MODEL ANSWERS TO HWK \#3

1. (i) One possible parametrisation of the line passing through the points $E=(2,0,0)$ and $P=\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\vec{r}(t)=\langle 2,0,0\rangle+t\left\langle x_{0}-2, y_{0}, z_{0}\right\rangle=\left\langle 2+t\left(x_{0}-2\right), t y_{0}, t z_{0}\right\rangle .
$$

A point Q will lie in the $y z$-plane if and only if its x-coordinate is equal to 0 . Therefore, in order for Q to also lie on the line parametrised by $\vec{r}(t)$, we want the time t_{0} such that

$$
2+t_{0}\left(x_{0}-2\right)=0 \Rightarrow t_{0}=\frac{2}{2-x_{0}}
$$

in which case the point Q has coordinates

$$
\left(\frac{2 y_{0}}{2-x_{0}}, \frac{2 z_{0}}{2-x_{0}}\right) .
$$

Note that we can divide through by $2-x_{0}$ as we are assuming $x_{0}<2$. This assumption is legitimate because we only need to project something in front of our eyes and since the screen has x-coordinate zero, something is in front of us if and only if $x_{0}<2$.
(ii) The image on the screen of a line segment is either a point or a line segment. Suppose the two endpoints of the line segment we are projecting are A and B. Let A_{1} and B_{1} be the projections of A and B in the $y z$-plane.
There are two cases. If E, A and B are collinear then $A_{1}=B_{1}$ and the image of the line segment $A B$ is a single point.
If E, A and B are not collinear then $A_{1} \neq B_{1}$ and the image of the line segment $A B$ is the line segment $A_{1} B_{1}$.
(iii) From part (i) we have that the projections of $P_{0}=(-1,-3,1)$ and $P_{1}=(-2,4,6)$ are $Q_{0}=\left(-2, \frac{2}{3}\right)$ and $Q_{1}=(2,3)$ respectively. Since $Q_{0} \neq Q_{1}$ from part (ii) we have that the image of the line segment $P_{0} P_{1}$ is the line segment $Q_{0} Q_{1}$.
(iv) The parametrisation of the line passing through the points P_{0} and P_{1} is given by

$$
\vec{r}(t)=\langle-1,-3,1\rangle+t\langle-1,7,5\rangle=\langle-1-t,-3+7 t, 1+5 t\rangle .
$$

Using part (i) we know that the projection of this parametrisation is

$$
\vec{r}_{P}(t)=\left\langle\frac{2(-3+7 t)}{2-(-1-t)}, \frac{2(1+5 t)}{2-(-1-t)}\right\rangle=\left\langle\frac{14 t-6}{3+t}, \frac{10 t+2}{3+t}\right\rangle .
$$

Observe that

$$
\vec{r}_{P}(0)=\left\langle-2, \frac{2}{3}\right\rangle=Q_{0} \quad \text { and } \quad \overrightarrow{r_{p}}(1)=\langle 2,3\rangle=Q_{1} .
$$

The line connecting those two points in the $y z$-plane is $12 z-7 y=22$. Note that

$$
12 \frac{10 t+2}{3+t}-7 \frac{14 t-6}{3+t}=\frac{22 t+66}{3+t}=22,
$$

as expected.
Therefore the projection $\vec{r}_{P}(t)$ is a line in the $y z$-plane as anticipated in part (ii).
As $t \rightarrow \infty$ we have

$$
\lim _{t \rightarrow \infty} \vec{r}_{P}(t)=\lim _{t \rightarrow \infty}\left\langle\frac{14-\frac{6}{t}}{\frac{3}{t}+1}, \frac{10+\frac{2}{t}}{\frac{3}{t}+1}\right\rangle=\langle 14,10\rangle .
$$

Thus the trajectory on the screen is the line segment joining the points $\left(-2, \frac{2}{3}\right)$ and $(14,10)$. The vanishing point is $(0,14,10)$.
(v) The top of the fence is a line l_{1} which passes through the point $(1,0,1)$ and is parallel to the y-axis. The intersection of the $y z$-plane with the plane, which contains through E and l_{1}, is a line l_{2} which is also parallel to the y-axis. Anything below the line l_{2} is hidden by the fence.
Part (i) implies that the projection of the point $(1,0,1)$ is $(0,0,2)$. Since $(0,0,2)$ lies on l_{2} and l_{2} is parallel to the y-axis, l_{2} is the line $z=2$ in the $y z$-plane. Hence all points with $z \leq 2$ in the $y z$-plane will not be visible due to the fence.
Part (iv) implies that the trajectory on the screen is a line segment belonging to the line $12 z-7 y=22$. This segment intersects the line l_{2} at $\left(\frac{2}{7}, 2\right)$. Thus the trajectory of the bird that will not be seen is the line segment that joins the points $\left(-2, \frac{2}{3}\right)$ and $\left(\frac{2}{7}, 2\right)$.
2. a) The level curves are squares centered at the origin with sides parallel to the x-axis and the y-axis.
b) Let $\vec{v}=\langle x, y\rangle$. Recall that the matrix

$$
A_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

acts on the vector \vec{v} by rotating it θ radians counterclockwise. If we take $\theta=\frac{\pi}{4}$ then $A_{\frac{\pi}{4}} \vec{v}$ will give us a vector rotated $\pi / 4$ radians counterclockwise. Thus the level curves of $f\left(A_{\frac{\pi}{4}} \vec{v}\right)$ will be the same as the level curves of $f(\vec{v})$ but rotated by an angle of $\pi / 4$ radians. Now

$$
A_{\pi / 4} \vec{v}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\binom{x}{y}=\binom{\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}}{\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}} .
$$

Therefore, one possible answer to this problem is
$f\left(A_{\frac{\pi}{4}} \vec{v}\right)=f\left(\frac{1}{\sqrt{2}}(x-y), \frac{1}{\sqrt{2}}(x+y)\right)=\max \left(\frac{1}{\sqrt{2}}|x-y|, \frac{1}{\sqrt{2}}|x+y|\right)$.
3. a) The approximation formula is

$$
\Delta w=w(x+\Delta x, y+\Delta y)-w(x, y) \approx \frac{\partial w}{\partial x} \Delta x+\frac{\partial w}{\partial y} \Delta y .
$$

When $w=x^{y}=x^{y \ln x}$, we get

$$
\Delta w \approx \frac{y}{x} e^{y \ln x} \Delta x+\ln x e^{y \ln x} \Delta y=x^{y}\left(\frac{y}{x} \Delta x+\ln x \Delta y\right) .
$$

When $x=y=2, \Delta x=-0.02$ and $\Delta y=0.01$, we have

$$
\Delta w=w(2-0.02,2+0.01)-w(2,2)=1.98^{2.01}-2^{2}
$$

whilst the approximation formula gives

$$
\Delta w \approx 2^{2}(1(-0.02)+\ln 2(0.01)) \approx 4(-0.02+0.7)=-0.052
$$

Using this approximation we get $1.98^{2.01} \approx 4-0.052=3.948$, which is pretty accurate considering that $1.98^{2.01}$ is 3.9473 , to four decimal places.
b) Again using the approximation formula we have

$$
\begin{aligned}
& \Delta w=w(x+\Delta x, y)-w(x, y) \approx \frac{\partial w}{\partial x} \Delta x=\frac{y}{x} x^{y} \Delta x \\
& \Delta w=w(x, y+\Delta y)-w(x, y) \approx \frac{\partial w}{\partial y} \Delta y=\ln x x^{y} \Delta y
\end{aligned}
$$

When $x=2$ and $y=2$ we obtain

$$
\begin{aligned}
& w(2+\Delta x, 2)-w(2,2) \approx 4 \Delta x \\
& w(2,2+\Delta y)-w(2,2) \approx 2.8 \Delta y .
\end{aligned}
$$

Therefore, w is more sensitive to small changes in x compared to the exponent y.

