MODEL ANSWERS TO HWK \#9

1. (iv) If we write $\vec{F}(x, y)=M \hat{\imath}+N \hat{\jmath}$, the curl of \vec{F} is $\operatorname{curl} \vec{F}=N_{x}-M_{y}$. Since

$$
N_{x}=\frac{\left(x^{2}+y^{2}\right)-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad M_{y}=-\frac{\left(x^{2}+y^{2}\right)-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

the curl of \vec{F} vanishes everywhere \vec{F} is defined.
(v) Let C_{1} and C_{2} be the curves in part (iii). Since

$$
\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r} \neq \int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r}
$$

the vector field \vec{F} is not conservative over its entire domain. However, it is conservative over the right half plane $x>0$ since $\theta_{2}-\theta_{1}$ only depends on the endpoints and if we have a loop, we obviously get zero. 2. (i) Note that the gradient of $r=\sqrt{x^{2}+y^{2}}$ is

$$
\nabla r=\frac{x}{\sqrt{x^{2}+y^{2}}} \hat{\imath}+\frac{y}{\sqrt{x^{2}+y^{2}}} \hat{\imath}=\frac{x}{r} \hat{\imath}+\frac{y}{r} \hat{\jmath} .
$$

The curl of \vec{F} is then

$$
\operatorname{curl} \vec{F}=\frac{\partial}{\partial x}\left(r^{n} y\right)-\frac{\partial}{\partial y}\left(r^{n} x\right)=n r^{n-1} \frac{x}{r} y-n r^{n-1} \frac{y}{r} x=0 .
$$

(ii) Let $g(r)=\frac{1}{n+2} r^{n+2}$. Then

$$
\nabla g(r)=r^{n}(x \hat{\imath}+y \hat{\jmath})
$$

so long as $n \neq-2$. If $n=-2$, consider instead $g(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$; here

$$
\nabla g(r)=\frac{1}{x^{2}+y^{2}}(x \hat{\imath}+y \hat{\jmath})=\frac{1}{r}(x \hat{\imath}+y \hat{\jmath})
$$

3. (i) Consider the vector fields $\vec{F}_{1}=\langle-y, 0\rangle$ and $\vec{F}_{2}=\langle 0, x\rangle$. Both of these vector fields satisfy curl $\vec{F}=1$, and so applying Green's theorem to \vec{F}_{1} gives

$$
\operatorname{area}(R)=\int_{R} \mathrm{~d} A=\int_{R} \operatorname{curl} \vec{F}_{1} \mathrm{~d} A=-\oint_{C} y \mathrm{~d} x
$$

and similarly to \vec{F}_{2} gives

$$
\operatorname{area}(R)=\int_{R} \mathrm{~d} A=\int_{\substack{R \\ 1}} \operatorname{curl} \vec{F}_{2} \mathrm{~d} A=\oint_{C} x \mathrm{~d} y
$$

(ii) To obtain one arch we need the smallest positive t with $y(t)=0$. This gives $t=2 \pi$. Let

$$
\vec{r}_{1}(t)=\langle a(t-\sin t), a(1-\cos t)\rangle \quad \text { and } \quad \vec{r}_{2}(t)=\langle 2 \pi-t, 0\rangle .
$$

Then the curve $C=C_{1} \cup C_{2}$ encloses R with the opposite orientation, and so applying part (i) gives

$$
\begin{aligned}
\operatorname{area}(R) & =-\int_{C} x \mathrm{~d} y \\
& =-\int_{C_{1}} x \mathrm{~d} y-\int_{C_{2}} x \mathrm{~d} y \\
& =a^{2} \int_{0}^{2 \pi} \sin ^{2} t-t \sin t \mathrm{~d} t \\
& =a^{2}\left([t \cos t]_{0}^{2 \pi}-\int_{0}^{2 \pi} \cos t \mathrm{~d} t+\frac{1}{2} \int_{0}^{2 \pi}(1-\cos (2 t)) \mathrm{d} t\right) \\
& =3 \pi a^{2}
\end{aligned}
$$

4. (i) Observe that if
$\vec{F}=\left\langle x^{2} y+y^{3}-y, 3 x+2 y^{2} x+e^{y}\right\rangle \quad$ then $\quad \operatorname{curl} \vec{F}=4-\left(x^{2}+y^{2}\right)$.
Therefore by Green's theorem we have that if C bounds the region R then

$$
\oint_{C} \vec{F} \cdot \mathrm{~d} r=\iint_{R} \operatorname{curl} \vec{F} \mathrm{~d} A .
$$

So we want R to be the region where the curl is at least zero, that is, we want $x^{2}+y^{2} \leq 4$. The boundary C of this region is the circle of radius 2 , centred at the origin.
(ii) Again by applying Green's theorem we get that

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \mathrm{~d} r & =\iint_{R} \operatorname{curl} \vec{F} \mathrm{~d} A \\
& =\iint_{x^{2}+y^{2} \leq 4}\left(4-x^{2}-y^{2}\right) \mathrm{d} A \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) r \mathrm{~d} r \mathrm{~d} \theta \\
& =2 \pi\left[2 r^{2}-\frac{1}{4} r^{4}\right]_{0}^{2} \\
& =8 \pi .
\end{aligned}
$$

5. (i) True. If $\vec{F}=\nabla f$ and $\vec{G}=\nabla g$ then $\vec{F}+\vec{G}=\nabla(f+g)$.
(ii) True. If \vec{F} is a gradient vector field then curl $\vec{F}=N_{x}-M_{y}=0$. In particular $M_{y}(1,-1)=N_{x}(1,-1)$.
6. (i) Note that the normal vector to the unit circle is simply the radial vector $\langle x, y\rangle$. We compute the flux

$$
\vec{F} \cdot \vec{n}=\left\langle x y, y^{2}\right\rangle \cdot\langle x, y\rangle=y\left(x^{2}+y^{2}\right) .
$$

We therefore see that $y \geq 0$, the upper half of the circle, contributes positively to the flux while $y \leq 0$, the lower half of the circle, contributes negatively to the flux.
(ii) Using the unit speed parametrization $\vec{r}(s)=\langle\cos s, \sin s\rangle$ with $s \in$ [$0,2 \pi]$ we can use part (i) to compute

$$
\begin{aligned}
\int_{0}^{2 \pi} \vec{F} \cdot \vec{n} \mathrm{~d} s & =\int_{0}^{2 \pi} \sin s\left(\cos ^{2} s+\sin ^{2} s\right) \mathrm{d} s \\
& =\int_{0}^{2 \pi} \sin s \mathrm{~d} s=0
\end{aligned}
$$

This gels with (i) because for each point (x, y) on the unit circle the flux at the corresponding point $(x,-y)$ has equal magnitude but opposite sign. Hence, we expect the total flux to be zero.
(iii) Using Green's theorem we get

$$
\begin{aligned}
\int_{0}^{2 \pi} \vec{F} \cdot \vec{n} \mathrm{~d} s & =\iint_{x^{2}+y^{2} \leq 1} \operatorname{div} \vec{F} \mathrm{~d} A \\
& =\iint_{x^{2}+y^{2} \leq 1} 3 y \mathrm{~d} A=0
\end{aligned}
$$

since y is anti-symmetric about the x-axis and the unit circle is symmetric about the x-axis.

