MODEL ANSWERS TO HWK \#8

1. We will compute the polar moment of inertia of the region illustrated below, after changing coordinates to $u=x y, v=y / x$.

The tricky part is to set up the bounds for this region in the new coordinate system. Let's first describe the region in the $u v$-plane, and then choose the appropriate bounds of integration.
The condition $0 \leq x y \leq 1$ translates to $0 \leq u \leq 1$ in the new coordinates. On the other hand, $1 \leq x \leq 2$ translates to $1 \leq \sqrt{u / v} \leq 2$, so $v \leq u \leq 4 v$. So the region is as illustrated:

It's clear that the bounds will be easier if the integral with respect to v is the inside one. We'll get

$$
\int_{u=0}^{1} \int_{v=u / 4}^{u} \text { something }(u, v) \mathrm{d} v \mathrm{~d} u
$$

To figure out exactly what something (u, v) is we need to compute the Jacobian and rewrite the function $x^{2}+y^{2}$ in the coordinates u and v.

Since $x=\sqrt{u / v}$ and $y=\sqrt{u v}$, a bit of algebra shows that the Jacobian is given by

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2 \sqrt{\frac{u}{v}}} & -\frac{u}{2 \sqrt{\frac{u}{v}} v^{2}} \\
\frac{v}{2 \sqrt{u v}} & \frac{u}{2 \sqrt{u v}}
\end{array}\right|=\frac{1}{2 v} .
$$

Observe that the function $f(x, y)=x^{2}+y^{2}$ is given in these coordinates by $f(u, v)=u v+u / v$. Putting all of this together, the polar moment of inertia is given by

$$
\int_{u=0}^{1} \int_{v=u / 4}^{u}(u v+u / v) \delta(u, v) \frac{1}{2 v} \mathrm{~d} v \mathrm{~d} u
$$

One way to check this is to see that we get the same answer in both coordinate systems when we apply it to a uniform density function $\delta=1$. It's easy to verify that

$$
\int_{x=0}^{1} \int_{y=0}^{1 / x}\left(x^{2}+y^{2}\right) \mathrm{d} y \mathrm{~d} x=\int_{u=0}^{1} \int_{v=u / 4}^{u}(u v+u / v)\left(\frac{1}{2 v}\right) \mathrm{d} v \mathrm{~d} u=\frac{13}{8}
$$

so we've probably done everything right.
2. We're given an ellipse in the form $(2 x+5 y-3)^{2}+(3 x-7 y+8)^{2}=1$.

Finding the area won't be so hard after we make the coordinate change $u=2 x+5 y-3$ and $v=3 x-7 y+8$.
The Jacobian is given by $\left|\operatorname{det}\left(\begin{array}{cc}2 & 5 \\ 3 & -7\end{array}\right)^{-1}\right|=1 / 29$. So

$$
\begin{aligned}
A & =\iint_{(2 x+5 y-3)^{2}+(3 x-7 y+8)^{2} \leq 1} 1 \mathrm{~d} x \mathrm{~d} y \\
& =\iint_{u^{2}+v^{2} \leq 1} 1\left(\frac{1}{29}\right) \mathrm{d} u \mathrm{~d} v=\frac{\pi}{29},
\end{aligned}
$$

since $\iint_{u^{2}+v^{2} \leq 1} 1 \mathrm{~d} u \mathrm{~d} v=\pi$ is just the area of a circle of radius 1 .
3. At each point (x, y), the slope of the vector $\vec{F}(x, y)$ is

$$
\frac{4 x}{1+x^{2}} .
$$

A field line must be a curve whose tangent vector has this slope. So field lines are given by graphs of functions whose derivative is

$$
\frac{4 x}{1+x^{2}} .
$$

Integrating shows that for each constant c, the curve

$$
y=2 \ln \left(1+x^{2}\right)+c,
$$

is a field line, and there are no other field lines.
4. We parameterise C as $\vec{r}(x)=x \hat{\imath}+f(x) \hat{\jmath}$, where $x_{1} \leq x \leq x_{2}$. The line integral of \vec{F} along C is then

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r} & =\int_{C}\left(x^{2} y+\frac{1}{3} y^{3}\right) \hat{\imath} \cdot\left(\hat{\imath}+f^{\prime}(x) \hat{\jmath}\right) \mathrm{d} x \\
& =\int_{C}\left(x^{2} y+\frac{1}{3} y^{3}\right) \mathrm{d} x \\
& =\int_{x_{1}}^{x_{2}}\left(x^{2} f(x)+\frac{1}{3} f(x)^{3}\right) \mathrm{d} x \\
& =\int_{x_{1}}^{x_{2}} \int_{0}^{f(x)}\left(x^{2}+y^{2}\right) \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

this is precisely the polar moment of inertia $\iint_{R} r^{2} \mathrm{~d} A$.
5. (i) We compute:

$$
\begin{aligned}
\nabla \theta(x, y) & =\nabla\left(\arctan \left(\frac{y}{x}\right)\right) \\
& =\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \nabla\left(\frac{y}{x}\right) \\
& =\frac{x^{2}}{x^{2}+y^{2}}\left(-\frac{y}{x^{2}} \hat{\imath}+\frac{1}{x} \hat{\jmath}\right) \\
& =\vec{F}(x, y) .
\end{aligned}
$$

(ii) Since \vec{F} is a gradient vector field on the right half plane, and C is contained in the right half plane, the fundamental theorem of calculus for line integrals applies:

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\theta\left(x_{2}, y_{2}\right)-\theta\left(x_{1}, y_{1}\right)=\theta_{2}-\theta_{1} .
$$

Alternatively, one may compute directly: if we write $\vec{r}(t)=x(t) \hat{\imath}+y(t) \hat{\jmath}$, then

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \vec{r} & =\int_{C} \frac{-y \hat{\imath}+x \hat{\jmath}}{x^{2}+y^{2}} \cdot(\hat{\imath} \mathrm{~d} x+\hat{\jmath} \mathrm{d} y) \\
& =\int_{C} \frac{-y}{x^{2}+y^{2}} \mathrm{~d} x+\frac{x}{x^{2}+y^{2}} \mathrm{~d} y \\
& =\int_{C} \frac{-r \sin \theta}{r^{2}} \mathrm{~d}(r \cos \theta)+\frac{r \cos \theta}{r^{2}} \mathrm{~d}(r \sin \theta) \\
& =\int_{C} \frac{-r \sin \theta}{r^{2}}(\cos \theta \mathrm{~d} r-r \sin \theta \mathrm{~d} \theta)+\frac{r \cos \theta}{r^{2}}(\sin \theta \mathrm{~d} r+r \cos \theta \mathrm{~d} \theta) \\
& =\int_{C} \mathrm{~d} \theta
\end{aligned}
$$

and the final integral evaluates to $\theta_{2}-\theta_{1}$.
(iii) Parameterise C_{1} by $r(\theta)=\cos \theta \hat{\imath}+\sin \theta \hat{\jmath}$, where $0 \leq \theta \leq \pi$. Then

$$
\begin{aligned}
\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r} & =\int_{C_{1}} \frac{-y \hat{\imath}+x \hat{\jmath}}{x^{2}+y^{2}} \cdot(-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}) \mathrm{d} t \\
& =\int_{C_{1}} \frac{y \sin \theta+x \cos \theta}{x^{2}+y^{2}} \mathrm{~d} t \\
& =\int_{0}^{\pi}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \mathrm{d} t
\end{aligned}
$$

and so $\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r}=\pi$.
If we parameterise C_{2} by $r(\theta)=\cos \theta \hat{\imath}-\sin \theta \hat{\jmath}, 0 \leq \theta \leq \pi$; we calculate

$$
\begin{aligned}
\int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r} & =\int_{C_{1}} \frac{-y \hat{\imath}+x \hat{\jmath}}{x^{2}+y^{2}} \cdot(-\sin \theta \hat{\imath}-\cos \theta \hat{\jmath}) \mathrm{d} t \\
& =\int_{C_{1}} \frac{y \sin \theta-x \cos \theta}{x^{2}+y^{2}} \mathrm{~d} t \\
& =\int_{0}^{\pi}\left(-\sin ^{2} \theta-\cos ^{2} \theta\right) \mathrm{d} t,
\end{aligned}
$$

thus $\int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r}=-\pi$.

