MODEL ANSWERS TO HWK #10

1. False. Consider the regions
R1:{1<r<2,0§9<%org§9<27r},
R2:{1<r<2,%§6<27r}.

Both of these are portions of an annulus and so they are simply con-

nected. However the union is the whole annulus

RIUR ={1<r<20<6<2r},
which is not simply connected.

2. Let
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and let C' be a circle of radius a centered at (1
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It follows that the divergence
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If a < 1 then C is contained in the right half plane and so F' is defined
and differentiable on the whole of the region R bounded by C'. The
normal form of Green’s theorem implies that

fﬁ.ﬁds://divﬁdAzo.
C R

Suppose that a > 1. Then the region bounded by C' contains the
origin, a point where F is not defined. Let D be the circle centered at
the origin with radius 2 + a. Pick any line segment L connecting D
to C' (e.g take L along the z-axis). Let C' = D + L — C' — L be the
closed curve, which first traces out D, then traces L from D to C, goes
around C' clockwise and then goes back along the same line segment.
Let R be the region contained in D but not in C'. Then driving along

C' we always have the region R on our left. Also R does not contain
1
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the origin, so that F' is defined on the whole of R. Green’s theorem

implies that
fﬁ-ﬁds://divﬁd/l:o.
’ R

It follows that

It follows that

fﬁ-ﬁds:]{ﬁ-ﬁds.
C D

Repeating the same argument, but now with a curve of radius one
about the origin, we see that if a > 1 the flux of F across C is the same
as the flux of F across the unit circle. We calculate this directly. Note
that F points in the direction of the normal vector. So

F-a=|F|=1,
on the unit circle. Thus the flux is the length of the unit circle 2.
Putting all of this together we see that

j{ﬁ-ﬁds:Qw,
C

ifa>1.
Here is another way to proceed. Let
— y €T

Then G is the vector field F' rotated through 7/2 radians, counter-

clockwise. It follows that to calculate the flux across C' for F is the
same as to calculate the work done along C for G. G was analysed in

Hwk # 8, 5. Recall that G is not defined at (0,0). Also curl G = 0 by
Hwk # 9, 1 (iv). If @ < 1 then C is contained in the right half plane.

In Hwk #8, 5 (i) we showed that there is a potential function for G in
the right half plane, thus for a < 1

%C?dv?:().
C
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If a > 1 then C' contains the point (0, 0) in its interior. We already saw
in class that if @ > 1 the work done is 27. It is essentially a repeat of
the argument above, with G replacing F and the usual form of Green’s
theorem replacing the normal form.

3. We need to calculate several triple integrals to find the centroid.

[ [ffpar i [ffea

will be sufficient by symmetry.
We can solve the first with rectangular coordinates

1 pV1I-22 pV/1-22
/// dV = / / / dxdydz.
R 0o Jo 0

The inner integral is

V1i—22 1—22
/ dr = |:£L"| =v1-22
0 0
The middle integral is
V1i—z2 7vV1—22

\/1—22dy:{y\/1—22 =1-2%

0 10

So the outer integral is

1 37
2
/1—z2dz:{z—z— = -.
0 31, 3

For the second integral we use cylindrical coordinates where we use
polar in the xz-plane

/2 pl pa/1-1r2sin?0
///de :/ / / yr dydrdd.
R 0 o Jo

The inner integral is
/\/ 1—r2sin? 0

0

1 1—72sin? 6 1
yrdy = | =y?r = —(r —r3sin?0).
2", 2

The middle integral is

1 ! 172 4 L B |
_/r—r3sin29dr:—{r——r—sin20} = -~ — —sin®0.
0 212

2 4 o 4 8
The outer integral is
1 [ 1 1 "2 3
— 4—2sin”0df = — |30 + = sin(2¢ =—.
6/, sin T { + 5 sin( )} ) 3
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For the third integral we use rectangular coordinates

1 V1-2z2 V1-22
///de :/ / / zdxdydz.
R o Jo 0

The inner integral is

2

Vis? ==
/ zdx = [zm] =zv1 — 22
0 0

The middle integral is

V122 Vi1-22

V1 —22dy = [yzx/l—%] =z — 25

0 0

So the outer integral is

1 2 471
1
/z—z3dz: S
0 2 41, 4

Thus we conclude that the centroid is (97/64,97/64,3/8).



