MODEL ANSWERS TO HWK \#11

Note there are some mistake in the back of the book. (12.8.55.b), that should be cosecant not secant and the range of ϕ is given by $\pi / 6 \leq \phi \leq 5 \pi / 6$.
There is also a mistake in the solutions to $6 \mathrm{~B}-8$. The range for θ should be $0 \leq \theta \leq \pi$.

1. Let B be the ball given by

$$
x^{2}+y^{2}+(z-a)^{2} \leq a^{2} .
$$

The average distance is:

$$
\bar{\rho}=\frac{1}{\operatorname{vol}(B)} \iiint_{B} \rho \mathrm{~d} V=\frac{3}{4 \pi a^{3}} \iiint_{B} \sqrt{x^{2}+y^{2}+z^{2}} \mathrm{~d} V .
$$

First we work in cylindrical coordinates, so that $r^{2}=x^{2}+y^{2}$.

$$
\iiint_{B} \rho \mathrm{~d} V=\int_{0}^{2 a} \int_{0}^{2 \pi} \int_{0}^{\sqrt{a^{2}-(z-a)^{2}}} r \sqrt{r^{2}+z^{2}} \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} z
$$

The inner integal is

$$
\begin{aligned}
\int_{0}^{\sqrt{a^{2}-(z-a)^{2}}} r \sqrt{r^{2}+z^{2}} \mathrm{~d} r & =\left[\frac{1}{3}\left(r^{2}+z^{2}\right)^{3 / 2}\right]_{0}^{\sqrt{2 a z-z^{2}}} \\
& =\frac{1}{3}\left((2 a z)^{3 / 2}-z^{3}\right)
\end{aligned}
$$

The middle integral is

$$
\frac{1}{3} \int_{0}^{2 \pi}(2 a z)^{3 / 2}-z^{3} \mathrm{~d} \theta=\frac{2 \pi}{3}\left((2 a z)^{3 / 2}-z^{3}\right)
$$

The outer integral is

$$
\begin{aligned}
\frac{2 \pi}{3} \int_{0}^{2 a}(2 a z)^{3 / 2}-z^{3} \mathrm{~d} z & =\frac{2 \pi}{3}\left[\frac{2}{5}(2 a)^{3 / 2} z^{5 / 2}-\frac{1}{4} z^{4}\right]_{0}^{2 a} \\
& =\frac{2 \pi}{3}\left(\frac{2}{5}(2 a)^{5}-\frac{1}{4}(2 a)^{4}\right) \\
& =\frac{8 \pi a^{4}}{5}
\end{aligned}
$$

So

$$
\bar{\rho}=\frac{1}{\operatorname{vol}(B)} \iiint_{B} \rho \mathrm{~d} V=\frac{6 a}{5} .
$$

Now let's use spherical coordinates. We calculate the equation for ρ in terms of ϕ. Cutting by the plane $y=0$, we get a circle and we are down to a calculation in the plane. There are two ways to proceed.
We could use a classic piece of geometry; the angle subtended by a diameter on the circumference of a circle is always a right angle.

Figure 1. Classic geometry

The hypotenuse of this triangle is $2 a$ and ρ is the adjacent side to the angle ϕ, so

$$
\rho=2 a \cos \phi .
$$

Or we can proceed as in lecture 16. The equation for the circle in Cartesian coordinates is

$$
x^{2}+(y-a)^{2}=a^{2} .
$$

Expanding and simplifying, we get

$$
x^{2}+y^{2}=2 a y .
$$

But $\rho^{2}=x^{2}+y^{2}$ and $y=\rho \cos \phi$, so that

$$
\rho=2 a \cos \phi,
$$

as before.
Thus

$$
\iiint_{B} \rho \mathrm{~d} V=\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{2 a \cos \phi} \rho^{3} \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi .
$$

The inner integal is

$$
\begin{aligned}
\int_{0}^{2 a \cos \phi} \rho^{3} \sin \phi \mathrm{~d} \rho & =\left[\frac{1}{4} \rho^{4} \sin \phi\right]_{0}^{2 a \cos \phi} \\
& =4 a^{4} \sin \phi \cos ^{4} \phi
\end{aligned}
$$

The middle integral is

$$
4 a^{4} \int_{0}^{2 \pi} \sin \phi \cos ^{4} \phi \mathrm{~d} \theta \mathrm{~d} \phi=8 \pi a^{4} \sin \phi \cos ^{4} \phi
$$

The outer integral is

$$
\begin{aligned}
8 \pi a^{4} \int_{0}^{\pi / 2} \sin \phi \cos ^{4} \phi \mathrm{~d} \phi & =8 \pi a^{4}\left[-\frac{1}{5} \cos ^{5} \phi\right]_{0}^{\pi / 2} \\
& =\frac{8 \pi a^{4}}{5}
\end{aligned}
$$

so we get the same answer as in cylindrical coordinates.
2. Let us place the sphere as in part 1. Using symmetry we see that only the z component of the gravitational force is non-zero. Let B be the hemisphere. Let us compute using spherical coordinates. We have

$$
F_{z}=G \iiint_{B} \frac{\cos \phi}{\rho^{2}} \mathrm{~d} V=\iiint_{B} \cos \phi \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi
$$

The sphere is symmetric in θ. Cutting by the plane $y=0$ we get a circle.

Figure 2. Cross section of hemisphere
Equivalently the solid of revolution obtained by rotating a quarter circle is a hemisphere. We have to divide the integral into two pieces. For $0 \leq \phi \leq \pi / 4, \rho$ is bounded above by the line $z=a$.
In this case ρ is the hypotenuse of a right-angled triangle with side a and angle $\phi, \rho=a \csc (\phi)$.

Figure 3. $\phi \leq \pi / 4$
For $\pi / 4 \leq \phi \leq \pi / 2, \rho$ is bounded above by the circle and we already figured out the limits in this case. So we have to calculate:
$\int_{0}^{\pi / 4} \int_{0}^{2 \pi} \int_{0}^{a \sec \phi} \cos \phi \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi+\int_{\pi / 4}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{2 a \cos \phi} \cos \phi \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi$.
We compute the first integral. The inner integral is

$$
\int_{0}^{a \sec \phi} \cos \phi \sin \phi \mathrm{~d} \rho=[\cos \phi \sin \phi \rho]_{0}^{a \sec \phi}=a \sin \phi
$$

The middle integral is

$$
\int_{0}^{2 \pi} a \sin \phi \mathrm{~d} \theta=2 \pi a \sin \phi
$$

The outer integral is

$$
2 \pi a \int_{0}^{\pi / 4} \sin \phi \mathrm{~d} \phi=2 \pi a[-\cos \phi]_{0}^{\pi / 4}=2 \pi a\left(1-\frac{1}{\sqrt{2}}\right) .
$$

We compute the second integral. The inner integal is

$$
\int_{0}^{2 a \cos \phi} \cos \phi \sin \phi \mathrm{~d} \rho=[\cos \phi \sin \phi \rho]_{0}^{2 a \cos \phi}=2 a \sin \phi \cos ^{2} \phi .
$$

The middle integral is

$$
\int_{0}^{2 \pi} 2 a \sin \phi \cos ^{2} \phi \mathrm{~d} \theta=4 \pi a \sin \phi \cos ^{2} \phi
$$

The outer integral is

$$
4 \pi a \int_{\pi / 4}^{\pi / 2} \sin \phi \mathrm{~d} \phi=4 \pi a\left[-\frac{1}{3} \cos ^{3} \phi\right]_{\pi / 4}^{\pi / 2}=\frac{\sqrt{2}}{3} \pi a .
$$

Therefore

$$
F_{z}=2 \pi G a\left(1-\frac{1}{\sqrt{2}}+\frac{1}{3 \sqrt{2}}\right)=2 \pi G a\left(1-\frac{\sqrt{2}}{3}\right) .
$$

We could also compute this using cylindrical coordinates.

$$
F_{z}=G \int_{0}^{a} \int_{0}^{2 \pi} \int_{0}^{\sqrt{a^{2}-(z-a)^{2}}} \frac{r z}{\left(r^{2}+z^{2}\right)^{3 / 2}} \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} z
$$

The inner integal is

$$
\begin{aligned}
\int_{0}^{\sqrt{a^{2}-(z-a)^{2}}} r z\left(r^{2}+z^{2}\right)^{-3 / 2} \mathrm{~d} r & =\left[-z\left(r^{2}+z^{2}\right)^{-1 / 2}\right]_{0}^{\sqrt{2 a z-z^{2}}} \\
& =1-\sqrt{\frac{1}{2 a}} z^{1 / 2}
\end{aligned}
$$

The middle integral is

$$
\int_{0}^{2 \pi} 1-\sqrt{\frac{1}{2 a}} z^{1 / 2} \mathrm{~d} \theta=2 \pi\left(1-\sqrt{\frac{1}{2 a}} z^{1 / 2}\right)
$$

The outer integral is

$$
\begin{aligned}
2 \pi \int_{0}^{a} 1-\sqrt{\frac{1}{2 a}} z^{1 / 2} \mathrm{~d} z & =2 \pi\left[z-\sqrt{\frac{1}{2 a}} \frac{2}{3} z^{3 / 2}\right]_{0}^{a} \\
& =2 \pi a\left(1-\frac{\sqrt{2}}{3}\right)
\end{aligned}
$$

Therefore

$$
F_{z}=2 \pi G a\left(1-\frac{\sqrt{2}}{3}\right)
$$

3. Parameterise S using θ and z so that $x=\cos \theta, y=\sin \theta, z=z$ and so

$$
\mathrm{d} \vec{S}=\langle x, y, 0\rangle \mathrm{d} z \mathrm{~d} \theta=\langle\cos \theta, \sin \theta, 0\rangle \mathrm{d} z \mathrm{~d} \theta
$$

The integral is therefore

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S} & =\int_{-\infty}^{\infty} \int_{0}^{2 \pi} \frac{1}{1+z^{2}}\langle\cos \theta, \sin \theta, z\rangle \cdot\langle\cos \theta, \sin \theta, 0\rangle \mathrm{d} \theta \mathrm{~d} z \\
& =\int_{-\infty}^{\infty} \int_{0}^{2 \pi} \frac{1}{1+z^{2}} \mathrm{~d} \theta \mathrm{~d} z \\
& =2 \pi \int_{-\infty}^{\infty} \frac{1}{1+z^{2}} \mathrm{~d} z \\
& =2 \pi[\arctan z]_{-\infty}^{\infty} \\
& =2 \pi^{2}
\end{aligned}
$$

4 (i) $P_{0}=(0,0,0), P_{1}=(1,0,1), P_{2}=(1,0,-1)$ and $P_{3}=(1,1,0)$. Note that P_{0} and P_{3} are fixed by $z \longrightarrow-z$ and P_{1} and P_{2} are exchanged by $z \longrightarrow-z$. So the faces $S_{2}=P_{0} P_{1} P_{3}$ and $S_{1}=P_{0} P_{2} P_{3}$ are exchanged by $z \longrightarrow-z$.
(ii) Note that $\overrightarrow{P_{1} P_{2}}=-2 \hat{k}, \overrightarrow{P_{1} P_{3}}=\hat{\jmath}-\hat{k}$ are two vectors in the face $S_{0}=P_{1} P_{2} P_{3}$ and so the cross-product
$\vec{n}_{0}=\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 0 & -2 \\ 0 & 1 & -1\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}0 & -2 \\ 1 & -1\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}0 & -2 \\ 0 & -1\end{array}\right|+\hat{k}\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=2 \hat{\imath}$,
is normal to the face $S_{0} . P_{0}=(0,0,0)$ is a point of the tetrahedron not on S_{0}. As it has smaller x-coordinate, \vec{n}_{0} points outwards.
Note that we can check the answer quickly. As the face is fixed by the map $z \longrightarrow-z$, the outward normal is also fixed by the map $z \longrightarrow-z$, which is true of $2 \hat{\imath}$. Visibly this vector is orthogonal to $-2 \hat{k}$ and $\hat{\jmath}-\hat{k}$. $\overrightarrow{P_{0} P_{1}}=\hat{\imath}+\hat{k}, \overrightarrow{P_{0} P_{2}}=\hat{\imath}-\hat{k}$ and so

$$
\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & 0 \\
1 & 0
\end{array}\right|=2 \hat{\jmath}
$$

is normal to the face $S_{3}=P_{0} P_{1} P_{2} . P_{3}$ belongs to the tetrahedron but not to this face and P_{3} has larger y-coordinate, so $\vec{n}_{3}=-2 \hat{\jmath}$ is an outwards normal.
We do a quick check, as before. Since this face is fixed by $z \longrightarrow-z$, the outwards normal has no component in the direction of \hat{k} and visibly \vec{n}_{3} is orthogonal to $\hat{\imath}+\hat{k}$ and $\hat{\imath}-\hat{k}$.
$\overrightarrow{P_{0} P_{2}}=\hat{\imath}-\hat{k}, \overrightarrow{P_{0} P_{3}}=\hat{\imath}+\hat{\jmath}$ and so

$$
\vec{u}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 0 & -1 \\
1 & 1 & 0
\end{array}\right|=\hat{\imath}\left|\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right|=\hat{\imath}-\hat{\jmath}+\hat{k}
$$

is normal to the face $S_{1}=P_{0} P_{2} P_{3}$. As $\vec{u} \cdot \overrightarrow{P_{0} P_{1}}>0$ and $\overrightarrow{P_{0} P_{1}}$ points into the tetrahedron, so does \vec{u}. Thus $\vec{n}_{1}=-\vec{u}=\langle-1,1,-1\rangle$ points outwards.
As $z \longrightarrow-z$ exchanges S_{1} and S_{2}, it follows that $\vec{n}_{2}=\langle-1,1,1\rangle$, the vector we get by flipping the sign of the last coordinate of \vec{n}_{1}, is an outward normal to the face S_{2}.
(iii) As the face S_{3} is contained in the plane $y=0, \vec{F}=\overrightarrow{0}$ on S_{3} and so

$$
\iint_{S_{3}} \vec{F} \cdot \mathrm{~d} \vec{S}=0
$$

For $S_{0}, \hat{n}_{0}=\hat{\imath}$ and so the natural thing to do is project S_{0} onto the $y z-$ plane. The shadow of S_{0} is the triangle R with vertices $(0,1),(0,-1)$ and $(1,0)$. The flux is then the integral of $-y$ over the triangle:

$$
\iint_{S_{0}} \vec{F} \cdot \mathrm{~d} \vec{S}=-\iint_{R} y \mathrm{~d} A=-\int_{0}^{1} \int_{-1+y}^{1-y} y \mathrm{~d} z \mathrm{~d} y
$$

The inner integal is

$$
\int_{-1+y}^{1-y} y \mathrm{~d} z=[y z]_{-1+y}^{1-y}=2 y(1-y)
$$

So the flux is

$$
\int_{0}^{1} 2 y^{2}-2 y \mathrm{~d} y=\left[\frac{2}{3} y^{3}-y^{2}\right]_{0}^{1}=-\frac{1}{3}
$$

For S_{1}, let us project onto the $x y$-plane. The shadow of S_{1} is the triangle R with vertices $(0,0),(1,0)$ and $(1,1)$. We have

$$
\mathrm{d} \vec{S}=\frac{\vec{n}_{1}}{\left|\vec{n}_{1} \cdot \hat{k}\right|} \mathrm{d} x \mathrm{~d} y=\vec{n}_{1} \mathrm{~d} x \mathrm{~d} y
$$

and so the function we want to integrate is

$$
\vec{F} \cdot \vec{n}_{1}=y
$$

that is

$$
\iint_{S_{1}} \vec{F} \cdot \mathrm{~d} \vec{S}=\iint_{R} y \mathrm{~d} A=\int_{0}^{1} \int_{0}^{x} y \mathrm{~d} y \mathrm{~d} x
$$

The inner integal is

$$
\int_{0}^{x} y \mathrm{~d} y=\left[\frac{y^{2}}{2}\right]_{0}^{x}=\frac{x^{2}}{2}
$$

So the flux is

$$
\frac{1}{2} \int_{0}^{1} x^{2} \mathrm{~d} z=\frac{1}{6} .
$$

The flux out of S_{2} is the same, by symmetry, since the vector field \vec{F} is fixed by the symmetry $z \longrightarrow-z$.
(iv) Let S be the surface of the tetrahedron. Then $S=S_{0}+S_{1}+S_{2}+S_{3}$, the sum of the four faces. Therefore

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S} & =\iint_{S_{0}} \vec{F} \cdot \mathrm{~d} \vec{S}+\iint_{S_{1}} \vec{F} \cdot \mathrm{~d} \vec{S}+\iint_{S_{2}} \vec{F} \cdot \mathrm{~d} \vec{S}+\iint_{S_{3}} \vec{F} \cdot \mathrm{~d} \vec{S} \\
& =-\frac{1}{3}+\frac{1}{6}+\frac{1}{6}+0=0
\end{aligned}
$$

by our answer to (iii). On the other hand the divergence of \vec{F} is zero, so the RHS of the equation in the divergence theorem is also zero.
5 (i) Note that

$$
\rho_{x}=\frac{x}{\rho}, \quad \rho_{y}=\frac{y}{\rho} \quad \text { and } \quad \rho_{z}=\frac{z}{\rho} .
$$

Therefore, using the chain rule, we have

$$
\begin{aligned}
\vec{F}(x, y, z) & =\nabla f(x, y, z) \\
& =-\frac{1}{\rho^{2}}\left(\frac{x}{\rho} \hat{\imath}+\frac{y}{\rho} \hat{\jmath}+\frac{z}{\rho} \hat{k}\right) \\
& =-\frac{1}{\rho^{3}}(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) .
\end{aligned}
$$

This vector field points to the origin and its magnitude is the inverse of the square of the distance to the origin. This is the prototype of a gravitational or an electrical force field.
(ii) Let S be the sphere of radius a centred at the origin. At any point of S the direction of the outward unit normal \hat{n} is opposite to \vec{F} and so

$$
\vec{F} \cdot \hat{n}=-|\vec{F}|=-\frac{1}{a^{2}}
$$

Therefore

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S} & =\iint_{S} \vec{F} \cdot \hat{n} \mathrm{~d} A \\
& =\iint_{S}\left(-\frac{1}{a^{2}}\right) \mathrm{d} A \\
& =-\frac{1}{a^{2}} \iint_{S} \mathrm{~d} A \\
& =-\frac{1}{a^{2}} \operatorname{area}(S) \\
& =-\frac{1}{a^{2}} \cdot 4 \pi a^{2} \\
& =-4 \pi
\end{aligned}
$$

(iii) If we set

$$
\vec{F}=P \hat{\imath}+Q \hat{\jmath}+R \hat{k},
$$

then

$$
P=-\frac{x}{\rho^{3}},
$$

so that

$$
P_{x}=-\frac{\rho^{3}-3 x \rho^{2} \frac{x}{\rho}}{\rho^{6}}=\frac{3 x^{2}-\rho^{2}}{\rho^{5}} .
$$

Therefore

$$
\begin{aligned}
\operatorname{div} \vec{F} & =P_{x}+Q_{y}+R_{z} \\
& =\frac{3 x^{2}-\rho^{2}+3 y^{2}-\rho^{2}+3 z^{2}-\rho^{2}}{\rho^{5}} \\
& =3 \frac{x^{2}+y^{2}+z^{2}-\rho^{2}}{\rho^{5}} \\
& =0 .
\end{aligned}
$$

This is consistent with the divergence theorem (how could it be otherwise, since the divergence theorem is true?).
The field \vec{F} is defined everywhere but the origin. So the divergence theorem applies to any closed surface which does not enclose the origin; for such surfaces the divergence theorem implies the flux is zero. However the surface S does enclose the origin, since S is a sphere centred at the origin. So we cannot apply the divergence theorem directly to S.
In fact the divergence theorem, applied to a region R between two surfaces, implies that the flux through a closed surface S which encloses the origin is independent of the surface. This is compatible with the
answer to part (ii); whatever the radius of S the integral comes out the same (in this case, apply the divergence theorem to the region between two concentric spheres).

