## MODEL ANSWERS TO HWK \#6

1. Let $f(x, y)=x^{2} y$ and $g(x, y)=x y^{2}$. We are supposed to find the maximum and minimum of $f(x, y)$ subject to $g(x, y)=5, x>0$ and $y>0$.
There are two ways to proceed. Here is the first. From the constraint $g(x, y)=5$, we have $x=\frac{5}{y^{2}}$. Thus,

$$
f(x, y)=f\left(\frac{5}{y^{2}}, y\right)=\frac{25}{y^{3}}
$$

The value of $f(x, y)$ approaches 0 as $y \rightarrow \infty$ along the constraint surface $x y^{2}=5$ and $f(x, y)$ grows to infinity as $y \rightarrow 0$ along the same surface. Thus there is no maximum and minimum.
Alternatively if we use the method of Lagrange multipliers, upon setting $\nabla f=\lambda \nabla g$, we would have to solve the following system:

$$
\begin{aligned}
2 x y & =\lambda y^{2} \\
x^{2} & =2 \lambda x y .
\end{aligned}
$$

Multiplying the first equation by $2 x$, the second by $y$ and subtracting we are led to

$$
3 x^{2} y=0
$$

But then there is no solution to the above system of equations with both $x$ and $y$ non-zero.
2. (i) The expression

$$
\left(\frac{\partial w}{\partial x}\right)_{x}
$$

doesn't make sense, since we cannot both fix $x$ and vary $x$.
(ii) Similarly, the expression

$$
\left(\frac{\partial w}{\partial x}\right)_{y}
$$

doesn't make sense, since if we fix $y$ then $x$ is fixed by the equation $g(x, y)=c$. Put differently, if we fix $y$ and vary $x$, we are supposed to write $z$ as a function of $x$; but $z$ does not appear in the equation $g(x, y)=c$, so this does not make sense.
(iii) So the only expression in the list which makes sense is

$$
\left(\frac{\partial w}{\partial x}\right)_{z}
$$

which we can evaluate using the chain rule as follows:

$$
\left(\frac{\partial w}{\partial x}\right)_{z}=f_{x}+f_{y}\left(\frac{\partial y}{\partial x}\right)_{z}+f_{z}\left(\frac{\partial z}{\partial x}\right)_{z} .
$$

The last term is zero, and to evaluate the second, note that

$$
0=\left(\frac{\partial g}{\partial x}\right)_{z}=g_{x}+g_{y}\left(\frac{\partial y}{\partial x}\right)_{z} .
$$

So

$$
\left(\frac{\partial w}{\partial x}\right)_{z}=f_{x}-f_{y} \frac{g_{x}}{g_{y}} .
$$

3. (i) Differentiating $t=\sin (x+y)$ with respect to $t$, fixing $x$, we get
$1=\left(\frac{\partial t}{\partial t}\right)_{x}=\cos (x+y)\left(\frac{\partial x}{\partial t}\right)_{x}+\cos (x+y)\left(\frac{\partial y}{\partial t}\right)_{x}=0+\cos (x+y)\left(\frac{\partial y}{\partial t}\right)_{x}$.
That is,

$$
\left(\frac{\partial y}{\partial t}\right)_{x}=\sec (x+y)
$$

So

$$
\left(\frac{\partial w}{\partial t}\right)_{x}=x^{3} y+x^{3} t\left(\frac{\partial y}{\partial t}\right)_{x}=x^{3} y+x^{3} t \sec (x+y)
$$

(ii) We have

$$
5 x^{4} \mathrm{~d} x+z \mathrm{~d} y+y \mathrm{~d} z=0
$$

and

$$
\left(y^{2}+2 z x\right) \mathrm{d} x+\left(2 x y+z^{2}\right) \mathrm{d} y+\left(x^{2}+2 y z\right) \mathrm{d} z=0 .
$$

We may evaluate the coefficients of $\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z$ at $(x, y, z)=(1,1,2)$ to get the system

$$
\begin{array}{r}
5 \mathrm{~d} x+2 \mathrm{~d} y+\mathrm{d} z=0 \\
5 \mathrm{~d} x+6 \mathrm{~d} y+5 \mathrm{~d} z=0
\end{array}
$$

Five times the first equation minus the second gives

$$
20 \mathrm{~d} x+4 \mathrm{~d} y=0
$$

and so

$$
\frac{d y}{d x}=-\frac{1}{5}
$$

at the point $(1,1,2)$.
4. (i) We have

$$
\int_{1}^{a} e^{-x y} \mathrm{~d} y=\left[\frac{e^{-x y}}{-x}\right]_{1}^{a}=\frac{e^{-x}-e^{-a x}}{x}
$$

(ii) So our integral is

$$
I=\int_{0}^{\infty} \frac{e^{-x}-e^{-a x}}{x} \mathrm{~d} x=\int_{0}^{\infty} \int_{1}^{a} e^{-x y} \mathrm{~d} y \mathrm{~d} x
$$

Let's pretend that we're allowed to switch the order of integration of this improper integral (we are). Then

$$
I=\int_{1}^{a} \int_{0}^{\infty} e^{-x y} \mathrm{~d} x \mathrm{~d} y
$$

The inner integral is

$$
\int_{0}^{\infty} e^{-x y} \mathrm{~d} x=\left[\frac{e^{-x y}}{-y}\right]_{0}^{\infty}=\frac{1}{y} .
$$

So the outer integral is

$$
\int_{1}^{a} \frac{1}{y} \mathrm{~d} y=[\ln y]_{1}^{a}=\ln a
$$

