# 18.02 HOMEWORK \#8, DUE THURSDAY NOVEMBER 1ST 

## Part A (16 Points)

(10/25) Notes CV; 14.9, examples 1-4.
$3 \mathrm{D} / \underline{1}, \underline{2}, 3, \underline{4}$.
(10/26) Notes V1; 15.2
4A/1bbd, 2abc, 3abcd, $\underline{4}$
4B/1abcd, 2ab, 3
(10/30) 15.3 to page 1033
$4 \mathrm{C} / 1 \underline{\mathrm{ab}}, 2,3 \underline{\mathrm{ab}}$
15.337

## Part B (22 points)

1. (Thursday, 5 points) $3 \mathrm{D} / 7$.
2. (Thursday, 5 points) Find the area of the ellipse

$$
(2 x+5 y-3)^{2}+(3 x-7 y+8)^{2}=1
$$

3. (Friday 4 points) A field line for a vector field is a connected curve such that at each point of the curve, a tangent vector to the curve is parallel to the value of the vector field. Find all field lines for the plane vector field $\vec{F}(x, y)=\left(1+x^{2}\right) \hat{\imath}+4 x \hat{\jmath}$.
4. (Friday 3 points) Consider the vector field $\vec{F}=\left(x^{2} y+\frac{1}{3} y^{3}\right) \hat{\imath}$ and let $C$ be the portion of the graph of $y=f(x)$ running from $\left(x_{1}, f\left(x_{1}\right)\right)$ to $\left(x_{2}, f\left(x_{2}\right)\right)$ (assume that $x_{1}<x_{2}$ and that $f$ takes positive values). Show that the line integral

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r},
$$

is equal to the polar moment of inertia of the region $R$ lying below $C$ and above the $x$-axis (with density $\delta=1$ ).
5. (Tuesday, 5 points: $1+2+2$ ) Consider the vector field

$$
\vec{F}(x, y)=\frac{-y \hat{\imath}+x \hat{\jmath}}{x^{2}+y^{2}}
$$

(i) Show that $\vec{F}$ is the gradient of the polar angle function

$$
\theta(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)
$$

defined on the right half plane $x>0$ (Note: this formula for $\theta$ does not make sense for $x=0$.)
(ii) Suppose that $C$ is a smooth curve in the right half plane $x>0$ joining two points $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$. Express

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r},
$$

in terms of the polar coordinates $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ of $A$ and $B$.
(iii) Compute directly, from the definition, the line integrals

$$
\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r} \quad \text { and } \quad \int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r},
$$

where $C_{1}$ is the upper half of the unit cirle running from $(1,0)$ to $(-1,0)$ and $C_{2}$ is the lower half of the unit cirle running from $(1,0)$ to $(-1,0)$.

Part C: 0 Points

