18.02 HOMEWORK \#5, DUE THURSDAY OCTOBER 11TH

Part A (16 Points)
(10/04) Read: 13.6, pages 889-892; 13.7. (Beware of the book's annoying habit of mixing differentials $\mathrm{d} f$ with small changes in $f, \Delta f$; equations (5), (7) and (9) don't really make sense. Use (6), (8) and (10) instead).
$2 \mathrm{C} / 1 \underline{\mathrm{ab}} \mathrm{c} \underline{d}, \underline{2}, \underline{3}, 5 \underline{\mathrm{ab}}$.
$2 \mathrm{E} / 1 \mathrm{abc}, 2 \mathrm{bc}, 5,8 \underline{a b}$.
(10/05) Read: 13.8.
$2 \mathrm{D} / 1 \underline{\mathrm{abb}}, 2 \underline{\mathrm{~b}}, 3 \underline{\mathrm{a}}, \underline{8}, 9$.
$2 \mathrm{E} / 7$.
(10/09) Holiday.
Part B (15 points)

1. (Thursday, 6 points: $1+2+2+1$)
(i) Let $w=f(x, y)$ and suppose we change from rectangular to polar coordinates,

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta .
\end{aligned}
$$

Using the chain rule, derive the change of variables formula in matrix form:

$$
A\binom{w_{x}}{w_{y}}=\binom{w_{r}}{w_{\theta}}
$$

where the entries of the 2×2 matrix A are functions of r and θ.
(ii) Using the formulae

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \theta=\tan ^{-1} y / x
\end{aligned}
$$

derive the changes of variables formula the other way,

$$
B\binom{w_{r}}{w_{\theta}}=\binom{w_{x}}{w_{y}}
$$

where the entries of the 2×2 matrix B are functions of x and y.
(iii) Check that $B=A^{-1}$ by computing the product $A B$ and changing variables.
(iv) If $w_{r}=2$ and $w_{\theta}=10$ at the point with polar coordinates $r=5$ and $\theta=\pi / 2$, compute w_{x} and w_{y} at the same point.
2. (Friday, 4 points: $2+1+1$) Let

$$
f(x, y)=x^{3}-x y^{2}-4 x^{2}+3 x+x^{2} y
$$

(i) Find the maximum and minimum values of the directional derivative

$$
\left.\frac{d f}{d s}\right|_{\hat{u}}
$$

at $(1 / 2,1)$ as \hat{u} varies.
(ii) In which directions \hat{u} does the maximum and minimum occur?
(iii) Find the directions \hat{u} for which the directional derivative is zero.
3. (Friday, 5 points: $2+3$)
(i) Find the direction from $(2,-1,1)$ for which the function $g(x, y, z)=x^{2}+y z$ decreases the fastest.
(ii) Follow the line in the direction you found in part (i) to estimate, using linear approximation, the location of the point closest to $(2,-1,1)$ at which $g=2$. Do not use a calculator; express your answer using fractions. Next, use a calculator to evaluate g at your point. (The value should be reasonably close to 2 .)

Part C: 0 PoInts

