18.02 HOMEWORK \#11, DUE THURSDAY NOVEMBER 29TH

Part A (17 Points)

(11/15) Notes I4, CV.4, G; 14.7 pages 990-992.
$12.8 / 9,11,15,27, \underline{55}$ (note that there is a mistake in the book; secant should be cosecant.)
$5 \mathrm{~B} / 1 \mathrm{abc}, \underline{2}, \underline{3}, 4$ abc
5C/2, 3, 4.
(11/16) Notes V8, V9.
$6 \mathrm{~A} / 1,2,3,4$
$6 \mathrm{~B} / \underline{1}, \underline{2}, \underline{3}, 4, \underline{6}, \underline{8}$.
(11/20) V10, 15.6
$6 \mathrm{C} / 1 \mathrm{a}, 2, \underline{3}, \underline{5}, 6,7 \underline{\mathrm{a}}, \underline{8}$.
(11/27) V10, 15.6, pages 1054-1055.

Part B (23 Points)

1. (Thursday 4 points) Write down and evaluate integrals, in both cylindrical and spherical coordinates, for the average distance from a point of the solid sphere of radius a to a fixed point O on the surface of the sphere. (Hint: put the point O at the origin and position the sphere so the origin is the south pole of the sphere.)
2. (Thursday 4 points) $5 \mathrm{C} / 5$.
3. (Friday 2 points) $6 \mathrm{~B} / 7$.
4. (Tuesday 8 points: $1+2+3+2$) Consider a tetrahedron with vertices at $P_{0}=(0,0,0)$, $P_{1}=(1,0,1), P_{2}=(1,0,-1)$ and $P_{3}=(1,1,0)$.
(i) Which two faces are exchanged by the symmetry $z \longrightarrow-z$?
(ii) Find normals to each face (no need to write down unit normals) pointing outwards.
(iii) Calculate the flux of $\vec{F}=-y \hat{\imath}$ through each face.
(iv) Check the divergence theorem for this vector field and this solid, by computing each side of the formula.
5. (Tuesday 5 points: $2+1+2$) Let

$$
f(x, y, z)=\frac{1}{\rho}=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}
$$

(i) Calculate $\vec{F}=\nabla f$ and describe geometrically the vector field \vec{F}.
(ii) Evaluate the flux of \vec{F} over the sphere of radius a centred at the origin.
(iii) Show that $\operatorname{div} \vec{F}=0$. Does the answer to (ii) contradict the divergence theorem? Explain.

Part C: 0 Points

Use the (3×3) Jacobian to give another way to see that

$$
\Delta V \approx \rho^{2} \sin \phi \Delta \theta \Delta \phi \Delta \rho .
$$

