MODEL ANSWERS TO HWK \#10

1. False. Consider the regions

$$
\begin{aligned}
& R_{1}=\left\{1<r<2,0 \leq \theta<\frac{\pi}{4} \text { or } \frac{\pi}{2} \leq \theta<2 \pi\right\}, \\
& R_{2}=\left\{1<r<2, \frac{\pi}{4} \leq \theta<2 \pi\right\}
\end{aligned}
$$

Both of these are portions of an annulus and so they are simply connected. However the union is the whole annulus

$$
R_{1} \cup R_{2}=\{1<r<2,0 \leq \theta<2 \pi\}
$$

which is not simply connected.
2. Let

$$
\vec{F}=\langle M, N\rangle=\left\langle\frac{x}{r^{2}}, \frac{y}{r^{2}}\right\rangle
$$

and let C be a circle of radius a centered at $(1,0)$. Recall that

$$
r_{x}=\frac{x}{r} \quad \text { and } \quad r_{y}=\frac{y}{r} .
$$

Therefore

$$
M_{x}=\frac{r^{2}-2 x^{2}}{r^{4}} \quad \text { and } \quad N_{y}=\frac{r^{2}-2 y^{2}}{r^{4}}
$$

It follows that the divergence

$$
\operatorname{div} \vec{F}=\frac{r^{2}-2 x^{2}+r^{2}-2 y^{2}}{r^{4}}=0
$$

If $a<1$ then C is contained in the right half plane and so \vec{F} is defined and differentiable on the whole of the region R bounded by C. The normal form of Green's theorem implies that

$$
\oint_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s=\iint_{R} \operatorname{div} \vec{F} \mathrm{~d} A=0 .
$$

Suppose that $a>1$. Then the region bounded by C contains the origin, a point where \vec{F} is not defined. Let D be the circle centered at the origin with radius $2+a$. Pick any line segment L connecting D to C (e.g take L along the x-axis). Let $C^{\prime}=D+L-C-L$ be the closed curve, which first traces out D, then traces L from D to C, goes around C clockwise and then goes back along the same line segment. Let R be the region contained in D but not in C. Then driving along C^{\prime} we always have the region R on our left. Also R does not contain
the origin, so that \vec{F} is defined on the whole of R. Green's theorem implies that

$$
\oint_{C^{\prime}} \vec{F} \cdot \hat{n} \mathrm{~d} s=\iint_{R} \operatorname{div} \vec{F} \mathrm{~d} A=0 .
$$

It follows that

$$
\begin{aligned}
0 & =\oint_{C^{\prime}} \vec{F} \cdot \hat{n} \mathrm{~d} s \\
& =\oint_{D+L-C-L} \vec{F} \cdot \hat{n} \mathrm{~d} s \\
& =\oint_{D} \vec{F} \cdot \hat{n} \mathrm{~d} s+\oint_{L} \vec{F} \cdot \hat{n} \mathrm{~d} s-\oint_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s-\oint_{L} \vec{F} \cdot \hat{n} \mathrm{~d} s \\
& =\oint_{D} \vec{F} \cdot \hat{n} \mathrm{~d} s-\oint_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s .
\end{aligned}
$$

It follows that

$$
\oint_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s=\oint_{D} \vec{F} \cdot \hat{n} \mathrm{~d} s .
$$

Repeating the same argument, but now with a curve of radius one about the origin, we see that if $a>1$ the flux of \vec{F} across C is the same as the flux of \vec{F} across the unit circle. We calculate this directly. Note that \vec{F} points in the direction of the normal vector. So

$$
\vec{F} \cdot \hat{n}=|\vec{F}|=1,
$$

on the unit circle. Thus the flux is the length of the unit circle 2π. Putting all of this together we see that

$$
\oint_{C} \vec{F} \cdot \hat{n} \mathrm{~d} s=2 \pi,
$$

if $a>1$.
Here is another way to proceed. Let

$$
\vec{G}=\left\langle-\frac{y}{r^{2}}, \frac{x}{r^{2}}\right\rangle .
$$

Then \vec{G} is the vector field \vec{F} rotated through $\pi / 2$ radians, counterclockwise. It follows that to calculate the flux across C for \vec{F} is the same as to calculate the work done along C for $\vec{G} . \vec{G}$ was analysed in Hwk \# 8, 5. Recall that \vec{G} is not defined at $(0,0)$. Also curl $\vec{G}=0$ by Hwk \# 9, 1 (iv). If $a<1$ then C is contained in the right half plane. In Hwk \#8, 5 (i) we showed that there is a potential function for \vec{G} in the right half plane, thus for $a<1$

$$
\oint_{C} \vec{G} \cdot \mathrm{~d} \vec{r}=0
$$

If $a>1$ then C contains the point $(0,0)$ in its interior. We already saw in class that if $a>1$ the work done is 2π. It is essentially a repeat of the argument above, with \vec{G} replacing \vec{F} and the usual form of Green's theorem replacing the normal form.
3. We need to calculate several triple integrals to find the centroid.

$$
\iiint_{R} \mathrm{~d} V, \quad \iiint_{R} y \mathrm{~d} V, \quad \text { and } \quad \iiint_{R} z \mathrm{~d} V
$$

will be sufficient by symmetry.
We can solve the first with rectangular coordinates

$$
\iiint_{R} \mathrm{~d} V=\int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-z^{2}}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

The inner integral is

$$
\int_{0}^{\sqrt{1-z^{2}}} \mathrm{~d} x=[x]_{0}^{\sqrt{1-z^{2}}}=\sqrt{1-z^{2}}
$$

The middle integral is

$$
\int_{0}^{\sqrt{1-z^{2}}} \sqrt{1-z^{2}} \mathrm{~d} y=\left[y \sqrt{1-z^{2}}\right]_{0}^{\sqrt{1-z^{2}}}=1-z^{2}
$$

So the outer integral is

$$
\int_{0}^{1} 1-z^{2} \mathrm{~d} z=\left[z-\frac{z^{3}}{3}\right]_{0}^{1}=\frac{2}{3}
$$

For the second integral we use cylindrical coordinates where we use polar in the $x z$-plane

$$
\iiint_{R} y \mathrm{~d} V=\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{\sqrt{1-r^{2} \sin ^{2} \theta}} y r \mathrm{~d} y \mathrm{~d} r \mathrm{~d} \theta
$$

The inner integral is

$$
\int_{0}^{\sqrt{1-r^{2} \sin ^{2} \theta}} y r \mathrm{~d} y=\left[\frac{1}{2} y^{2} r\right]_{0}^{\sqrt{1-r^{2} \sin ^{2} \theta}}=\frac{1}{2}\left(r-r^{3} \sin ^{2} \theta\right) .
$$

The middle integral is

$$
\frac{1}{2} \int_{0}^{1} r-r^{3} \sin ^{2} \theta \mathrm{~d} r=\frac{1}{2}\left[\frac{r^{2}}{2}-\frac{r^{4}}{4} \sin ^{2} \theta\right]_{0}^{1}=\frac{1}{4}-\frac{1}{8} \sin ^{2} \theta
$$

The outer integral is

$$
\frac{1}{16} \int_{0}^{\pi / 2} 4-2 \sin ^{2} \theta \mathrm{~d} \theta=\frac{1}{16}\left[3 \theta+\frac{1}{2} \sin (2 t)\right]_{0}^{\pi / 2}=\frac{3 \pi}{32}
$$

For the third integral we use rectangular coordinates

$$
\iiint_{R} z \mathrm{~d} V=\int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-z^{2}}} z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

The inner integral is

$$
\int_{0}^{\sqrt{1-z^{2}}} z \mathrm{~d} x=[z x]_{0}^{\sqrt{1-z^{2}}}=z \sqrt{1-z^{2}}
$$

The middle integral is

$$
\int_{0}^{\sqrt{1-z^{2}}} z \sqrt{1-z^{2}} \mathrm{~d} y=\left[y z \sqrt{1-z^{2}}\right]_{0}^{\sqrt{1-z^{2}}}=z-z^{3}
$$

So the outer integral is

$$
\int_{0}^{1} z-z^{3} \mathrm{~d} z=\left[\frac{z^{2}}{2}-\frac{z^{4}}{4}\right]_{0}^{1}=\frac{1}{4}
$$

Thus we conclude that the centroid is $(9 \pi / 64,9 \pi / 64,3 / 8)$.

