SECOND MIDTERM MATH 18.02, MIT, AUTUMN 12

You have 50 minutes. This test is closed book, closed notes, no calculators.
There are 6 problems, and the total number of points is 100 . Show all your work. Please make your work as clear and easy to follow as possible.
$\overline{\text { " }}$
Name: \qquad
Signature: \qquad
Student ID \#: \qquad
Recitation instructor: \qquad
Recitation Number+Time: \qquad

Problem	Points	Score
1	20	
2	15	
3	20	
4	15	
5	15	
6	15	
Total	100	

1. (20pts) Let $f(x, y)=3 x y^{2}-x-y$.
(i) Find ∇f at $(2,1)$.

Solution:
$\nabla f=\left\langle 3 y^{2}-1,6 x y-1\right\rangle$. At $(2,1)$ we have $(\nabla f)_{(2,1)}=\langle 2,11\rangle$.
(ii) Find the equation of the tangent plane to the graph of $f(x, y)$ at the point $(2,1,3)$.

Solution:
$z-3=2(x-2)+11(y-1)$. Rearranging, $2 x+11 y-z=12$.
(iii) Use linear approximation to estimate the value of $f(2.1,0.9)$.

Solution: $\Delta f \approx f_{x} \Delta x+f_{y} \Delta y$. So, $\Delta f \approx 2 \cdot 0.1+11 \cdot-0.1=-0.9$. $f(2.1,0.9) \approx 2.1$.
(iv) Find the directional derivative of f at $(2,1)$ in the direction of $\hat{\imath}+\hat{\jmath}$.

Solution: Direction is $\hat{u}=\frac{1}{\sqrt{2}}\langle 1,1\rangle$. Directional derivative in direction \hat{u} is

$$
\left.\frac{d f}{d s}\right|_{\hat{u}}=\frac{1}{\sqrt{2}}\langle 2,11\rangle \cdot\langle 1,1\rangle=\frac{13}{\sqrt{2}} .
$$

2. (15pts) Let p be the point on the curve $x^{2}-y^{3}=2.9$ which is closest to $(2,1)$. Use the gradient to estimate the coordinates of p.

Solution: Let $f(x, y)=x^{2}-y^{3}$. As $f(2,1)=3$, we want the point closest to $(2,1)$ such that $\Delta f=-0.1$. So we want to move in the direction of greatest decrease in f.

$$
\nabla f=\left\langle 2 x,-3 y^{2}\right\rangle
$$

and so at $\left(x_{0}, y_{0}\right)=(2,1)$ we have $\nabla f=\langle 4,-3\rangle$. The direction of greatest decrease is

$$
\hat{u}=\frac{1}{5}\langle-4,3\rangle .
$$

If we go in this direction, the change is 5 . So we need a displacement of

$$
\begin{equation*}
\frac{1}{250}\langle-4,3\rangle . \tag{1.984,1.012}
\end{equation*}
$$

In other words we want
3. (20pts) (i) Find the critical points of $w=\frac{1}{3} x^{3}-x^{2}+2 x y+y^{2}$, and determine the type of the critical point closest to the origin.

Solution: $f_{x}=x^{2}-2 x+2 y$ and $f_{y}=2 x+2 y$. Setting these equal to zero we get $y=-x$ so that $x^{2}=4 x$, that is, either $x=0$ or $x=4$. There are two critical points, $(0,0)$ and $(4,-4) .(0,0)$ is closest to the origin.

$$
f_{x x}=2 x-2, \quad f_{x y}=2 \quad \text { and } \quad f_{y y}=2 .
$$

At $(0,0)$, we have
$A=f_{x x}(0,0)=-2 \quad B=f_{x y}(0,0)=2 \quad$ and $\quad C=f_{y y}(0,0)=2$. $A C-B^{2}=-4-4<0$. We have a saddle point.
(ii) Find the point of the region $y \geq 0, y \leq x$ at which w is the smallest. Justify your answer.

Solution: The boundary of the region is the positive x-axis and the line $y=x$ in the first quadrant. When x or y goes to infinity w goes to infinity. The only critical points belonging to the region are on the boundary. So the minimum is on the boundary.
If we plug in $y=x$, we get

$$
g(x)=f(x, x)=\frac{x^{3}}{3}+2 x^{2} .
$$

$g_{x}=x^{2}+4 x$. Either $x=0$ or $x=-4$. At $x=0, f(0,0)=g(0)=0$.
$x=-4$ is not a point of the region.
If we plug in $y=0$, we get

$$
h(x)=f(x, 0)=\frac{x^{3}}{3}-x^{2} .
$$

$h_{x}=x^{2}-2 x$. This has two critical points, one at $x=0$ and one at $x=2$. At $x=0, h(0)=f(0,0)=0$ and $h(2)=f(2,0)=8 / 3-4=$ $-4 / 3$.
So the minimum is at $(2,0)$.
4. (15pts) (i) Write down the equations to find the point on the surface $(x+y) z^{2}=1$ in the first octant, closest to the origin, using the method of Lagrange multipliers.

Solution: As usual we minimise the square of the distance and not the distance. So we want to

$$
\text { minimise } x^{2}+y^{2}+z^{2} \quad \text { subject to } \quad(x+y) z^{2}=1
$$

Therefore

$$
\begin{aligned}
2 x & =\lambda z^{2} \\
2 y & =\lambda z^{2} \\
2 z & =\lambda 2 z(x+y) \\
(x+y) z^{2} & =1
\end{aligned}
$$

(ii) Solve these equations to find the closest point.

Solution: First note that if x, y or z goes to infinity then the distance goes to infinity.
Comparing the first two equations, we have $x=y$. Since $z \neq 0$, the third equation yields $\lambda=1 /(2 x)$. Plugging this into the first equation gives $z^{2}=4 x^{2}$, so that $z=2 x$ (all the variables are positive). Using the fourth equation we get $8 x^{3}=1$ and so $x=1 / 2$. So $(1 / 2,1 / 2,1)$ is the only extreme point. Hence $(1 / 2,1 / 2,1)$ is the closest point to the origin.
5. (15pts) Let $w=f(u, v)$ where $u=x y$ and $v=x / y$. Using the chain rule, express

$$
\frac{\partial w}{\partial x} \quad \text { and } \quad \frac{\partial w}{\partial y}
$$

in terms of x, y, f_{u} and f_{v}.

Solution:

$$
\mathrm{d} u=y \mathrm{~d} x+x \mathrm{~d} y \quad \text { and } \quad \mathrm{d} v=\frac{1}{y} \mathrm{~d} x-\frac{x}{y^{2}} \mathrm{~d} y .
$$

So,

$$
\begin{aligned}
\mathrm{d} w & =f_{u} \mathrm{~d} u+f_{v} \mathrm{~d} v \\
& =f_{u}(y \mathrm{~d} x+x \mathrm{~d} y)+f_{v}\left(\frac{1}{y} \mathrm{~d} x-\frac{x}{y^{2}} \mathrm{~d} y\right) \\
& =\left(f_{u} y+\frac{f_{v}}{y}\right) \mathrm{d} x+\left(f_{u} x-\frac{x f_{v}}{y^{2}}\right) \mathrm{d} y .
\end{aligned}
$$

Therefore

$$
\frac{\partial w}{\partial x}=f_{u} y+\frac{f_{v}}{y} \quad \text { and } \quad \frac{\partial w}{\partial y}=f_{u} x-\frac{x f_{v}}{y^{2}} .
$$

6. (15pts) The two surfaces $x^{2}+y^{3}-z^{4}=1$ and $z^{3}+z x+x y=3$ intersect along a curve for which y is a function of x. Find

$$
\frac{d y}{d x} \quad \text { at } \quad\left(x_{0}, y_{0}, z_{0}\right)=(1,1,1)
$$

Solution: We use the method of differentials.
$2 x \mathrm{~d} x+3 y^{2} \mathrm{~d} y-4 z^{3} \mathrm{~d} z=0 \quad$ and $\quad(y+z) \mathrm{d} x+x \mathrm{~d} y+\left(3 z^{2}+x\right) \mathrm{d} z=0$.
At the point $\left(x_{0}, y_{0}, z_{0}\right)=(1,1,1)$, we have
$2 \mathrm{~d} x+3 \mathrm{~d} y-4 \mathrm{~d} z=0 \quad$ and $\quad 2 \mathrm{~d} x+\mathrm{d} y+4 \mathrm{~d} z=0$.
Adding both equations together, we eliminate $\mathrm{d} z$,

$$
4 \mathrm{~d} x+4 \mathrm{~d} y=0
$$

Solving, we get

$$
\frac{d y}{d x}=-1 .
$$

