
11. Resolution of singularities I

We start to consider the problem of resolution of singularities. At it
most basic we are given a finitely generated field extension K/k and we
would like to find a smooth projective variety X over k with function
field K.

Before we get into a proof of resolution of singularities via smooth
blow ups, we first describe some other ways to resolve singularities.
Even though these methods don’t always work, they introduce ideas
and techniques which are of considerable independent interest.

Definition 11.1. Let X be an integral scheme. We say that X is
normal if all of the local rings OX,p are integrally closed.

The normalisation of X is a morphism Y −→ X from a normal
scheme, which is universal amongst all such morphisms. If Z −→ X is
a morphism from a normal scheme Z, then there is a unique morphism
Z −→ Y which make the diagram commute:

Z - Y

X.
?

-

One can always construct the normalisation of a scheme as follows.
By the universal property, it suffices to construct the normalisation lo-
cally. If X = SpecA, then Y = SpecB, where B is the integral closure
of A inside the field of fractions. Note that if X is quasi-projective
variety then the normalisation Y −→ X is a finite and birational mor-
phism.

Definition 11.2. Let X be a scheme. We say that X satisfies con-
dition S2 if every regular function defined on an open subset U whose
complement has codimension at least two, extends to the whole of X.

Lemma 11.3 (Serre’s criterion). Let X be an integral scheme.
Then X is normal if and only if it is regular in codimension one

(condition R1) and satisfies condition S2.

Note that this gives a simple method to resolve singularities of curves.
If C is a curve, the normalisation C ′ −→ C is smooth in codimension
one, which is to say that C ′ is smooth.

Note that lots of surface singularities are normal. For example, every
hypersurface singularity is S2, so that a hypersurface singularity is
normal if and only if it is smooth in codimension one. Similarly, every
quotient singularity is normal.
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Before we pass on to other methods, it is interesting to write down
some example of varieties which are R1 but not normal, that is, which
are not S2.

Example 11.4. Let S be the union of two smooth surfaces S1 and
S2 joined at a single point p. For example, two general planes in A4

which both contain the same point p. Let U = S − {p}. Then U is the
disjoint union of U1 = S1 − {p} and S2 − {p}, so U is smooth and the
codimension of the complement is two. Let f : U −→ k be the function
which takes the value 1 on U1 and the value 0 on U2. Then f is regular,
but it does not even extend to a continuous function, let alone a regular
function, on S.

Let C be a projection of a rational normal quartic down to P3, for
example the image of

[S : T ] −→ [S4 : S3T : ST 3 : T 4] = [A : B : C : D].

Let S be the cone over C. Then S is regular in codimension one, but
it is not S2. Indeed, A/B = C/D is a regular function whose only pole
is along B = 0 and D = 0, that is, only at (0, 0, 0, 0) of S.

Beyond the dimension of the Zariski tangent space, perhaps the most
basic invariant of any singular point is:

Definition 11.5. Let X ⊂M be a subvariety of a smooth variety. The
multiplicity of X at p ∈M is the largest µ such that Ip ⊂ mµ where
m is the maximal ideal of M at p in OM,p and I is the ideal sheaf of
X in M .

Note that this generalises the multiplicity of a hypersurface singu-
larity. The multiplicity has two basic properties. X is smooth at p if
and only if the multiplicity is one and the multiplicity is upper semi-
continuous in families.

We next describe the method of Albanese. Start with X ⊂ Pn. Now
re-embed X by the very ample line bundle OX(m), where m is very
large, so that X = X0 ⊂ Pr, where r is large. Pick a point p = p0 ∈ X0,
where the multiplicity is largest, to get X1 ⊂ Pr−1. Now pick a point
p1 ∈ X1 of largest multiplicity and project down to get X2 ⊂ Pr−2.
Continuing in this way, always projecting from a point of maximal
mulitplicity, we construct Xi ⊂ Pr−i.

Theorem 11.6. If

degX0 < (n! + 1)(r + 1− n),

then the Albanese algorithm stops with a variety Xk and a generically
finite map fk : X0 99K Xk, such that either
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(1) deg fk multp(Xk) ≤ n!, or
(2) Xk is a cone and deg fk ≤ n!.

Corollary 11.7. Assume that every variety of dimension at most n−1
is birational to a smooth projective variety.

Then every projective variety is birational to a projective variety with
singularities of multiplicity at most n!.

Note that this resolves singularities for curves, since 1! = 1 and a
point of multiplicity one is a smooth point of X. Even for surfaces we
get down to points of multiplicity two, which are not so bad. Starting
with threefolds, the situation is not nearly so rosy, especially when one
realises that if f is a hypersurface singularity of arbitrary multiplicity,
then the suspension of f , x2 + f , is a hypersurface singularity of mul-
tiplicity two. It is pretty clear that resolving x2 + f entails resolving
f .

Unfortunately it seems impossible to improve the bound given in
(11.6).

We will need:

Theorem 11.8. Let X ⊂ Pr be an irreducible projective variety of
degree d and dimension n.

If X is not contained in a hyperplane, then

d ≥ r + 1− n.
Proof of (11.6). By induction on k. Suppose that

deg fk ·multp(Xk) ≤ (n! + 1)(r − k + 1− n).

Suppose that p is a point of maximal multiplicity µ. If Xk is a cone
with vertex p, then there is nothing to prove. Otherwise let Xk+1 be the
closure of the image of p under projection, and let π : Xk 99K Xk+1 be
the resulting rational map. As Xk is not a cone over p, π is generically
finite. We have

deg π · dk+1 = dk − µ.
If

deg fk · µ > n!,

then

deg fk+1 · dk+1 = deg fk deg π · dk+1

= deg fk · dk − deg fkµ

≤ deg fk · dk − (n! + 1)

≤ (n! + 1)(r − k + 1− n)− (n! + 1)

≤ (n! + 1)(r − (k + 1) + 1− n).
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It follows that eventually either Xk becomes a cone or we get

deg fk ·multpXk ≤ n!.

As Xk ⊂ Pr−k is not contained in a hyperplane, we have

dk ≥ (r − k + 1− n).

It follows that if Xk is a cone, then

deg fk ≤ n!. �

Notice how truly bizarre this argument is; presumably projecting
from a point will introduce all sorts of bad singularities (corresponding
to secant lines and so on), but just by projecting from the point of
maximal multiplicity works.

Example 11.9. Let

m1 ≤ m2 ≤ · · · ≤ mr,

be a sequence of positive integers. Let C be the image of

t −→ (tm1 , tm2 , tm3 , . . . , tmr),

inside Ar. If we project from (1, 0, 0, . . . , 0), then we get the image of

t −→ (tm2−m1 , tm3−m1
2 , tm4−m1

3 , . . . , tmr−m1
r ),

inside Ar−1. It is intuitively clear that the projection of C is less singu-
lar than C, but it is hard to say exactly why; for example the multiplicity
might go up.

Let us turn to the proof of (11.7). We will need:

Theorem 11.10 (Asymptotic Riemann-Roch). Let X be a normal
projective variety and let OX(1) be a very ample line bundle. Suppose
that X ⊂ Pn has degree d.

Then

h0(X,OX(m)) =
dmn

n!
+ ...,

is a polynomial of degree n, for m large enough, with the given leading
term.

Proof. Let Y be a general hyperplane section. Then Y is a normal
projective variety of degree d; indeed, Y is certainly regular in codi-
mension one and one can check that Y is S2. The trick is to compute
χ(X,OX(m)) by looking at the exact sequence

0 −→ OX(m− 1) −→ OX(m) −→ OY (m) −→ 0.

The Euler characteristic is additive so that

χ(X,OX(m))− χ(X,OX(m− 1)) = χ(Y,OY (m)).
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By an easy induction, it follows that χ(X,OX(m)) is a polynomial of
degree n, with the given leading term. Now apply Serre vanishing. �

Definition 11.11. Let X be a quasi-projective variety and let K be
the function field of X. Let L/K be a finite field extension.

The normalisation of X in L is a finite morphism Y −→ X,
where Y is a normal quasi-projective variety and the function field of
Y is L.

One can consruct Y in much the same way that one constructs the
normalisation. It suffices to construct Y locally, in which case we may
assume that X = SpecA is affine. In this case one simply takes Y =
SpecB, where B is the integral closure of A inside L.

Lemma 11.12. Let π : Y −→ X be a finite morphism.
If π(q) = p, then

multq Y = deg π ·multpX.

Proof of (11.7). By (11.10) we may pick m sufficiently large such that
if

degX0 ⊂ Pr

is the embedding given OX(m), then

d0 ≤ (n! + 1)(r + 1− n).

By (11.6) we may find a generically finite morphism f : X 99K W such
that either

deg f multwW ≤ n!,

or W is a cone and
deg f ≤ n!.

If W is a cone, then W is birational to a product P1 ×W ′. By our
induction hypothesis, W ′ is birational to a smooth projective variety
W ′′. Then W is birational to W ′′ × P1. Replacing W by W ′′ × P1, we
may assume that W is smooth.

Let π : Y −→ W be the normalisation ofW in the field L = K(X)/K(W ).
Then Y is birational to X and deg f = deg π. By (11.12),

multy Y ≤ n!. �

Another intriguing method was proposed by Nash:

Definition 11.13. Let X ⊂ PN be a quasi-projective variety of dimen-
sion n. The Gauss map is the rational map

X 99K G(n,N) given by x −→ TxX,

which sends a point to its (projective) tangent space.
The Nash blow up is given by taking the graph of this rational map.
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Conjecture 11.14. We can always resolve any variety by successively
taking the Nash blow up and normalising.

Despite the very appealing nature of this conjecture (consider for
example the case of curves, when we don’t even need to normalise) we
only know (11.14) in very special cases. The one very nice feature of
the Nash blow up is that it does not involve any choices. Unfortunately
it is known that one needs to normalise, and this messes up any sort
of induction.

If X is a toric variety there is a pretty simple method to resolve
singularities. First subdivide the cone until X is simplicial. It is not
too hard to argue that one can resolve any simplicial toric variety (one
only needs to keep track of a simple invariant). One subtle point is to
make sure that as one improves one cone, then another cone does not
become worse.

There is a pretty straightforward way to resolve the singularities of
a quasi-projective surface S. It does not hurt to assume that S is
projective. Replacing S by its normalisation, we may assume that S
is normal. First embed S into Pn. By repeatedly projecting from a
point, we may express S as a large degree cover of P2, π : S −→ P2.
Let B ⊂ P2 be the branch locus of π, the locus where two or more
points come together.

Take an embedded resolution of (P2, B). This is a birational mor-
phism f : N −→ P2 such that the total transform C of B is a divisor
with global normal crossings. Let T be the normalisation of the fibre
product N ×

P2
S. We have a commutative diagram,

T
g - S

N

ψ

?
f- P2.

π
?

Now ψ : T −→ N only ramifies over C, which is a divisor with normal
crossings. Consider the field extension M = C(T )/C(N) = K. This
is not necessarily Galois; let L/M be the Galois closure, so that L/M
and L/K are Galois extensions.

Let R be the normalisation of T inside L. If G is the Galois group of
L/K, then G acts on R and N = R/G. Similarly if H ⊂ G is the Galois
group of L/M , then T = R/H. As a warm up, suppose first that R is
smooth. Then T has quotient singularities, and we have already seen
that it is easy to resolve the singularities of T . In fact, T has cyclic
quotient singularities.
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Definition 11.15. Let f : X −→ Y be a finite morphism. We say that
f is Galois, if there is a finite group G acting on X such that f is the
quotient map.

Consider R −→ N . This morphism is Galois. Locally we have a
Galois cover of C2, only ramified over the x and y-axis. Topologically
we have an unramified Galois cover of the complement, a torus. Such
covers are classified by the fundamental group,

π1(C∗2, 1) = Z⊕ Z.
A finite cover is given by a cylic quotient,

Z⊕ Z −→ Za ⊕ Zb.

Let n = ab. Then the map

C2 −→ C2 given by (x, y) −→ (xn, yn),

is a cover given by the following quotient of the fundamental group

Z⊕ Z −→ Zn ⊕ Zn.

As
Zn ⊕ Zn −→ Za ⊕ Zb,

factors the first map, it follows that any Galois cover

X −→ C2,

is itself a quotient of
C2 −→ X,

which only ramifies along the x and y-axis. So R has cyclic quotient
singularities. It is easy to resolve R, preserving the action of G. The
map R −→ R/H is Galois and there is a birational morphism R/H −→
T . Finally, if we resolve the cyclic quotient singularities R/H, then we
are done.
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