
6. Non-reduced schemes and flat limits of zero
dimensional schemes

6.1. Some examples of zero dimensional schemes. We would like
to understand the geometric content behind non-reduced schemes. Let
us start with a simple example. Let k be a field and let

A =
k[ε]

〈ε2〉
.

Consider T = SpecA. Clearly A contains only one prime ideal,
namely 〈ε〉. Thus T has only one point. However the stalk of the
structure sheaf is not a field. To get a picture of T , we can embed this
scheme in A1

k,

k[x] −→ A to get T −→ A1
k,

where x −→ ε. In fact we can think of two points in A1
k, pt and qt and

think about what happens when pt approaches qt. We might as well
suppose that qt is fixed, qt = 〈x〉. Let pt = 〈x − t〉. The ideal of the
union is then

〈x(x− t)〉.
As t approaches 0, it is natural to identify the limit as

〈x2〉,

which is the ideal of T ⊂ A1
k. With this picture, it is natural to think

of T as being a point, together with a tangent direction. Abstractly,
T is a point together with a disembodied tangent vector. Note that
this is a very natural way to think of tangent vectors algebraically; if
we want to differentiate, then we want to expand in powers of ε and
ignore all terms of degree two and higher. In fact

Definition 6.1. Let x ∈ X be a point of a scheme, with residue field
k. The Zariski tangent space TxX to X at x is the k-vector space
of all morphisms over Spec k,

TxX = Hom(Spec k[ε]/〈ε2〉, X),

where the image of the unique point of Spec k[ε]/〈ε2〉 is x.

Note that T has many embeddings into A2
k. Indeed, think of two

points approaching each other. If one of the points is fixed to be the
origin and the other approaches along a smooth curve, then the limiting
subscheme (we will make the naive notion of the limit more formal very
shortly) is a copy of T . However, the two points remember the tangent
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direction of their approach. Thus the set of all embeddings of T into
A2, is given by

〈ax+ by〉+ m2,

where m is the maximal ideal.

Definition 6.2. Let X be a zero dimensional scheme over a field k.
The length of X is simply the dimension of the k-vector space OX(X).

Here is another, more direct way, to classify all zero dimensional
subschemes of A2 of length two supported at the origin. Any such
scheme is a closed subscheme. It follows that it is given by a surjective
morphism,

k[x, y] −→ k[ε]/〈ε2〉
Let a be the kernel of this map. Then the radical of a must be the
ideal m = 〈x, y〉. Since the square of any element of the image is zero,
it follows that

m2 = 〈x2, xy, y2〉,
must be contained in the kernel. In other words we have the inclusion
of subschemes

T ⊂ Z ⊂ A2
k where Z = Spec k[x, y]/〈x2, xy, y2〉.

Now
k[x, y]/〈x2, xy, y2〉,

is a vector space of dimension three over k and

k[ε]/〈ε2〉,
has dimension two. It follows that there must be a linear form in the
kernel, say ax + by. The quotient then has the right dimension, and
this gives us the classification.

Another way to think of this is as follows. Let f ∈ k[x, y] = OA2
k
(A2

k).

Then we may restrict f to T . Suppose that T is given by 〈y, x2〉. Let
g be the restriction of f to k[x, y]/〈y, x2〉. Then g picks out both the
value of f at the origin and the coefficient of the x-term of the Taylor
series of f . In other words, the restriction is determined by

f(0, 0) and
∂f

∂x

∣∣∣∣
(0,0)

.

If we again think of a family of two distinct points approaching each
other, then instead of evaluating f at the two distinct points, we eval-
uate f at the point and in the tangent direction of their approach.

Note yet another way to think of an embedding of T into a smooth
variety X. Let C be a smooth curve, and let x ∈ C be a point of C.
Then if we truncate C to order two, then we get a copy of T ⊂ X.
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In other words, we look at the subscheme defined by IC + m2 ⊂ A,
where U = SpecA is an open affine neighbourhood of x, IC is the ideal
of C and m is the ideal corresponding to x. In other words, a closed
embedding of T inside X is an equivalence class of smooth curves, just
like tangent vectors in classical differential geometry.

Consider the intersection of a line with a conic. If the line is not
tangent to the conic, then the line intersects the conic in two points
and these points span the line. But if the line is tangent to the conic
we only get one point. Nevertheless, as a scheme we get a double point.
Moreover, we can recover the line from the scheme as the smallest linear
space which contains the scheme (aka the span).

Armed with this example, the geometric meaning of other non-
reduced schemes becomes a little more clear. For example, consider
the scheme

Z = Spec
k[ε]

〈ε3〉
.

Consider how to embed Z inside A2
k. Perhaps the easiest way to proceed

is to pick a smooth curve and truncate to order three, rather than two.
If the curve is y = x2, then we look at

〈y − x2, x3〉.
This is obviously different from looking at

〈y, x3〉.
Here, we have a tangent direction together with a second order tangent
direction. We can think of this scheme as the limit as three points
coming together. However in this case, the points need to approach
each other along the same smooth curve. Indeed, note that there is in
fact another irreducible zero dimensional scheme, up to isomorphism.
Consider

Spec k[x, y]/〈x2, xy, y2〉.
Note that this contains all length two subschemes of the origin with
the same support. In other words, if we look at a function, then its
restriction is determined by its value at the orgin and two independent
derivatives. It is not hard to see that these are the only two possibilities
for length three schemes of irreducible schemes.

6.2. Flat limits. It is interesting to see how one gets these examples
as limits. First suppose that three points approach each other. Fixing
one as the origin, we suppose that the other two approach along smooth
curves. For example, suppose the points are

(0, 0) (t, 0) and (0, t).
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The corresponding ideals are

〈x, y〉 〈x− t, y〉 and 〈x, y − t〉.

The product of these ideals is then

〈x3−x2t, x2t+xyt−xt2, x2y, xyt, x2y−xyt, xyt+y2t−yt2, xy2, y3−y2t〉,

which is the ideal of the union. Consider the limit, as t goes to zero.
If we naively set t = 0 then we get

〈x3, x2y, x2y, xy2, y3〉 = m3.

But this cannot be the limit since the corresponding scheme has length
6 and the limit should be a scheme of length 3. Howerver, for t 6= 0,
we always get xy in the ideal. Thus the limit must also contain xy.
From there it is easy to see that the limit must also contain x2 and y2,
so that we get,

〈x2, xy, y2〉 = m2,

which does indeed correspond to a scheme of length 3. So the flat limit
of the three points is the scheme corresponding to m2.

Now consider the case when we have three points approaching each
other along a smooth curve. For example, take the three points

(0, 0) (t, t2) and (−t, t2).

Since these points lie in the smooth curve y − x2, which is isomorphic
to A1, it follows that the flat limit is the unique length three scheme
supported at the origin and contained in this curve, namely

〈y − x2, x3〉.

Definition 6.3. We say that a zero dimensional scheme z is curvi-
linear if it can be embedded in a smooth curve C.

Note that a zero dimensional scheme is curvilinear if and only if
its irreducible components are curvlinear. On the other hand if z is
irreducible then it is curvilinear if and only if it is isomorphic to

Spec
k[ε]

〈εl〉
,

for some positive integer l.
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6.3. Punctual Hilbert scheme. It is interesting to look at this from
a different perspective. One way to think about taking limits, is to
think of all our schemes as definining points of a Grassmannian. Indeed,
all of our schemes are defined by ideals, such that the quotient is of
finite dimension. Now suppose that the support is a fixed point. Then
it is not hard to see that if one fixes the length, then some fixed power
of the maximal ideal, will be contained in our ideal (in fact the length
itself will do). Taking quotients, we get a subvector space of a fixed
vector space. Thus the locus of all length l zero dimensional subschemes
is naturally a subset of a Grassmannian. In fact this locus is algebraic.
A one parameter family of ideals is then the same as a curve in the
Grassmannian. As the Grassmannian is projective the closure of this
curve is projective and this defines the flat limit.

The resulting locus is called the punctual Hilbert scheme, and is de-
notedHl

0. As the name might suggest, this subset of the Grassmannian
corresponding to ideals of length l is not only closed, but it actually
inherits the structure of a closed subscheme. The locus of curvilinear
schemes is easily seen to be an open subscheme, and it is denoted Cl

0.
Let

R =
k[x, y]

ml
.

Then R is a finite dimensional vector space over k and ideals I in k[x, y]
such that

k[x, y]

I
,

has length l are the same as ideals J in R such that the quotient

R

J
,

has length l. In particular [J ] ∈ G(M,N) for appropriate (and easily
computable) integers M and N (indeed, M = N − l). Since x and y
generate the ring R it follows that J is an ideal if and only if

xJ ⊂ J and yJ ⊂ J.

These give equations defining the punctual Hilbert scheme as a closed
subscheme of the Grassmannian.

It is interesting to see what happens when we consider all length three
schemes supported at a point. In this case, every scheme is certainly a
subscheme of

Spec k[x, y]/m3.

Now

k[x, y]/m3,
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is a vector space of dimension six, and so we are looking at the Grass-
mannian of three planes in a vector space of dimension six. The scheme
corresponding to m2 is one point in this space. Given any other length
three scheme, there is a unique length two subscheme contained in this
scheme. It is obtained by truncating the ideal in the obvious way. Now
the space of length two schemes is nothing more than the space of all
tangent directions at the point, so that this space is isomorphic to P1.
Consider the fibre over a point of C2

0 . We are looking at all ideals of
the form

I = 〈y + q〉+ m3,

where q is a quadratic form. Now y(y + q) = y2 + yq ∈ I. As yq ∈ m3

it follows that y2 ∈ I. Similarly xy ∈ I. But then we may choose
q = ax2. It is not hard to check that

〈y + ax2〉+ m3 = 〈y + bx2〉+ m3,

iff a = b. Thus there is a morphism from the space of curvilinear
schemes of length three down to the space of length two schemes. The
fibres of this morphism are A1 and the base is P1. Now the unique non-
curvilinear scheme is a limit of curvilinear schemes with fixed tangent
direction;

lim
t→0
〈ty + x2〉+ m3 = m2.

Thus the unique non-curvilinear schemes is in the closure of every fibre.
It follows that this space is a cone over P1. In fact it is the usual quadric
cone in A3.

Note that C3
0 is an open subset of the projective scheme H3

0, and
more generally, for any l, the Hilbert scheme gives a projective com-
pactification of the curvilinear locus. It is also interesting to consider
different compactifications of the curvilinear locus. For example, we
have already seen that there is a closed embedding,

C3
0 ⊂ C3

0 × C2
0 ,

where we send

z −→ (z, z2),

and z2 is the unique length two subscheme contained in z (here we work
with irreducible schemes). The closure of the image inside H3

0 × H2
0

defines another compactification B3 of C3
0 . In fact this compactification

is smooth; there is an obvious morphism B3 −→ H3
0 which just forgets

the length two scheme. This morphism is an isomorphism over the
curvilinear locus and over the point corresponding to the unique length
three scheme which is not curvilinear, we get a whole copy of P1, as
any length two scheme is contained in this length three scheme.
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6.4. Hilbert scheme. In some ways it is more natural to consider all
zero dimensional schemes inside Pn and not just the punctual ones.
This is called the Hilbert scheme and is denoted Hl. The construction
given above does not work, since there is no obvious fixed finite dimen-
sional vector space in which to work. We will see later that one can
construct the full Hilbert scheme using a similar but more sophisticated
argument. Assuming the existence of the Hilbert scheme, we can ask
what does it look like. Once again the curvilinear locus Cl is an open
subset.

It is also an interesting question to ask which zero dimensional schemes
are limits of curvilinear schemes.

Theorem 6.4. Let S be a smooth surface. Fix a positive integer l.
Then the Hilbert scheme of zero dimensional schemes of length l is

irreducible and smooth.

One obvious component of the Hilbert scheme is the closure of the
space of curvilinear schemes, which is obviously irreducible (an open
subset is simply the product of the surface with itself l times, minus the
diagonals). Thus (6.4) really answers our question for surfaces; every
zero dimensional scheme is a limit of curvilinear schemes.

It is interesting to look at the symetric product. One way to com-
pactify the space of l distinct unordered points is to consider

S(l) = Sl/Σl

where Sl is the l-fold product of S with itself and Σl is the symmetric
group, acting on the obvious way on Sl. It turns out that there is a
natural morphism

Hl −→ S(l),

which just assigns to a scheme its support (in fact the space on the right
is the Chow scheme). This map is birational and in fact the Hilbert
scheme gives a desingularisation of the symmetric product, which is in
fact highly singular.

Perhaps surpisingly most of this fails in higher dimensions.

6.5. Non-reduced curves and embedded components. We can
also look at doubled curves. For example, consider

〈x2〉 ⊂ k[x, y].

Then we get a double line in A2
k. Just as in the case of a double point,

we can think of the non-reduced structure as being the data of some
sort of tangent directions (or better normal directions). Note that
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abstractly we have a product

A1
k × T,

since

k[x, y]/〈x2〉 ' k[y]⊗ k[ε]/〈ε2〉.
Clearly this structure becomes quite rich if we consider double struc-

tures on copies of P1, for example double lines in P3. It turns out that
there are continuous non-isomorphic families of double structure on a
copy of P1.

It is also interesting to consider embedded components.

Definition 6.5. Let X be a scheme and let Z be a locally closed sub-
scheme. The closure of Z is the smallest closed subscheme of X
which contains Z.

Of course the closure of Z is the intersection of all the closed sub-
schemes of X which contain it. One can also define the closure in terms
of the induced immersion

Z −→ X.

It is the induced subscheme of X.

Definition 6.6. If X is a scheme, then we say that X has an embed-
ded component if there is a dense open subset of X whose closure is
not equal to X.

For example, if there is a dense open set U which is reduced then
the closure of U is reduced, so X has an embedded component iff X is
not reduced.

In terms of examples, we will only consider non-reduced scheme
structures on A1

k. Perhaps the simplest example is to consider the
subscheme of A2

k defined by the ideal 〈y2, xy〉. The support of this
closed subscheme is the x-axis. The open subscheme U = Ux is a re-
duced subscheme; on the other hand, this scheme is not reduced as
y 6= 0 ∈ k[x, y]/〈y2, xy〉, and y2 = 0. Thus the origin is an embedded
component.

Note that the ideal of functions vanishing on this scheme is equal to
the ideal of functions vanishing along the x-axis, which also vanish to
order two at the origin. Algebraically

〈y2, xy〉 = 〈y〉 ∩ 〈x2, xy, y2〉.

Put differently, the restriction of a function f(x, y) ∈ k[x, y] to this
scheme is determined by the function g(x) = f(x, 0) and the value of
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the partial derivative
∂f

∂y

∣∣∣∣
(0,0)

.

Note that it is convenient to think of this scheme as the union of two
schemes, the line given by 〈y〉 and the 2nd infinitessimal neighbourhood
of the origin,

〈x2, xy, y2〉.
To go further into the theory of embedded components, we need to

recall some facts from algebra.

Definition 6.7. Let M be an R-module. The primes associated
to M are simply the annihilators of any element of M . The primes
associated to an ideal I ⊂ R are then the primes associated to the
quotient R/I.

An ideal q ⊂ p is called primary to p if p is the radical of q and
for every pair of elements f and g of R if fg ∈ q and f /∈ p then g ∈ q.

For example 〈x2, xy, y2〉 is primary to 〈x, y〉 in the polynomial ring
k[x, y]. Another way to restate the second condition is that the locali-
sation map

R/q −→ Rq/qRq,

is injective.
The key point is that every ideal is the intersection of primary ideals

(one should think of this as a factorisation, for example 〈6〉 = 〈2〉∩〈3〉).
Unfortunately the elements of the intersection are not unique.

There are ways to eliminate some of the redundancy however. We
may assume that no ideal of the intersection can be removed. We
may also assume that the primes associated to the primary ideals are
distinct (indeed the intersection of two primary ideals with the same
prime ideal is primary to this prime ideal). We call this a primary
decomposition of I and we call the ideals of the intersection the
primary components of I. Now it is true that the set of prime ideals,
for which an ideal in the intersection is primary, is unique. In fact these
ideals are nothing but the prime ideals associated to I. The primary
ideals of the intersection are not unique. It does turn out that a primary
ideal of the intersection is unique, however, if the corresponding prime
ideal is minimal.

For example,
〈y2, xy〉 = 〈y〉 ∩ 〈x2, xy, y2〉,

is a primary decomposition of I = 〈y2, xy〉. The associated primes
are 〈y〉 and 〈x, y〉. Since 〈y〉 is minimal, 〈y〉 appears in every primary
decomposition of I. However we could choose 〈x, y2〉 or 〈x + y, y2〉 or
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indeed 〈x+ ay, y2〉 for the other ideal. Indeed, 〈xn, xy, y2〉 will also do,
for any n ≥ 1.

Recall the definition of the length.

Definition 6.8. Let M be an R-module. The length of M is the
maximal length of a chain

M = M0 ⊃M1 ⊃M2 ⊃ · · · ⊃Ml−i ⊃Ml.

It turns out that the length of the primary ideal is fixed however; it
may be computed as the maximal length of an ideal of finite length in
Rp/IRp.

For example it turns out that for our favourite example, the length
is one.
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