18.02 HOMEWORK #11, DUE THURSDAY NOVEMBER 29TH

PART A (17 POINTS)

(11/15) Notes I4, CV.4, G; 14.7 pages 990-992.

12.8/9, 11, 15, 27, $\underline{55}$ (note that there is a mistake in the book; secant should be cosecant.) 5B/1abc, 2, 3, 4abc 5C/2, 3, 4. (11/16) Notes V8, V9. 6A/1, 2, 3, 4 6B/1, 2, 3, 4, 6, 8. (11/20) V10, 15.6 6C/1a, 2, 3, 5, 6, 7a, 8.

(11/27) V10, 15.6, pages 1054-1055.

PART B (23 POINTS)

1. (Thursday 4 points) Write down and evaluate integrals, in both cylindrical and spherical coordinates, for the average distance from a point of the solid sphere of radius a to a fixed point O on the surface of the sphere. (*Hint: put the point O at the origin and position the sphere so the origin is the south pole of the sphere.*)

2. (Thursday 4 points) 5C/5.

3. (Friday 2 points) 6B/7.

4. (Tuesday 8 points: 1+2+3+2) Consider a tetrahedron with vertices at $P_0 = (0, 0, 0)$, $P_1 = (1, 0, 1)$, $P_2 = (1, 0, -1)$ and $P_3 = (1, 1, 0)$.

(i) Which two faces are exchanged by the symmetry $z \rightarrow -z$?

(ii) Find normals to each face (no need to write down unit normals) pointing outwards.

(iii) Calculate the flux of $\vec{F} = -y\hat{i}$ through each face.

(iv) Check the divergence theorem for this vector field and this solid, by computing each side of the formula.

5. (Tuesday 5 points: 2+1+2) Let

$$f(x, y, z) = \frac{1}{\rho} = (x^2 + y^2 + z^2)^{-1/2}.$$

(i) Calculate $\vec{F} = \nabla f$ and describe geometrically the vector field \vec{F} .

(ii) Evaluate the flux of \vec{F} over the sphere of radius *a* centred at the origin.

(iii) Show that div $\vec{F} = 0$. Does the answer to (ii) contradict the divergence theorem? Explain.

Part C: 0 points

Use the (3 \times 3) Jacobian to give another way to see that $\Delta V\approx\rho^2\sin\phi\Delta\theta\Delta\phi\Delta\rho.$