
MODEL ANSWERS TO HWK #7

1. We’re doing an integral over the disk, and so it seems likely that
working in polar coordinates is going to be the way to go. You could
of course work in rectangular coordinates as well, but the integrals
involved would be trickier. The function whose average we want to
compute is the distance from the point to the centre of the circle,
which is just f(r, θ) = r. Using the fact that the area element in
polar is r dr dθ, and dividing through by the area of the circle πa2, we
compute

A =
1

πa2

∫ a

r=0

∫ 2π

θ=0

f(r, θ) r dθ dr

=
1

πa2

∫ a

r=0

∫ 2π

θ=0

r2 dθ dr

=
1

πa2

∫ 2π

θ=0

∫ a

r=0

r2 dr dθ.

The inner integral is∫ a

r=0

r2 dr =

[
r3

3

]a
0

=
a3

3
.

and so the average distance is

1

πa2

∫ 2π

θ=0

a3

3
dθ =

2a

3
.

2. The distance d from (x0, y0) to the line x = x̄ is |x̄− x0|, and so
d(x, y)2 = (x− x̄)2. We now use this fact to prove the identity:

Ī =

∫∫
R

d2δ dA

=

∫∫
R

(x− x̄)2δ dA

=

∫∫
R

x2δ dA− 2x̄

∫∫
R

xδ dA+

∫∫
R

x̄2δ dA

= I − 2x̄(Mx̄) + x̄2(M)

= I −Mx̄2,

1
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whence I = Ī + Mx̄2, as claimed. You might have encountered this
fact before in 8.01 or AP Physics C, where it’s called the “parallel axis
theorem”.

3. The triangle has vertices at (1, 0), (cos θ1, sin θ1), and (cos θ2, sin θ2).
Both angles vary from 0 to 2π.

We can compute the area as half of the absolute value of the deter-
minant of a matrix whose rows are the edges of the triangle from (0, 0)
to (cos θ1, sin θ1) and (0, 0) to (cos θ2, sin θ2) (this is the formula for the
area of a parallelogram from earlier in the course). Those vectors are

~v1 = 〈cos θ1 − 1, sin θ1〉 and ~v2 = 〈cos θ2 − 1, sin θ2〉 ,

The area is given by

A =
1

2

∣∣∣∣det

(
cos θ1 − 1 sin θ1
cos θ2 − 1 sin θ2

)∣∣∣∣ =
1

2
|(cos θ1 − 1) sin θ2 − (cos θ2 − 1) sin θ1| .

Doing an integral with an absolute value in it can be difficult, and
usually the right approach is to figure out on what region the quantity
inside the absolute value is positive, on what region it is negative, and
deal with these pieces separately. For us, if θ1 ≤ θ2, then v1 and v2 are
positively oriented, and the determinant is automatically positive. So
we can break our region 0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ 2π into two regions,
depending on whether θ1 ≤ θ2. On θ1 ≤ θ2, the area is equal to the
above determinant

A(θ1, θ2) =
1

2
((cos θ1 − 1) sin θ2 − (cos θ2 − 1) sin θ1) ,

while if θ1 ≥ θ2, the area is equal to the opposite of the determinant.
However, we can make a further simplifying observation, which is

that the average is clearly equal on these two regions, so there’s no
point in working out the integral on both of them: it’s enough to find
the average area when θ1 ≤ θ2. This integral takes place over the region
0 ≤ θ1 ≤ θ2 ≤ 2π, which is a triangle whose area is 2π2.

θ2

θ1

Figure 1. Region of integration



MODEL ANSWERS TO HWK #7 3

Now we just plug in our formula for the area and integrate:

A =
1

2π2

∫ 2π

θ2=0

∫ θ2

θ1=0

1

2
((cos θ1 − 1) sin θ2 − (cos θ2 − 1) sin θ1) dθ1 dθ2

=
1

4π2

∫ 2π

θ2=0

∫ θ2

θ1=0

(cos θ1 − 1) sin θ2 − (cos θ2 − 1) sin θ1 dθ1 dθ2.

So the inner integral is∫ θ2

θ1=0

(cos θ1 − 1) sin θ2 − (cos θ2 − 1) sin θ1 dθ1

=

[
(sin θ1 − θ1) sin θ2 + (cos θ2 − 1) cos θ1

]θ2
θ1=0

= sin2 θ2 − θ2 sin θ2 + (cos θ2 − 1) cos θ2 − (cos θ2 − 1)

= 2− 2 cos θ2 − θ2 sin θ2.

Therefore the outer integral is∫ 2π

θ2=0

2− 2 cos θ2 − θ2 sin θ2 dθ2 =

[
2θ2 − 2 sin θ2 + θ2 cos θ2 − sin θ2

]2π
θ2=0

= 6π.

So the average is
3

2π
≈ 0.477.

Since the area ranges between 0 and 3
√

3/4 ≈ 1.299 (obtained for
an equilateral triangle), this answer seems reasonable.

There are other ways to compute the average. The important thing
is to divide up the region of integration for θ1 and θ2 into pieces for
which you have a simple formula for the area in terms of the two angles.


