
MODEL ANSWERS TO HWK #11

Note there are some mistake in the back of the book. (12.8.55.b),
that should be cosecant not secant and the range of φ is given by
π/6 ≤ φ ≤ 5π/6.
There is also a mistake in the solutions to 6B-8. The range for θ should
be 0 ≤ θ ≤ π.
1. Let B be the ball given by

x2 + y2 + (z − a)2 ≤ a2.

The average distance is:

ρ̄ =
1

vol(B)

∫∫∫
B

ρ dV =
3

4πa3

∫∫∫
B

√
x2 + y2 + z2 dV.

First we work in cylindrical coordinates, so that r2 = x2 + y2.∫∫∫
B

ρ dV =

∫ 2a

0

∫ 2π

0

∫ √a2−(z−a)2

0

r
√
r2 + z2 dr dθ dz.

The inner integal is∫ √a2−(z−a)2

0

r
√
r2 + z2 dr =

[
1

3
(r2 + z2)3/2

]√2az−z2
0

=
1

3
((2az)3/2 − z3).

The middle integral is

1

3

∫ 2π

0

(2az)3/2 − z3 dθ =
2π

3
((2az)3/2 − z3).

The outer integral is

2π

3

∫ 2a

0

(2az)3/2 − z3 dz =
2π

3

[
2

5
(2a)3/2z5/2 − 1

4
z4
]2a
0

=
2π

3
(
2

5
(2a)5 − 1

4
(2a)4)

=
8πa4

5
.

So

ρ̄ =
1

vol(B)

∫∫∫
B

ρ dV =
6a

5
.

1
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Now let’s use spherical coordinates. We calculate the equation for ρ
in terms of φ. Cutting by the plane y = 0, we get a circle and we are
down to a calculation in the plane. There are two ways to proceed.
We could use a classic piece of geometry; the angle subtended by a
diameter on the circumference of a circle is always a right angle.

x

z

Figure 1. Classic geometry

The hypotenuse of this triangle is 2a and ρ is the adjacent side to the
angle φ, so

ρ = 2a cosφ.

Or we can proceed as in lecture 16. The equation for the circle in
Cartesian coordinates is

x2 + (y − a)2 = a2.

Expanding and simplifying, we get

x2 + y2 = 2ay.

But ρ2 = x2 + y2 and y = ρ cosφ, so that

ρ = 2a cosφ,

as before.
Thus ∫∫∫

B

ρ dV =

∫ π/2

0

∫ 2π

0

∫ 2a cosφ

0

ρ3 sinφ dρ dθ dφ.
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The inner integal is∫ 2a cosφ

0

ρ3 sinφ dρ =

[
1

4
ρ4 sinφ

]2a cosφ
0

= 4a4 sinφ cos4 φ.

The middle integral is

4a4
∫ 2π

0

sinφ cos4 φ dθ dφ = 8πa4 sinφ cos4 φ.

The outer integral is

8πa4
∫ π/2

0

sinφ cos4 φ dφ = 8πa4
[
− 1

5
cos5 φ

]π/2
0

=
8πa4

5
,

so we get the same answer as in cylindrical coordinates.
2. Let us place the sphere as in part 1. Using symmetry we see that
only the z component of the gravitational force is non-zero. Let B be
the hemisphere. Let us compute using spherical coordinates. We have

Fz = G

∫∫∫
B

cosφ

ρ2
dV =

∫∫∫
B

cosφ sinφ dρ dθ dφ.

The sphere is symmetric in θ. Cutting by the plane y = 0 we get a
circle.

x

z

(a, a)z = a

Figure 2. Cross section of hemisphere

Equivalently the solid of revolution obtained by rotating a quarter circle
is a hemisphere. We have to divide the integral into two pieces. For
0 ≤ φ ≤ π/4, ρ is bounded above by the line z = a.
In this case ρ is the hypotenuse of a right-angled triangle with side a
and angle φ, ρ = a csc(φ).
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x

z

(a, a)z = az = a

Figure 3. φ ≤ π/4

For π/4 ≤ φ ≤ π/2, ρ is bounded above by the circle and we already
figured out the limits in this case. So we have to calculate:

∫ π/4

0

∫ 2π

0

∫ a secφ

0

cosφ sinφ dρ dθ dφ+

∫ π/2

π/4

∫ 2π

0

∫ 2a cosφ

0

cosφ sinφ dρ dθ dφ.

We compute the first integral. The inner integral is∫ a secφ

0

cosφ sinφ dρ =

[
cosφ sinφρ

]a secφ
0

= a sinφ.

The middle integral is∫ 2π

0

a sinφ dθ = 2πa sinφ.

The outer integral is

2πa

∫ π/4

0

sinφ dφ = 2πa

[
− cosφ

]π/4
0

= 2πa(1− 1√
2

).

We compute the second integral. The inner integal is∫ 2a cosφ

0

cosφ sinφ dρ =

[
cosφ sinφρ

]2a cosφ
0

= 2a sinφ cos2 φ.

The middle integral is∫ 2π

0

2a sinφ cos2 φ dθ = 4πa sinφ cos2 φ

The outer integral is

4πa

∫ π/2

π/4

sinφ dφ = 4πa

[
− 1

3
cos3 φ

]π/2
π/4

=

√
2

3
πa.
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Therefore

Fz = 2πGa(1− 1√
2

+
1

3
√

2
) = 2πGa(1−

√
2

3
).

We could also compute this using cylindrical coordinates.

Fz = G

∫ a

0

∫ 2π

0

∫ √a2−(z−a)2

0

rz

(r2 + z2)3/2
dr dθ dz.

The inner integal is

∫ √a2−(z−a)2

0

rz(r2 + z2)−3/2 dr =

[
− z(r2 + z2)−1/2

]√2az−z2
0

= 1−
√

1

2a
z1/2

The middle integral is

∫ 2π

0

1−
√

1

2a
z1/2 dθ = 2π

(
1−

√
1

2a
z1/2

)
.

The outer integral is

2π

∫ a

0

1−
√

1

2a
z1/2 dz = 2π

[
z −

√
1

2a

2

3
z3/2

]a
0

= 2πa

(
1−
√

2

3

)
.

Therefore

Fz = 2πGa(1−
√

2

3
).

3. Parameterise S using θ and z so that x = cos θ, y = sin θ, z = z and
so

d~S = 〈x, y, 0〉 dz dθ = 〈cos θ, sin θ, 0〉 dz dθ.
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The integral is therefore∫∫
S

~F · d~S =

∫ ∞
−∞

∫ 2π

0

1

1 + z2
〈cos θ, sin θ, z〉 · 〈cos θ, sin θ, 0〉 dθ dz

=

∫ ∞
−∞

∫ 2π

0

1

1 + z2
dθ dz

= 2π

∫ ∞
−∞

1

1 + z2
dz

= 2π

[
arctan z

]∞
−∞

= 2π2.

4 (i) P0 = (0, 0, 0), P1 = (1, 0, 1), P2 = (1, 0,−1) and P3 = (1, 1, 0).
Note that P0 and P3 are fixed by z −→ −z and P1 and P2 are exchanged
by z −→ −z. So the faces S2 = P0P1P3 and S1 = P0P2P3 are exchanged
by z −→ −z.

(ii) Note that
−−→
P1P2 = −2k̂,

−−→
P1P3 = ̂ − k̂ are two vectors in the face

S0 = P1P2P3 and so the cross-product

~n0 =
−−→
P1P2×

−−→
P1P3 =

∣∣∣∣∣∣
ı̂ ̂ k̂
0 0 −2
0 1 −1

∣∣∣∣∣∣ = ı̂

∣∣∣∣0 −2
1 −1

∣∣∣∣− ̂ ∣∣∣∣0 −2
0 −1

∣∣∣∣+ k̂

∣∣∣∣0 0
0 1

∣∣∣∣ = 2ı̂,

is normal to the face S0. P0 = (0, 0, 0) is a point of the tetrahedron not
on S0. As it has smaller x-coordinate, ~n0 points outwards.
Note that we can check the answer quickly. As the face is fixed by the
map z −→ −z, the outward normal is also fixed by the map z −→ −z,
which is true of 2ı̂. Visibly this vector is orthogonal to −2k̂ and ̂− k̂.−−→
P0P1 = ı̂+ k̂,

−−→
P0P2 = ı̂− k̂ and so

−−→
P0P1 ×

−−→
P0P2 =

∣∣∣∣∣∣
ı̂ ̂ k̂
1 0 1
1 0 −1

∣∣∣∣∣∣ = ı̂

∣∣∣∣0 1
0 −1

∣∣∣∣− ̂ ∣∣∣∣1 1
1 −1

∣∣∣∣+ k̂

∣∣∣∣1 0
1 0

∣∣∣∣ = 2̂

is normal to the face S3 = P0P1P2. P3 belongs to the tetrahedron but
not to this face and P3 has larger y-coordinate, so ~n3 = −2̂ is an
outwards normal.
We do a quick check, as before. Since this face is fixed by z −→ −z,
the outwards normal has no component in the direction of k̂ and visibly
~n3 is orthogonal to ı̂+ k̂ and ı̂− k̂.
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−−→
P0P2 = ı̂− k̂,

−−→
P0P3 = ı̂+ ̂ and so

~u =

∣∣∣∣∣∣
ı̂ ̂ k̂
1 0 −1
1 1 0

∣∣∣∣∣∣ = ı̂

∣∣∣∣0 −1
1 0

∣∣∣∣− ̂ ∣∣∣∣1 −1
1 0

∣∣∣∣+ k̂

∣∣∣∣1 0
1 1

∣∣∣∣ = ı̂− ̂+ k̂.

is normal to the face S1 = P0P2P3. As ~u ·
−−→
P0P1 > 0 and

−−→
P0P1 points

into the tetrahedron, so does ~u. Thus ~n1 = −~u = 〈−1, 1,−1〉 points
outwards.
As z −→ −z exchanges S1 and S2, it follows that ~n2 = 〈−1, 1, 1〉, the
vector we get by flipping the sign of the last coordinate of ~n1, is an
outward normal to the face S2.
(iii) As the face S3 is contained in the plane y = 0, ~F = ~0 on S3 and so∫∫

S3

~F · d~S = 0.

For S0, n̂0 = ı̂ and so the natural thing to do is project S0 onto the yz-
plane. The shadow of S0 is the triangle R with vertices (0, 1), (0,−1)
and (1, 0). The flux is then the integral of −y over the triangle:∫∫

S0

~F · d~S = −
∫∫

R

y dA = −
∫ 1

0

∫ 1−y

−1+y
y dz dy.

The inner integal is∫ 1−y

−1+y
y dz =

[
yz

]1−y
−1+y

= 2y(1− y).

So the flux is ∫ 1

0

2y2 − 2y dy =

[
2

3
y3 − y2

]1
0

= −1

3
.

For S1, let us project onto the xy-plane. The shadow of S1 is the
triangle R with vertices (0, 0), (1, 0) and (1, 1). We have

d~S =
~n1

|~n1 · k̂|
dx dy = ~n1 dx dy,

and so the function we want to integrate is

~F · ~n1 = y,

that is ∫∫
S1

~F · d~S =

∫∫
R

y dA =

∫ 1

0

∫ x

0

y dy dx.
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The inner integal is ∫ x

0

y dy =

[
y2

2

]x
0

=
x2

2
.

So the flux is

1

2

∫ 1

0

x2 dz =
1

6
.

The flux out of S2 is the same, by symmetry, since the vector field ~F
is fixed by the symmetry z −→ −z.
(iv) Let S be the surface of the tetrahedron. Then S = S0+S1+S2+S3,
the sum of the four faces. Therefore∫∫

S

~F · d~S =

∫∫
S0

~F · d~S +

∫∫
S1

~F · d~S +

∫∫
S2

~F · d~S +

∫∫
S3

~F · d~S

= −1

3
+

1

6
+

1

6
+ 0 = 0,

by our answer to (iii). On the other hand the divergence of ~F is zero,
so the RHS of the equation in the divergence theorem is also zero.
5 (i) Note that

ρx =
x

ρ
, ρy =

y

ρ
and ρz =

z

ρ
.

Therefore, using the chain rule, we have

~F (x, y, z) = ∇f(x, y, z)

= − 1

ρ2
(
x

ρ
ı̂+

y

ρ
̂+

z

ρ
k̂)

= − 1

ρ3
(xı̂+ y̂+ zk̂).

This vector field points to the origin and its magnitude is the inverse
of the square of the distance to the origin. This is the prototype of a
gravitational or an electrical force field.
(ii) Let S be the sphere of radius a centred at the origin. At any point

of S the direction of the outward unit normal n̂ is opposite to ~F and
so

~F · n̂ = −|~F | = − 1

a2
.
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Therefore ∫∫
S

~F · d~S =

∫∫
S

~F · n̂ dA

=

∫∫
S

(− 1

a2
) dA

= − 1

a2

∫∫
S

dA

= − 1

a2
area(S)

= − 1

a2
· 4πa2

= −4π.

(iii) If we set
~F = P ı̂+Q̂+Rk̂,

then

P = − x

ρ3
,

so that

Px = −
ρ3 − 3xρ2 x

ρ

ρ6
=

3x2 − ρ2

ρ5
.

Therefore

div ~F = Px +Qy +Rz

=
3x2 − ρ2 + 3y2 − ρ2 + 3z2 − ρ2

ρ5

= 3
x2 + y2 + z2 − ρ2

ρ5

= 0.

This is consistent with the divergence theorem (how could it be other-
wise, since the divergence theorem is true?).

The field ~F is defined everywhere but the origin. So the divergence
theorem applies to any closed surface which does not enclose the ori-
gin; for such surfaces the divergence theorem implies the flux is zero.
However the surface S does enclose the origin, since S is a sphere cen-
tred at the origin. So we cannot apply the divergence theorem directly
to S.
In fact the divergence theorem, applied to a region R between two
surfaces, implies that the flux through a closed surface S which encloses
the origin is independent of the surface. This is compatible with the
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answer to part (ii); whatever the radius of S the integral comes out the
same (in this case, apply the divergence theorem to the region between
two concentric spheres).


