
1. (18pts) (i) Give the definition of independence.

The vectors v1, v2, . . . , vn ∈ V are independent if whenever

0 =
∑
i

rivi,

for scalars r1, r2, . . . , rn then ri = 0 for every i.

(ii) Give the definition of the dimension of a vector space.

V has dimension n if there is a basis with n elements.

(iii) Give the definition of the column space of a matrix.

If A ∈Mn,m(F ) then the column space of A is the span of the columns
of A.
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(iv) Give the definition of a linear transformation.

A function φ : V −→ W is a linear transformation if φ(v1 + v2) =
φ(v1)+φ(v2) and φ(rv) = rφ(v) for every scalar r and v1, v2 and v ∈ V .

(v) Give the definition of the rank of a linear transformation.

The rank of the linear transformation φ : V −→ W is the dimension
of the image of φ.

(vi) Give the definition of an eigenvector of a linear transformation.

An eigenvector of the linear transformation φ : V −→ V is a non-zero
vector v ∈ V such that φ(v) = λv for some scalar λ.

2



2. (15pts) Let φ : Pd(R) −→ Pd+1(R) be the function φ(f) = f ′ + (1 +
x)f , where f ′ is the derivative of f .
(i) Show that φ is linear.

The sum of two linear functions is linear and so it suffices to show that
the two functions f −→ f ′ and f −→ (1 + x)f are linear. Standard
properties of the derivative imply that the first function is linear. The
second function is a sum of the two functions f −→ f and f −→ xf .
The first function is the identity and this is linear. The second function
multiplies a polynomial by x. Suppose f1 and f2 are two polynomials.

x(f1 + f2) = xf1 + xf2,

so that multiplication by x respects addition. Suppose that f is a
polynomial and r is a scalar

x(rf) = r(xf),

so that multiplication by x respects scalar multiplication. Thus φ is
linear.

(ii) Suppose that d = 3. Find the matrix of φ with respect to the
standard basis of P3(R).

The standard basis is 1, x, x2 and x3.

φ(1) = 1+x φ(x) = 1+x+x2 φ(x2) = 2x+x2+x3 φ(x3) = 3x2+x3+x4.

The matrix is 
1 1 0 0
1 1 2 0
0 1 1 3
0 0 1 1
0 0 0 1

 .
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3. (15pts) Let φ : F 4 −→ F 4 be the function

(w, x, y, z) −→ (w−2x−2y+z, 2w−4x−4y+2z, w−x+y−z, 2w−3x−y).

(i) Show that φ is linear.

Let

A =


1 −2 −2 1
2 −4 −4 2
1 −1 1 −1
2 −3 −1 0


Then φ(v) = Av and so φ is linear.

(ii) Find a basis for the kernel of φ. What is the nullity of φ?

We apply Gaussian elimination to A. We add −2, −1 and −2 times
the first row to the second, third and fourth rows to get

1 −2 −2 1
0 0 0 0
0 1 3 −2
0 1 3 −2

 .

Subtracting the third row from the fourth row and switching rows we
get 

1 −2 −2 1
0 1 3 −2
0 0 0 0
0 0 0 0

 .

We apply back substitution to find the kernel. z and y are free variables
and so the nullity is two. Using the second equation we get x = −3y+2z
and using the first equation we get w − 2(−3y + 2z) − 2y + z = 0, so
that w = −4y + 3z. The general element of the kernel is

(−4y + 3z,−3y + 2z, y, z) = y(−4,−3, 1, 0) + z(3, 2, 0, 1).

Thus (−4,−3, 1, 0) and (3, 2, 0, 1) span the kernel. Since they are not
parallel vectors they are independent and so they form a basis of the
kernel.
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(iii) Find a basis for the image of φ. What is the rank of φ?

The rank of φ is the number of pivots, which is two. The column space
is equal to the rank. So we are looking for two independent column
vectors. As (1, 2, 1, 2) and (−2,−4,−1,−3) are not parallel they are
independent and so they are a basis for the image of φ.
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4. (10pts) If A ∈M2,2(R) is the matrix(
1 2
5 4

)
then find a closed form expression for An.

We first diagonalise A. The characteristic polynomial is

(1− λ)(4− λ)− 10 = 0.

Rearranging gives

λ2 − 5λ− 6 = (λ− 6)(λ+ 1) = 0.

Thus the eigenvalues are λ = 6 and λ = −1. If we plug in λ = 6 into
the matrix B = A− λI2 then we get(

−5 2
5 −2

)
So B is a matrix of rank one and the kernel is spanned by (2, 5), which
is an eigenvector of A with eigenvalue 6. If we plug in λ = −1 then we
get (

2 2
5 5

)
The kernel of this matrix is spanned by (1,−1) and this is an eigenvec-
tor with eigenvalue −1. Let

D =

(
6 0
0 −1

)
and P =

(
2 1
5 −1

)
By general theory A = PDP−1, where

P−1 =
−1

7

(
−1 −1
−5 2

)
.

But then A = PDnP−1.
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5. (30pts) For each statement below, say whether the statement is
true or false. If it is false, give a counterexample and if it is true then
explain why it is true.
(i) Every matrix A ∈M2,2(R) is diagonalisable.

False. Let

A =

(
0 1
0 0

)
.

The characteristic polynomial is λ2 = 0 so that λ = 0 is the only
eigenvalue. The kernel of this matrix is spanned by (1, 0) so that the
span of the eigenvalues is 1 dimensional. But if A is diagonalisable it
would have a basis of eigenvectors.

(ii) Every function φ : F n −→ Fm is linear, where F is a field.

False. The function φQ −→ Q given by x −→ x2 is not linear as
4 = φ(2) 6= 1 + 1 = φ(1) + φ(1), so that φ does not respect addition

(iii) Two finite dimensional vector spaces of the same dimension over
the same field F are isomorphic.

True. Suppose that V and W both have dimension n. Let v1, v2, . . . , vn
be basis of V and let w1, w2, . . . , wn be a basis of W . Define a function
φ : V −→ W as follows. Given v ∈ V we may find unique scalars
r1, r2, . . . , rn such that v =

∑
i rivi. We define φ(v) =

∑
i riwi. φ is

well-defined and a bijection. Suppose that p and q ∈ V . We may
find scalars r1, r2, . . . , rn and s1, s2, . . . , sn such that p =

∑
i rivi and

q =
∑

i sivi. But then p+ q =
∑

i(ri + si)vi and so φ(p+ q) =
∑

i(ri +
si)wi =

∑
i iwi +

∑
i siwi = φ(p) + φ(q). Thus φ respects addition.

Now suppose λ ∈ F . Then λp =
∑

(λri)vi. Thus φ(λp) =
∑

i(λri)wi =
λ(
∑

i riwi) = λφ(p). Hence φ respects scalar multiplication. Thus φ is
a linear isomorphism.
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(iv) If a matrix A ∈ M2,2(F ) has only one eigenvalue then A is not
diagonalisable.

False. The matrix

A =

(
0 0
0 0

)
has characteristic polynomial λ2 = 0. Thus λ = 0 is the only eigen-
value. But A is diagonal to start with, so A is diagonalisable.

(v) If a matrix A ∈ Mn,n(F ) has n distinct eigenvalues then A is
diagonalisable.

True. It is enough to show that A has a basis of eigenvetors. Suppose
that v1, v2, . . . , vn are the eigenvectors, with eigenvalues λ1, λ2, . . . , λn.
It is enough to show that these vectors are independent. Suppose
not. Then we can find scalars r1, r2, . . . , rn, not all zero, such that∑

i rivi = 0. We may assume that n is minimal with this property.
Apply A to both sides we get

∑
i riλivi = 0. Multiply the first equation

by λn and subtract to get
∑

i(λn − λi)rivi = 0. As the last term is
zero but the rest are non-zero this contradicts our choice of n. Thus
v1, v2, . . . , vn are independent. Therefore they are a basis and A is
diagonalisable.

(vi) Suppose that A ∈ Mn,n(F ) has n distinct eigenvalues and B ∈
Mn,n(F ) commutes with A. Then B is diagonalisable.

True. Let v be an eigenvector of A with eigenvalue λ. By assumption
Eλ(A) is spanned by v. Let w = Bv. We have

Aw = A(Bv) = (AB)v = (BA)v = B(Av) = B(λv) = λBv = λw.

Thus w ∈ Eλ(A) and so w = µv for some µ. But then v is an eigen-
vector with eigenvalue µ for B.
Let v1, v2, . . . , vn be eigenvectors of A. As v1, v2, . . . , vn have distinct
eigenvalues, v1, v2, . . . , vn are a basis of F n. But then v1, v2, . . . , vn are
a basis of eigenvalues of B. Hence B is diagonalisable.
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