
MODEL ANSWERS TO HWK #8

1. We will compute the polar moment of inertia of the region illustrated
below, after changing coordinates to u = xy, v = y/x.

x

y

The tricky part is to set up the bounds for this region in the new
coordinate system. Let’s first describe the region in the uv-plane, and
then choose the appropriate bounds of integration.
The condition 0 ≤ xy ≤ 1 translates to 0 ≤ u ≤ 1 in the new coordi-
nates. On the other hand, 1 ≤ x ≤ 2 translates to 1 ≤

√
u/v ≤ 2, so

v ≤ u ≤ 4v. So the region is as illustrated:

u

v

It’s clear that the bounds will be easier if the integral with respect to
v is the inside one. We’ll get

∫ 1

u=0

∫ u

v=u/4

something(u, v) dv du

To figure out exactly what something(u, v) is we need to compute the
Jacobian and rewrite the function x2 + y2 in the coordinates u and v.
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Since x =
√
u/v and y =

√
uv, a bit of algebra shows that the Jacobian

is given by

∂(x, y)

∂(u, v)
=

∣∣∣∣xu xv
yu yv
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2
√
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√
uv

u
2
√
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∣∣∣∣∣ =
1

2v
.

Observe that the function f(x, y) = x2+y2 is given in these coordinates
by f(u, v) = uv + u/v. Putting all of this together, the polar moment
of inertia is given by∫ 1

u=0

∫ u

v=u/4

(uv + u/v) δ(u, v)
1

2v
dv du

One way to check this is to see that we get the same answer in both
coordinate systems when we apply it to a uniform density function
δ = 1. It’s easy to verify that∫ 1

x=0

∫ 1/x

y=0

(x2 + y2) dy dx =

∫ 1

u=0

∫ u

v=u/4

(uv + u/v)

(
1

2v

)
dv du =

13

8
,

so we’ve probably done everything right.
2. We’re given an ellipse in the form (2x+5y−3)2 +(3x−7y+8)2 = 1.
Finding the area won’t be so hard after we make the coordinate change
u = 2x+ 5y − 3 and v = 3x− 7y + 8.

The Jacobian is given by
∣∣∣det ( 2 5

3 −7 )
−1
∣∣∣ = 1/29. So

A =

∫∫
(2x+5y−3)2+(3x−7y+8)2≤1

1 dx dy

=

∫∫
u2+v2≤1

1

(
1

29

)
du dv =

π

29
,

since
∫∫

u2+v2≤1 1 du dv = π is just the area of a circle of radius 1.

3. At each point (x, y), the slope of the vector ~F (x, y) is

4x

1 + x2
.

A field line must be a curve whose tangent vector has this slope. So
field lines are given by graphs of functions whose derivative is

4x

1 + x2
.

Integrating shows that for each constant c, the curve

y = 2 ln(1 + x2) + c,

is a field line, and there are no other field lines.
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4. We parameterise C as ~r(x) = xı̂ + f(x)̂, where x1 ≤ x ≤ x2. The

line integral of ~F along C is then

∫
C

~F · d~r =

∫
C

(
x2y +

1

3
y3
)
ı̂ ·
(
ı̂+ f ′(x)̂

)
dx

=

∫
C

(
x2y +

1

3
y3
)

dx

=

∫ x2

x1

(
x2f(x) +

1

3
f(x)3

)
dx

=

∫ x2

x1

∫ f(x)

0

(
x2 + y2

)
dy dx,

this is precisely the polar moment of inertia
∫∫

R
r2 dA.

5. (i) We compute:

∇θ(x, y) = ∇
(

arctan
(y
x

))
=

1

1 +
(
y
x

)2∇(yx)
=

x2

x2 + y2

(
− y

x2
ı̂+

1

x
̂

)
= ~F (x, y).

(ii) Since ~F is a gradient vector field on the right half plane, and C is
contained in the right half plane, the fundamental theorem of calculus
for line integrals applies:

∫
C

~F · d~r = θ(x2, y2)− θ(x1, y1) = θ2 − θ1.
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Alternatively, one may compute directly: if we write ~r(t) = x(t)̂ı+y(t)̂,
then∫
C

~F · ~r =

∫
C

−yı̂+ x̂

x2 + y2
· (̂ı dx+ ̂ dy)

=

∫
C

−y
x2 + y2

dx+
x

x2 + y2
dy

=

∫
C

−r sin θ

r2
d(r cos θ) +

r cos θ

r2
d(r sin θ)

=

∫
C

−r sin θ

r2
(cos θ dr − r sin θ dθ) +

r cos θ

r2
(sin θ dr + r cos θ dθ)

=

∫
C

dθ,

and the final integral evaluates to θ2 − θ1.
(iii) Parameterise C1 by r(θ) = cos θı̂+ sin θ̂, where 0 ≤ θ ≤ π. Then∫

C1

~F · d~r =

∫
C1

−yı̂+ x̂

x2 + y2
· (− sin θı̂+ cos θ̂) dt

=

∫
C1

y sin θ + x cos θ

x2 + y2
dt

=

∫ π

0

(sin2 θ + cos2 θ) dt

and so
∫
C1

~F · d~r = π.

If we parameterise C2 by r(θ) = cos θı̂− sin θ̂, 0 ≤ θ ≤ π; we calculate∫
C2

~F · d~r =

∫
C1

−yı̂+ x̂

x2 + y2
· (− sin θı̂− cos θ̂) dt

=

∫
C1

y sin θ − x cos θ

x2 + y2
dt

=

∫ π

0

(− sin2 θ − cos2 θ) dt,

thus
∫
C2

~F · d~r = −π.


