
4. Grassmannians

We first treat Grassmannians classically. Fix an algebraically closed
field K. We want to parametrise the space of k-planes W in a vector
space V . The obvious way to parametrise k-planes is to pick a basis
v1, v2, . . . , vk for W . Unfortunately this does not specify W uniquely,
as the same vector space has many different bases. However, the line
spanned by the vector

ω = v1 ∧ v2 ∧ · · · ∧ vk ∈
k∧
V,

is invariant under re-choosing a basis.

Definition 4.1. The Grassmannian G(k, V ) of k-planes in V is

the set of rank one vectors in P(
∧k V ).

We set G(k, n) = G(k,Kn) and G(k, n) = G(k+1, n+1). The latter
may be thought of as the set of k-planes in Pn.

Lemma 4.2. The Grassmannian is a constructible subset of PN .

Proof. Consider the rational map

k∏
P(V ) 99K P(

k∧
V ),

which sends ([v1], [v2], . . . [vk]) to [v1∧v2∧· · ·∧vk]. This map is defined
(at least) on the locus where the vectors v1, v2, . . . , vk are independent,
which is an open subset of the product. But the image of a constructible
subset is constructible, by Chevalley’s Theorem. �

In fact we will see later that the Grassmannian is a closed subset
of PN , so that it is a projective variety. The embedding of the Grass-
mannian inside P(

∧k V ) is known as the Plücker embedding. If we

choose a basis e1, e2, . . . , en for V , then a general element of
∧k V is

given by ∑
I

pIeI ,

where I ranges over all collections of increasing sequences of integers
between 1 and n,

i1 < i2 < · · · < ik,

and eI is shorthand for the wedge of the corresponding vectors,

ei1 ∧ ei2 ∧ · · · ∧ eik .

The coefficients pI are naturally coordinates on P(
∧k V ), which are

known as the Plücker coordinates.
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There is another way to look at the construction of the Grassman-
nian, which is very instructive. If we pick a basis e1, e2, . . . , en for V ,
then let A be the k × n matrix whose rows are v1, v2, . . . , vk, in this
basis. As before, this matrix does not uniquely specify W ⊂ V , since
we could pick a new basis for W . However the operation of picking a
new basis corresponds to taking linear combinations of the rows of our
matrix which, in turn, is the same as multiplying our matrix by a k×k
invertible matrix on the left. In other words the Grassmannian is the
set of equivalence classes of k×n matrices under the action of GLk(K)
by multiplication on the left.

It is not hard to connect the two constructions. Given the matrix
A, then form all possible k× k determinants. Any such determinant is
determined by specifying the columns to pick, which we indicate by a
multindex I. In terms of

∧k V , this is the same as picking a basis and
expanding our vector as a sum∑

I

pIeI ,

where, as before, eI is the wedge of the corresponding vectors. For
example consider the case k = 2, n = 4 (lines in P3). We have a matrix

A =

(
a11 a12 a13 a14

a21 a22 a23 a24

)
.

The corresponding plane is given as the span of the rows. We can form
six two by two determinants. Clearly these are invariant, up to scalars,
under the action of GL2(K).

The Grassmannian has a natural cover by open affine subsets, iso-
morphic to affine space, in much the same way that projective space
has a cover by open affines, isomorphic to affine space. Pick a linear
space U of dimension n − k, and consider the set of linear spaces W
of dimension k which are complementary to U , that is, which meet U
only at the origin. Identify V with the sum V/U + U . Then a linear
space W complementary to U can be identified with the graph of a
linear map

V/U −→ U.

It follows that the subset of all linear spaces W complementary to U
is equal to

Hom(V/U, U) ' Kk(n−k) ' Ak(n−k)
K .

Another way to see this is as follows. Consider the first k× k minor.
Suppose that the corresponding determinant is non-zero, that is, the
corresponding vectors are independent. In this case the k × k minor
is equivalent to the identity matrix, and the only element of GLk(K)
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which fixes the identity, is the identity itself. Thus we have a canonical
representative of the matrix A for the linear space W . We are free to
choose the other k × (n − k) block of the matrix, which gives us an
affine space of dimension k(n− k). The condition that the first k × k
minor has non-zero determinant is an open condition, and this gives us
an open affine cover by affine spaces of dimension k(n− k). Note that
the condition that the first k×k minor is invertible is equivalent to the
condition that we do not meet the space given by the vanishing of the
first k coordinates, which is indeed a linear space of dimension n− k.

It is interesting to write down the equations cutting out the image of
the Grassmannian under the Plücker embedding, although this turns
out to involve some non-trivial multilinear algebra. The problem is to
characterise the set of rank one vectors ω in

∧k V .

Definition 4.3. Let ω ∈
∧k V . We say that ω is divisible by v ∈ V

if there is an element φ ∈
∧k V such that ω = φ ∧ v.

Lemma 4.4. Let ω ∈
∧k V .

Then ω is divisible by v iff ω ∧ v = 0.

Proof. This is easy. If ω = φ ∧ v, then

ω ∧ v = φ ∧ v ∧ v
= 0.

To see the other direction, extend v to a basis v = e1, e2, . . . , en of
V . Then we may expand ω in this basis.

ω =
∑

pIeI .

On the other hand

eI ∧ v =

{
eJ if 1 /∈ I, where J = {1} ∪ I
0 if 1 ∈ I.

Thus ω ∧ v = 0 iff pI 6= 0 implies 1 ∈ I iff v divides ω. �

Lemma 4.5. Let ω ∈
∧k V .

Then ω has rank at most one iff the linear map

φ(ω) : V −→
k+1∧

V v −→ ω ∧ v,

has rank at most n− k.

Proof. Indeed φ(ω) has rank at most n − k iff the linear subspace of
vectors dividing ω has dimension at least k iff ω has rank one. �
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Now the map

φ :
k∧
V −→ Hom(V,

k+1∧
V ),

is clearly linear. Thus the map φ can be interpreted as a matrix whose
entries are linear coordinates on

∧k V and the locus we want is given
by the vanishing of the (n− k + 1)× (n− k + 1) minors.

Unfortunately the equations we get in this way won’t be best possi-
ble. In particular they won’t generate the ideal of the Grassmannian
(they only cut out the Grassmannian set theoretically). To find equa-
tions that generate the ideal, we have to work quite a bit harder.

Lemma 4.6. There is a natural isomorphism, up to scalars, between∧k V and
∧n−k V ∗, which preserves the rank.

Proof. There is a natural pairing

k∧
V ×

n−k∧
V −→

n∧
V,

which sends

(ω, η) −→ ω ∧ η.
As
∧n V is one dimensional, it is non-canonically isomorphic to K and

so
∧k V is isomorphic to (

∧n−k V )∗, up to scalars. But (
∧n−k V )∗ is

isomorphic to
∧n−k V ∗. �

Given ω, let ω∗ be the corresponding element of
∧n−k V ∗. Now there

is a natural map

ψ(ω∗) : V ∗ −→
n−k+1∧

V ∗

which sends

v∗ −→ ω∗ ∧ v∗.
Further ω has rank one iff ω∗ has rank one, which occurs if and only if
ψ(ω∗) has rank k.

Moreover the kernel of φ(ω), namely W , is precisely the annihilator
of the kernel of ψ(ω∗). Dualising, we get maps

φ∗(ω) :
k+1∧

V ∗ −→ V ∗ and ψ∗(ω) :
n−k+1∧

V −→ V,

whose images annihilate each other.
Thus ω has rank one iff for every α ∈

∧k+1 V ∗ and β ∈
∧n−k+1 V ,

Ξα,β(ω) = 〈φ∗(ω)(α), ψ∗(ω)(β)〉 = 0.
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Now Ξα,β are quadratic polynomials, which are known as the Plücker
relations. It turns out that they do indeed generate the ideal of the
Grassmannian.

It is interesting to see what happens when k = 2:

Lemma 4.7. Let ω ∈
∧2 V .

Then ω has rank one iff ω ∧ ω = 0.

Proof. One direction is clear, in fact for every k, if ω has rank one then
ω ∧ ω = 0.

To see the other direction, we need to prove that if ω has rank at
least two, then ω∧ω 6= 0. First observe that if ω has rank at least two,
then we may find a projection down to a vector space of dimension
four, such that the image has rank two. Thus we may assume that V
has dimension four and ω has rank two. In this case, up to change of
coordinates,

ω = e1 ∧ e2 + e3 ∧ e4,

and by direct computation, ω ∧ ω is not zero. �

Now

ω =
∑
i,j

pi,jei ∧ ej.

Suppose that n = 4. If we expand

ω ∧ ω,
then everything is a multiple of e1∧e2∧e3∧e4. We need to pick a term
from each bracket, so that the union is {1, 2, 3, 4}. In other words, the
coefficient of the expansion is a sum over all partitions of {1, 2, 3, 4}
into two equal parts. By direct computation, we get

p12p34 − p13p24 + p14p23.

In particular, G(1, 3) is a quadric in P5, of maximal rank. Unfor-
tunately this also makes it clear that the Grassmannian is not a toric
variety (if it were, it would be defined by a binomial, not a trinomial).
It turns out that the Grassmannian is close to a toric variety (it is a
spherical variety). In fact the algebraic group GLn(V ) acts transitively
on G(k, V ). The stabiliser subgroup H of the k-plane W ⊂ V spanned
by the first k vectors is given by invertible matrices of the form(

A B
0 D

)
.

So

G(k, V ) = GLn(V )/H.
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As with the space of conics in P2, the main point of the Grassman-
nian, is that it comes with a universal family. We first investigate what
this means in the baby case of quasi-projective varieties before we move
on to the more interesting case of schemes.

Definition 4.8. A family of k-planes in Pn over B is a closed
subset Σ ⊂ B × Pn such that the fibres, under projection to the first
factor, are identified with k-planes in Pn.

Definition 4.9. Let F be the functor from the category of varieties to
the category of sets, which assigns to every variety, the set of all (flat)
families of k-planes in Pn, up to isomorphism.

Theorem 4.10. The Grassmannian G(k, n) represents the functor F .

It might help to unravel some of the definitions. Suppose that we are
given a variety B. Essentially we have to show that there is a natural
bijection of sets,

F (B) = Hom(B,G(k, n)).

The set on the left is nothing more than the set of all families of k-planes
in Pn, with base B. In particular given a morphism f : B −→ G(k, n),
we are supposed to produce a family of k-planes over B. Here is how
we do this. Suppose that we have constructed the natural family of
k-planes over G(k, n),

Σ ⊂ - G(k, n)× Pn

G(k, n),
?

so that the fibre over [Λ] ∈ G(k, n) is exactly the set,

{[Λ]} × Λ ⊂ {[Λ]} × Pn

that is, the k-plane Λ sitting inside Pn. Then we obtain a family of
k-planes over B, simply by taking the fibre square,

Σ′ - Σ

B
?

f- G(k, n).
?

For this reason, we call the family Σ −→ G(k, n) the universal family.
Note that we can reverse this process. Suppose that G(k, n) represents
the functor F . By considering the identity morphism G(k, n) −→
G(k, n), we get a family Σ −→ G(k, n), which is universal, in the sense
that to obtain any other family, over any other base, we simply pullback
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Σ along the morphism f : B −→ G(k, n), whose existence is guaranteed
by the universal property of G(k, n) (that is, that it represents the
functor). To summarise the previous discussion: to prove (4.10) it
suffices to construct the natural family over G(k, n) and prove that it
is the universal family.

We won’t prove (4.10) here. We will simply observe that the natural
family exists, without proving that it is in fact also universal. Recall
that the Grassmannian is by definition the set of all rank one elements
ω of

∧k+1Kn+1. The universal family is then the set

{ (ω, v) ∈
k+1∧

V × V |ω ∧ v = 0 },

which is easily seen to be algebraic.
Before we go deeper into the geometry of the Grassmannian, it is

interesting to note that the space of conics satisfies the same universal
property. Suppose P2 = P(V ). Then P5 = P(Sym2(V ∗)) represents the
functor G which assigns to every variety B, the set of all (flat) families
of conics in P2, over B. As before the key thing is to show that the
natural family of conics in P2 over P5, is in fact a universal family.
As before we won’t show that the natural family is universal, but we
observe that the natural family does exist. Indeed,

aX2 + bY 2 + cZ2 + dY Z + eXZ + fY Z,

is bihomogeneous of degree (1, 2) and cuts out the natural family.
Using the diagram,

Σ
q- Pn

G(k, n),

p

?

one can make some interesting constructions. For example, suppose
we are given a closed subset X ⊂ Pn. Then p(q−1(X)) is a closed
subvariety of G(k, n), consisting of all k-planes in Pn which intersect
X. The first interesting case is that of a curve C in P3. In this case the
general line does not meet the curve C. In fact we get a codimension
one subvariety of G(1, 3). Conversely suppose we are given a closed
subvariety Φ of G(k, n). Then q(p−1(Φ)) is a closed subvariety of Pn,
equal to

X =
⋃
Λ∈Φ

Λ.

Note that X has the interesting property that through every point of
X there passes a k-plane. Classically such varieties are called scrolls.
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Perhaps the first interesting example of a scroll is the quadric surface
P1 × P1 ⊂ P3.

Let us give some more constructions of scrolls. Suppose that we are
given two subvarieties X and Y of Pn. Define a rational map

φ : X × Y 99K G(1, n),

by sending
([v], [w]) −→ [v ∧ w].

The subvariety in Pn, corresponding to the image, is called the join.
It is the closure of the union of all lines obtained by taking the span
of a point of X and a point of Y . Note that φ is a morphism if X and
Y are disjoint and in this case we don’t need to take the closure. If
we take X = Y , then we get the secant variety of X, which is the
closure of all the lines which join two points of X.

Suppose that we are given a morphism f : X −→ Y , with the prop-
erty that there is a point x ∈ X such that f(x) 6= x. Consider the
morphism

ψ : X −→ G(1, n),

which is the composition of

X −→ X × Y given by x −→ (x, f(x)),

and the morphism φ above. As before this gives us a scroll in Pn, by
taking the image. Note that all of this generalises to products of k
varieties.

Definition 4.11. Pick complimentary linear spaces Λ1,Λ2, . . . ,Λk of
dimensions n1, n2, . . . , nk in Pn, where

n+ 1 =
∑
i

(ni + 1).

Pick rational normal curves Ci ⊂ Λi in and pick identifications

φi : P1 −→ Ci.

Let
X =

⋃
p∈P1

〈φ1(p), φ2(p), . . . , φk(p)〉.

Then X is called a rational normal scroll.

It is interesting to give some examples. Suppose that we pick two
skew lines l and m in P3. Then we get a surface in P3, swept out
by lines, meeting l and m. Suppose we pick coordinates such that
l = V (X, Y ) and m = V (Z,W ). Identify (0, 0, a, b) with (a, b, 0, 0).
Then it is not hard to see that we get the surface V (XW − Y Z).
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The next case is when we take a line and a complimentary plane in
P4. The resulting surface in P4 is called the cubic scroll.

Let us now investigate how to work with the Grassmannian in the
case of schemes. As in the case of affine and projective space we can
define a scheme over Spec Z and use this scheme to define the Grass-
mannian over any base scheme. In fact the equations defining the
Grassmannian over an algebraically closed field have integral coeffi-
cients (better still, presumably 0 and ±1) and this defines the Grass-
mannian as a closed subscheme of PNZ . However this somehow begs the
question; what role does the Grassmannian play over an arbitrary base
scheme S?. We want to extend the functor F , which is a priori defined
only as a functor from varieties over K to (Sets), to a functor from
the category of schemes over S to the category (Sets). To answer this
question, we need to decide what we mean by a family of k-planes in
PnS. It turns out to be easier to answer what it means to have a family
of vector subspaces of dimension k + 1.
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