
10. More about derivatives

The main result is:

Theorem 10.1. Let A ⊂ Rn be an open subset and let f : A −→ Rm

be a function.
If the partial derivatives

∂fi

∂xj

,

exist and are continuous, then f is differentiable.

We will need:

Theorem 10.2 (Mean value theorem). Let f : [a, b] −→ R is con-
tinuous and differentiable at every point of (a, b), then we may find
c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Geometrically, (10.2) is clear. However it is surprisingly hard to give
a complete proof.

Proof of (10.1). We may assume that m = 1. We only prove this in
the case when n = 2 (the general case is similar, only notationally more
involved). So we have

f : R2 −→ R.

Suppose that P = (a, b) and let
−→
PQ = h1ı̂ + h2̂. Let

P0 = (a, b) P1 = (a + h1, b) and P2 = (a + h1, b + h2) = Q.

Now

f(Q)− f(P ) = [f(P2)− f(P1)] + [f(P1)− f(P0)].

We apply the Mean value theorem twice. We may find Q1 and Q2 such
that

f(P1)− f(P0) =
∂f

∂x
(Q1)h1 and f(P2)− f(P1) =

∂f

∂y
(Q2)h2.

Here Q1 lies somewhere on the line segment P0P1 and Q2 lies on the
line segment P1P2. Putting this together, we get

f(Q)− f(P ) =
∂f

∂x
(Q1)h1 +

∂f

∂y
(Q2)h2.
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Thus

|f(Q)− f(P )− A ·
−→
PQ|

‖
−→
PQ‖

=
|(∂f

∂x
(Q1)− ∂f

∂x
(P ))h1 + (∂f

∂y
(Q2)− ∂f

∂y
(P ))h2|

‖
−→
PQ‖

≤
|(∂f

∂x
(Q1)− ∂f

∂x
(P ))h1|

‖
−→
PQ‖

+
|(∂f

∂y
(Q2)− ∂f

∂y
(P ))h2|

‖
−→
PQ‖

≤
|(∂f

∂x
(Q1)− ∂f

∂x
(P ))h1|

|h1|
+
|(∂f

∂y
(Q2)− ∂f

∂y
(P ))h2|

|h2|

= |(∂f

∂x
(Q1)−

∂f

∂x
(P ))|+ |(∂f

∂y
(Q2)−

∂f

∂y
(P ))|.

Note that as Q approaches P , Q1 and Q2 both approach P as well. As
the partials of f are continuous, we have

lim
Q→P

|f(Q)− f(P )− A ·
−→
PQ|

‖
−→
PQ‖

≤ lim
Q→P

(|(∂f

∂x
(Q1)−

∂f

∂x
(P ))|+|(∂f

∂y
(Q2)−

∂f

∂y
(P ))|) = 0.

Therefore f is differentiable at P , with derivative A. �

Example 10.3. Let f : A −→ R be given by

f(x, y) =
x√

x2 + y2
,

where A = R2 − {(0, 0)}. Then

∂f

∂x
=

(x2 + y2)1/2 − x(2x)(1/2)(x2 + y2)−1/2

x2 + y2
=

y2

(x2 + y2)3/2
.

Similarly
∂f

∂y
= − xy

(x2 + y2)3/2
.

Now both partial derivatives exist and are continuous, and so f is dif-
ferentiable, with derivative the gradient,

∇f = (
y2

(x2 + y2)3/2
,− xy

(x2 + y2)3/2
) =

1

(x2 + y2)3/2
(y2,−xy).

Lemma 10.4. Let A = (aij) be an m× n matrix.
If ~v ∈ Rn then

‖A~v‖ ≤ K‖~v‖,
where

K = (
∑
i,j

a2
ij)

1/2.

2



Proof. Let ~a1,~a2, . . . ,~am be the rows of A. Then the entry in the ith
row of A~v is ~ai · ~v. So,

‖A~v‖2 = (~a1 · ~v)2 + (~a2 · ~v)2 + · · ·+ (~an · ~v)2

≤ ‖~a1‖2‖~v‖2 + ‖~a2‖2‖~v‖2 + · · ·+ ‖~an‖2‖~v‖2

= (‖~a1‖2 + ‖~a2‖2 + · · ·+ ‖~an‖2)‖~v‖2

= K2‖~v‖2.
Now take square roots of both sides. �

Theorem 10.5. Let f : A −→ Rm be a function, where A ⊂ Rn is
open.

If f is differentiable at P , then f is continuous at P .

Proof. Suppose that Df(P ) = A. Then

lim
Q→P

f(Q)− f(P )− A ·
−→
PQ

‖
−→
PQ

= 0.

This is the same as to require

lim
Q→P

‖f(Q)− f(P )− A ·
−→
PQ‖

‖
−→
PQ

= 0.

But if this happens, then surely

lim
Q→P
‖f(Q)− f(P )− A ·

−→
PQ‖ = 0.

So

‖f(Q)− f(P )‖ = ‖f(Q)− f(P )− A ·
−→
PQ + A ·

−→
PQ‖

≤ ‖f(Q)− f(P )− A ·
−→
PQ‖+ ‖A ·

−→
PQ‖

≤ ‖f(Q)− f(P )− A ·
−→
PQ‖+ K‖

−→
PQ‖.

Taking the limit as Q approaches P , both terms on the RHS go to zero,
so that

lim
Q→P
‖f(Q)− f(P )‖ = 0,

and f is continuous at P . �
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