18.02 HOMEWORK \#6, DUE THURSDAY OCTOBER 18TH

> Part A (15 Points)
(10/11) Read: 13.9.
$2 \mathrm{I} / \underline{1}, \underline{3}$.
(10/12) Read: Notes N.
$2 \mathrm{~J} / \underline{1}, \underline{2}, 3 \mathrm{ab}, 4 \underline{\mathrm{~b}}, 5 \underline{\mathrm{ab}}, 6,7$.
(10/16) Read: Notes P; 14.1, focus on iterated integrals pages 942-944, 14.2, focus on evaluation of double integrals pages $950-952,14.3$ calculation of area and volume; Notes I.1.
$2 \mathrm{~K} / 1,2,3, \underline{4}, \underline{5}$.
3A/1, 2abce, 3abu, 4b́, 5abbc, 6.

Part B (17 Points)

1. (Thursday, 6 points) Find the maximum and minimum values of $x^{2} y$ where x and y are positive real numbers satisfying $x y^{2}=5$.
2. (Friday, 4 points) Suppose that $g(x, y)=c$ is a constant and $w=f(x, y, z)$. Which of the following makes sense as the derivative

$$
\frac{\partial w}{\partial x} ?
$$

(When it does make sense, compute the derivative in terms of the formal derivatives f_{x}, f_{y}, f_{z}, g_{x} and g_{y}. If it does not make sense, explain why it doesn't.)

$$
\begin{equation*}
\left(\frac{\partial w}{\partial x}\right)_{x} . \tag{i}
\end{equation*}
$$

(ii)

$$
\left(\frac{\partial w}{\partial x}\right)_{y} .
$$

(iii)

$$
\left(\frac{\partial w}{\partial x}\right)_{z} .
$$

3. (Friday, 4 points: $2+2$)
(i) Suppose that $t=\sin (x+y)$ and $w=x^{3} y t$. Find

$$
\left(\frac{\partial w}{\partial t}\right)_{x}
$$

(ii) Consider the curve of points (x, y, z) satisfying $x^{5}+y z=3$ and $x y^{2}+y z^{2}+z x^{2}=7$. Use the method of total differentials to find $\frac{d x}{d y}$ at the point $(x, y, z)=(1,1,2)$.
4. (Tuesday, 3 points: $1+2$)

Evaluate

$$
\int_{0}^{\infty} \frac{e^{-x}-e^{-a x}}{x} \mathrm{~d} x
$$

as follows:
(i) Compute

$$
\int_{1}^{a} e^{-x y} \mathrm{~d} y
$$

(ii) Use (i) to rewrite the integral we want to compute as a double integral. Evaluate the double integral by switching the order of ingegration.

Part C: 0 Points

Say that a rectangle is semi-integral if the length of at least one side is a whole number. Show that if a rectangle can be subdivided into finitely many semi-integral rectangles then the original rectangle is semi-integral. (Hint: compute

$$
\int_{a}^{b} \int_{c}^{d} \cos 2 \pi x \cos 2 \pi y \mathrm{~d} x \mathrm{~d} y
$$

)

