
MODEL ANSWERS TO HWK #1

Part B

1. (a) The four vertices are (1, 1, 1), (1,−1,−1), (−1, 1,−1) and (−1,−1, 1).
The distance between the first two vertices is 2

√
2, since two coordi-

nates differ by 2. There are six edges, corresponding to the choice of
six pairs of vertices. For each pair of vertices, exactly two coordinates
have a different sign, so the length of any edge is 2

√
2. Or one could

say that every edge is a diagonal of a face, so that all sides have the
same length.
(b) Imagine putting hydrogen atoms at the vertices of the tetrahedron
from (a). We want to put the carbon atom at the centre of the tetra-
hedron. This is given by the vector

1

4
(〈1, 1, 1〉+ 〈1,−1,−1〉+ 〈−1, 1,−1〉+ 〈−1,−1, 1〉) = 〈0, 0, 0〉.

In other words, the carbon atom goes at the origin. Take the two
hydrogen atoms (1, 1, 1) and (1,−1,−1). Let θ be the angle between
the two vectors 〈1, 1, 1〉 and 〈1,−1,−1〉. We have

cos θ =
〈1, 1, 1〉 · 〈1,−1,−1〉
|〈1, 1, 1〉||〈1,−1,−1〉|

= −1

3
.

So the bond angle θ ≈ 1.91 radians or 109.47 degrees.
(c) Find the angle at (1, 1, 1) made by the two points (1,−1,−1) and
(−1, 1,−1). Let

~u = 〈0,−2,−2〉 and ~v = 〈−2, 0,−2〉.
We want the angle α between ~u and ~v. Same as the angle α between
~u/2 and ~v/2.

cosα =
〈0,−1,−1〉 · 〈−1, 0,−1〉
|〈0,−1,−1〉||〈−1, 0,−1〉|

=
1

2
.

So the angle is π/3. Since we have a regular tetrahedron, the faces are
regular polygons. In other words the faces are equilateral triangles and
so the angle is π/3.
Find the angle β between the vectors ~u and ~w given by the two line
segments (1, 1, 1), (1,−1,−1) and (−1, 1,−1), (−1,−1, 1).

~u = 〈0,−2,−2〉 and ~w = 〈0,−2, 2〉.
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Since ~u · ~w = 0, these two vectors are orthogonal. So β = π/2.
Imagine if we orient the tetrahedron so that one edge is at the top so
that the opposite edge is at the bottom. If we squash the tetrahedron
so it becomes flat, then we want the angle between the top line and
the bottom line. The top of the tetrahedron has become two triangles
and the top edge is a common edge of both triangles. The bottom
edge divides both triangles into equal halves; it is obvious that then
the angle is π/2.
Here is another way to see the angle is π/2. Suppose we took the
first two vertices in the opposite order. The angle wouldn’t change
and neither would ~w, but ~u changes sign. So the sign of ~u · ~w would
change. Since the angle is unchanged, and the lengths of ~u and ~w are
unchanged, we must have ~u · ~w = 0.
There are other ways to argue by symmetry that the angle is π/2.
(d) We already decided in (c) that the vectors

~u = 〈0,−2,−2〉 and ~v = 〈−2, 0,−2〉,
are vectors giving two sides of a face of the tetrahedron. The magnitude
of the cross product of ~u and ~v is then twice the area of a face.

~u× ~v =

∣∣∣∣∣∣
ı̂ ̂ k̂
0 −2 −2
−2 0 −2

∣∣∣∣∣∣
= ı̂

∣∣∣∣−2 −2
0 −2

∣∣∣∣− ̂ ∣∣∣∣ 0 −2
−2 −2

∣∣∣∣+ k̂

∣∣∣∣ 0 −2
−2 0

∣∣∣∣
= 4ı̂+ 4̂− 4k̂.

The length of this vector is 4
√

3. So the area of a face is 2
√

3.

2. (a) We want to know if the vectors ~v1 and
−−→
P2P3 are orthogonal. This

happens if and only if ~v1 ·
−−→
P2P3 = 0. But

−−→
P2P3 = ~v3 − ~v2. So, we want

to know if ~v1 · (~v3 − ~v2) = 0. In other words P lies on the altitude of
the triangle P1P2P3 from the vertex P1 if and only if

~v1 · ~v2 = ~v1 · ~v3.
(b) We already decided that if P lies on the altitude from P1, then

~v1 · ~v2 = ~v1 · ~v3.
Similarly, if P lies on the altitudes from P2, then

~v2 · ~v1 = ~v2 · ~v3.
As ~v2 · ~v1 = ~v1 · ~v2, we have

~v1 · ~v2 = ~v1 · ~v3 = ~v2 · ~v3.
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(c) We have

~v1 · ~v3 = ~v2 · ~v3.
So

~v3 · ~v1 = ~v3 · ~v2,
and this happens only if P lies on the altitude from P3.
3. Pick a vertex P of the tetrahedron and let ~u, ~v, ~w be the three vectors
starting at P which end at the three other vertices of the tetrahedron.
Suppose that ~u, ~v and the outward normal to this face form a right
handed set (if they don’t then simply switch ~u and ~v). Then this is
true for ~v, ~w and ~w, ~u. Then three of the vectors we want are the three
cross products ~n1 = 1/2~u× ~v, ~n2 = 1/2~v × ~w and ~n3 = 1/2~v × ~u.
Two vectors along the last face are ~u − ~v and ~w − ~v and (twice) the
last vector is

2~n4 = ~u− ~v)× (~w − ~v)

= (~w − ~v)× (~v − ~u)

= ~w × ~v − ~w × ~u+ ~v × u
= −~v × ~w − ~w × ~u− ~u× v
= −2~n1 − 2~n2 − 2~n3.

But then the sum

~n1 + ~n2 + ~n3 + ~n4 = ~0,

is indeed zero.
Here is a cute and compelling argument from physics, which seems
worth mentioning. Imagine a beach ball made in the shape of the
tetrahedron. If we blow the beach ball up, the air inside pushes on
the walls of the beach ball. The force is directed outwards in the
direction normal to each face. The pressure is equally distributed so
the magnitude of the force is proportional to the area of each face. It
follows that the forces on each side are the vectors ~n1, ~n2, ~n3 and ~n4.
The beach ball certainly doesn’t accelerate in any direction (let’s ignore
gravity) so the total force, that is, the sum of all the forces, must be
zero.
4. (a) We compute the square of the matrix,(

0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
.

So (
0 1
0 0

)
is nilpotent.
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(b) We have detAB = (detA)(detB). It follows that

detAn = (detA)n.

If An = 0 is the zero matrix, then the LHS is zero. But then

(detA)n = 0,

which can only happen if detA = 0 to begin with.
(c) NO. Take

A =

(
0 1
0 0

)
and B =

(
0 0
1 0

)
Then A is nilpotent by (a) and it is easy to check that B2 = 0, so B is
also nilpotent. But the sum is

C = A+B =

(
0 1
1 0

)
There are a couple of ways to see that C is not nilpotent. For a start
we could observe that

detC =

∣∣∣∣0 1
1 0

∣∣∣∣ = −1.

and use (b) to conclude that C cannot be nilpotent.
On the other hand,

C2 =

(
1 0
0 1

)
= I2

so that

Cm =

{
C if m is odd

I2 if m is even.

In particular no power of C is the zero matrix and so C is not nilpotent.
5. (a) ~u = Aθ ı̂ = cos θı̂+ sin θ̂ and ~v = Aθ ̂ = − sin θı̂+ cos θ̂.
(b) We simply multiply out

AθAφ =

(
cos θ − sin θ
sin θ cos θ

)(
cosφ − sinφ
sinφ cosφ

)
=

(
cos θ cosφ− sin θ sinφ − cos θ sinφ− sin θ cosφ
sin θ cosφ+ cos θ sinφ − sin θ sinφ+ cosφ cos θ

)
=

(
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

)
= Aθ+φ.

Geometrically all this says is that if you first rotate through an angle of
φ and then rotate through and an angle θ, this is the same as rotating
through a total angle of θ + φ.
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(c) We first calculate the determinant

detAθ =

∣∣∣∣cos θ − sin θ
sin θ cos θ

∣∣∣∣ = cos2 θ + sin2 θ = 1.

The inverse matrix is then

A−1θ =

(
cos θ sin θ
− sin θ cos θ

)
Visibly this is the same as the transpose of Aθ.

A−θ =

(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
=

(
cos θ sin θ
− sin θ cos θ

)
= A−1θ .

Geometrically all this says is that if want to undo the action of rotating
through an angle of θ, simply rotate through an angle of θ in the
opposite direction.
(d)(− 1√

2
1√
2

1√
2

1√
2

) (− 1√
2

1√
2

− 1√
2
− 1√

2

) (− 1√
2
− 1√

2
1√
2
− 1√

2

)
and

(− 1√
2
− 1√

2

− 1√
2

1√
2

)
.

(e) The determinants are −1, 1, 1 and −1. So the second and third
matrices are rotation matrices and the first and fourth matrices are
reflection matrices. A rotation matrix has the form

Aθ =

(
cos θ − sin θ
sin θ cos θ

)
,

so matching the first columns of the second matrix we must have

cos θ = − 1√
2

and sin θ = − 1√
2
.

Since both sin θ and cos θ are negative, we have an angle in the third
quadrant. It follows that

θ = π +
π

4
=

5π

4
.

So the second matrix represent rotation through

5π

4
.

Matching the first column of the general rotation matrix and the third
matrix, we get

cos θ = − 1√
2

and sin θ =
1√
2
.
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We must have an angle in the 2nd quadrant and

θ =
π

2
+
π

4
=

3π

4
.

So the third matrix represents a rotation through 3π/4.
The other matrices are a little bit more tricky, they represent a reflec-
tion. Pick an arbitrary reflection, let’s say reflection in the y-axis,

(x, y) −→ (−x, y)

The corresponding reflection matrix is(
−1 0
0 1

)
.

If we multiply the first and fourth matrices by this matrix, we get
rotation matrices( 1√

2
− 1√

2
1√
2

1√
2

)
and

( 1√
2

1√
2

− 1√
2

1√
2

)
.

Arguing as above, these two matrices represent rotations through π/4
and 7π/4. So the first and fourth matrices represent rotation through
π/4 followed by reflection in the y-axis and rotation through 7π/4 fol-
lowed by reflection in the y-axis.
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