
MODEL ANSWERS TO HWK #9

1. (iv) If we write ~F (x, y) = Mı̂+N̂, the curl of ~F is curl ~F = Nx−My.
Since

Nx =
(x2 + y2)− 2x2

(x2 + y2)2
and My = −(x2 + y2)− 2y2

(x2 + y2)2
,

the curl of ~F vanishes everywhere ~F is defined.
(v) Let C1 and C2 be the curves in part (iii). Since∫

C1

~F · d~r 6=
∫
C2

~F · d~r,

the vector field ~F is not conservative over its entire domain. However,
it is conservative over the right half plane x > 0 since θ2 − θ1 only
depends on the endpoints and if we have a loop, we obviously get zero.
2. (i) Note that the gradient of r =

√
x2 + y2 is

∇r =
x√

x2 + y2
ı̂+

y√
x2 + y2

ı̂ =
x

r
ı̂+

y

r
̂.

The curl of ~F is then

curl ~F =
∂

∂x
(rny)− ∂

∂y
(rnx) = nrn−1x

r
y − nrn−1y

r
x = 0.

(ii) Let g(r) = 1
n+2

rn+2. Then

∇g(r) = rn(xı̂+ y̂),

so long as n 6= −2. If n = −2, consider instead g(x, y) = 1
2

ln(x2 + y2);
here

∇g(r) =
1

x2 + y2
(xı̂+ y̂) =

1

r
(xı̂+ y̂).

3. (i) Consider the vector fields ~F1 = 〈−y, 0〉 and ~F2 = 〈0, x〉. Both of

these vector fields satisfy curl ~F = 1, and so applying Green’s theorem
to ~F1 gives

area(R) =

∫
R

dA =

∫
R

curl ~F1 dA = −
∮
C

y dx,

and similarly to ~F2 gives

area(R) =

∫
R

dA =

∫
R

curl ~F2 dA =

∮
C

x dy.

1
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(ii) To obtain one arch we need the smallest positive t with y(t) = 0.
This gives t = 2π. Let

~r1(t) = 〈a(t− sin t), a(1− cos t)〉 and ~r2(t) = 〈2π − t, 0〉.

Then the curve C = C1 ∪C2 encloses R with the opposite orientation,
and so applying part (i) gives

area(R) = −
∫
C

x dy

= −
∫
C1

x dy −
∫
C2

x dy

= a2
∫ 2π

0

sin2 t− t sin t dt

= a2

([
t cos t

]2π
0

−
∫ 2π

0

cos t dt+
1

2

∫ 2π

0

(1− cos(2t)) dt

)
= 3πa2.

4. (i) Observe that if

~F = 〈x2y+ y3− y, 3x+ 2y2x+ ey〉 then curl ~F = 4− (x2 + y2).

Therefore by Green’s theorem we have that if C bounds the region R
then ∮

C

~F · dr =

∫∫
R

curl ~F dA.

So we want R to be the region where the curl is at least zero, that is,
we want x2 + y2 ≤ 4. The boundary C of this region is the circle of
radius 2, centred at the origin.
(ii) Again by applying Green’s theorem we get that∫

C

~F · dr =

∫∫
R

curl ~F dA

=

∫∫
x2+y2≤4

(4− x2 − y2) dA

=

∫ 2π

0

∫ 2

0

(4− r2)r dr dθ

= 2π

[
2r2 − 1

4
r4
]2
0

= 8π.

5. (i) True. If ~F = ∇f and ~G = ∇g then ~F + ~G = ∇(f + g).
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(ii) True. If ~F is a gradient vector field then curl ~F = Nx−My = 0. In
particular My(1,−1) = Nx(1,−1).
6. (i) Note that the normal vector to the unit circle is simply the radial
vector 〈x, y〉. We compute the flux

~F · ~n = 〈xy, y2〉 · 〈x, y〉 = y(x2 + y2).

We therefore see that y ≥ 0, the upper half of the circle, contributes
positively to the flux while y ≤ 0, the lower half of the circle, con-
tributes negatively to the flux.
(ii) Using the unit speed parametrization ~r(s) = 〈cos s, sin s〉 with s ∈
[0, 2π] we can use part (i) to compute∫ 2π

0

~F · ~n ds =

∫ 2π

0

sin s(cos2 s+ sin2 s) ds

=

∫ 2π

0

sin s ds = 0.

This gels with (i) because for each point (x, y) on the unit circle the flux
at the corresponding point (x,−y) has equal magnitude but opposite
sign. Hence, we expect the total flux to be zero.
(iii) Using Green’s theorem we get∫ 2π

0

~F · ~n ds =

∫∫
x2+y2≤1

div ~F dA

=

∫∫
x2+y2≤1

3y dA = 0,

since y is anti-symmetric about the x-axis and the unit circle is sym-
metric about the x-axis.


