_1c_2)\operatorname{ch}_0(\mathsf{p}) + \sum_{\substack{\mathsf{p}_i^L = 0}} \operatorname{ch}_0(\gamma_i^L \gamma_i^R).$$

Take X = P³, H, L the classes of hyperplanes and lines, respectively, β = L. Then L₁ch₄(L) predicts:

$$4\underbrace{\langle ch_3(H)ch_4(L)\rangle}_{\frac{5(q^4-3q^3+3q^2-q)}{4(q+1)}} + 12\underbrace{\langle ch_5(L)\rangle}_{-\frac{q^4-9q^3+9q^2-q}{6(q+1)}} + 2\underbrace{\langle ch_2(p)ch_3(L)\rangle}_{\frac{3}{2}(q^3-q)} = 0$$

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro
 Proof of Virasoro for S^[n]

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro for Hilbert scheme
 Proof of Virasoro for S^[n]

 Evidence for the conjecture
 Stable pairs
 Stable pairs
 Stable pairs
 Stable pairs

Theorem (Oblomkov-Okounkov-Pandharipande-M)

If X is a toric 3-fold

$$\langle L_k^{\mathsf{PT}}(D)
angle_{eta}^{X,\mathsf{PT}} = 0$$

for every $D \in \mathbb{D}_{PT}^{X+}$.

Theorem (M)

If X is the cubic 3-fold and β is the line class

$$\langle L_k^{\mathsf{PT}}(D) \rangle_{\beta}^{X,\mathsf{PT}} = 0$$

for every $D \in \mathbb{D}_{PT}^X$.

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro for Hilbert scheme
 Proof of Virasoro for S^[n]

 0000000
 000000000000
 00000
 00000000000
 00000000000

Evidence for the conjecture

Theorem (M)

If S is a simply-connected surface then

$$\langle L_k^{\mathsf{PT}}(D) \rangle_{n,n[\mathbb{P}^1]}^{S \times \mathbb{P}^1,\mathsf{PT}} = 0$$

for every $D \in \mathbb{D}_{\mathsf{PT}}^{\mathsf{S} \times \mathbb{P}^1}$.

Stable pairs 00000000	GW/PT correspondence	PT Virasoro 000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n] 000000000
Toric o	case			

In the toric case the proof follows from 3 key ingredients:

- Virasoro for GW is known (Givental-Teleman theory).
- The stationary GW/PT correspondence is known (Pandharipande-Pixton, Oblomkov-Okounkov-Pandharipande).
- The GW and PT Virasoro operators are intertwined by the GW/PT correspondence:

Theorem (MOOP)

For $k \ge -1$ and $D \in \mathbb{D}_{PT}^{X+}$ not containing descendents of (0, p) classes we have

$$\mathfrak{C}^{\bullet} \circ L_k^{\mathsf{PT}}(D) = (\imath u)^{-k} L_k^{\mathsf{GW}} \circ \mathfrak{C}^{\bullet}(D).$$

Stable pairs	GW/PT correspondence	PT Virasoro	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n]
00000000		000000000000	●0000	000000000
A speci	al case			

From now on S is a simply-connected smooth projective surface. We denote by $S^{[n]}$ the Hilbert scheme of points on S parametrizing 0 dimensional subschemes of length n.

A stable pair supported in the curve class $\beta = n[\mathbb{P}^1]$ has Euler characteristic at least *n*. The stable pairs with minimal Euler characteristic have the form

$$\mathcal{O}_{\mathcal{S} imes \mathbb{P}^1} o \iota_* \mathcal{O}_{\xi imes \mathbb{P}^1}$$

for $\xi \in S^{[n]}$. So we have an identification

$$P_n(S \times \mathbb{P}^1, n[\mathbb{P}^1]) \cong S^{[n]}$$

The virtual dimension agrees with the true dimension:

$$\int_{n[\mathbb{P}^1]} c_1(S \times \mathbb{P}^1) = 2n = \dim S^{[n]}.$$

Stable pairs	GW/PT correspondence	PT Virasoro	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n]
00000000		000000000000	00000	000000000
Descen	dents			

Definition

Let $\Sigma_n \subseteq S^{[n]} \times S$ be the universal subscheme. We define descendents on the Hilbert scheme by

$$\mathsf{ch}_k(\gamma) = (\pi_2)_* \left(\mathsf{ch}_k \left(-\mathcal{I}_{\Sigma_n}
ight) \cdot \pi_1^* \gamma
ight) \in H^*(S^{[n]})$$

for $k \geq 0$, $\gamma \in H^*(S)$.

We have:

$$\mathsf{ch}_{k}^{\mathsf{PT}}(\gamma \times 1) = 0 \text{ and } \mathsf{ch}_{k}^{\mathsf{PT}}(\gamma \times \mathsf{p}) = \mathsf{ch}_{k}^{\mathsf{Hilb}}(\gamma).$$

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro for Hilbert scheme
 Proof of Virasoro for S^[n]

 Virasoro operators
 Virasoro operators

Denote by \mathbb{D}^{S} the algebra of descendents.

• Define derivations $R_k : \mathbb{D}^S \to \mathbb{D}^S$ by their values on the generators:

$$R_k \operatorname{ch}_i(\gamma) = \left(\prod_{j=0}^k (i+p-2+j)\right) \operatorname{ch}_{k+i}(\gamma)$$

for γ having Hodge type (p, q).

• Define the operator $T_k : \mathbb{D}^S \to \mathbb{D}^S$ as multiplication by

$$T_{k} = -\frac{1}{2} \sum_{a+b=k+2} (-1)^{p^{L}p^{R}} (a+p^{L}-2)! (b+p^{R}-2)! ch_{a} ch_{b}(1) + \frac{1}{12} \sum_{a+b=k} a! b! ch_{a} ch_{b} (c_{1}^{2}+c_{2}).$$

Stable pairs 00000000	GW/PT correspondence	PT Virasoro 000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n] 000000000		
Virasoro operators						

•
$$S_k: \mathbb{D}^S \to \mathbb{D}^S$$
 is given by

$$S_k = (k+1)! \sum_{p_i^L = 0} R_{-1}[\gamma_i^L] \operatorname{ch}_{k+1}(\gamma_i^R).$$

The sum runs over the terms $\gamma_i^L \otimes \gamma_i^R$ in the Kunneth decomposition of the diagonal $\Delta_* 1 \in H^*(S \times S)$ such that $p_i^L = 0$.

Define

$$L_k^S = R_k + T_k + S_k.$$

Theorem (M)

Let S be simply-connected. For $D \in \mathbb{D}^S$, $k \ge -1$ we have

$$\int_{S^{[n]}} L_k^S D = 0.$$

A lot is known about $H^*(S^{[n]})$:

- The Betti numbers of $S^{[n]}$ were determined by Göttsche.
- Nakajima described ⊕_{n≥0} H^{*}(S^[n]) as a module over the Heisenberg algebra.
- The descendents $ch_k(\gamma)$ generate $H^*(S^{[n]})$ (Li-Qin-Wang).
- Ring structure on H^{*}(S^[n]) can be algorithmically described (Ellingsrud-Göttsche-Lehn, Li-Qin-Wang).

Stable pairs 00000000	GW/PT correspondence	PT Virasoro 000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n] ●00000000
Path of	the proof			

- The integrals $\int_{S^{[n]}} L_k D$ admit universal formulas.
- ② The conjecture behaves well with respect to disjoint unions.
- If D only has (p, p) descendents then (disconnected) toric surfaces provide enough data to show that the universal formulas vanish.
- If D has (0,2), (2,0) classes we add connected components and replace those classes by (0,0) and (2,2) classes.

Stable pairs

GW/PT correspondence

PT Virasoro

Virasoro for Hilbert scheme

Proof of Virasoro for $S^{[n]}$ 00000000

Universal formulas for integrals

Theorem (EGL, LQW)

The integral

$$\int_{\mathcal{S}^{[n]}} \mathsf{ch}_{k_1}(\gamma_1) \dots \mathsf{ch}_{k_m}(\gamma_m)$$

admits a universal formula depending only on n, k_1, \ldots, k_m and (polynomially) on the integrals

$$\int_{S} c_1^{\varepsilon_1} c_2^{\varepsilon_2} \prod_{i \in I} \gamma_i.$$

This is done by relating integrals in $S^{[n]}$ to integrals in S^n .

$$\begin{array}{c} S^{[n-1,n]} \xrightarrow{\text{blowup } \Sigma_{n-1}} S^{[n-1]} \times S \\ \downarrow^{n:1} \\ S^{[n]} \end{array}$$

Stable pairs

GW/PT correspondence

PT Virasoro

Virasoro for Hilbert scheme

Proof of Virasoro for $S^{[n]}$ 00000000

Universal formulas for Virasoro integrals

Proposition

Let $\gamma_i \in H^{p_i,q_i}(S)$. The integral

$$\int_{S^{[n]}} L_k\left(\mathsf{ch}_{k_1}(\gamma_1) \dots \mathsf{ch}_{k_m}(\gamma_m)\right)$$

admits a universal formula depending only on $n, k, k_1, \ldots, k_m, p_1, \ldots, p_m$ and (polynomially) on the integrals

$$\int_{\mathcal{S}} c_1^{\varepsilon_1} c_2^{\varepsilon_2} \prod_{i \in I} \gamma_i.$$

Key observation:

$$\sum_{p_i^L = p} \int_{S} \gamma_i^L \gamma_i^R = \chi(S, \Omega^p) = \begin{cases} \frac{1}{12} \int_{S} (c_1^2 + c_2) & \text{if } p = 0, 2\\ \frac{1}{6} \int_{S} (-c_1^2 + 5c_2) & \text{if } p = 1 \end{cases}$$

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro for Hilbert scheme
 Proof of Virasoro for S^[n]

 00000000
 00000000000
 00000000000
 00000000000

Disconnected surfaces

The Virasoro operators are still well defined with disconnected surfaces. If $S = S_1 \sqcup S_2$ then

$$\mathbb{D}^{\boldsymbol{S}}=\mathbb{D}^{\boldsymbol{S}_1}\otimes\mathbb{D}^{\boldsymbol{S}_2}$$

$$L_k^S = \mathsf{id}_{\mathbb{D}^{S_1}} \otimes L_k^{S_2} + L_k^{S_1} \otimes \mathsf{id}_{\mathbb{D}^{S_2}}$$

$$\begin{split} \int_{S^{[n]}} L_k^S(D_1 \otimes D_2) &= \sum_{n_1 + n_2 = n} \left(\int_{S_1^{[n_1]}} D_1 \right) \left(\int_{S_2^{[n_2]}} L_k^{S_2}(D_2) \right) \\ &+ \left(\int_{S_1^{[n_1]}} L_k^{S_1}(D_1) \right) \left(\int_{S_2^{[n_2]}} D_2 \right) \end{split}$$

Thus: if the Virasoro holds for S_1 and S_2 it also holds for S.

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro for Hilbert scheme
 Proof of Virasoro for S^[n]

 (1, 1)-classes

Suppose that D has no (0, 2) and no (2, 0) classes:

$$D = \prod_{i=1}^{s} \operatorname{ch}_{k_{i}}(1) \prod_{i=1}^{t} \operatorname{ch}_{\ell_{i}}(p) \prod_{i=1}^{m} \operatorname{ch}_{m_{i}}(\gamma_{i})$$

where $\gamma_i \in H^{1,1}(X)$. Then the integral

$$\int_{S^{[n]}} L_k^S(D)$$

depends only on $n, k, s, t, m, k_i, \ell_i, m_i$ and on the data $\left(\binom{m+1}{2} + m + 2\right)$ -tuple of rational numbers

$$\left\{\int_{\mathcal{S}}\gamma_i\gamma_j\right\}_{1\leq i\leq j\leq m}\cup\left\{\int_{\mathcal{S}}\gamma_ic_1\right\}_{1\leq i\leq m}\cup\left\{\int_{\mathcal{S}}c_1^2,\int_{\mathcal{S}}c_2\right\}.$$

Stable pairs 00000000	GW/PT correspondence	PT Virasoro 000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for <i>S</i> ^[<i>n</i>] 000000000
Zariski	density			

We know that the previous integral vanishes if S is toric, so it's enough to prove that toric surfaces give enough data points:

Proposition

By varying the (possibly disconnected) toric surface and classes $\gamma_j \in H^2(S)$, the set of possible $\binom{m+1}{2} + m + 2$ -tuples

$$\left\{\int_{S} \gamma_{i} \gamma_{j}\right\}_{1 \leq i \leq j \leq m} \cup \left\{\int_{S} \gamma_{i} c_{1}\right\}_{1 \leq i \leq m} \cup \left\{\int_{S} c_{1}^{2}, \int_{S} c_{2}\right\}.$$

is Zariski dense in $\mathbb{Q}^{\binom{m+1}{2}+m+2}$.

Stable pairs 00000000	GW/PT correspondence	PT Virasoro 000000000000	Virasoro for Hilbert scheme	Proof of Virasoro for S ^[n] 000000●00		
7ariski density						

Proof.

Start with N disjoint copies of $\mathbb{P}^1 \times \mathbb{P}^1$.Perform M successive toric blow-ups of points in one of the copies in a way that the last m blow-ups have disjoint exceptional divisors D_1, \ldots, D_m .Pick D_0 in another copy of $\mathbb{P}^1 \times \mathbb{P}^1$. Set

$$\gamma_i = \sum_{j=0}^m a_{ij} D_j$$

and vary $a_{ij} \in \mathbb{Q}$.

$$\int_{S} c_2 = 4N + M$$
 and $\int_{S} c_1^2 = 8N - M$
 $\int_{S} \gamma_i \gamma_j = (-AA^t)_{ij}.$

Stable pairs 0000000

GW/PT correspondence

PT Virasoro

Virasoro for Hilbert scheme

Proof of Virasoro for $S^{[n]}$ 00000000

(0,2) and (2,0)-classes

Pick a basis $\alpha_1, \ldots, \alpha_{h^{0,2}} \in H^{0,2}(S)$ and $\beta_1, \ldots, \beta_{h^{0,2}} \in H^{2,0}(S)$ such that

$$\int_{\mathcal{S}} \alpha_i \beta_j = \delta_{ij}.$$

We add new connected components to S

$$T = S \sqcup E_1 \sqcup \ldots \sqcup E_N$$

and replace appearances of α_j , β_j by (0,0) and (2,2) classes supported in the new connected components such that all the integrals appearing in the universal formula agree. Let $\omega = e^{2\pi i/N}$ and

$$\alpha = \sum_{i=0}^{N-1} \omega^i \mathbb{1}_i \in H^0(T; \mathbb{C}) \text{ and } \beta = \frac{1}{N} \sum_{i=0}^{N-1} \omega^{-i} p_i \in H^4(T; \mathbb{C})$$

satisfy for example

$$\int_{\mathcal{S}} \alpha^{j} \beta = \delta_{j1} \text{ and } \alpha \gamma = \beta \gamma = 0 \text{ for all } \gamma \in H^{1,1}(\mathcal{S}).$$

 Stable pairs
 GW/PT correspondence
 PT Virasoro
 Virasoro for Hilbert scheme
 Proof of Virasoro for S^[n]

 00000000
 0000000000
 000000000
 000000000

Thank you for your attention!