18.02 HOMEWORK \#9, DUE THURSDAY NOVEMBER 8TH

Part A (15 Points)
(11/01) Notes V2; 15.3
$4 \mathrm{C} / 5 \mathrm{ab}, 6 \underline{\mathrm{ab}}$
$(11 / 02) 15.4$ to top of page 1043.
$4 \mathrm{D} / 1 \mathrm{ab} \underline{\mathrm{c}}, \underline{2}, \underline{3}, \underline{4}, 5$.
(11/06) Notes V3, V4.
$4 \mathrm{E} / 1 \underline{\mathrm{ac}}, \underline{2}, 3, \underline{4}, \underline{5}$.
$4 \mathrm{~F} / \underline{2}, 3, \underline{4}$.
Part B (29 points)

1. (Thursday 3 points: $1+2$) Continued from question 5 , Homework $\# 8$.
(iv) Show that the curl of \vec{F} is zero at any point of the plane where \vec{F} is defined (not just in the right half plane $x>0$).
(v) Is \vec{F} conservative over its entire domain of definition? Is it conservative over the right half plane $x>0$? Justify your answer.
2. (Thursday, 4 points: $2+2$) (i) Calculate the curl of $\vec{F}=r^{n}(x \hat{\imath}+y \hat{\jmath})$ (where $r=$ $\sqrt{x^{2}+y^{2}}$; start by finding formulas for r_{x} and r_{y}).
(ii) Whenever possible, find a potential g such that $\vec{F}=\nabla g$ (Hint: look for a potential of the form $g=g(r)$. Pay attention to rogue values of n)
3. (Friday 4 points: $2+2$) (i) Show that if a simple closed (positively oriented) curve C is the boundary of a region R then

$$
\operatorname{area}(R)=\oint_{C} x \mathrm{~d} y=\oint_{C}-y \mathrm{~d} x
$$

(ii) Find the area of the region between the x-axis and one arch of the cycloid with parametric equations

$$
x=a(t-\sin t) \quad \text { and } \quad y=a(1-\cos t)
$$

4. (Friday 6 points: $4+2$) (i) For what simple closed (positively oriented) curve C in the plane does the line integral

$$
\oint_{C}\left(x^{2} y+y^{3}-y\right) \mathrm{d} x+\left(3 x+2 y^{2} x+e^{y}\right) \mathrm{d} y
$$

have the largest possible value?
(ii) What is the maximum value?
5. (Friday 6 points: $3+3$) For each statement below, say whether it is TRUE or FALSE. If it is true, explain why; if false give an example to show that it is definitely false.
(i) If \vec{F} and \vec{G} are conservative vector fields, then $\vec{F}+\vec{G}$ is a conservative vector field.
(ii) If M and N are differentiable functions on the region R, given by $1<x^{2}+y^{2}<4$ and $M_{y}(1,-1) \neq N_{x}(1,-1)$, then $\langle M, N\rangle$ is not a gradient vector field.
6. (Tuesday, 6 points: $2+2+2$) (i) Let C be the unit circle, oriented counterclockwise, and consider the vector field $\vec{F}=x y \hat{\imath}+y^{2} \hat{\jmath}$. Which portions of C contribute positively to the flux of \vec{F} ? Which portions contribute negatively?
(ii) Find the flux of \vec{F} through C by direct calculation (evaluating a line integral). Explain you answer to (i).
(iii) Find the flux of \vec{F} through C using Green's theorem.

Part C: 0 Points

