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Enumerative geometry

In enumerative geometry the goal is to count how many geometric
objects satisfy certain restrictions. A model question is the
following:

Question

Let f px , y , z ,wq be a homogeneous cubic polynomial and

X “ trx : y : z : w s : f px , y , z ,wq “ 0u Ď CP3

be a (smooth) cubic surface. How many lines does X contain?



27 lines on the Fermat cubic

The Fermat cubic is defined by x3 ` y3 ` z3 ` w3 “ 0.

It contains 27 lines, parametrized by rx : ω1x : z : ω2zs where
ω3
1 “ ω3

2 “ ´1 (9 possibilities) or permutations of the coordinates
(3 possibilities).



27 lines

Theorem (Cailey–Salmon, 1849)

Every smooth cubic surface contains exactly 27 lines.

To prove this, we want to look at the space of all lines in CP3

and then try to figure out how many of them are contained in
X using intersection theory.

A line on CP3 is the same as a 2-dimensional vector subspace
of C4, so the space of lines on CP3 is an example of a
Grassmannian GrpC4, 2q.
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Grassmannians

Definition

The Grassmannian GrpCN , kq is the space of k dimensional
subspaces of CN . Explicitly, it can be defined as a quotient

GrpCN , kq “ tA P MatkˆN : rkpAq “ ku{GLpkq .

The Grassmannian is a smooth and compact space, of
complex dimension kpN ´ kq.

Grassmannians are arguably the simplest examples of moduli
spaces. Moduli space: a space whose points correspond to
“geometric” objects (in this case, vector subspaces of CN).

The condition that a line ℓ P GrpC4, 2q is contained in X can
translated to some algebraic equations in ℓ P GrpC4, 2q.
Counting the number of solutions to algebraic equations is the
realm of intersection theory.
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Intersection theory/cohomology

Let M be a smooth and compact manifold/variety with real
dimension 2n. Its cohomology ring (with Q coefficients) is

H˚pMq “ H0pMq ‘ H1pMq ‘ . . .‘ H2npMq .

If Z Ď M is a closed submanifold of real codimension d , then
it defines a class

rZ s P HdpMq .

Deforming Z to Z 1 does not change this class rZ s “ rZ 1s.
Every element of HdpMq is a linear combination of such
classes.

There is a intersection product:

rZ1s ¨ rZ2s “ rZ1 X Z2s P Hd1`d2pMq

if Z1 and Z2 intersect nicely. If they don’t, we deform one of
them.
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Intersection theory/cohomology

We have the degree functional
ş

M : H˚pMq Ñ Q which is
defined by

ż

M
α “

#

0 if α P Hă2npMq

1 if α “ rpts

In the picture before,
ş

M rZ1s ¨ rZ2s “ 3.

A rank r vector bundle V on M has Chern classes

cjpV q P H2jpMq for j “ 1, 2, . . . , r .



Back to 27

#lines on (generic) cubic “

ż

GrpC4,2q

c4pSym3pV_qq

“

ż

GrpC4,2q

`

18c21c2 ` 9c22
˘

“ 18 ` 9 “ 27

where ci “ ci pVq and V is the tautological vector bundle on
GrpC4, 2q.

Calculating this kind of intersection numbers on the
Grassmannian is the subject of Schubert calculus.

H˚pGrpC4, 2qq » Qrc1, c2s{p2c1c2 ´ c31 , c
2
2 ´ 3c21c2 ` c41 q.

c22 “ rpts.
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27 is nice, but...

...it’s just a number. We can’t really see much structure with just
a number... Instead, we can

1. Study a more general class of problems, e.g. counting curves
of different degree or genus (a line is a degree 1 and genus 0
curve). When we organize these numbers in a generating
series, often we get interesting things like rational functions,
modular forms, recursive structures, etc.

2. Study the full collection of intersection numbers on the
Grassmannian, or more general moduli spaces. Leads to
Virasoro constraints!



What moduli spaces?

1. Grassmannians, flag varieties. More generally, moduli spaces
of quiver representations, which parametrize vector spaces
together with linear maps.

2. The moduli space Mg ,m of smooth genus g curves and m
marked points. Not compact, so we actually use its
Deligne-Mumford compactification Mg ,m, the moduli space
of stable (nodal) curves.

3. Moduli space of stable maps Mg ,mpX q that parametrizes a
nodal genus g curve C with n marked points and a stable
map C Ñ X . The intersection numbers on these are called
Gromov–Witten invariants.

!
a

Mg ,mpX q is not smooth, so defining intersection numbers is
more subtle. It requires a virtual fundamental class.
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What moduli spaces?

4. Moduli spaces of stable vector bundles on a fixed curve C .

5. More generally, moduli spaces of sheaves on surfaces, 3-folds
and (Calabi–Yau) 4-folds.

Roughly speaking, a sheaf is a singular vector bundle. We think of
a sheaf F on X as a collection of vector spaces Fp over each point
p P X . But unlike for vector bundles, the dimension of Fp is not
necessarily constant and might jump.

Example

A vector bundle is a sheaf.

If Z Ď X is a (closed) subvariety there is a corresponding
sheaf OZ , called the structure sheaf of Z . It has 1
dimensional fibers over p P Z and trivial fibers otherwise.
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Many moduli spaces of sheaves (and related objects)



Counting curves on 3-folds

curves

maps equations

moduli of
stable maps

moduli of
ideal sheaves

Gromov–Witten
theory

Donaldson–Thomas
theory

(only for 3-folds)
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MNOP (’04) correspondence



Gromov–Witten theory of the point

Even the Gromov–Witten theory of a point is highly non-trivial as
it amounts to study

ż

Mg,m

ψk1
1 . . . , ψkm

m P Q

where ψ1, . . . , ψm P H2pMg ,mq are certain tautological classes.

We can compute these integrals thanks to a striking prediction due
to Witten (’90) and proved by Kontsevich (’92).
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2d gravity
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integration over
(8-dimensional)

space of metrics on surfaces

holomorphic curves triangulations of surfaces

GW of the point matrix models
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2d gravity

E. Witten conjectured that the partition functions for
both approaches coincide. The reason for this conjecture
is an irrational (for mathematicians) idea, that gravity is
unique.

M. Kontsevich ’92



Witten’s conjecture

Define the generating function

F pt0, t1, t2, . . .q “
ÿ

g ,mě0

u2g´2
ÿ

k1,...,km

tk1 . . . tkm
m!

ż

Mg,m

ψk1
1 . . . , ψkm

m

and the differential operators Ln for n ě ´1 in the variables
T2i`1 “ ti{p2i ` 1q!!.

Ln “
1

4

ÿ

k`l“2n

B2

BTkBTl
`

1

2

ÿ

kě0

p2k ` 1qT2k`1
B

BT2k`2n`1

´
1

2u2
B

BT2n`3
`
δn,´1T

2
1

4
`
δn,0
16

Theorem (Conjecture by Witten (’90), proof by Kontsevich (’92))

Ln exppF q “ 0 for every n ě ´1 .
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Virasoro algebra

Definition

The Virasoro Lie algebra is the (infinite dimensional) Lie algebra
Vir spanned by tLnunPZ and c , with Lie bracket defined by

rLn, Lms “ pn ´ mqLn`m `
n3 ´ n

12
δn`m“0 ¨ c .

rLn, cs “ 0

Let Virě´1 Ď Vir be the subalgebra spanned by tLnuně´1.

The differential operators Ln in the previous slide define a
representation of Virě´1.

It is possible to also define Ln for n ă ´1 so that we get a
representation of Vir, with c acting as the identity. But the
negative operators do not give more constraints.
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Virasoro constraints in Gromov–Witten theory

Eguchi-Hori-Xiong (97) proposed a conjecture generalizing
Witten’s conjecture to the Gromov–Witten theory of X .

Known in two large families:

When X is a curve, by work of Okounkov-Pandharipande (03).

When X is toric, by work of Givental (01) or more generally
when X is semisimple by Teleman (07) classification theorem .
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Survey paper by Pandharipande, ’17

An ideal path to finding the constraints for stable pairs
would be to start with the explicit Virasoro constraints
in Gromov–Witten theory and then apply the correspon-
dence. However, our knowledge of the correspondence
matrix is not yet sufficient for such an application.

Another method is to look experimentally for relations
which are of the expected shape. In a search conducted
almost 10 years ago with A. Oblomkov and A. Okounkov,
we found a set of such relations for the theory of ideal
sheaves for every nonsingular projective 3-fold X. As an
example, the equations for P3 are presented here for stable
pairs.

R. Pandharipande, ’17



Survey paper by Pandharipande, ’17



M–Oblomkov–Okounkov–Pandharipande, ’20

After the survey paper, a lot of progress was made in the
“correspondence matrix”.



M–Oblomkov–Okounkov–Pandharipande, ’20

And that allowed to (partially) connect the Virasoro constraints on
the two sides.

So if we know the (stationary) Virasoro constraints on one side and
we know that the correspondence holds for X , then we get the
(stationary) Virasoro constraints on the other side.



Bojko–Lim–M, 2022

But we realized soon after that Virasoro constraints are actually a
much more general phenomena, not just for Donaldson–Thomas
theory, but for any sheaf counting theory.



Many moduli spaces of sheaves (and related objects)



Virasoro constraints for the Grassmannian

In our calculation leading to 27, we looked at intersection numbers
of Chern classes ci “ ci pVq. But the Virasoro constraints are most
naturally written using

pi “ i !chi pVq .

pi are to ci as power sum symmetric polynomials are to elementary
symmetric polynomials.



Virasoro constraints for the Grassmannian

We consider the Grassmannian GrpCN , kq.

Definition

Let D “ Qrp1, p2, p3, . . .s be the Grassmannian descendent algebra.
Define Virasoro operators Ln : D Ñ D for n ě ´1 by

Ln “
ÿ

jě0

jpn`j
B

Bpj
`

ÿ

a`b“n

papb ` p2k ´ Nqpn .

Theorem (Bojko–Lim–Moreira, ’23)

For every n ą 0 and D P D we have

ż

GrpCN ,kq

LnpDq “ 0 .
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Virasoro constraints for the Grassmannian

Example

ż

GrpC4,2q

L1pp31q “ 3

ż

GrpC4,2q

p21p2 “ 0

ż

GrpC4,2q

L2pp21q “ 2

ż

GrpC4,2q

p1p3 `

ż

GrpC4,2q

p41 “ ´2 ` 2 “ 0

ż

GrpC4,2q

L1pp1p2q “

ż

GrpC4,2q

p22 ` 2

ż

GrpC4,2q

p1p3 “ 2 ´ 2 “ 0

ż

GrpC4,2q

L3pp1q “

ż

GrpC4,2q

p4 ` 2

ż

GrpC4,2q

p21p2 “ 0 ` 0 “ 0

p1 “ c1, p2 “ c21 ´ 2c2, p3 “ c31 ´ 3c1c2, p4 “ c41 ´ 4c1 .



Some final remarks

We have proofs of this result for moduli of sheaves on X up
to dimX “ 2 (with some restrictions in the dimX “ 2 case).

The main tool in these proofs is wall-crossing, which
sometimes allows us to reduce the constraints on a
complicated space to a simpler space.

The Virasoro constraints and wall-crossing are connected by a
beautiful vertex algebra constructed by Joyce (’18). This was
understood in Bojko–Lim–M (’22).



Some final remarks

The sheaf Virasoro constraints are arguably simpler and better
understood than the Gromov–Witten constraints, despite
being much more recent (simpler formulas, richer class of
examples/toy models, constraints on only 1 space, vertex
algebra formalism, proofs for surfaces).

Dream: prove the Gromov–Witten constraints for 3-folds by
proving first the DT version and applying the correspondence.



Thank you!


