1. (18pts) (i) Give the definition of independence.

The vectors vy, vs, ...,v, € V are independent if whenever
0= E iV,
i
for scalars 1,79, ...,7r, then r; = 0 for every i.

(ii) Give the definition of the dimension of a vector space.

V has dimension n if there is a basis with n elements.

(iii) Give the definition of the column space of a matrix.

If A€ M, ,,(F) then the column space of A is the span of the columns
of A.



(iv) Give the definition of a linear transformation.

A function ¢: V. — W is a linear transformation if ¢(v; + ve) =
d(v1)+@(ve) and ¢(rv) = ré(v) for every scalar r and vy, vo and v € V.

(v) Give the definition of the rank of a linear transformation.

The rank of the linear transformation ¢: V' — W is the dimension
of the image of ¢.

(vi) Give the definition of an eigenvector of a linear transformation.

An eigenvector of the linear transformation ¢: V' — V is a non-zero
vector v € V such that ¢(v) = Av for some scalar \.



2. (15pts) Let ¢: Py(R) — Pyy1(R) be the function ¢(f) = f'+ (1 +
x)f, where f’is the derivative of f.
(i) Show that ¢ is linear.

The sum of two linear functions is linear and so it suffices to show that
the two functions f — f" and f — (1 + x)f are linear. Standard
properties of the derivative imply that the first function is linear. The
second function is a sum of the two functions f — f and f — zf.
The first function is the identity and this is linear. The second function
multiplies a polynomial by x. Suppose f; and f, are two polynomials.

r(fi+ f2) =xfi+afs,

so that multiplication by x respects addition. Suppose that f is a
polynomial and r is a scalar

a(rf) =r(xf),
so that multiplication by x respects scalar multiplication. Thus ¢ is
linear.

(ii) Suppose that d = 3. Find the matrix of ¢ with respect to the
standard basis of P3(R).

The standard basis is 1, z, 22 and 3.
¢(1) = 1+z  ¢(x) = Lta+a®  ¢(a?) = 2e+a’+2®  §(2°) = 3’ +a’+at.

The matrix is

[ e R R S
CO R
O =N O
=W o O



3. (15pts) Let ¢p: F* — F* be the function
(w,x,y, 2) — (W—2x—2y+2, 2w—4r—4y+2z, w—r+y—2z, 2W—3T—Y).
(i) Show that ¢ is linear.

Let
1 -2 —2 1
2 4 —4 2
A=17 1 1 4
2 -3 —-1 0

Then ¢(v) = Av and so ¢ is linear.

(i) Find a basis for the kernel of ¢. What is the nullity of ¢?

We apply Gaussian elimination to A. We add —2, —1 and —2 times
the first row to the second, third and fourth rows to get

1 -2 -2 1
0O 0 0 0
o 1 3 =2
o 1 3 =2

Subtracting the third row from the fourth row and switching rows we
get

1 -2 =2 1

0o 1 3 =2

0 0 0 0

0O 0 0 0
We apply back substitution to find the kernel. z and y are free variables
and so the nullity is two. Using the second equation we get x = —3y+22

and using the first equation we get w — 2(—3y + 2z) — 2y + z = 0, so
that w = —4y 4 3z. The general element of the kernel is
(—4y + 32z, =3y +2z,y,2) = y(—4,-3,1,0) + 2(3,2,0, 1).

Thus (—4,-3,1,0) and (3,2,0,1) span the kernel. Since they are not
parallel vectors they are independent and so they form a basis of the
kernel.



(iii) Find a basis for the image of ¢. What is the rank of ¢7

The rank of ¢ is the number of pivots, which is two. The column space
is equal to the rank. So we are looking for two independent column
vectors. As (1,2,1,2) and (—2,—4, —1,—3) are not parallel they are
independent and so they are a basis for the image of ¢.



4. (10pts) If A € M5 5(R) is the matrix

)

then find a closed form expression for A™.

We first diagonalise A. The characteristic polynomial is
(I1-XN)4-X)—-10=0.
Rearranging gives
M —5\—6=(A—6)(\+1)=0.

Thus the eigenvalues are A = 6 and A = —1. If we plug in A = 6 into
the matrix B = A — A\I; then we get

(5 %)

So B is a matrix of rank one and the kernel is spanned by (2, 5), which
is an eigenvector of A with eigenvalue 6. If we plug in A = —1 then we

get

2 2

5 5
The kernel of this matrix is spanned by (1, —1) and this is an eigenvec-
tor with eigenvalue —1. Let

6 0 2 1
po(80) e po( L)

By general theory A = PDP~!, where

—1/-1 -1
-1 _ —+
P2 ().

But then A = PD"P~ 1,



5. (30pts) For each statement below, say whether the statement is
true or false. If it is false, give a counterexample and if it is true then
explain why it is true.

(i) Every matrix A € Ms»(R) is diagonalisable.

0 1
A= (0 0) .
The characteristic polynomial is A> = 0 so that A = 0 is the only
eigenvalue. The kernel of this matrix is spanned by (1,0) so that the
span of the eigenvalues is 1 dimensional. But if A is diagonalisable it

would have a basis of eigenvectors.

Fualse. Let

(ii) Every function ¢: F™ — F™ is linear, where F is a field.

False. The function ¢Q — Q given by x — 2?2 is not linear as

4=0¢(2)#14+1=¢(1)+ ¢(1), so that ¢ does not respect addition

(ili) Two finite dimensional vector spaces of the same dimension over
the same field F' are isomorphic.

True. Suppose that V and W both have dimension n. Let vy, v, ..., v,
be basis of V' and let wy, ws, ..., w, be a basis of W. Define a function
¢: V. — W as follows. Given v € V we may find unique scalars
T1,72,...,T, such that v = ) . rv;. We define ¢(v) = >, riw;. ¢ is
well-defined and a bijection. Suppose that p and ¢ € V. We may
find scalars ry,7s,...,7r, and sq,82,...,s, such that p = ) r;v; and
q=>,5;. But then p+q=>".(r;+s;)v; and so ¢p(p+¢q) = >_,(r; +
spw; = > _iw; + Y s;w; = ¢(p) + ¢(q). Thus ¢ respects addition.
Now suppose A € F'. Then A\p = > (Ar;)v;. Thus ¢(Ap) = >, (Ary)w; =
A(>, maw;) = Ap(p). Hence ¢ respects scalar multiplication. Thus ¢ is
a linear isomorphism.



(iv) If a matrix A € M, o(F) has only one eigenvalue then A is not
diagonalisable.

False. The matrix

(Y

has characteristic polynomial A> = 0. Thus A = 0 is the only eigen-
value. But A is diagonal to start with, so A is diagonalisable.

(v) If a matrix A € M, ,(F) has n distinct eigenvalues then A is
diagonalisable.

True. It is enough to show that A has a basis of eigenvetors. Suppose
that vy, vs, ..., v, are the eigenvectors, with eigenvalues \i, Ao, ..., \,.
It is enough to show that these vectors are independent. Suppose
not. Then we can find scalars ri,ro,...,7r,, not all zero, such that
> mivi = 0. We may assume that n is minimal with this property.
Apply A to both sides we get > . r;A;v; = 0. Multiply the first equation
by A, and subtract to get > .(A\, — \;)rv; = 0. As the last term is
zero but the rest are non-zero this contradicts our choice of n. Thus
vy, s, . ..,0, are independent. Therefore they are a basis and A is
diagonalisable.

(vi) Suppose that A € M, ,(F) has n distinct eigenvalues and B €
M, »(F) commutes with A. Then B is diagonalisable.

True. Let v be an eigenvector of A with eigenvalue A. By assumption
E\(A) is spanned by v. Let w = Bv. We have

Aw = A(Bv) = (AB)v = (BA)v = B(Av) = B(A\v) = ABv = \w.

Thus w € E)\(A) and so w = pv for some p. But then v is an eigen-
vector with eigenvalue p for B.

Let vy, v9, ..., v, be eigenvectors of A. As vy, vs,...,v, have distinct
eigenvalues, vy, vs, ..., v, are a basis of F". But then vy, vy,...,v, are
a basis of eigenvalues of B. Hence B is diagonalisable.



