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Abstract. Q-Gorenstein toric contact manifolds provide an interesting class of examples of
contact manifolds with torsion first Chern class. They are completely determined by certain
rational convex polytopes, called toric diagrams, and arise both as links of toric isolated
singularities and as prequantizations of monotone toric symplectic orbifolds. In this paper
we show how the cylindrical contact homology invariants of a Q-Gorenstein toric contact
manifold are related to

• the Ehrhart (quasi-)polynomial of its toric diagram;
• the Chen-Ruan cohomology of any crepant toric orbifold resolution of its corresponding

toric isolated singularity;
• the Chen-Ruan cohomology of any monotone toric symplectic orbifold base that gives

rise to it through prequantization.

1. Introduction

Q-Gorenstein toric contact manifolds are good toric contact manifolds with torsion first
Chern class and can be thought of as the odd dimensional analogues of monotone toric sym-
plectic manifolds. While the latter are in 1-1 correspondence with reflexive Delzant polytopes
(up to translation and scaling), the former are in 1-1 correspondence with toric diagrams, i.e.
rational simplicial polytopes with unimodular facets (cf. Definition 3.5).

Given a toric diagram D ⊂ Rn and corresponding Q-Gorenstein toric contact manifold
(M2n+1

D , ξD), any point v in the interior of D determines a toric contact form αν and toric
Reeb vector field Rν (cf. Definition 3.8). If ν = (v, 1) has Q-independent coordinates, then
the Reeb flow of Rν is non-degenerate with finitely many simple closed orbits which are in 1-1
correspondence with the facets of D. The (contact homology) degree of any closed Rν-orbit
is equal to its Conley-Zehnder index plus n − 2. Note that in this context of torsion (not
necessarily zero) first Chern class, the Conley-Zehnder index is a well-defined rational (not
necessarily integer) number.

Definition 1.1. Let D ⊂ Rn be a toric diagram of order m ∈ N, i.e. such that mD is an
integral simplicial polytope with unimodular facets. The contact Betti numbers cbj/m(D, ν),
j ∈ Z are defined by

cbj/m(D, ν) = number of closed Rν-orbits with contact homology degree j/m.

When D is a toric diagram of order 1, i.e. when (M2n+1
D , ξD) is a toric contact manifold

with zero first Chern class (Gorenstein), we proved in [2, 3, 5] the following relevant results
for this paper:
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• An explicit formula to compute the Conley-Zehnder index of each closed Rν-orbit
using only data contained in the pair (D, ν).

• The degree of any closed Rν-orbit is always even and so cbj(D, ν) = 0 when j is odd.
• inf{j ∈ Z : cbj(D, ν) ̸= 0} is finite.
• The mean Euler characteristic

χ(D, ν) := lim
N→∞

1

N

N∑
j=−N

(−1)jcbj(D, ν) = lim
N→∞

1

2N

N∑
j=0

cb2j(D, ν)

is given by

χ(D, ν) =
n!vol(D)

2
. (1)

Note that (1) shows that the mean Euler characteristic χ(D, ν) depends only on the Goren-
stein toric contact manifold (M2n+1

D , ξD), via the volume of its toric diagram D, and not on
the particular choice of v in the interior of D. Our first main result in this paper shows that, in
fact, for a toric diagram D of any order m ∈ N each contact Betti number cbj/m(D, ν) is also
independent of ν and can be combinatorially determined using the Ehrhart quasi-polynomial
of D.

Recall that the Ehrhart (quasi-)polynomial of D ⊂ Rn counts its number of rational points
and is defined by

LD(t) = #

(
D ∩ 1

t
Zn
)
, t ∈ N .

It is well known that LD(t) is a quasi-polynomial of degree n and period m, i.e.

LD(t) =
n∑
k=0

ck(D, t)t
k ,

where each ck(D, t +m) = ck(D, t), for all t ∈ N and k = 0, . . . , n. Moreover, c0(D, 0) = 1
and cn(D, t) = vol(D) for all t ∈ N. A result of Stanley [32, Theorems 1.6, 1.7] says that its

coefficients in the quasi-polynomial basis {
( t−k

m
+n
n

)
: k = 0, . . . ,m(n+1)−1} are non-negative

integers, i.e.

LD(t) =
∑

k∈[0,m(n+1)−1] , k≡t mod m

δk(D)

( t−k
m + n

n

)
, with δk(D) ∈ N0 .

Defining δk = 0 for k < 0 and k > m(n+ 1)− 1, we can now state our first main result.

Theorem 1.2.
cb2k(D, ν)− cb2(k−1)(D, ν) = δm(n−k)(D) .

Hence, the contact Betti numbers are indeed independent of ν and from now on we will simply
denote them by cbj(D).

Note that a toric Reeb vector ν corresponds to a point v in the interior ofD, see Proposition
3.9. The basic idea behind the proof of Theorem 1.2, which we give in Section 5, is to use the
star subdivision of D centered at v and write the number of rational points in the interior
of D as a sum of the numbers of rational points in the interior of each simplex of maximal
dimension appearing in the subdivision (the condition that ν is non-degenerate implies that
there are no rational points in lower dimensional simplices). Roughly speaking, the number
of rational points in each simplex is related to the contributions to contact homology of the
multiples of the simple Reeb orbit associated to the corresponding facet of D.
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Theorem 1.2 implies that, given j ∈ 1
mZ ∩ ]−1, 0], we have

cb2j+2a(D) =
a∑
k=0

δm(n−j−k)(D) , a ∈ N0 . (2)

It also has the following combinatorial consequences (cf. Theorem 5.3 and Remark 5.5).

Corollary 1.3.

(1)

cb0(D) = # (int (mD) ∩ Zn) .

(2)

cb2(n−1)(D) = n!vol(mD)− 1 .

(3)

cb2j+2a(D) = n!vol(mD) , ∀ j ∈ 1

m
Z ∩ ]−1, 0] , a ≥ n .

In subsection 4.1 we give an example of Conley-Zehnder index and Ehrhart quasi-polynomial
computations, illustrating well the non-trivial content of Theorem 1.2 and its consequences.

Theorem 1.2 implies that the contact Betti numbers cbj(D) are toric contact invariants

of (M2n+1
D , ξD). In fact, one should be able to remove the word “toric” and say that each

contact Betti number cbj(D) is a contact invariant of (M2n+1
D , ξD), the rank of its degree j

cylindrical contact homology HCj(MD, ξD). Unfortunately, and despite recent foundational
developments (e.g. [30, 31]), cylindrical contact homology has not been proved to be a well
defined invariant in the presence of contractible closed Reeb orbits, even in this restricted
context of Q-Gorenstein toric contact manifolds. Hence, when we write HCj(MD, ξD) in this

paper we are just using a suggestive notation for Qcbj(D), i.e.

HCj(MD, ξD) := Qcbj(D) .

However, note that there are at least two particular contexts where this is more than suggestive
notation:

(ii) Gorenstein toric contact manifolds that have a non-degenerate toric contact form with
all of its closed contractible Reeb orbits having Conley-Zehnder index strictly greater
than 3− n, i.e. contact homology degree strictly greater than 1.

(i) Gorenstein toric contact manifolds that have crepant (i.e. with zero first Chern class)
toric symplectic fillings.

Indeed, in both of these contexts we can use positive equivariant symplectic homology to
conclude that the contact Betti numbers are contact invariants. For (i), one considers the
positive equivariant symplectic homology of the symplectization and the work of Bourgeois
and Oancea [12, section 4.1.2]. For (ii), one considers the positive equivariant symplectic
homology of the filling and recent work of McLean and Ritter [28], which uses previous work
of Kwon and van Koert [20] (see [5, Remark 1.4] and [1, section 2]).

As we discuss in detail in section 6, a crepant toric symplectic filling of a Q-Gorenstein
toric contact manifold (MD, ξD) is constructed using the following two ingredients:

(i) A triangulation T of D and its corresponding fan Σ.
(ii) A strictly convex support function φ on Σ (cf. Definition 6.2).
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This gives rise to a crepant toric symplectic filling (XΣ, ωφ) of (MD, ξD), where XΣ is the
toric variety associated to Σ and ωφ is a toric symplectic form on XΣ determined by φ
(cf. Proposition 6.4). XΣ is smooth whenever T is a unimodular triangulation of D, which
necessarily implies that D has order m = 1, otherwise it has orbifold singularities. In fact,
as stated and proved in section 6 (cf. Proposition 6.6), every compact Q-Gorenstein toric
contact manifold (MD, ξD) admits a not-necessarily smooth crepant symplectic filling by a
toric orbifold (XΣ, ωφ).

The Chen-Ruan cohomology of XΣ is a Q-graded ring H∗
orb(XΣ) (cf. [15] and appendix A).

Batyrev-Dais [7] (in the smooth case) and Stapledon [33] (cf. appendix B) showed that

dimH2j
orb(XΣ;Q) = δmj for j ∈

1

m
N0 ,

and the remaining orbifold cohomology groups are trivial. This can be combined with Theo-
rem 1.2 to give the following result (cf. Corollary 6.9).

Corollary 1.4.

cb2j(D) =
∑
k≥0

dimH2n−2j+2k
orb (XΣ;Q) , ∀j ∈ Q .

Remark 1.5. For m = 1 and smooth XΣ we provide in subsection 6.3 a direct symplectic
proof of this result using symplectic (co)homology of XΣ and its positive/negative and S1-
equivariant versions.

Remark 1.6. McLean and Ritter [28] have a similar result for isolated finite quotient sin-
gularities, which overlaps with Corollary 1.4 when MD is a lens space, i.e. when D is a
simplex.

Given an integral toric diagram D ⊂ Rn and corresponding Gorenstein toric contact man-
ifold (M2n+1

D , ξD), take a rational point v = w/r ∈ Qn in the interior of D, with w ∈ Zn and
r ∈ Z+. Let ν = (w, r) ∈ Zn+1 and consider the corresponding contact form αν and toric
Reeb vector field Rν . The Reeb flow of Rν is periodic and induces an almost free S1-action
on MD. The quotient is a monotone compact symplectic toric orbifold (Bν := MD/S

1, ων),
where π∗ων = dαν with π : MD → Bν the quotient projection. In other words, (MD, ξD)
is the prequantization of (Bν , ων). While monotone compact symplectic toric manifolds are
in 1-1 correspondence with Delzant polytopes ∆ such that r∆ is a reflexive polytope (up to
translation) for some r ∈ R+, monotone compact symplectic toric orbifolds (B,ω) are in 1-1
correspondence with labelled simple rational polytopes ∆ such that r∆ is an almost-reflexive
polytope (up to translation) for some r ∈ R+. When B = Bν for some ν as above, we have
that r = rν ∈ N and when B is smooth we have that c1(TB) = r[ω] ∈ H2(B;Z). See section 7
for more details regarding these facts.

Our third main result in this paper shows how the contact Betti numbers of a Goren-
stein (MD, ξD) are determined by the Chen-Ruan (orbifold) cohomology of any such quotient
(Bν , ων), once one takes into account its decomposition by twisted sectors and the correspond-
ing degree shifting numbers. See appendix A for details regarding Chen-Ruan cohomology of
toric orbifolds, twisted sectors and degree shifting numbers.

Let
H∗
orb(Bν ;Q) =

⊕
0<T≤1

F ∗
T (Bν) (3)

be the decomposition of the orbifold cohomology of Bν obtained from representing Bν as
M/S1 where the action of S1 is induced by the flow of −Rν (note that, although Rν and −Rν
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have the same periodic orbits up to orientation, they have different degree shifting numbers,
with the later being the appropriate ones in this context, cf. Lemma 7.11). The summand
F ∗
T (Bν) is the contribution of the fixed points of e2πiT ∈ S1 to the orbifold cohomology. Note

in particular that F1(Bν) = H∗(Bν ;Q) is the singular cohomology of Bν .

Theorem 1.7. Let (M2n+1
D , ξD) be a Gorenstein toric contact manifold, w/r ∈ Qn ∩ int (D)

with corresponding toric Reeb vector ν = (w, r), and (Bν =MD/S
1, ων) be as described above.

Consider the Chen-Ruan cohomology of Bν and its decomposition (3).
Then the contact homology of (MD, ξD) is given as a graded vector space by

HC∗(MD, ξD) =
⊕
k≥0

⊕
0<T≤1

F ∗−2rνT+2−2rνk
T (Bν) . (4)

In particular, the right hand side is independent of w/r ∈ Qn ∩ int (D).

Remark 1.8. Although a result of this type should also hold for Q-Gorenstein toric contact
manifolds, it seems to be harder to formulate precisely and we will not do it in this paper.

When Bν is smooth there is only the T = 1 (non-)twisted sector with (Bν)1 = Bν . Hence,
we get as a corollary the following result:

Corollary 1.9. When Bν is smooth we have that

HC∗(MD, ξD) =
⊕
k≥0

H∗−2rνk−2(rν−1)(Bν ;Q) .

Since HC∗(MD, ξD) can only be different from zero when ∗ is even, when rν = 1 we get
from (4) that

F qT (Bν) ̸= 0 ⇒ q = even + 2(1− T ) .

Hence,⊕
0<T≤1

F
∗−2k+2(1−T )
T (Bν) =

⊕
∗−2k≤q<∗−2k+2

⊕
0<T≤1

F qT (Bν) =
⊕

∗−2k≤q<∗−2k+2

Hq
orb(Bν ;Q) .

Considering a modified grading in the orbifold cohomology of Bν by rounding the degree
down to the nearest even integer (note that the orbifold cohomology is in general Q-graded),
that is

H2j
⌊orb⌋(Bν ;Q) :=

⊕
2j≤q<2j+2

Hq
orb(Bν) ,

we then get the following corollary of Theorems 1.2 and 1.7.

Corollary 1.10. When rν = 1 we have that

HC∗(MD, ξD) =
⊕
k≥0

H∗−2k
⌊orb⌋ (Bν ;Q)

and (cf. Theorem 4.3 in [33])

δn−k(D) = dimH2k
⌊orb⌋(Bν ;Q) =

∑
2k≤q<2k+2

dimHq
orb(Bν ;Q) , k ∈ Z .

In particular, the right hand sides are independent of ν.
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We remark that Theorem 1.7 and its corollaries should be interpreted as a combinatorial
Morse-Bott theorem for contact homology [10] in our toric setting. When we consider a Reeb
vector ν with integer coordinates, the corresponding contact form is Morse-Bott in the sense
of [10, Definition 1.7]. The critical manifolds are MT /S1 for every T > 0, where MT is the
fixed point set of e2πiT ∈ S1 . On the other hand, the inertia orbifold of B is precisely the
union of MT /S1 with T ∈]0, 1], so a relation between the orbifold cohomology of B and the
contact homology ofM is expected. Note that Corollary 1.9 essentially appears in Bourgeois’
thesis [10, Proposition 9.1].

To avoid the aforementioned issues of contact homology not being proven to be a well-
defined invariant, our proof of Theorem 1.7 will be entirely combinatorial, relying on The-
orem 1.2. As remarked previously, the fact that we can relate the Ehrhart series of D to
the contact Betti numbers cbj(D, ν) of a non-degenerate Reeb ν is explained by summing
the counts of rational points in each simplex of maximal dimension in the star subdivision
centered at v. When v = w/r is a rational point, we can still calculate the Ehrhart series
of D by considering the star subdivision centered at v, but now counting rational points in
every simplex and not just the maximal ones, cf. Lemma B.2. This leads to a connection
between the Ehrhart series of D and the orbifold cohomology of B that we will use in the
proof of Theorem 1.7.

1.1. Example. Let us now see how these results apply to an illustrative Gorenstein (m = 1)
example: the 5-dimensional lens space

L5
3(1, 1, 1) := (S5/Z3, ξstd) .

Its toric diagram D ⊂ R2 is given by the simplex

D = conv ((1, 0), (0, 1), (−1,−1)),

with Ehrhart polynomial

LD(t) =
1

2
(3t2 + 3t+ 2) =

(t+ 2)(t+ 1)

2
+

(t+ 1)t

2
+
t(t− 1)

2
.

Hence,

δ0(D) = δ1(D) = δ2(D) = 1

and we get from Theorem 1.2 that the contact Betti numbers of L5
3(1, 1, 1) are

cb∗(L
5
3(1, 1, 1)) =


1 if ∗ = 0,

2 if ∗ = 2,

3 if ∗ = even ≥ 4,

0 otherwise.

The triangulation of D given by T = D corresponds to the crepant orbifold filling of
L5
3(1, 1, 1) = S5/Z3 by the corresponding quotient of the ball B6/Z3, with an isolated orbifold

singularity at the origin. In fact, for this triangulation we have that XΣ = C3/Z3 and

H∗
orb(C3/Z3;Q) = F ∗

1 (C3/Z3)⊕ F ∗
1/3(C

3/Z3)⊕ F ∗
2/3(C

3/Z3)

with

F ∗
1 (C3/Z3) = H∗(pt) , F ∗

1/3(C
3/Z3) = H∗−2(pt) and F ∗

2/3(C
3/Z3) = H∗−4(pt) .



CONTACT INVARIANTS AND THE EHRHART POLYNOMIAL 7

Hence

H∗
orb(C3/Z3;Q) =

{
Q if ∗ = 0, 2, 4,

0 otherwise.

Using Corollary 1.4 we then have the following table giving the contributions of F1, F1/3 and

F2/3 to the rank of HC∗(L
5
3(1, 1, 1)):

∗ = 0 2 4 6 8 · · ·
F1 0 0 1 1 1 · · ·
F1/3 0 1 1 1 1 · · ·
F2/3 1 1 1 1 1 · · ·

cb∗(L
5
3(1, 1, 1)) 1 2 3 3 3 · · ·

The triangulation of D given by its barycentric subdivision, with (0, 0) the barycenter, is
unimodular and corresponds to the crepant smooth filling given by XΣ = total space of the
line bundle O(−3) over CP 2. Hence

H∗
orb(XΣ;Q) = H∗(XΣ;Q) = H∗(CP 2;Q) =

{
Q if ∗ = 0, 2, 4,

0 otherwise,

and one can again use Corollary 1.4 to determine HC∗(L
5
3(1, 1, 1)). Note that this XΣ is the

resolution of C3/Z3 and, as expected,

H∗
orb(C3/Z3;Q) ∼= H∗(XΣ;Q) .

The total space of the line bundle O(−3) over CP 2 also describes how L5
3(1, 1, 1) arises as

the prequantization of (CP 2, 3ωFS), corresponding to the choice of ν = (0, 0), B(0,0) = CP 2

and r(0,0) = 1. Hence, in this case, both Corollary 1.9 (with rν = 1) and Corollary 1.10 (with

Bν smooth) determine HC∗(L
5
3(1, 1, 1)) in exactly the same way as Corollary 1.4.

To illustrate an application of Theorem 1.7 in this example, consider

ν =

(
−1

2
,−1

2

)
∈ int (D) .

As we will see in subsection 7.4, we then have that

Bν = weighted projective space CP 2(4, 1, 1) , rν = 2

and there are twisted sectors for T = 1/4, 2/4, 3/4, 1, with

(Bν)1/4 = (Bν)2/4 = (Bν)3/4 = {pt} and (Bν)1 = CP 2(4, 1, 1) .

The corresponding degree shifting numbers are

ιk/4 = k/2 , k = 1, 2, 3, and ι1 = 0 .

Hence, we have that

F ∗
k/4(Bν) =

{
Q if ∗ = k,

0 otherwise,
for k = 1, 2, 3, F ∗

1 (Bν) =

{
Q if ∗ = 0, 2, 4,

0 otherwise,

and

H∗
orb(Bν = CP 2(4, 1, 1);Q) =


Q if ∗ = 0, 1, 3, 4,

Q⊕Q if ∗ = 2,

0 otherwise.
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Using Theorem 1.7 we then have the following table giving the contributions of F1, F1/4, F2/4

and F3/4 to the rank of HC∗(L
5
3(1, 1, 1)):

∗ = 0 2 4 6 8 10 · · ·
F1 0 1 1 2 1 2 · · ·
F1/4 1 0 1 0 1 0 · · ·
F2/4 0 1 0 1 0 1 · · ·
F3/4 0 0 1 0 1 0 · · ·

cb∗(L
5
3(1, 1, 1)) 1 2 3 3 3 3 · · ·

2. Polytope geometry

A (n-dimensional) convex polytope ∆ is the convex hull of a finite set of points in Rn (with
non-empty interior). A polyhedral set is a subset of Rn given by the intersection of a finite
number of halfspaces. Note that a polytope is the same thing as a compact polyhedral set.
We say that F is a face of ∆ if F ⊆ ∂∆ and F is the intersection of ∆ with some hyperplane.
We say that a 0, 1 or n− 1 dimensional face is a vertex, an edge or a facet, respectively.

2.1. Ehrhart quasi-polynomial. The Ehrhart quasi-polynomial of a rational polytope counts
the number of rational points in the given polytope. Let ∆ ⊆ Rn be such a polytope and let
m be a positive integer such that m∆ is an integral polytope, that is, m∆ has vertices in Zn.
We call the minimal such m the order of D.

We define, for t ∈ N,

L∆(t) = #

(
∆ ∩ 1

t
Zn
)
.

Equivalently, L∆(t) is the number of integral points in t∆. The fact that this is a quasi-
polynomial function and the following properties are well known.

Theorem 2.1. Given a rational polytope ∆ ⊆ Rn,

L∆(t) = #

(
∆ ∩ 1

t
Zn
)

is given by a quasi-polynomial function of period m ∈ N for t ∈ N, called the Ehrhart quasi-
polynomial. Moreover the Ehrhart quasi-polynomial has the following properties:

(1) Each branch t 7→ L∆(mt + j), j = 0, . . . ,m − 1, is a polynomial of degree n and the
leading term is vol(m∆).

(2) The constant term is L∆(0) = 1 (if ∆ is convex).
(3) L∆(−t) = (−1)nLint∆(t) (Ehrhart reciprocity).

Proofs of these facts can be found in [8]: Theorem 3.23 proves quasi-polynomiality, the leading
term is provided by Corollary 3.20 (when m = 1) and Exercise 3.34 (general m), the constant
term by Corollary 3.15 (m = 1) and Exercise 3.32 (general m), and Ehrhart reciprocity is
Theorem 4.1. The reader can also see [18].

When ∆ is an integral polytope, i.e. m = 1, the quasi-polynomial is indeed a polynomial.
Note that the properties of the Ehrhart (quasi-)polynomial can be regarded as a generalization
of Pick’s theorem. Indeed, for an integral (i.e., m = 1) polygon ∆ in dimension n = 2, the
Ehrhart polynomial has degree 2 and since its leading term is the area of the polygon we have
that

2vol(∆) = L∆(1) + L∆(−1)− 2L∆(0) = L∆(1) + L∆(−1)− 2 ,
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with L∆(1) and L∆(−1) being the number of integral points in ∆ and int∆, respectively.
We can also associate to the polytope its Ehrhart series, which is the generating series of

the Ehrhart quasi-polynomial:

Ehr∆(z) =
∞∑
t=0

L∆(t)z
t.

The fact that L∆ is a quasi-polynomial of period m implies that the Ehrhart series can be
written in the form

Ehr∆(z) =
1

(1− zm)n+1

m(n+1)−1∑
j=0

δjz
j

 (5)

for some coefficients δj = δj(∆), j = 0, . . . ,m(n + 1) − 1. The vector (δ0, . . . , δm(n+1)−1)
is known as the δ-vector of the polytope ∆ (and it is also called the h∗-vector by some
authors) and the numerator of the Ehrhart series is called the δ-polynomial. It is a result
by Stanley [32, Theorems 1.6, 1.7] that, in fact, δj are non-negative integers. The Ehrhart
polynomial can be recovered from the δ-vector by

L∆(t) =
∑

j≡t mod m

δj

( t−j
m + n

n

)
. (6)

Note that by the Ehrhart reciprocity we have:

Lint∆(t+m) = (−1)nL∆(−t−m) = (−1)n

 ∑
j≡−t mod m

δj

(−t−m−j
m + n

n

)
=

∑
j≡−t mod m

δj

( t+j
m

n

)
=

∑
j≡t mod m

δmn−j

( t−j
m + n

n

)
.

Hence, we define for convenience

Ehrint∆(z) ≡
∞∑
t=0

Lint∆(t+m)zt =
1

(1− zm)n+1

m(n+1)−1∑
j=0

δmn−jz
j

 . (7)

2.2. Subdivisions of polytopes. We define here subdivisions of polytopes and some nota-
tion associated with them.

Definition 2.2. A subdivision of a polytope ∆ is a set of polytopes T = {θ} with the following
properties:

(1) If θ′ is a face of θ ∈ T then θ′ ∈ T .
(2) If θ1, θ2 ∈ T then their intersection is a (possibly empty) common face of θ1 and θ2.
(3) The family of polytopes T covers ∆, that is, ∆ =

⋃
θ∈T θ.

Let Td denote the set of d-dimensional polytopes in T . We say that a subdivision is rational
if mT0 ⊆ Zn where m is the order of ∆; we will always assume that our subdivisions are
rational. If every polytope in T is a simplex we say that T is a triangulation.

Rational triangulations are relevant in our context since such triangulations of a toric
diagram D correspond to a (toric) crepant resolution of the symplectic cone W , as we will
explain in section 6. The corresponding resolution is smooth only when T is a unimodular
triangulation, that is, a subdivision T such that θ is an integral, unimodular simplex for every
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θ ∈ T . This implies in particular that D is integral, i.e. m = 1. Note that for n > 2 not
every integral polytope of dimension n admits a unimodular triangulation, but when n ≤ 2
it always does.

2.3. Reflexive polytope. The dual of a polytope ∆ ⊆ Rn (also called polar polytope) is

∆◦ = {y ∈ Rn : ⟨x, y⟩ ≥ −1 for all x ∈ ∆}.
Note that (∆◦)◦ = ∆. Note that the vertices of the dual polytope correspond to the vectors
normal to the facets of the original polytope, and vice-versa. More generally, there is a
correspondence between d-faces of ∆ and (n− d)-faces of ∆◦.

Definition 2.3. An integral polytope ∆ is said to be reflexive if ∆◦ is also an integral polytope.

An integral polytope is reflexive if and only if it can be written in the form

∆ = {x ∈ Rn : ⟨x, νj⟩ ≥ −1, j = 1, . . . , d}.
Up to Aff(n,Z) equivalence, there is a finite number of reflexive polytopes for each n. For

instance for n = 2 there are precisely 16.
An interesting result concerning the Ehrhart polynomials of reflexive polytopes is the fol-

lowing:

Theorem 2.4 (Hibi’s Palindromic Theorem, [19]). An integral polytope ∆ is reflexive if and
only if its δ-vector is palindromic, that is, δj = δn−j for j = 0, . . . , n.

We remark that by equations (5) and (7) the palindromic condition is equivalent to

#[t∆ ∩ Zn] = #[(t+ 1)int∆ ∩ Zn] for every t ∈ N.

3. Gorenstein Toric Contact Manifolds

In this section we will explain the 1-1 correspondence between Q-Gorenstein toric contact
manifolds, i.e. good toric contact manifolds (in the sense of Lerman [23]) with torsion first
Chern class, and rational toric diagrams (defined below). We extend the presentation in [3]
which is only between Gorenstein contact manifolds and integral toric diagrams.

Via symplectization, there is a 1-1 correspondence between co-oriented contact manifolds
and symplectic cones, i.e. triples (W,ω,X) where (W,ω) is a connected symplectic manifold
and X is a vector field, the Liouville vector field, generating a proper R-action ρt :W →W ,
t ∈ R, such that ρ∗t (ω) = etω. A closed symplectic cone is a symplectic cone (W,ω,X) for
which the corresponding contact manifold M =W/R is closed.

A toric contact manifold is a contact manifold of dimension 2n+1 equipped with an effective
Hamiltonian action of the standard torus of dimension n+1: Tn+1 = Rn+1/2πZn+1. Also via
symplectization, toric contact manifolds are in 1-1 correspondence with toric symplectic cones,
i.e. symplectic cones (W,ω,X) of dimension 2(n+1) equipped with an effective X-preserving
Hamiltonian Tn+1-action, with moment map µ :W → Rn+1 such that µ(ρt(w)) = etµ(w), for
all w ∈W and t ∈ R. Its moment cone is defined to be C := µ(W ) ∪ {0} ⊂ Rn+1.

A toric contact manifold is good if its toric symplectic cone has a moment cone with the
following properties.

Definition 3.1. A cone C ⊂ Rn+1 is good if it is strictly convex and there exists a minimal
set of primitive vectors ν1, . . . , νd ∈ Zn+1, with d ≥ n+ 1, such that

(i) C =
⋂d
j=1{x ∈ Rn+1 | ℓj(x) := ⟨x, νj⟩ ≥ 0}.
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(ii) Any codimension-k face of C, 1 ≤ k ≤ n, is the intersection of exactly k facets whose
set of normals can be completed to an integral basis of Zn+1.

The primitive vectors ν1, . . . , νd ∈ Zn+1 are called the defining normals of the good cone
C ⊂ Rn+1.

The analogue for good toric contact manifolds of Delzant’s classification theorem for closed
toric symplectic manifolds is the following result (see [23]).

Theorem 3.2. For each good cone C ⊂ Rn+1 there exists a unique closed toric symplectic
cone (WC , ωC , XC , µC) with moment cone C.

The existence part of this theorem follows from an explicit symplectic reduction of the
standard euclidean symplectic cone (R2d \ {0}, ωst, Xst), where d is the number of defining
normals of the good cone C ⊂ Rn+1, with respect to the action of a subgroup K ⊂ Td induced
by the standard action of Td on R2d \ {0} ∼= Cd \ {0}. More precisely,

K :=

[y] ∈ Td |
d∑
j=1

yjνj ∈ 2πZn+1

 , (8)

where ν1, . . . , νd ∈ Zn+1 are the defining normals of C, i.e. K := ker(β) where β : Td → Tn+1

is represented by the matrix
[ ν1 | · · · | νd ] . (9)

Depending on the context, which will be clear in each case, we will also denote by β the map
from Zd to Zn+1 represented by this matrix.

The Chern classes of a co-oriented contact manifold can be canonically identified with
the Chern classes of the tangent bundle of the associated symplectic cone. The following
proposition gives a moment cone characterization for whether the first Chern class is torsion;
this result is commonly used in toric Algebraic Geometry (see, e.g., section 4 of [7]).

Proposition 3.3. Let (WC , ωC , XC) be a good toric symplectic cone. Let ν1, . . . , νd ∈ Zn+1

be the defining normals of the corresponding moment cone C ⊂ Rn+1. Then mc1(TWC) = 0
if and only if there exists ν∗ ∈ (Zn+1)∗ such that

ν∗(νj) = m, ∀ j = 1, . . . , d .

Proof. Let Di be the toric divisor associated to the facet of C with normal νj . The first Chern
class is well-known to be given as the sum of the toric divisors [16, Theorem 4.1.3]

c1(TWC) =

d∑
i=1

[Di] ∈ H2(WC ;Z).

The second cohomology group is the cokernel of the map βt

0 → Zn+1 βt

−→ Zd −→ H2(WC ;Z) → 0

(see [16, Theorem 8.2.3]). The map from Zd to H2(WC ;Z) sends a basis vector ei to the class
of the divisor Di. By the formula above, c1(TWC) is the image of (1, . . . , 1) ∈ Zd. Hence
mc1(TWC) = 0 if and only if

(m, . . . ,m)t = βtν

for some ν ∈ Zn+1. Under the identification Zn+1 ∼= (Zn+1)∗, the previous condition translates
to ν∗(νj) = m, ∀ j = 1, . . . , d. □
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By an appropriate change of basis of the torus Tn+1, i.e. an appropriate SL(n + 1,Z)
transformation of Rn+1, this implies the following.

Corollary 3.4. Let (WC , ωC , XC) be a good toric symplectic cone with c1(TWC) torsion. Let
m ∈ N be the order of c1(TWC), i.e. the minimal positive integer such that mc1(TWC) = 0.
Then there exists an integral basis of Tn+1 for which the defining normals ν1, . . . , νd ∈ Zn+1

of the corresponding moment cone C ⊂ Rn+1 are of the form

νj = (ṽj ,m) , ṽj ∈ Zn , j = 1, . . . , d .

When we are in the conditions of the last corollary, we will encode the Q-Gorenstein toric
contact manifold whose symplectization is (WC , ωC , XC) by the rational polytope

D = conv(v1, . . . , vd) ⊆ Rn

where vi = ṽi/m ∈ Qn. The integer m will be called the order of D or the order of MD.
The next definition and theorem are then the natural analogues for Q-Gorenstein toric

contact manifolds of Definition 3.1 and Theorem 3.2.

Definition 3.5. A (rational) toric diagram D ⊂ Rn of order m is a rational simplicial
polytope with all of its facets Aff(n,Z)-equivalent to conv

(
1
me1, . . . ,

1
men

)
, where {e1, . . . , en}

is the canonical basis of Rn.

Remark 3.6. The group Aff(n,Z) of integral affine transformations of Rn can be naturally
identified with the elements of SL(n+1,Z) that preserve the hyperplane {(mv,m) | v ∈ Rn} ⊂
Rn+1. The conditions imposed on toric diagrams D = conv(v1, . . . , vd) are equivalent to the
corresponding cone with normals νj = (mvj ,m), j = 1, . . . , d, being smooth.

Theorem 3.7. For each (rational) toric diagram D ⊂ Rn there exists a unique Q-Gorenstein
toric contact manifold (MD, ξD) of dimension 2n+ 1.

This correspondence specializes to [3, Theorem 2.7] when m = 1.
The Tn+1-action associates to every vector ν ∈ Rn+1 a contact vector fieldRν ∈ X (MD, ξD).

Definition 3.8. We will say that a contact form αν ∈ Ω1(MD, ξD) is toric if its Reeb vector
field Rαν satisfies

Rαν = Rν for some ν ∈ Rn+1.

In this case we will say that ν ∈ Rn+1 is a toric Reeb vector and that Rν is a toric Reeb
vector field.

A normalized toric Reeb vector is a toric Reeb vector ν ∈ Rn+1 of the form

ν = (mv,m) with v ∈ Rn.

Proposition 3.9 ([26] or [2, Corollary 2.15]). The interior of a toric diagram D ⊂ Rn
parametrizes the set of normalized toric Reeb vectors on the Q-Gorenstein toric contact man-
ifold (MD, ξD), i.e. ν = (mv,m) is a normalized toric Reeb vector iff v ∈ int(D).

4. Conley-Zehnder index

In this section we describe how the explicit method to compute the Conley-Zehnder index
of any closed toric Reeb orbit on a Gorenstein toric contact manifold, described in [2, section
5] and [5, section 3], also applies to Q-Gorenstein toric contact manifolds.
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Given a toric diagram D = conv(v1, . . . , vd) ⊂ Rn of order m ∈ N and correspond-
ing Q-Gorenstein toric contact manifold (MD, ξD), consider a toric Reeb vector field Rν ∈
X (MD, ξD) determined by the normalized toric Reeb vector (cf. Proposition 3.9)

ν = (mv,m) with v =
d∑
j=1

ajvj , aj ∈ R+ , j = 1, . . . , d , and
d∑
j=1

aj = 1 .

By a small abuse of notation, we will also write

Rν =
d∑
j=1

ajνj ,

where νj = (mvj ,m), j = 1, . . . , d, are the defining normals of the associated good moment
cone C ⊂ Rn+1. Making a small perturbation of ν if necessary, we can assume that

the 1-parameter subgroup generated by Rν is dense in Tn+1,

which means that if mv = (r1, . . . , rn) then m, r1, . . . , rn’s are Q-independent. This is equiv-
alent to the corresponding toric contact form being non-degenerate. In fact, the toric Reeb
flow of Rν on (MD, ξD) has exactly m simple closed orbits γ1, . . . , γm, all non-degenerate, cor-
responding to the m edges E1, . . . , Em of the cone C, i.e. one non-degenerate closed simple
toric Rν-orbit for each S

1-orbit of the Tn+1-action on (MD, ξD). Equivalently, there is

one non-degenerate closed simple toric Rν-orbit for each facet of the toric diagram D.

Let γ denote one of those non-degenerate closed simple toric Rν-orbits and assume without
loss of generality that the vertices of the corresponding facet, necessarily a simplex, are
v1, . . . , vn. Let h ∈ Rn and k ∈ Z be such that

{ν1 = (mv1,m), . . . , νn = (mvn,m), η = (mh, k)} is a Z-basis of Zn+1.

Then Rν can be uniquely written as

Rν =
n∑
j=1

bjνj + bη , with b1, . . . , bn ∈ R and b =
m

k

1−
n∑
j=1

bj

 ̸= 0 .

When m = k = 1, as shown in [2, section 5] and [5, section 3], the Conley-Zehnder index
of γN , for any N ∈ N, is given by

µCZ(γ
N ) = 2

 n∑
j=1

⌊
N
bj
|b|

⌋
+N

b

|b|

d∑
j=1

η̃j

+ n , (10)

where η̃ ∈ Zd is such that

β(η̃) = η − β(g)

2π
, for some g ∈ K ∩ SU(d),

where K is given by (8) and the map β : Zd → Zn+1 is defined by (9). This implies in
particular that

d∑
j=1

η̃j = 1
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and so

µCZ(γ
N ) = 2

 n∑
j=1

⌊
N
bj
|b|

⌋
+N

b

|b|

+ n .

When m > 1 we can still use formula (10) to compute µCZ(γ
N ). In this case, we have that

η̃ ∈ Zd is such that

β(η̃) = η − β(g)

2π
, for some g ∈ K ∩ U(d),

but we might not be able to choose g ∈ SU(d). This means that

m

d∑
j=1

η̃j = k − r ,

where r ∈ Z is only defined up to a multiple of m. This ambiguity, coming from the ambiguity
in the choice of g ∈ K or, equivalently, in the choice of closing path for the lifted orbit in Cd,
can be fixed as explained in [4]. This implies that formula (10) remains valid for any m ∈ N
by considering that

d∑
j=1

η̃j =
k

m
.

Hence, we have that

µCZ(γ
N ) = 2

 n∑
j=1

⌊
N
bj
|b|

⌋
+N

b

|b|
k

m

+ n . (11)

4.1. Example. Consider the unit cosphere bundle of S3 with its standard contact structure.
This is a Gorenstein toric contact manifold that can also be seen as the prequantization of S2×
S2 with split symplectic form with area 2π on each S2-factor. By considering prequantizations
of S2 × S2 with split symplectic form with area 2πk on each S2-factor, k ∈ N, we are looking
at toric contact manifolds obtained as Zk quotients of the unit cosphere bundle of S3 with its
standard contact structure.

The first such quotient which is not Gorenstein is for k = 3, i.e. the prequantization of
S2 × S2 with split symplectic form with area 6π on each S2-factor. Viewed this way, this
toric contact manifold has moment cone with normals

(1, 0, 0) , (0, 1, 0) , (−1, 0, 3) and (0,−1, 3) .

The linear map given by the matrix1 1 1
2 1 1
3 3 2

 ∈ SL(3,Z)

sends these normals to (up to ordering)

ν1 = (1, 1, 3) , ν2 = (1, 2, 3) , ν3 = (2, 2, 3) and ν4 = (2, 1, 3) .

Hence, we have the toric diagram D = conv(v1, v2, v3, v4) of order m = 3, where

v1 = (1/3, 1/3) , v2 = (1/3, 2/3) , v3 = (2/3, 2/3) and v4 = (2/3, 1/3) .
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Consider the normalized toric Reeb vector

ν = (1 + ε1, 1 + ε2, 3) , with 0 < ε1 < ε2 ,

and denote by γ1, γ2, γ3 and γ4 its simple closed orbits corresponding to the facets of D with
vertices (v1, v2), (v2, v3), (v3, v4) and (v4, v1), respectively. With this ν and arbitrarily small
0 < ε1 < ε2, we have that µCZ(γ

N
1 ) and µCZ(γ

N
4 ) can be made arbitrarily large for any

N ∈ N, hence the contact Betti numbers can be determined by computing µCZ(γ
N
2 ) and

µCZ(γ
N
3 ).

To compute µCZ(γ
N
2 ), note that ν2 and ν3 can be completed to a Z-basis with η = (0, 1, k =

1). We then have that

ν = (1 + ε1, 1 + ε2, 3) = (3− ε1 − 2ε2)ν2 + (−1 + ε1 + ε2)ν3 + (−3 + 3ε2)η .

It follows from (11) that

µCZ(γ
N
2 ) = 2

(⌊
N · 3− ε1 − 2ε2

3− 3ε2

⌋
+

⌊
N · −1 + ε1 + ε2

3− 3ε2

⌋
− N

3

)
+ 2

= 2

(
⌊N (1 + δ1)⌋+

⌊
N

(
−1

3
+ δ2

)⌋
− N

3

)
+ 2 , for arbitrarily small δ1, δ2 > 0,

which means that the contribution of γ2 and its iterates to the contact Betti numbers is

1 in degrees
4

3
and

8 + 2k

3
, k ∈ N0 .

To compute µCZ(γ
N
3 ), note that ν3 and ν4 can be completed to a Z-basis with η = (1, 0, k =

1). We then have that

ν = (1 + ε1, 1 + ε2, 3) = (−1 + ε1 + ε2)ν3 + (3− 2ε1 − ε2)ν4 + (−3 + 3ε1)η .

It follows from (11) that

µCZ(γ
N
3 ) = 2

(⌊
N · −1 + ε1 + ε2

3− 3ε1

⌋
+

⌊
N · 2− 2ε1 − ε2

3− 3ε1

⌋
− N

3

)
+ 2

= 2

(⌊
N

(
−1

3
+ δ1

)⌋
+ ⌊N (1− δ2)⌋ −

N

3

)
+ 2 , for arbitrarily small δ1, δ2 > 0,

which means that the contribution of γ3 and its iterates to the contact Betti numbers is

1 in degrees − 2

3
,
2

3
,
4

3
,
6

3
and

8 + 2k

3
, k ∈ N0 .

We conclude that

cb2j/3(D) =


1 if j = −1, 1, 3

2 if j = 2, 4 + k, k ∈ N0

0 otherwise.

Let us now use this example to illustrate the content of Theorem 1.2. Since we already
know the contact Betti numbers, it gives us the δ-vector of D:

cb−8/3(D) = 0 , cb−2/3(D) = 1 and cb4/3(D) = 2 ⇒ δ7(D) = δ4(D) = 1 ,

cb−4/3(D) = 0 , cb2/3(D) = 1 and cb8/3(D) = 2 ⇒ δ5(D) = δ2(D) = 1 ,

cb0(D) = 0 , cb2(D) = 1 and cb4(D) = 2 ⇒ δ3(D) = δ0(D) = 1
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and all other δk(D) are equal to zero. This means that the Ehrhart quasi-polynomial of

D = conv((1/3, 1/3), (1/2, 2/3), (2/3, 2/3), (2/3, 1/3)) ⊂ R2

must be given by

t ≡ 1 mod 3 ⇒ LD(t) = δ1(D)

( t−1
3 + 2

2

)
+ δ4(D)

( t−4
3 + 2

2

)
+ δ7(D)

( t−7
3 + 2

2

)
=

1

2

(
t− 4

3
+ 2

)(
t− 4

3
+ 1

)
+

1

2

(
t− 7

3
+ 2

)(
t− 7

3
+ 1

)
=

1

9
(t− 1)2 ,

t ≡ 2 mod 3 ⇒ LD(t) = δ2(D)

( t−2
3 + 2

2

)
+ δ5(D)

( t−5
3 + 2

2

)
+ δ8(D)

( t−8
3 + 2

2

)
=

1

2

(
t− 2

3
+ 2

)(
t− 2

3
+ 1

)
+

1

2

(
t− 5

3
+ 2

)(
t− 5

3
+ 1

)
=

1

9
(t+ 1)2 ,

t ≡ 0 mod 3 ⇒ LD(t) = δ0(D)

( t
3 + 2

2

)
+ δ3(D)

( t−3
3 + 2

2

)
+ δ6(D)

( t−6
3 + 2

2

)
=

1

2

(
t

3
+ 2

)(
t

3
+ 1

)
+

1

2

(
t− 3

3
+ 2

)(
t− 3

3
+ 1

)
=

1

9
(t+ 3)2 ,

which is indeed the case.

5. Contact homology from Ehrhart theory

In this section we will prove our first main result, Theorem 1.2, which establishes a relation
between the contact homology of a toric contact manifold and the Ehrhart series of its toric
diagram.

Take a toric diagram D = conv(v1, . . . , vd) ⊆ Rn so that mD is integral and let (M, ξ) be
the corresponding contact manifold. Consider a Reeb vector field determined by ν = (mv,m)
with v ∈ intD and Q-independent coordinates, as explained in Proposition 3.9. Given such
a Reeb, we define in Definition 1.1 the contact Betti numbers cbj(D, ν) by counting closed
Reeb orbits with fixed degree. We restate Theorem 1.2 for the convenience of the reader and
prove it.

Theorem 5.1. Let D ⊆ Rn be a toric diagram and let (M, ξ) be the m-Gorenstein toric
contact manifold associated to D. Then

cb2j(D, ν)− cb2(j−1)(D, ν) = δm(n−j)

where (δ0, . . . , δm(n+1)−1) is the δ-vector of ∆. In particular, the contact Betti numbers
cb2j(D, ν) do not depend on the choice of toric Reeb vector ν.
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Proof. Given a facet ℓ of D let vℓ1 , . . . , vℓn be the corresponding vertices and let ηℓ = (mhℓ, k)
complete

νℓ1 = (mvℓ1 ,m), . . . , νℓn = (mvℓn ,m)

to a Zn+1-basis. Let Dℓ = conv(v, vℓ1 , . . . , vℓn). We let bℓ1, . . . , b
ℓ
n, b

ℓ ∈ R be such that

ν =
n∑
i=1

bℓiνℓi + bℓηℓ.

Equivalently,

v =

ℓ∑
i=1

bℓivℓi + bℓhℓ and

n∑
i=1

bℓi +
k

m
bℓ = 1.

By appropriately choosing ηℓ we may assume bℓ > 0. For t ∈ Z+ we will denote

ιt = #

(
intD ∩ 1

t
Zn
)

= LintD(t) = (−1)nLD(−t).

We will compute ιt using the contact Betti numbers of (D, ν). Note that because the
coordinates of v are Q-independent there are no points in intD ∩ 1

tZ
n on ∂Dℓ, hence

ιt =
∑
ℓ

#

(
intDℓ ∩

1

t
Zn
)
.

Take a point p ∈ intDℓ. Such a point can be written uniquely as

p =
n∑
i=1

αivℓi + αv

with αi, α > 0 and
∑n

i=1 αi + α = 1. Then

(mp,m) =

n∑
i=1

αiνℓi + αν

=
n∑
i=1

(αi + αbℓi)νℓi + αbℓηℓ.

Hence, since νℓ1 , . . . , νℓn , η is a Z-basis, tp ∈ Zn if and only if αi, α are such that

tαbℓ ∈ mZ and t(αi + αbℓi) ∈ mZ for i = 1, . . . , n.

We now fix N ∈ Z+ and count the number of points p in intDℓ ∩ 1
tZ

n with tαbℓ = mN ,

that is, with α = mN
tbℓ

. Then t(αi + αbℓi) ∈ mZ if and only if there is mi ∈ Z such that

αi =
m

t

(
1−

{
tαbℓi
m

}
+mi

)
=
m

t

(
1−

{
Nbℓi
bℓ

}
+mi

)
.

Moreover αi > 0 if and only if mi ≥ 0. Now
∑n

i=1 α
ℓ
i + α = 1 if and only if

1 =
m

t

(
n∑
i=1

(
1−

{
Nbℓi
bℓ

}
+mi

)
+
N

bℓ

)

=
m

t

(
1

2
deg γNℓ + 1 +

n∑
i=1

mi

)
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which is equivalent to
n∑
i=1

mi =
t

m
− 1

2
deg γNℓ − 1.

Above we used formula (11) to express the degree of γNℓ as

1

2
deg γNℓ =

N

b
−

n∑
i=1

{
N
bℓi
bℓ

}
+ n− 1.

The number of non-negative integer solutions to such equations is found with the following
well-known combinatorial lemma:

Lemma 5.2. Given n, S ∈ Z+ the number of solutions of

n∑
i=1

mi = S with mi ∈ Z+
0

is given by
(
S+n−1
n−1

)
.

Proof. The map from the family of such solutions to the family of subsets of {1, . . . , S+n−1}
with n− 1 elements that sends a solution (m1, . . . ,mn) to the set

k∑
j=1

mj + k : k = 1, 2, . . . , n− 1

 ⊆ {1, . . . , S + n− 1}.

is easily seen to be a well defined bijection. □

Hence, the number of points in intDℓ ∩ 1
tZ

n with fixed N is
( t

m
− 1

2
deg γNℓ +n−2
n−1

)
where we

interpret the binomial coefficient to be zero if t
m − 1

2 deg γ
N
ℓ is not an integer (we remind the

reader that the degree is not necessarily an integer). Therefore

Lt(intDℓ) =
∑
N≥1

( t
m − 1

2 deg γ
N
ℓ + n− 2

n− 1

)

=
∑
j∈ 1

m
Z

(
#
{
N ≥ 1 : deg γNℓ = 2j

})( t
m − j + n− 2

n− 1

)
.

Summing over every facet ℓ it follows that

ιt =
∑
j∈ 1

m
Z

( t
m − j + n− 2

n− 1

)
cb2j(D, ν).

We now use generating functions to recover cb2j = cb2j(D, ν). We compute the Ehrhart series
of int∆ in terms of the contact Betti numbers:

Ehrint∆(z) =
∑
t≥0

ιt+mz
t =

∑
t≥0

 ∑
j∈ 1

m
Z

( t
m − j + n− 1

n− 1

)
cb2j

 zt.
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For the binomial coefficient to be non-zero we must have t = mj +mi with i ∈ Z≥0; using
such substitution, the Ehrhart series becomes

Ehrint∆(z) =
∑
j∈ 1

m
Z

cb2jz
mj
∑
i≥0

(
i+ n− 1

n− 1

)
zmi =

1

(1− zm)n

 ∑
j∈ 1

m
Z

cb2jz
mj

 . (12)

Note that we used in the last step the identity
∑

i≥0

(
i+n−1
n−1

)
zmi = 1

(1−zm)n .

The result follows from comparing (7) and (12). More precisely, we evaluate the coefficient1

[zmj ](1− zm)n+1Ehrint∆(z) ,

in two different ways. Using equation (7) this coefficient is equal to δmn−mj . On the other
hand, using (12) it is equal to

[zmj ](1− zm)

 ∑
j∈ 1

m
Z

cb2jz
mj

 = cb2j − cb2(j−1). □

As corollary we get that the contact Betti numbers stabilize at the normalized volume of D.

Theorem 5.3. Let D ⊆ Rn be a toric diagram and let (M, ξ) be the m-Gorenstein toric
contact manifold associated to D. Given j ∈ 1

mZ ∩ ]−1, 0], the sequence

{cb2j+2a(D)}a∈Z
is monotonically increasing and stabilizes for large a. More precisely,

cb2j+2a(D) = n!vol(mD) for a ≥ n.

Proof. It follows from theorem 5.1 that

cb2j+2a(D) =
a∑
i=0

δm(n−j−i)

so monotonicity follows immediately. For a ≥ n,

cb2j+2a(D) =

n∑
i=0

δm(n−j−i).

By (6), 1
n!

(∑n
i=0 δm(n−j−i)

)
is the leading coefficient of the polynomial L∆(mt −mj) which

is equal to vol(mD). □

Remark 5.4. The stabilization result implies that the mean Euler characteristic of (M, ξ),
defined in this case by

χ(D, ν) = lim
N→+∞

1

2N

∑
j∈[0,N ]

cb2j(D, ν),

is given by n!
2 mvol(mD). The Gorenstein case m = 1 was proven by the first two authors

in [3]. It was also shown that the mean Euler characteristic was the orbifold Euler charac-
teristic of any crepant toric symplectic filling (using [7]); this fact also follows from Theorem
6.8.

1We denote by [zj ]F (z) the degree j coefficient of a polynomial F (z).
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Theorem 5.1 can be used to give direct combinatorial interpretations for the dimensions of
other contact homology groups.

Remark 5.5.

(1) Since δ0 = 1 it also follows that

cb2(n−1) = n!vol(mD)− 1.

(2) We have

cb0(D) = δmn = LintD(m) = # (int (mD) ∩ Zn) ,

where the second equality follows by making z = 0 in (7).

6. Resolutions of the symplectic cone

Recall from section 3 that associated to a toric diagram D we have a toric symplectic
cone (W,ω,X, µ). Its moment cone is C = µ(W ) ∪ {0}. The symplectic cone W can be
compactified near µ−1(Bϵ(0)) by adding a single point corresponding to the vertex 0 of the
moment cone C; this creates a toric singularity that can be described in algebraic geometric
terms as a toric variety.

Given the toric diagram D ⊆ Rn, its cone σ is the cone over D × {1} in Rn+1, that is,

σ = {(tx, t) : x ∈ D, t ≥ 0} ⊆ Rn+1.

Note that this is the cone generated by νi = (mvi,m) where νi are the vectors normal to the
facets of C and vi are the vertices of D, hence σ is the dual of the cone C. Associated to σ we
have an affine toric variety W = Xσ which is the union of W with the singularity (see [16]).

Now a subdivision T of D induces a fan Σ refining the (fan given by the) cone σ, and
hence gives a toric variety XΣ and a (partial) resolution of the singularity XΣ → Xσ = W ;
we call this the fan over T . The fan Σ consists in the family of cones over θ × {1} where
θ ∈ T ; in particular there is a correspondence between Td and Σ(d + 1). When T is a
rational triangulation (i.e., mT ⊆ Zn where m is the order of the toric diagram D) such a
resolution is a toric crepant resolution since every generator of cones in Σ has last coordinate
m (cf. [16, Proposition 11.2.8.]).

The resolution XΣ is smooth if and only if the minimal generators of every cone of Σ can
be extended to a basis of Zn+1, which is equivalent to m = 1 and the subdivision T being a
unimodular triangulation. If m > 1 or m = 1 and T is a non-unimodular triangulation then
XΣ is an orbifold. Note that every polytope admits a triangulation and when n ≤ 2 it always
admits a unimodular triangulation, but for n > 2 that is no longer true; in particular not
every such cone W admits a smooth crepant toric resolution.

Remark 6.1. In [27] McLean proved a result that implies that the minimal discrepancy of the
isolated singularity in Xσ is half the degree of the first non-trivial contact homology group.
By Theorem 5.1 this is the same as the smallest r for which there is an integral point in
(r + 1)int (mD). In particular the singularity is terminal if and only if there are no integral
points in the interior of mD. Thus, if the singularity is not terminal, it admits a (partial)
toric resolution given by the star subdivision centered at some integral point.
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6.1. Symplectic structure on XΣ. We explain here how we can give symplectic structures
to XΣ, which a priori is an abstract algebraic variety. When we give a (toric) symplectic
structure to XΣ we should get a convex polyhedral set P with normal fan Σ; that is P should
take the form

P = {x ∈ Rn+1 : ⟨x, (v, 1)⟩ ≥ av for all v ∈ T0}
for some constants av ∈ R. Note that for Σ being the normal fan of P the constants av have
to be chosen in a way that the faces of P are dual to the cones of Σ. This condition translates
as follows: given T ∈ Tk,

P ∩ {⟨x, (v, 1)⟩ = av for all v ∈ T ∩ T0}

is a face of P of codimension k+1. To state the conditions in which this happens we introduce
the following notions:

Definition 6.2. Let Σ ⊆ Rn+1 be a fan. A support function φ on Σ is a function φ : |Σ| → R
such that φ is linear in each cone of Σ. We say that φ is convex if

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y) ∀x, y ∈ |Σ|.

We say φ is strictly convex if it is convex and the above inequality is strict for every x, y ∈ |Σ|
such that there is no cone σ ∈ Σ containing x and y.

Note that a support function is uniquely determined by choosing its values along rays ρ ∈
Σ(1), where ρ = R≥0 · (v, 1) and v ∈ T0, or alternatively, by choosing the values av = φ(v, 1).
Alternatively, φ is determined by its Cartier data {mT }T∈Tn where mT ∈ Rn+1 is defined by
asking that φ(x) = ⟨mT , x⟩ when x ∈ σ and σ ∈ Σ(n+1) is the cone over T . Given a support
function φ, we define its associated polyhedral set P as

P = {x ∈ Rn+1 : ⟨x, (v, 1)⟩ ≥ φ(v, 1) for all v ∈ T0}
= {x ∈ Rn+1 : ⟨x, ν⟩ ≥ φ(ν) for all ν ∈ |Σ|}.

Proposition 6.3 (Lemma 6.13, [16]). Given a fan Σ and a support function φ on Σ, the
polyhedral set above defined has normal fan Σ if and only if φ is strictly convex. Moreover,
in this case, the vertices of P are precisely given by the Cartier data {mT }T∈Tn.

Now from P we can construct a toric symplectic manifold having P as the image of its
moment map. This can be done using the symplectic cutting construction as presented in [29]
(and based on [22]). Moreover this manifold has the structure of an algebraic variety with
fan Σ. We state here this result and we refer to the literature for its proof, mentioning some
adjustments.

Proposition 6.4. Let Σ ⊆ Rn+1 be a simplicial, full dimensional fan admitting a strictly
convex support function φ. Then XΣ admits a symplectic structure ωφ making it a toric
symplectic orbifold with moment map image

P = {x ∈ Rn+1 : ⟨x, ν⟩ ≥ φ(ν) for all ν ∈ |Σ|}.

Proof. Since Σ is simplicial and full dimensional, P is a simple and strongly convex poly-
hedral set. In [29] a toric symplectic orbifold with moment map image P is constructed by
starting with T ∗Tn+1 and performing successive symplectic cuts (introduced in [22]). Note
that although the construction is stated only for unimodular convex polyhedral set it works
when we drop this condition as long as it is still simple. Indeed, in the intermediate steps of
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the cutting process we get orbifolds, and the unimodularity condition is only used in Remark
2.8 to ensure that the final manifold is smooth.

Theorem 5.1 in [29] gives also a compatible Kähler structure which is Tn+1-invariant. Now
Lemma 9.2 in [25] shows that this Kähler orbifold can be given the structure of a toric variety
isomorphic to XΣ, since by Proposition 6.3 the normal fan of P is Σ. Note that the result
there is only stated in the case that the orbifold is compact (equivalently, Σ is complete, or P
is bounded) but the proof works verbatim to the non-compact case. We remark that in this
proof it is implicitly shown that given σ ∈ Σ(n + 1), with corresponding vertex mσ ∈ P , we
have that

µ−1

( ⋃
mσ∈F

int F

)
,

has the structure of an affine toric variety with cone σ, where the union runs over faces of P
containing mσ. □

Note that although the underlying algebraic variety structure XΣ is always the same, the
symplectic form depends a lot on φ. The polyhedral set P always has the same combinatorial
structure, but by changing φ we change for instance the (lattice) length of its edges which
are the symplectic areas of the corresponding spheres.

Remark 6.5. When Σ is complete the results of chapter 6 of [16] show that from a strictly
convex support function φ we get a (toric-invariant) ample divisor and thus an embedding
XΣ ↪→ CP s, for some s ∈ N. In this case the symplectic form ωφ can be obtained by pulling-
back the Fubini-Study form in CP s.

This shows that given a toric Q-Gorenstein contact manifold M with toric diagram D,
a triangulation T of D and a strictly convex support function defined on the fan Σ over
D one gets a crepant symplectic filling (XΣ, ωφ) of M , which is smooth if and only if T is
unimodular – we call a filling obtained in this way a crepant toric filling. We now prove that,
in this context, strictly convex support functions always exist.

Proposition 6.6. Let D be a toric diagram, T a triangulation and Σ the fan over T . Then Σ
admits a strictly convex support function. In particular every compact Q-Gorenstein contact
toric manifold admits a not-necessarily smooth Q-crepant symplectic filling.

Proof. We note that the proof of Theorem 6.1.18 in [16] adapts to this case (although the
result proved there does not apply directly). For each τ ∈ Σ(n) let mτ ∈ Rn+1 be any vector
such that τ = {x ∈ Rn+1 : ⟨x,mτ ⟩ = 0} (this is unique up to scaling) and define a support
function φ : |Σ| → R by

φ(x) =
∑

τ∈Σ(n)

|⟨x,mτ ⟩|.

Convexity follows from triangle inequality and we get strict convexity by noticing that if x, y
are in two different cones σ, σ′ ∈ Σ(n + 1) then there is some τ for which the hyperplane
span(τ) separates x and y, hence ⟨x,mτ ⟩ and ⟨y,mτ ⟩ have different signs and we cannot have
equality in the triangle inequality.

It remains to show that φ is piecewise linear in every cone σ ∈ Σ(n+1). By the construction
of Σ as a fan over T , the hyperplane span(τ) does not intersect the interior of σ (this is why
we do not have to take a refinement of Σ as in [16]). Therefore ⟨x,mτ ⟩ does not change sign
for x ∈ σ and hence φ|σ is linear. □
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Example 6.7. Consider the toric diagram D = conv((0, 0), (1, 0), (0, 1), (2, 2)). This gives a
Gorenstein contact manifold diffeomorphic to S2 × S3 (see [2, Section 6.1]). We have two
combinatorially distinct unimodular triangulations of D that give two different smooth crepant
toric fillings:

The first resolution is the total space of the canonical bundle KF1 where F1 is the Hirzebruch
surface P(OP1 ⊕OP1(1)). The two resolutions are related by an Atiyah flop.

6.2. Orbifold cohomology of XΣ. A result of Stapledon in [33] relates the Ehrhart poly-
nomial of D with the orbifold cohomology of the varieties XΣ described above.

The orbifold cohomology is an orbifold invariant introduced by Chen and Ruan in [15].
In general it assigns a Q-graded ring H∗

orb(X) to an orbifold X. This grading is actually a
1
mZ-grading when the orbifold is Q-Gorenstein of order m. If the orbifold is smooth, then the
orbifold cohomology ring is isomorphic to the singular cohomology.

Theorem 6.8. Let D be a rational toric diagram of order m and T a rational triangulation
of D (i.e., mT0 ⊆ Zn). Let Σ be the fan over T and XΣ the toric variety with fan Σ. Then

dimH2j
orb(XΣ;Q) = δmj

for j ∈ 1
mZ, and the remaining orbifold cohomology groups are trivial.

This fact was known when XΣ is smooth at least since [7]. The Gorenstein case (m = 1)
was proven in [33, Theorem 4.6]. We give an adaptation of Stapledon’s argument for the
rational case in the appendix, see Theorem B.1.

Combining this result with Theorem 5.1 we get the contact Betti numbers of D from the
orbifold cohomology of XΣ.

Corollary 6.9. Let D ⊆ Rn be a rational toric diagram and (M, ξ) its associated Q-Gorenstein
toric contact manifold. Let T be a rational triangulation of D, Σ the fan over T and XΣ the
toric variety with fan Σ. Then we have for every j ∈ Q

cb2j(D) =
∑
k≥0

dimH2n−2j+2k
orb (XΣ;Q).

Proof. By Theorems 5.1 (for the left hand side) and 6.8 (for the right hand side) both sides
are equal to

∑
0≤k<j+1 δm(n−j+k). □
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6.3. Smooth case of Corollary 6.9. We give here a direct proof of Corollary 6.9 when
m = 1 and XΣ is smooth (equivalently, D is an integral toric diagram and T is a unimodular
triangulation) that does not go through the Ehrhart polynomial. Recall that if XΣ is smooth
then the orbifold cohomology is just the singular cohomology.

The proof uses symplectic (co)homology of the contact type boundary XΣ
2 and its posi-

tive/negative and S1-equivariant versions. We refer to [11,12,35] for details on the construc-
tions and for the results we will need. We will mostly follow the grading conventions of [12]
with two differences: the dimension of our symplectic completion XΣ is 2n+2 instead of 2n,
and we use the symplectic field theory shift of n− 2 in the index of contact homology.

The key fact that will be necessary in the proof is the vanishing of symplectic (co)homology:

Lemma 6.10. Let D be a toric diagram, T a unimodular triangulation and Σ the fan over
T . Let XΣ be the smooth toric symplectic manifold described in 6.1. Then SH∗(XΣ) = 0 and

SHS1

∗ (XΣ) = 0.

Proof. We let ν = (v, 1) ∈ Rn+1 be a vector associated to a certain Reeb vector field Rν in
M . Given α ∈ R+ we define a Hamiltonian Hα : XΣ → R by

Hα(x) = α⟨µ(x), ν⟩

where µ : XΣ → Rn+1 is the moment map ofXΣ (whose image is a cone P ). The corresponding
Hamiltonian vector field is toric and so, for each α ∈ R+, there are only finitely many periods
of its simple non-constant closed orbits. Hence, for almost all values of α ∈ R+ the only
1-periodic Hamiltonian orbits of Hα are the constant orbits corresponding to critical points
of Hα and we will only consider those values of α. The critical points of Hα correspond to
vertices of P . More precisely, if m is a vertex of P then µ−1(m) = {p} and p is a critical
point of Hα. We will show that the indices of all the constant orbits cp get arbitrarily large
when we let α go to +∞, which proves the vanishing claimed by the definition of symplectic
homology as a colimit of Floer homology of Hamiltonians with slope going to +∞.

Let m ∈ P be a vertex and let ν1, . . . , νn+1 be the normals to the facets intersecting at
m. Write ν =

∑n+1
j=1 bjνj ; note that this equality implies

∑n+1
j=1 bj = 1 by looking at the last

coordinate. By changing coordinates we may assume that νj = ej are the coordinate vectors
and ν = (b1, . . . , bn+1), thus, near p we can give complex coordinates z1, . . . , zn+1 to XΣ such
that p corresponds to all zj = 0 and

Hα(z1, . . . , zn+1) =

n+1∑
j=1

αbj
2

|zj |2.

Thus the flow (near p) is given by

φt(z1, . . . , zn+1) =
(
e2πitαb1z1, . . . , e

2πitαbdz1

)
.

The above condition on the values of α implies that αbj ̸∈ Z, j = 1, . . . , n + 1, and the
Conley-Zehnder index is

n+1∑
j=1

(2⌊αbj⌋+ 1) >

n+1∑
j=1

(2αbj − 1) = 2α− n− 1. □

2To be precise, XΣ is the symplectic completion of a contact type boundary symplectic manifold.
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The long exact sequence for positive/negative symplectic (co)homology (see [35, Proposi-
tion 1.5] and [11, Lemma 4.8]) gives isomorphisms

SH+
∗ (XΣ)

∼=→ H∗+n(XΣ,M) and SH+,S1

∗ (XΣ)
∼=→ HS1

∗+n(XΣ,M).

Here HS1

∗+n(XΣ,M) denotes S1-equivariant homology with respect to the trivial S1-action on

(XΣ,M), that is, HS1

∗ (XΣ,M) ∼= H∗(XΣ,M)⊗Z[u] where u is a generator in degree 2. Thus
as vector spaces we have

SH+,S1

∗ (XΣ) =
⊕
k≥0

H∗+n−2k(XΣ,M) ∼=
⊕
k≥0

Hn+2−∗+2k(XΣ)

where we used Lefschetz duality for the last isomorphism. The isomorphism between (lin-
earized) contact homology and positive equivariant symplectic homology in [12, Theorem 1.4]
then gives3

HC∗(M) = SH+,S1

∗−n+2(XΣ) ∼=
⊕
k≥0

H2n−∗+2k(XΣ).

7. Contact homology of prequantization

An important way in which contact manifolds appear is as prequantizations of symplectic
manifolds/orbifolds; we briefly explain this construction in the toric case. Let B be a compact
symplectic toric orbifold of dimension 2n. Compact symplectic toric orbifolds are classified
by simple rational polytopes with facets labelled by positive integers (see [23] or [25]). The
polytope ∆ is the image of the moment map on B and the label of a facet F is the order of
the structure group of points in µ−1(intF ). We write the polytope ∆ as

∆ = {x ∈ Rn : ⟨x, vi⟩+ bi ≤ 0, for i = 1, . . . , d}. (13)

It is convenient to choose vi to be given by vi = ηiṽi where ηi is the label on the facet normal
to vi and ṽi ∈ Zn is the primitive inwards pointing vector; we will call these vi the weighted
normals. From the weighted normals we can recover the labels ηi as the greatest common
divisor of the components of vi. The construction of B from the labelled polytope is similar
to the Delzant construction with weighted normals vi replacing the primitive normals.

We now define prequantization of orbifolds. This construction in the smooth case was
introduced by Boothby and Wang in [9] and was adapted to the orbifold case in [34]; contact
forms arising from prequantization of manifolds (orbifolds) are called (almost) regular contact
forms.

Definition 7.1. Let (M, ξ) be a contact (2n+1)-manifold with contact form α and let (B,ω)
be a symplectic 2n-orbifold. We say that M is the prequantization of B if

(1) The flow of the Reeb vector field Rα is 1-periodic and induces an almost free action
of S1 = R/Z on M ;

(2) B is the quotient space M/S1; so there is a principal S1-orbibundle π :M → B;
(3) π∗ω = dα.

Note that α ∈ Ω1(M) is the connection form, dα ∈ Ω2(M) the curvature form and by
(3) in the definition [ω] ∈ H2

dR(B) is the characteristic class classifying the S1-orbibundle
M → B. In particular [ω] has to be integral (for details on de Rham cohomology of orbifolds

3The shift in the index between contact homology and positive equivariant symplectic homology is the SFT
shift in contact homology, which was not used in [12].
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see [6, Section 2.1]). Conversely, from a symplectic orbifold (B,ω) such that [ω] is an integral
cohomology class one can construct a S1-orbibundle with a contact form α.

Another way to describe prequantization is as follows: we take W ′ → B to be the complex
line bundle with Chern class [ω] and let M ⊆ W ′ be the unit circle bundle (giving some
Hermitian structure to M → W ′); then W = W ′ \ {zero section} is the symplectization of
M . Moreover, the symplectic reduction of W with respect to the S1 action gives back B.

7.1. Prequantization of toric orbifolds. Let (B,ω) be a compact symplectic toric orbifold
as before, classified by a moment polytope ∆ = µ(B) as in (13) and set of weights {ηi}.
According to theorem 6.3 in [17] the Poincaré dual of the class of ω is

PD[ω] =
d∑
i=1

bi[µ
−1(Fi)]

where [µ−1(Fi)] ∈ H2n−2(B) is the homology class represented by the manifold that is the
pre-image of the facet Fi (normal to vi) under the moment map. To guarantee that this class
is integral we assume that bi ∈ Z. Note that, unlike in the smooth/Delzant case, this does
not imply that ∆ is integral.

In [24] the prequantization (in the smooth case) is described as follows: let C ⊆ Rn+1 be
the cone over ∆× {1}, that is,

C = {t(x, 1) : t ∈ R+
0 , x ∈ ∆}

= {y ∈ Rn+1 : ⟨y, νi⟩ ≥ 0 for i = 1, . . . , d} (14)

where νi = (vi, bi) ∈ Rn+1. Then the prequantization of B is the contact manifold M
corresponding to C described in section 3 with contact form α = αen+1 corresponding to the
toric Reeb vector en+1. This is still true if B is a orbifold.

Proposition 7.2 (Lemma 3.7, [24]). Let (B,ω) be a 2n-dimensional compact symplectic toric
orbifold with labelled moment polytope (∆, {ηi}) as in (13). Let C ⊆ Rn+1 be the cone in (14);
assume that C is smooth. Now let (M,α) be the contact toric manifold corresponding to C
where α is the toric contact form with Rα = Ren+1. Then the prequantization of (B,ω) is
(M,α).

Proof. This was proved when B is smooth in [24]. The proof works just the same except
that instead of proving that the S1 action induced by the Reeb flow of Rα = Ren+1 is free
we prove that it is almost free. It was argued that to show the freeness of the action it was
enough to check in the rays of R+(v∗, 1) of C where v∗ is a vertex of ∆ and that this follows
from the fact that {(vℓ, bℓ)}ℓ ∪ {en+1} ⊆ Zn+1 is a Z-basis where ℓ runs the indices of the n
facets of ∆ whose intersection is v∗; this followed by the Delzant condition on ∆. This is not
true anymore, but it is true that {(vℓ, bℓ)}ℓ ∪{en+1} is linearly independent, so it generates a
lattice with finite index over Zn+1, and this index is the order of the isotropy group of x for
x with image in the ray R+(v∗, 1). □

Remark 7.3. We will always assume ∆ to be such that the cone C over ∆ is good, as this
is necessary for M to be smooth (otherwise M would be a contact orbifold).

We now give a description of the polytopes ∆ for which the prequantization M is Goren-
stein. Note that in this section we will only consider Gorenstein contact manifolds (meaning
that c1(ξ) = 0 in H2(M ;Z) or, equivalently, m = 1 in the notation of the previous sections)
and not Q-Gorenstein as we did previously.
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Definition 7.4. We say that a polytope ∆ as in (13) is almost-reflexive if bi = 1 for i =
1, . . . , d.

We say that ∆ is r-Gorenstein if r∆ is almost-reflexive (up to translation) and the cone C
over ∆ is a good cone.

Note that an integral almost-reflexive polytope is a reflexive polytope.

Proposition 7.5. Let (B,ω) be a compact toric symplectic orbifold with labelled polytope ∆.
Then its prequantization (M,α) is a smooth toric Gorenstein contact manifold if and only if
∆ is r-Gorenstein for some r ∈ Z+.

Proof. The condition that the cone C is a smooth cone is necessary to ensure that M is
smooth.

By Proposition 3.3, the prequantization M of B has trivial first Chern class if and only if
there is ν∗ ∈ (Zn+1)∗ such that ν∗(νj) = 1 for j = 1, . . . , d, where νj = (vj , bj). Any such ν∗

can be uniquely written as ν∗(y) = ⟨(w, r), y⟩ for some w ∈ Zn, r ∈ Z. So M has trivial first
Chern class if and only if there are w, r such that

⟨x, νj⟩+ bj ≥ 0 ⇔ ⟨rx, νj⟩+ (1− ⟨w, νj⟩) ≥ 0 ⇔ ⟨rx− w, νj⟩+ 1 ≤ 0.

But this condition is equivalent to r∆ being almost-reflexive (after a translation by w). □

Remark 7.6. Note that when ∆ is 1−Gorenstein, in which case we say that ∆ is orbi-
reflexive, the cone C has normals νi = (vi, 1), so the toric diagram associated to M is D =
conv(v1, . . . , vd) = ∆◦ where vi are the (weighted) normals of ∆. When r > 1 we have to take
a change of basis to transform νj = (vj , bj) in µj = (uj , 1) which amounts to finding a matrix
A ∈Mn,n+1(Z) such that [

A
−w− r

]
∈ GLn+1(Z).

In this case uj = Aνtj and D = conv(u1, . . . , ud).

We also remark that any toric (Gorenstein) contact manifold is the prequantization of some
orbifold. Indeed suppose that w

r ∈ intD ∩Qn with w ∈ Zn and r ∈ Z+. Then the Reeb flow

of the contact form αν where ν = (w, r) induces an S1 action on M and the quotient M/S1 is
a symplectic toric orbifold B with a moment polytope ∆ which is r-Gorenstein and which can
be obtained explicitly by reverting the above construction. In a basis free way, the normals
to the facets of ∆ are the projections of µj in Zn+1/νZ ∼= Zn.

At least in the case that B is smooth, this number r can be characterized geometrically.

Proposition 7.7. Suppose we have the conditions of Proposition 7.5 and moreover B is
smooth. Then B is monotone and c1(TB) = r[ω].

Proof. If r = 1 then ∆ is a reflexive polytope and this is well known. In the general case we
note that scaling the polytope ∆ by a factor of r scales [ω] by a factor of r and does not affect
c1(TB). □

Assume B is smooth. The long exact sequence for the S1-bundle gives

π2(M) → π2(B)
∂→ π1(S

1) ∼= Z → π1(M) → π1(B).

We claim that the map ∂ is given by evaluating [β] ∈ π2(B) at the characteristic class [ω].

Let β : S2 → B be a representative of [β] ∈ π2(B) and let β̃ : D2 →M be the composition of β
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with the map D2 → S2 that collapses the boundary ∂D2 ∼= S1 to a point. Then [∂β] = [β̃|S1 ]
and we have

⟨[ω], [β]⟩ =
∫
S2

β∗ω =

∫
D2

β̃∗π∗ω =

∫
D2

β̃∗dα =

∫
S1

(β̃|S1)∗α = deg(∂[β]).

It follows that, if B is simply connected as is always the case for toric symplectic manifolds,
then:

π1(M) ∼= Z/⟨[ω], π2(B)⟩.

Remark 7.8. Each edge e ∈ ∆1 corresponds to a sphere Se = µ−1(e) ⊆ B. It is well known
that the classes [Se] of these spheres generate π2(B) ∼= H2(B).

Moreover ⟨[ω], [Se]⟩ = ℓ(e) is the integral length of e (that is, the number of integral interior
points +1), so it follows that ⟨[ω], π2(B)⟩ = pZ where

p = gcd{ℓ(e) : e ∈ ∆1}.
Comparing with Proposition 2.10 in [5], it follows that

p = gcd


∣∣∣∣∣∣
| |
νi1 . . . νin+1

| |

∣∣∣∣∣∣ : 1 ≤ i1 < . . . < in+1 ≤ d

 .

It is possible to prove this combinatorial fact directly.

This last fact gives a relation between r and the minimal Chern number. Recall that the
minimal Chern number of B is k ∈ Z+ such that ⟨c1(TB), π2(B)⟩ = kZ.

Corollary 7.9. Suppose we have the conditions of Proposition 7.5 and moreover B is smooth.
Then the minimal Chern number of B is k = rp where p = |π1(M)|.

Proof. This is clear from proposition 7.7 and the isomorphism

π1(M) ∼= Z/⟨[ω], π2(B)⟩. □

7.2. Contact homology of M from B. We will now prove Theorem 1.7, which relates the
orbifold cohomology of the base B and the contact homology of its prequantization M . For
the convenience of the reader we restate it now.

Let ν = (w, r) ∈ Zn+1 be a toric Reeb vector and let φt :M →M be the flow of −Rν ; this
flow is 1-periodic and induces the action of S1 = R/Z on M . Denote by MT the fixed point
set of φT and let BT =MT /S1. Then the inertia orbifold of B is⊔

0<T≤1

BT .

In particular, each BT , 0 < T < 1, is the disjoint union of twisted sectors and B0 = B1 = B.
We denote by F ∗

T the contribution of the twisted sectors contained in BT to H∗
orb(B), so that

H∗
orb(B;Q) =

⊕
0<T≤1

F ∗
T . (15)

Note in particular that F0 = F1 = H∗(B;Q) is the singular cohomology of B.

Theorem 7.10. Suppose we have the conditions of Proposition 7.5. Then the contact ho-
mology of M is completely determined by the decomposition (15) and is given by

HC∗(M, ξ) =
⊕
k≥0

⊕
0<T≤1

F ∗−2rT+2−2rk
T .
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Proof. In this proof we will use the language and the results from appendices A and B.
Proposition A.1 describes the orbifold cohomology of the base B in terms of the combinatorics
of its fan Σ. On the other hand, Lemma B.2 describes the Ehrhart series of D in terms of its
combinatorics. Our strategy will be to compare the two formulas using the correspondence
between cones of Σ and faces of D. Indeed, we have the following bijections:

{face of codim = k of ∆} ↔ {cone of dim = k of Σ} ↔ {face of dim = k − 1 of D} .
A face of ∆ with normals v1, . . . , vk corresponds to the cone τ of Σ with rays vi which in turn
corresponds to the face g of D with vertices u1 = Aν1, . . . , uk = Aνk (see Remark 7.6). We
note that under this correspondence there is a bijection between Box(τ) (as defined in (18))
and Box(g) (as defined in (19)). If

k∑
i=1

civi ∈ Box(τ) ⊆ Zn

then there is a unique 0 ≤ T < 1 such that

k∑
i=1

ciνi + Ten+1 ∈ Zn+1 . (16)

Applying the matrix [
A

−w− r

]
∈ GLn+1(Z)

from Remark 7.6 we get
k∑
i=1

ciµi + T (w, r) ∈ Box(g).

Recall that the twisted sectors of M are in bijection with

Box(Σ) =
⋃
τ∈Σ

Box(τ) =
⋃
g⊆D

Box(g).

Lemma 7.11. The twisted sectors contributing to the summand F ∗
T of H∗

orb(B) are the ones
corresponding to elements of

BoxT (g) = {µ ∈ Box(g) : T (µ) = T}
for some face g of D.

Proof. Consider the commutative diagram of exact sequences

S1

K̃ Td Tn+1

K Td Tn

S1

j

β̃

ϕ

β
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where

β

(
d∑
i=1

ciei

)
=

d∑
i=1

civi , β̃

(
d∑
i=1

ciei

)
=

d∑
i=1

ciνi ,

andK, K̃ are the kernels of β and β̃, respectively. The map j : S1 → Tn+1 sends t ∈ R/Z = S1

to −ten+1 ∈ Rn+1/Zn+1 = Tn+1 and the map ϕ is induced by the diagram: if κ ∈ K then

β̃(κ) = j(t) for a unique t ∈ S1, so we take ϕ(κ) = t. We let Z = µ−1
K (b) ⊆ Cd, then we have

M = Z/K̃ and B = Z/K (see the Appendix A.2 and note that the symplectization of M is

by definition the symplectic reduction of Cd by K̃). The action of S1 = K/K̃ on M = Z/K̃
is precisely the action of S1 on M induced by the Reeb flow of −Rν .

As explained in Appendix A, the twisted sectors ofB correspond to elements κ =
∑d

i=1 ciei ∈
K such that Zκ ̸= ∅, which in turn correspond to an element∑

i∈R(τ)

civi ∈ Box(τ)

for the cone τ ∈ Σ generated by the rays vi for which ci ̸= 0. If we let T be such that (16)
holds, then

β̃(κ) =

d∑
i=1

ciνi = −Ten+1 = j(T ) in Tn+1 ,

so ϕ(κ) = T . Hence the twisted sector corresponding to κ is contained in BT = MT /S1,
which proves the Lemma. □

We denote by Pq(BT ) the Poincaré polynomial of BT with the orbifold shift, i.e. Pq(BT ) =∑
j∈Q dimF 2j

T q
j . By (the proof of) Proposition A.1, Lemma 7.11 and the correspondence

between cones of Σ and faces of D, we have:

Pq(BT ) =
∑
g⊆D

∑
f⊇g

qdim f−dim g(1− q)n−dim f−1

 ∑
µ∈BoxT (g)

qψ(µ).

By Lemma B.2 it follows that∑n
j=0 δjq

j

1− q
= (1− q)nEhrD(q) =

∑
0≤T<1

qrT

1− qr
Pq(BT ) .

We will now replace q by q−1 in the previous equality and multiply both sides by qn. The
equation then becomes

q

1− q

n∑
j=0

δn−jq
j =

∑
0≤T<1

qr(1−T )+n

1− qr
Pq−1(BT ). (17)

Note that the left hand side is equal to

q

1− q

n∑
j=0

δn−jq
j =

∑
j≥1

cb2j−2q
j

by Theorem 5.1. By orbifold Poincaré duality [15, Proposition 3.3.1], we have

qnPq−1(BT ) = Pq(B1−T ) .
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Thus the right hand side of (17) is equal to∑
0≤T<1

qr(1−T )

1− qr
Pq(B1−T ) =

∑
0<T≤1

qrT

1− qr
Pq(BT )

It follows from comparing the qj+1 coefficient on both sides of (17) that

cb2j =
∑

0<T≤1

∑
k≥0

dimF 2j−2rT−2kT+2
T ,

which proves Theorem 7.10. □

As observed in the introduction, Theorem 7.10 has two corollaries that were already known.
The case r = 1 is a consequence of Stapledon’s result [33, Theorem 4.3] together with Theo-
rem 1.2, see Corollary 1.10. When the base B is smooth, and assuming that contact homology
is a well-defined contact invariant, our result specializes to [10, Proposition 9.1], see Corol-
lary 1.9.

Remark 7.12. Suppose that r = 1 and B is smooth; that is, suppose that ∆ is a reflexive
Delzant polytope. Then by Poincaré duality in B we have

δj = dimH2j(B;Q) = dimH2(n−j)(B;Q) = δn−j .

This is a manifestation of Hibi’s palindromic theorem, cf. Theorem 2.4.
More generally, suppose r > 1 but B is still smooth, so that Corollary 1.9 applies. For

simplicity of notation write dj = dimHC2j(M, ξ) and bj = dimH2j(B;Q). We have:

n∑
j=0

δn−jz
j = (1− z)

∑
j≥0

djz
j

 = (1− z)

 n∑
i=0

∑
k≥0

bjz
j+(r−1)+rk


= zr−1 1− z

1− zr

(
n∑
i=0

bjz
j

)
.

We used Theorem 5.1 in the first equality and Corollary 1.9 in the second. Hence δn = . . . =
δn−r+2 = 0. Moreover since

∑n
i=0 bjz

j and 1−zr
1−z are both palindromic polynomials it follows

that 1
zr−1

∑n
j=0 δn−jz

j is also palindromic, that is, δj = δn−r+1−j for j = 0, 1, . . . , n − r + 1.
This can be seen from the extension of Hibi’s palindromic theorem for Gorenstein polytopes
in [21, Theorem 4].

7.3. Examples with a smooth base. We begin by considering the only two examples of
Delzant r-Gorenstein polytopes with n = 2 and r > 1. These two are the moment polytopes
of (CP 2, ωFS) and (S2 × S2, ω0 ⊕ ω0) where ω0 is the volume form on S2 with total volume
1. These two have r = 3 and r = 2, respectively. These reflexive polytopes are the moment
polytopes of (CP 2, 3ωFS) and (S2 × S2, 2ω0 ⊕ 2ω0).

One can construct the toric diagrams of the prequantizations of these four cases as explained
above. All of these correspond to familiar contact manifolds according to [5], namely the
sphere S5, the unit cosphere bundle S∗S3 ∼= S2 × S3, the Lens space L5

3(1, 1, 1) and the unit
cosphere bundle S∗RP 3 ∼= S2 × RP 3.

Now Corollary 1.9 gives the contact homology of these four contact manifolds as sums of
the homology of the base. We start with S5 which is the prequantization of CP 2 with r = 3.
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The Betti numbers of CP 2 are dimH∗(CP 2;Q) = 1 if ∗ = 0, 2, 4 and 0 otherwise. So the
contact Betti numbers of S5 are given as follows:

1 1 1
1 1 1

. . .

0 0 1 1 1 1 1 1 . . .

This should be interpreted as follows: the columns correspond to (even) degrees of homology
or contact homology, the first lines are the copies of the homology of the base with the
shifts given by Corollary 1.9, and the last line is the contact homology. So the final result
is that dimHC2j(S

5) = 1 if j ≥ 2 and 0 if j = 0, 1. We play the same game but now for
the prequantization of (CP 2, 3ωFS) (that is, with r = 1) to get the following contact Betti
numbers for L5

3(1, 1, 1):

1 1 1
1 1 1

1 1 1
. . .

1 2 3 3 3 . . .

For S∗S3 as the prequantization of (S2 × S2, ω0 ⊕ ω0) we get the following:

1 2 1
1 2 1

. . .

0 1 2 3 3 3 . . .

And for S∗RP 3 as the prequantization of (S2 × S2, 2ω0 ⊕ 2ω0) we find:

1 2 1
1 2 1

1 2 1
. . .

1 3 4 4 4 . . .

7.4. Example with orbifold base and r > 1. We consider now an example with r > 1. We
begin again with the lens space M = L5

3(1, 1, 1) with toric diagram D = conv(v1, v2, v3) with
v1 = (0, 0), v2 = (1, 0) and v3 = (2, 3). Take the Reeb vector ν = (1, 1, 2), corresponding to
the point in the interior of D with coordinates (1/2, 1/2), and let B be the orbifold obtained
by quotientingM by the Reeb action. In this situation r = 2. To find ∆ we perform a change
of coordinates in GL(3,Z) sending ν to e3, for instance:−2 0 1

−1 1 0
1 0 0

1 0 1 2
1 0 0 3
2 1 1 1

 =

0 1 −1 −3
0 0 −1 1
1 0 1 2

 .
Thus

∆ = {(x, y) ∈ R2 : x ≥ 0,−x− y + 1 ≥ 0,−3x+ y + 2 ≥ 0}.
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The only point with non-trivial isotropy is the point that maps to the vertex (3/4, 1/4) ∈ ∆
that corresponds to the edge normal to ν2, ν3 in C. Since∣∣∣∣∣∣

1 1 2
1 0 3
2 1 1

∣∣∣∣∣∣ = 4

the structure group at this point is Z/4Z and the only T for which BT ̸= ∅ are T =
1/4, 2/4, 3/4, 1. It can be seen that B is the weighted projective space CP 2(4, 1, 1). The
non-twisted sector is B1 = CP 2(4, 1, 1) and the twisted sectors are all just a point B1/4 =
B2/4 = B3/4 = {∗}. These three twisted sectors Bk/4 correspond to

k

4
ν2 +

k

4
ν3 +

k

4
ν = (k, k, k) ∈ Boxk/4(Σ) ⊆ Z3 for k = 1, 2, 3.

Thus the degree shift associated to Bk/4 is 2
(
k
4 +

k
4

)
= k. Recalling that a weighted projective

space has the same singular cohomology as the smooth projective space,

F1 =

{
Q if ∗ = 0, 2, 4

0 otherwise
and Fk/4 =

{
Q if ∗ = k

0 otherwise
for k = 1, 2, 3

so the Chen-Ruan cohomology of CP 2(4, 1, 1) is obtained as the sum of these:

H∗
orb(CP 2(4, 1, 1);Q) =


Q if ∗ = 0, 1, 3, 4

Q⊕Q if ∗ = 2

0 otherwise

.

Now Theorem 7.10 computes HC∗(L
5
3(1, 1, 1)) as a sum with contributions from the different

sectors:

F1 1 1 2 1 2 1
F1/4 1 1 1 1
F2/4 1 1 1
F3/4 1 1 1

1 2 3 3 3 3 3

Here the first four lines are the ranks contributed by the twisted sector corresponding to
T according to Theorem 7.10 and the last line is the total rank of the contact homology. For
example the first line means

F ∗−2
1 ⊕ F ∗−6

1 ⊕ F ∗−10
1 ⊕ . . . =


Q⊕Q if ∗ = 4k + 2, k > 0

Q if ∗ = 2 or ∗ = 4k, k > 0

0 otherwise.

Note that the final result obtained coincides with the previous computation of HC∗(L
5
3(1, 1, 1))

as one would expect.

Appendix A. Chen-Ruan Cohomology of Toric Orbifolds

In this appendix we describe how to compute the Chen-Ruan cohomology of a toric orb-
ifold given its moment polytope. Before that we explain briefly the construction of orbifold
cohomology. We refer to [6] for more details.
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We think of orbifolds as (equivalence classes of) Lie groupoids G. Recall that a Lie groupoid
essentially consists of an object space G0, a morphism space G1 and source and target arrows
s, t : G1 → G0 obeying certain conditions. We say that G is an étale groupoid if s, t are
local isomorphisms. The orbifold associated to G is to be interpreted as G0/∼ where ∼ is the
equivalence relation defined by s(g) ∼ t(g) for g ∈ G1.

Two groupoids give the same orbifold if they are Morita equivalent. If we establish an
analogy between groupoids as the underlying structure of an orbifold and atlases as the
underlying structure of a manifold, then Morita equivalence is analogous to the existence of a
common refinement of the atlases. Note that a non-étale groupoid can be Morita equivalent
to an étale one, and we still say that such groupoid represents an orbifold. So orbifolds are
Morita equivalence classes of orbifolds containing some étale groupoid. We denote by |G| the
underlying topological space of the orbifold.

A.1. Quotient orbifolds. Let X be a manifold and G be a compact Lie group acting almost
freely on X. Then X/G is an orbifold with groupoid structure G = G ⋉X where its object
space is X, its morphism space is G × X and s(g, x) = x, t(g, x) = gx. We assume for
simplicity that G is abelian, which is the case we are interested in. Then the inertia groupoid
of G is

ΛG =
⊔
g∈G

Gg

where Gg = G⋉Xg (note that for G abelian each conjugacy class has a unique element). The
connected components Gg with g ̸= 0 of the inertia groupoid are called the twisted sectors.
Now the Chen-Ruan cohomology of G is defined as the (singular) cohomology of ΛG but with
appropriate degree shifting in each twisted sector. More precisely

Hd
orb(G) =

⊕
g∈G

Hd−2ιg(|Gg|)

for some degree shifting numbers ιg ∈ Q (also called age grading in the literature). Note
that |Gg| is the quotient topological space Xg/G; in particular if Xg is empty then there is
no contribution of g. We also note that the use of a non-étale groupoid does not affect in
any way this construction except in the definition of the degree shifting numbers, since a
Morita equivalence of groupoids induces a Morita equivalence of inertia groupoids and hence
homeomorphisms between the underlying topological space of their components.

To define the degree-shifting numbers in this setup we have to get an orbifold local chart
from this non-étale groupoid. Let g ∈ G and x ∈ Xg. Take a slice S at x. Then (S,Gx, π :
S → S/Gx) is an orbifold chart around x. We assume that S has an (almost) complex
structure; note that this does not have to be inherited from X. Then g acts infinitesimally
on TxS ∼= Cn and has eigenvalues e2πiλ1 , . . . , e2πiλn with 0 ≤ λj < 1. Now the degree shifting
number is defined to be

ιg =
n∑
j=1

λj .

This is independent of the point x ∈ Xg chosen.

A.2. Toric orbifolds. We now explain how to compute the orbifold cohomology in our cases
of interest of toric orbifolds. We can consider for instance a compact toric symplectic orbifold
B with labeled moment polytope ∆ as in section 7 or take B = XΣ and ∆ = P as in section
6.
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The construction of B from

∆ = {x ∈ Rn : ⟨x, vi⟩+ bi ≤ 0, for i = 1, . . . , d}

(where, as in section 7, the vi are the primitive vector times the corresponding label) is the
following, as described in [25]: consider the torus Td = Rd/Zd and its action on Cd by

(c1, . . . , cn) · (z1, . . . , zn) =
(
e2πic1z1, . . . , e

2πicdzd
)
.

Consider the map β : Td → Tn defined by β(ej) = vj and let

K = kerβ =

{
d∑
i=1

ciei :

d∑
i=1

civi ∈ Zn
}

⊆ Td.

Then B is defined to be the symplectic reduction of Cd by K. Hence B is the orbifold with
groupoid structure K ⋉ Z where Z = µ−1

K (b) is the pre-image of an appropriate point b ∈ k∗

in the dual of the Lie algebra of K.

Now take κ =
∑d

i=1 ciei ∈ K and assume that Zκ ̸= ∅. Without loss of generality we assume
that c1, . . . , ck ̸= 0 and ck+1 = . . . = cn = 0. Then z ∈ Zκ if and only if z1 = . . . = zk = 0,
that is, if and only if µK([z]) is in the face F of ∆ normal to v1, . . . , vk (in particular such face
must be non-empty). The twisted sector Zκ/K is equivalent (up to a non-effective quotient)
to the orbifold with moment polytope F , and hence its singular cohomology can be read from
the combinatorics of F using a Morse function as explained in [14, section 3.3].

It remains to compute ικ. Let S ⊆ Z be a slice at z; concretely, if we assume the facets
normal to v1, . . . , vn intersect at a vertex, one may take

S = Z ∩ (Cn × Rd−n).

We have TzZ = TzS ⊕ Tz(K · z). Since TzZ is ω-orthogonal to Tz(K · z) (see for instance [13,
section 23.3]) it follows that TzZ is orthogonal to iTz(K · z). Hence

TzCd = TzS ⊕ Tz(K · z)⊕ iTz(K · z)
= TzS ⊕ (Tz(K · z)⊗ C)

Now the infinitesimal action of κ on TzCd ∼= Cd is given by the matrix

diag(e2πic1 , . . . , e2πick , 1 . . . , 1).

Moreover κ acts trivially on K · z since κ · λ · z = λ · κ · z = λ · z for any λ ∈ K. Considering
the splitting of TzCd described above it follows that

ικ =
k∑
j=1

{cj}.

A.3. Formula in terms of Box sums. The previous description of the orbifold cohomol-
ogy of a toric orbifold can be packed efficiently in terms of a sum over the Box of the fan
corresponding to ∆, as in [33, section 4]. We let Σ be the (simplicial) fan associated to ∆.
The cones of Σ are in bijection with faces of ∆; more precisely, if τ is the cone with rays
v1, . . . , vk then the corresponding face of ∆ is

F = {v ∈ P : ⟨v, vi⟩+ bi = 0}

for some a1, . . . , ak.
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If τ ∈ Σ is a cone we define its h-polynomial as

hτ (q) =
∑
σ⊇τ

qdimσ−dim τ (1− q)codimσ.

Note that the h-polynomial of τ is the same as the h-polynomial of the polytope determined
by the corresponding face F :

hτ (q) = hF (q) ≡
∑
G⊆F

qdim(F )−dim(G)(1− q)dim(G).

Given a cone τ ∈ Σ with rays v1, . . . , vk we define the box of τ to be the set

Box(τ) =


k∑
j=1

cjvj : 0 < cj < 1

 ∩ Zn+1. (18)

Given κ ∈ Box(τ) we let

ψ(κ) =
k∑
j=1

cj ∈ Q.

Proposition A.1. The orbifold Poincaré polynomial of XΣ is given by∑
j∈Q

dimH2j
orb(XΣ)q

j =
∑
τ∈Σ

hτ (q)
∑

κ∈Box(τ)

qψ(κ).

Proof. The proof is essentially contained in [33, section 4], but is also easy after our description
of the orbifold cohomology. We showed before that twisted sectors are in bijection with
Box(Σ) =

⊔
τ∈ΣBox(τ) and the twisted sector corresponding to κ ∈ Box(τ) is (up to a trivial

quotient) XΣτ . By [33, Lemma 4.1], hτ (q) is the Poincaré polynomial (the usual one, not
orbifold) of XΣτ and as shown before ψ(κ) is the shift associated to the twisted sector. □

Appendix B. Generalizing Stapledon’s theorem

In this appendix we explain how to adapt the proof of [33, Theorem 4.6] to allow D to be
a rational polytope. This corresponds to the case where the toric contact manifold (M, ξ) is
Q-Gorenstein, i.e. c1(ξ) is torsion, and c1(XΣ) is torsion, where XΣ is the resolution of the
symplectic cone of M associated to a triangulation of D.

Let D ⊆ Rn be a polytope with rational vertices v1, . . . , vd ∈ Qn. We consider also a
rational triangulation T of D. Assume that m ∈ Z+ is an integer such that mD and mT are
an integral polytope and an integral triangulation, respectively. We let Σ be the (stacky) fan
over T ; Σ has rays

{ν = (mv,m) ∈ Zn+1 : v ∈ T0}.

Theorem B.1. Let D be a rational toric diagram and T a rational triangulation of D.
Assume that m is such that mD has integral vertices and mT is an integral triangulation.
Let Σ the fan over T and XΣ the toric variety with fan Σ. Then

dimH2j
orb(XΣ;Q) = δmj

for j ∈ 1
mZ, and the remaining orbifold cohomology groups are trivial.
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Proof. We will prove the result by giving a formula for the Ehrhart series of D in terms of a
Box sum and then comparing with Proposition A.1.

For each vertex vj ∈ 1
mZn of D let νj = (mvj ,m). Integral points in tD ∩ Zn, for t ∈ Z≥0,

are in bijection with integral points in the cone

C = {(tv, t) : v ∈ D, t ≥ 0} = R≥0⟨ν1, . . . , νd⟩

with last coordinate t. If ν = (tv, t) ∈ C is an integral vector let θ ∈ T be the face containing
v in its relative interior. Then there is a unique way to write ν as

ν = κ+
∑

νj∈R(θ)\R(η)

νj +
∑

νj∈R(θ)

mjνj

where η ⊆ θ, κ ∈ Box(η) and mj ∈ Z≥0 for νj ∈ R(θ). Above, we wrote R(θ) for the set of
rays νj = (mvj ,m) for vj ∈ θ0 ⊆ T0 a vertex of θ. The last coordinate of such ν is

m

ψ(κ) + dim θ − dim η +
∑

νj∈R(θ)

mj

 .

Hence the Ehrhart series of D is∑
θ∈Σ

∑
η⊆θ

qm(dim θ−dim η)

(1− qm)dim(θ)+1

∑
µ∈Box(η)

qmψ(µ) =
1

(1− qm)n+1

∑
η∈Σ

hη(q
m)

∑
κ∈Box(η)

qmψ(κ).

Comparing with Proposition A.1 it follows that∑
j∈ 1

m
Z

δmjq
mj = (1− qm)n+1EhrD(q) =

∑
η∈Σ

hη(q
m)

∑
κ∈Box(η)

qmψ(κ) =
∑
j∈ 1

m
Z

dimH2j
orb(XΣ)q

mj

and we are done. □

B.1. Ehrhart series from star subdivision. We will now prove a Lemma that provides a
formula for the Ehrhart series of an integral polytope D when we are given a rational point
w/r in the interior of D. This will be used in the proof of Theorem 1.7. The statement and
proof are slight variations to those of Theorem B.1: we will consider the star subdivision
centered at w/r and obtain a formula by essentially the same argument.

To state the formula we introduce some notation. Given a face g ⊆ D with vertices
v1, . . . , vk, we denote by Box(g) the set

Box(g) =


k∑
j=1

cjνj + T (w, r) : 0 < cj < 1 , 0 ≤ T < 1

 ∩ Zn+1 (19)

where νj = (vj , 1). Given κ ∈ Box(g) written as κ =
∑k

j=1 cjνj + T (w, r), we denote

ψ(κ) =

k∑
j=1

cj , T (κ) = T.

Lemma B.2. Let D be a toric diagram with integral vertices and let w ∈ Zn, r ∈ Z+ be such
that w/r ∈ intD. Then the Ehrhart series of D is given by
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EhrD(q) =
1

1− qr

∑
g⊆D

∑
f⊇g

qdim f−dim g(1− q)− dim f−1

 ∑
κ∈Box(g)

qψ(κ)+rT (κ)

where the first sums run over faces g ⊆ f of D.

Proof. For each face f of D with vertices v1, . . . , vℓ we let Df ⊆ D be the convex hull of the
relative interior of f together with w/r, that is,

Df =


ℓ∑
i=1

ajvj + a
w

r
: aj > 0 , a ≥ 0 ,

ℓ∑
j=1

aj + a = 1

 .

The polytope D is the disjoint union

D =
⊔
f⊆D

Df ,

hence

EhrD(q) =
∑
f⊆D

EhrDf
(q).

Integral points in tDf ∩ Zn are in bijection with integral points in

Cf = {(tv, t) : v ∈ Df , t ≥ 0}

with last coordinate t. Such points can be written uniquely as

ν = κ+
∑

vj∈V (f)\V (g)

νj +
∑

vj∈V (f)

mjνj +m(w, r)

for some face g ⊆ f , κ ∈ Box(g) and mj ,m ∈ Z≥0; here we denote by V (g) the set of vertices
of the face g. The last coordinate of such point is

ψ(κ) + rT (κ) + dim(f)− dim(g) +
∑

vj∈V (f)

mj + rm.

It follows that

EhrDf
(q) =

∑
g⊆f

qdim(f)−dim(g)(1− q)− dim(f)−1(1− qr)−1
∑

κ∈Box(g)

qψ(κ)+rT (κ).

After summing over f we obtain the statement of the Lemma. □
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