
MODEL ANSWERS TO HWK #10

1. False. Consider the regions

R1 = { 1 < r < 2, 0 ≤ θ <
π

4
or

π

2
≤ θ < 2π },

R2 = { 1 < r < 2,
π

4
≤ θ < 2π }.

Both of these are portions of an annulus and so they are simply con-
nected. However the union is the whole annulus

R1 ∪R2 = { 1 < r < 2, 0 ≤ θ < 2π },
which is not simply connected.
2. Let

~F = 〈M,N〉 = 〈 x
r2
,
y

r2
〉

and let C be a circle of radius a centered at (1, 0). Recall that

rx =
x

r
and ry =

y

r
.

Therefore

Mx =
r2 − 2x2

r4
and Ny =

r2 − 2y2

r4
.

It follows that the divergence

div ~F =
r2 − 2x2 + r2 − 2y2

r4
= 0.

If a < 1 then C is contained in the right half plane and so ~F is defined
and differentiable on the whole of the region R bounded by C. The
normal form of Green’s theorem implies that∮

C

~F · n̂ ds =

∫∫
R

div ~F dA = 0.

Suppose that a > 1. Then the region bounded by C contains the
origin, a point where ~F is not defined. Let D be the circle centered at
the origin with radius 2 + a. Pick any line segment L connecting D
to C (e.g take L along the x-axis). Let C ′ = D + L − C − L be the
closed curve, which first traces out D, then traces L from D to C, goes
around C clockwise and then goes back along the same line segment.
Let R be the region contained in D but not in C. Then driving along
C ′ we always have the region R on our left. Also R does not contain
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the origin, so that ~F is defined on the whole of R. Green’s theorem
implies that ∮

C′

~F · n̂ ds =

∫∫
R

div ~F dA = 0.

It follows that

0 =

∮
C′

~F · n̂ ds

=

∮
D+L−C−L

~F · n̂ ds

=

∮
D

~F · n̂ ds+

∮
L

~F · n̂ ds−
∮
C

~F · n̂ ds−
∮
L

~F · n̂ ds

=

∮
D

~F · n̂ ds−
∮
C

~F · n̂ ds.

It follows that ∮
C

~F · n̂ ds =

∮
D

~F · n̂ ds.

Repeating the same argument, but now with a curve of radius one
about the origin, we see that if a > 1 the flux of ~F across C is the same
as the flux of ~F across the unit circle. We calculate this directly. Note
that ~F points in the direction of the normal vector. So

~F · n̂ = |~F | = 1,

on the unit circle. Thus the flux is the length of the unit circle 2π.
Putting all of this together we see that∮

C

~F · n̂ ds = 2π,

if a > 1.
Here is another way to proceed. Let

~G = 〈− y

r2
,
x

r2
〉.

Then ~G is the vector field ~F rotated through π/2 radians, counter-

clockwise. It follows that to calculate the flux across C for ~F is the
same as to calculate the work done along C for ~G. ~G was analysed in
Hwk # 8, 5. Recall that ~G is not defined at (0, 0). Also curl ~G = 0 by
Hwk # 9, 1 (iv). If a < 1 then C is contained in the right half plane.

In Hwk #8, 5 (i) we showed that there is a potential function for ~G in
the right half plane, thus for a < 1∮

C

~G · d~r = 0.
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If a > 1 then C contains the point (0, 0) in its interior. We already saw
in class that if a > 1 the work done is 2π. It is essentially a repeat of
the argument above, with ~G replacing ~F and the usual form of Green’s
theorem replacing the normal form.
3. We need to calculate several triple integrals to find the centroid.∫∫∫

R

dV,

∫∫∫
R

y dV, and

∫∫∫
R

z dV

will be sufficient by symmetry.
We can solve the first with rectangular coordinates∫∫∫

R

dV =

∫ 1

0

∫ √1−z2
0

∫ √1−z2
0

dxdydz.

The inner integral is∫ √1−z2
0

dx =

[
x

]√1−z2
0

=
√

1− z2.

The middle integral is∫ √1−z2
0

√
1− z2 dy =

[
y
√

1− z2
]√1−z2
0

= 1− z2.

So the outer integral is∫ 1

0

1− z2 dz =

[
z − z3

3

]1
0

=
2

3
.

For the second integral we use cylindrical coordinates where we use
polar in the xz-plane∫∫∫

R

y dV =

∫ π/2

0

∫ 1

0

∫ √1−r2 sin2 θ

0

yr dydrdθ.

The inner integral is∫ √1−r2 sin2 θ

0

yr dy =

[
1

2
y2r

]√1−r2 sin2 θ

0

=
1

2
(r − r3 sin2 θ).

The middle integral is

1

2

∫ 1

0

r − r3 sin2 θ dr =
1

2

[
r2

2
− r4

4
sin2 θ

]1
0

=
1

4
− 1

8
sin2 θ.

The outer integral is

1

16

∫ π/2

0

4− 2 sin2 θ dθ =
1

16

[
3θ +

1

2
sin(2t)

]π/2
0

=
3π

32
.
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For the third integral we use rectangular coordinates∫∫∫
R

z dV =

∫ 1

0

∫ √1−z2
0

∫ √1−z2
0

z dxdydz.

The inner integral is∫ √1−z2
0

z dx =

[
zx

]√1−z2
0

= z
√

1− z2.

The middle integral is∫ √1−z2
0

z
√

1− z2 dy =

[
yz
√

1− z2
]√1−z2
0

= z − z3.

So the outer integral is∫ 1

0

z − z3 dz =

[
z2

2
− z4

4

]1
0

=
1

4
.

Thus we conclude that the centroid is (9π/64, 9π/64, 3/8).


