
2. Toric varieties

First some stuff about algebraic groups:

Definition 2.1. Let G be a group. We say that G is an algebraic
group if G is a quasi-projective variety and the two maps m : G×G −→
G and i : G −→ G, where m is multiplication and i is the inverse map,
are both morphisms.

It is easy to give examples of algebraic groups. Consider the group
G = GLn(K). In this case G is an open subset of An2

, the complement
of the zero locus of the determinant, which expands to a polynomial.
Matrix multiplication is obviously a morphism, and the inverse map is
a morphism by Cramer’s rule. Note that there are then many obvious
algebraic subgroups; the orthogonal groups, special linear group and so
on. Clearly PGLn(K) is also an algebraic group; indeed the quotient of
an algebraic group by a closed normal subgroup is an algebraic group.
All of these are affine algebraic groups.

Definition 2.2. Let G be an algebraic group. If G is affine then we say
that G is a linear algebraic group. If G is projective and connected
then we say that G is an abelian variety.

Note that any finite group is an algebraic group (both affine and
projective). It turns out that any affine group is always a subgroup of
a matrix group, so that the notation makes sense.

Definition 2.3. The group Gm is GL1(K). The group Ga is the sub-
group of GL2(K) of upper triangular matrices with ones on the diago-
nal.

Note that as a group Gm is the set of units in K under multiplication
and Ga is equal to K under addition, and that both groups are affine
of dimension 1; in fact they are the only linear algebraic groups of
dimension one, up to isomorphism.

Note that if we are given a linear algebraic group G, we get a Hopf
algebra A. Indeed if A is the coordinate ring ofG, then A is aK-algebra
and there are maps

A −→ A⊗ A and A −→ A,

induced by the multiplication and inverse map for G.
It is not hard to see that the product of two algebraic groups is an

algebraic group.

Definition 2.4. The algebraic group Gk
m is called a torus.
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So a torus in algebraic geometry is just a product of copies of Gm.
In fact one can define what it means to be a group scheme:

Definition 2.5. Let π : X −→ S be a morphism of schemes. We
say that X is a group scheme over S, if there are three morphisms,
e : S −→ X, µ : X ×

S
X −→ X and i : X −→ X over S which satisfy

the obvious axioms.

We can define a group scheme Gm,Spec Z over Spec Z, by taking

Spec Z[x, x−1].

Given any scheme S, this gives us a group scheme Gm,S over S, by
taking the fibre square. In the case when S = Spec k, k an algebraically
closed field, then Gm,Spec k is t(Gm), the scheme associated to the quasi-
projective variety Gm. We will be somewhat sloppy and not be too
careful to distinguish the two cases.

Similarly we can take

Ga,Spec Z = Spec Z[x].

Definition 2.6. Let G be an algebraic group and let X be a variety
acted on by G, π : G×X −→ X. We say that the action is algebraic
if π is a morphism.

For example the natural action of PGLn(K) on Pn is algebraic, and
all the natural actions of an algebraic group on itself are algebraic.

Definition 2.7. We say that a quasi-projective variety X is a toric
variety if X is irreducible and normal and there is a dense open subset
U isomorphic to a torus, such that the natural action of U on itself
extends to an action on the whole of X.

For example, any torus is a toric variety. An
k is a toric variety. The

natural torus is the complement of the coordinate hyperplanes and the
natural action is as follows

((t1, t2, . . . , tn), (a1, a2, . . . , an)) −→ (t1a1, t2a2, . . . , tnan).

More generally, Pn is a toric variety. The action is just the natural
action induced from the action above. A product of toric varieties is
toric.

One thing to keep track of are the closures of the orbits. For the torus
there is one orbit. For affine space and projective space the closure of
the orbits are the coordinate subspaces.

Definition 2.8. Let M be a lattice and let N = Hom(M,Z) be the
dual lattice.
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A strongly convex rational polyhedral cone σ ⊂ NR = N ⊗
Z

R
is

• a cone, that is, if v ∈ σ and λ ∈ R, λ ≥ 0 then λv ∈ σ;
• polyhedral, that is, σ is the intersection of finitely many half

spaces;
• rational, that is, the half spaces are defined by equations with

rational coefficients;
• strongly convex, that is, σ contains no linear spaces other

than the origin.

A fan in N is a set F of finitely many strongly convex rational
polyhedra, such that

• every face of a cone in F is a cone in F , and
• the intersection of any two cones in F is a face of each cone.

One can reformulate some of the parts of the definition of a strongly
rational polyhedral cone. For example, σ is a polyhedral cone if and
only if σ is the intersection of finitely many half spaces which are defined
by homogeneous linear polynomials. σ is a strongly convex polyhedral
cone if and only if σ is a cone over finitely many vectors which lie in a
common half space (in other words a strongly convex polyhedral cone
is the same as a cone over a polytope). And so on.

We will see that the set of toric varieties, up to isomorphism, are in
bijection with fans, up to the action of SL(n,Z).

We first give the recipe of how to go from a fan to a toric variety.
Suppose we start with σ. Form the dual cone

σ̌ = {u ∈MR | 〈u, v〉 ≥ 0, v ∈ σ }.
Now take the integral points,

Sσ = σ̌ ∩M.

Then form the (semi)group algebra,

Aσ = K[Sσ].

Finally form the affine variety,

Uσ = SpecAσ.

Given a semigroup S, to form the semigroup algebra K[S], start
with a K-vector space with basis χu, as u ranges over the elements of
S. Given u and v ∈ S define the product

χu · χv = χu+v,

and extend this linearly to the whole of K[S].
3



Example 2.9. For example, suppose we start with M = Z2, σ the
cone spanned by (1, 0) and (0, 1), inside NR = R2. Then σ̌ is spanned
by the same vectors in MR. Therefore Sσ = N2, the group algebra is
C[x, y] and so we get A2. Similarly if we start with the cone spanned
by e1, e2, . . . , en inside NR = Rn then we get An.

Now suppose we start with σ = {0} in R. Then σ̌ is the whole of
MR, Sσ is the whole of M = Z and so C[M ] = C[x, x−1]. Taking Spec
we get the torus Gm.

More generally we always get a torus of dimension n if we take the
origin in Rn. Note that if τ ⊂ σ is a face then σ̌ ⊂ τ̌ is also a face so
that Uτ ⊂ Uσ is an open subset. In fact

Lemma 2.10. Let τ ⊂ σ ⊂ NR be a face of the cone σ.
Then we may find u ∈ Sσ such that

(1) τ = σ ∩ u⊥,
(2)

Sτ = Sσ + Z+(−u),

(3) Aτ is a localisation of Aσ, and
(4) Uτ is a principal open subset of Uσ.

Proof. The fact that every face of a cone is cut out by a hyperplane is
a standard fact in convex geometry and this is (1). For (2) note that
the RHS is contained in the LHS by definition of a cone. If w ∈ Sτ
then w+ p ·u is in σ̌ for any p sufficiently large. If we take p to be also
an integer this shows that w belongs to the RHS.

Let χu be the monomial corresponding to u. (2) implies that Aτ is
the localisation of Aσ along χu. This is (3) and (4) is immediate from
(3). �

Since the cone {0} is a face of every cone, the affine scheme associated
to a cone always contains a torus, which is then dense. In particular
the affine scheme associated to a cone is always irreducible.

Definition 2.11. Let S ⊂ T be a subsemigroup of the semigroup T .
We say that S is saturated in T if whenever u ∈ T and p · u ∈ S for
some positive integer p, then u ∈ S.

Given a subsemigroup S ⊂ M saturation is always with respect to
M .

Lemma 2.12. Suppose that S ⊂M .
Then K[S] is integrally closed if and only if S is saturated.
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Proof. Suppose that K[S] is integrally closed.
Pick u ∈M such that v = p · u ∈ S for some positive integer p. Let

b = χu and a = χv ∈ K[S]. Then

bp = χpu = χv = a,

so that b is a root of the monic polynomial xp − a ∈ K[S][x]. As we
are assuming that K[S] is integrally closed this implies that b ∈ K[S]
which implies that u ∈ S. Thus S is saturated.

Now suppose that S is saturated. As K[S] ⊂ K[M ] and the latter
is integrally closed, the integral closure L of K[S] sits in the middle,
K[S] ⊂ L ⊂ K[M ]. The torus acts naturally on K[M ] and this ac-
tion fixes K[S], so that it also fixes L. L is therefore a direct sum of
eigenspaces, which are all one dimensional (a set of commuting diag-
onalisable matrices are simultaneously diagonalisable) that is L has a
basis of the form χu, as u ranges over some subset of M . It suffices to
prove that u ∈ S.

Since b = χu is integral over K[S], we may find k1, k2, . . . , kp ∈ K[S]
such that

bp + k1b
p−1 + · · ·+ kp = 0.

We may assume that every term is in the same eigenspace as bp. We
may also assume that kp 6= 0. As bp and kp 6= 0 belong to the same
eigenspace, which is one dimensional, we get bp ∈ K[S]. Thus pu ∈ S
and so u ∈ S as S is saturated. Thus b ∈ K[S] and K[S] is integrally
closed. �

Note that Sσ is automatically saturated, as σ̌ is a rational polyhedral
cone. In particular Uσ is normal.

Example 2.13. Suppose that we start with the semigroup S generated
by 2 and 3 inside M = Z. Then

K[S] = K[t2, t3] = K[x, y]/〈y2 − x3〉.

Note that this does come with an action of Gm;

(t, x, y) −→ (t2x, t3y).

However the curve V (y2 − x3) ⊂ A2 is not normal.

In fact some authorities drop the requirement that a toric variety is
normal.

An action of the torus corresponds to a map of algebras

Aσ −→ Aσ ⊗
K
A0,
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which is naturally the restriction of

A0 −→ A0 ⊗
K
A0.

It is straightforward to check that the restricted map does land in
Aσ ⊗

K
A0.

Lemma 2.14 (Gordan’s Lemma). Let σ ⊂ MR be a strongly convex
rational cone.

Then Sσ is a finitely generated semigroup.

Proof. Pick vectors v1, v2, . . . , vn ∈ Sσ which generate the cone σ̌. Con-
sider the set

K = { v ∈M | v =
∑

tivi, ti ∈ [0, 1] }.

Then K is compact. As M is discrete K ∩M is finite. I claim that
the elements of K ∩M generate the semigroup Sσ. Pick u ∈ Sσ. Since
u ∈ σ̌ and v1, v2, . . . , vn generate the cone, we may write

u =
∑

λivi,

where λi ∈ Q. Let ni = xλiy. Then

u−
∑

nivi =
∑

(λi − xλiy)vi ∈ K ∩M.

As v1, v2, . . . , vn ∈ K ∩M the result follows. �

Gordan’s lemma (2.14) implies that Uσ is of finite type over K. So
Uσ is an affine toric variety.

Example 2.15. Suppose we start with the cone spanned by e2 and 2e1−
e2. The dual cone is the cone spanned by f1 and f1 + 2f2. Generators
for the semigroup are f1, f1 + f2 and f1 + 2f2. The corresponding
group algebra is Aσ = K[x, xy, xy2]. Suppose we call u = x, v = xy and
w = xy2. Then v2 = x2y2 = x(xy2) = uw. Therefore the corresponding
affine toric variety is given as the zero locus of v2 − uw in A3.

Given a fan F , we get a collection of affine toric varieties, one for
every cone of F . It remains to check how to glue these together to get
a toric variety. Suppose we are given two cones σ and τ belonging to
F . The intersection is a cone ρ which is also a cone belonging to F .
Since ρ is a face of both σ and τ there are natural inclusions

Uρ ⊂ Uσ and Uρ ⊂ Uτ .

We glue Uσ to Uτ using the natural identification of the common open
subset Uρ. Compatibility of gluing follows automatically from the fact
that the identification is natural and from the combinatorics of the fan.
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It is clear that the resulting scheme is of finite type over the groundfield.
Separatedness follows from:

Lemma 2.16. Let σ and τ be two cones whose intersection is the cone
ρ.

If ρ is a face of each then the diagonal map

Uρ −→ Uσ × Uτ ,
is a closed embedding.

Proof. This is equivalent to the statement that the natural map

Aσ ⊗ Aτ −→ Aρ,

is surjective. For this, one just needs to check that

Sρ = Sσ + Sτ .

One inclusion is easy; the RHS is contained in the LHS. For the other
inclusion, one needs a standard fact from convex geometry, which is
called the separation lemma: there is a vector u ∈ Sτ ∩ S−τ such that
simultaneously

ρ = σ ∩ u⊥ and ρ = τ ∩ u⊥.
By the first equality Sρ = Sσ + Z(−u). As u ∈ S−τ we have −u ∈ Sτ
and so the LHS is contained in the RHS. �

So we have shown that given a fan F we can construct a normal
variety X = X(F ). It is not hard to see that the natural action of the
torus corresponding to the zero cone extends to an action on the whole
of X. Therefore X(F ) is indeed a toric variety.

Let us look at some examples.

Example 2.17. Suppose that we start with M = Z and we let F
be the fan given by the three cones {0}, the cone spanned by e1 and
the cone spanned by −e1 inside NR = R. The two big cones corre-
spond to A1. We identify the two A1’s along the common open subset
isomorphic to K∗. Now the first A1 = SpecK[x] and the second is
A1 = SpecK[x−1]. So the corresponding toric variety is P1 (if we have
homogeneous coordinates [X : Y ] on P1 coordinates on U0 are x = X/Y
and y = Y/X = 1/x).

Now suppose that we start with three cones in NR = R2, σ1, σ2 and
σ3. We let σ1 be the cone spanned by e1 and e2, σ2 be the cone spanned
by e2 and −e1 − e2 and σ be the cone spanned by −e1 − e2 and e1.
Let F be the fan given as the faces of these three cones. Note that the
three affine varieties corresponding to these three cones are all copies of
A2. Indeed, any two of the vectors, e1, e2 and −e1 − e2 are a basis not
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only of the underlying vector space but they also generate the standard
lattice. We check how to glue two such copies of A2.

The dual cone of σ1 is the cone spanned by f1 and f2 in MR = R2.
The dual cone of σ2 is the cone spanned by −f1 and −f1 + f2. So
we have U1 = SpecK[x, y] and U2 = SpecK[x−1, x−1y]. On the other
hand, if we start with P2 with homogeneous coordinates [X : Y : Z]
and the two basic open subsets U0 = SpecK[Y/X,Z/X] and U1 =
SpecK[X/Y,Z/Y ], then we get the same picture, if we set x = Y/X,
y = Z/X (since then X/Y = x−1 and Z/Y = Z/X · X/Y = yx−1).
With a little more work one can check that we have P2.

More generally, suppose we start with n+1 vectors v1, v2, . . . , vn+1 in
NR = Rn which sum to zero such that the first n vectors v1, v2, . . . , vn
span the standard lattice. Let F be the fan obtained by taking all the
cones spanned by all subsets of at most n vectors. One can check that
the resulting toric variety is Pn.

Now suppose that we take the four vectors e1, e2, −e1 and −e2 in
NR = R2 and let F be the fan consisting of all cones spanned by at
most two vectors. Then we get four copies of A2. It is easy to check
that the resulting toric variety is P1 × P1. Indeed the top two fans glue
together to get P1 × A1 and so on.

We have already seen that cones correspond to open subsets. In fact
cones also correspond (in some sort of dual sense) to closed subsets, the
closure of the orbits. First observe that given a fan F , we can associate
a closed point xσ to any cone σ. To see this, observe that one can spot
the closed points of Uσ using semigroups:

Lemma 2.18. Let S ⊂ M be a semigroup. Then there is a natural
bijection,

Hom(K[S], K) ' Hom(S,K).

Here the RHS is the set of semigroup homomorphisms, where K =
{0}∪K∗ is the multiplicative subsemigroup of K (and not the additive).

Proof. Suppose we are given a ring homomorphism

f : K[S] −→ K.

Define
g : S −→ K,

by sending u to f(χu). Conversely, given g, define f(χu) = g(u) and
extend linearly. �

Consider the semigroup homomorphism:

Sσ −→ {0, 1},
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where {0, 1} ⊂ {0} ∪K∗ inherits the obvious semigroup structure. We
send u ∈ Sσ to 1 if u ∈ σ⊥ and send it 0 otherwise. Note that as σ⊥

is a face of σ̌ we do indeed get a homomorphism of semigroups. By
(2.18) we get a surjective ring homomorphism

K[Sσ] −→ K.

The kernel is a maximal ideal of K[Sσ], that is a closed point xσ of Uσ,
with residue field K.

To get the orbits, take the orbits of these points. It follows that
the orbits are in correspondence with the cones in F . In fact the
correspondence is inclusion reversing.

Example 2.19. For the fan corresponding to P1, the point correspond-
ing to {0} is the identity, and the points corresponding to e1 and −e1
are 0 and ∞. For the fan corresponding to P2 the three maximal cones
give the three coordinate points, the three one dimensional cones give
the three coordinate lines (in fact the lines spanned by the points cor-
responding to the two maximal cones which contain them). As before
the zero cone corresponds to the identity point. The orbit is the whole
torus and the closure is the whole of P2.

Suppose that we start with the cone σ spanned by e1 and e2 inside
NR = R2. We have already seen that this gives the affine toric variety
A2. Now suppose we insert the vector e1 + e2. We now get two cones
σ1 and σ2, the first spanned by e1 and e1 + e2 and the second spanned
by e1 + e2 and e2. Individually each is a copy of A2. The dual cones
are spanned by f2, f1−f2 and f1 and f2−f1. So we get SpecK[y, x/y]
and SpecK[x, x/y].

Suppose that we blow up A2 at the origin. The blow up sits inside
A2 × P1 with coordinates (x, y) and [S : T ] subject to the equations
xT = yS. On the open subset T 6= 0 we have coordinates s and y
and x = sy so that s = x/y. On the open subset S 6= 0 we have
coordinates x and t and y = xt so that t = y/x. So the toric variety
above is nothing more than the blow up of A2 at the origin. The central
ray corresponds to the exceptional divisor E, a copy of P1.

A couple of definitions:

Definition 2.20. Let G and H be algebraic groups which act on quasi-
projective varieties X and Y . Suppose we are given an algebraic group
homomorphism, ρ : G −→ H. We say that a morphism f : X −→ Y is
ρ-equivariant if f commutes with the action of G and H. If X and
Y are toric varieties and G and H are the tori contained in X and Y
then we say that f is a toric morphism.

9



It is easy to see that the morphism defined above is toric. We can
extend this picture to other toric surfaces. First a more intrinsic de-
scription of the blow up. Suppose we are given a ray, that is a one
dimensional cone σ. Then we can describe σ by specifying the unique
integral vector v ∈ σ which is closest to the origin. Note that every
other integral vector belonging to σ is a positive integral multiple of
v, which we call the primitive generator v. Suppose we are given
a toric surface and a two dimensional cone σ such that the primitive
generators v and w of the two one dimensional faces of σ generate the
lattice (so that up the action of SL(2,Z), σ is the cone spanned by e1
and e2). Then the blow up of the point corresponding to σ is a toric
surface, which is obtained by inserting the sum v+w of the two prim-
itive generators and subdividing σ in the obvious way (somewhat like
the barycentric subdivision in simplicial topology).

Example 2.21. Suppose we start with P2 and the standard fan. If we
insert the two vectors −e1 and −e2 this corresponds to blowing up two
invariant points, say [0 : 1 : 0] and [0 : 0 : 1]. Note that now −e1 − e2
is the sum of −e1 and −e2. So if we remove this vector this is like
blowing down a copy of P1. The resulting fan is the fan for P1 × P1.

We can generalise this to higher dimensions. For example suppose
we start with the standard cone for A3 spanned by e1 and e2 and e3.
If we insert the vector e1 + e2 + e3 (thereby creating three maximal
cones) this corresponds to blowing up the origin. (In fact there is a
simple recipe for calculating the exceptional divisor; mod out by the
central e1 + e2 + e3; the quotient vector space is two dimensional and
the three cones map to the three cones in the quotient two dimensional
vector space which correspond to the fan for P2). Suppose we insert
the vector e1 + e2. Then the exceptional locus is P1 × A1. In fact this
corresponds to blowing up one of the axes (the axis is a copy of A1 and
over every point of the axis there is a copy of P1).
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