
MODEL ANSWERS TO THE NINTH HOMEWORK

1. Clearly the first thing is to subtract λI3, to get the matrix

N =

0 1 1
0 0 1
0 0 0

 .

By direct computation, we see that N3 = 0 but N2 6= 0. It follows that
minimal polynomial of N is x3, so that the minimal polynomial of the
original matrix is (x − λ)3. But the only matrix in Jordan canonical
form with this minimal polynomial is

λ 1 0
0 λ 1
0 0 λ

 .

The general case proceeds in the same way. We subtract λIk. The
resulting matrix N has the property that Nk = 0 but Nk−1 6= 0 (in
fact this a matrix with a 1 in the top right hand corner and a zero
elsewhere). This implies that the minimal polynomial of A is (x− λ)k

and so the Jordan canonical form of A is Bk(λ).
2. Suppose that A = Bk(λ). Consider N = At − λIk. By direct
computation Nk = 0 and Nk−1 6= 0 (in fact it is the matrix with a single
non-zero entry, a 1 in the bottom left hand corner). It follows that the
minimal polynomial of At is (x − λ)k. The only matrix in Jordan
canonical form with this minimal polynomial is Bk(λ). It follows that
there is a matrix P = Pk(λ) such that Bk(λ)t = PBk(λ)P−1.
Now we turn to the general case. Since A is a matrix in Jordan canon-
ical form, At is a matrix in block form, with blocks Bki

(λi)
t on the

main diagonal and zeroes everywhere else. Let P be the block matrix,
with Pki

(λi) on the main diagonal and zeroes everywhere else. Then
the inverse of P is the block matrix, with Pki

(λi)
−1 on the main diag-

onal and zeroes everywhere else (indeed the identity matrix is unique
and by direct computation this matrix multiplied by P is the identity
matrix). Computing block by block then we see that PAtP−1 = A, so
that A is the Jordan canonical form for At.
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3. We may as well suppose that B is in Jordan canonical form. Observe
that if B = Bk(0) then

ν(Bl) =

{
l l ≤ k − 1

k l ≥ k.

In the general case, suppose that nl is the number of Jordan block of
size l × l, 1 ≤ l ≤ k. Then, multiplying out Bl block by block and
using the formula above we see that

ν(Bl) =
l∑

i=1

nii+
∑
i>l

nil.

In particular

ν(Bl+1)− ν(Bl) = nl+2 + nl+3 + . . . .

4. (i) False. Consider the matrices

A1 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 and A2 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Both matrices are in Jordan canonical form. The first consists of two
Jordan blocks of type B2(0). The second consists of three Jordan
blocks, one of type B2(0), and two of type B1(0), which are not the
same even up to re-ordering.
For both matrices A2

1 = A2
2 = 0 and yet A1 6= 0 and A2 6= 0. So both

matrices have minimal polynomial x2, but they don’t have the same
Jordan canonical form.
(ii) False. Consider the matrices A1 and A2 above. We have already
seen that they have the same minimal polynomial. The characteristic
polynomial is x4 in both cases. On the other hand, they don’t have the
same Jordan canonical form.
(iii) True. We might as well suppose that A is a diagonal matrix. If the
entries on the main diagonal are λ1, λ2, . . . , λn then the characteristic
polynomial of A is

(λ− λ1)(λ− λ2) . . . (λ− λn).

The roots of this polynomial determine λ1, λ2, . . . , λn, whence the Jor-
dan canonical form.
(iv) False. Let V = R1 and let

P = {x ∈ R |x ≥ 0 }.
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Then P contains 0, it is closed under addition, since the sum of two non-
negative is non-negative, but it is not closed under scalar multiplication
as 1 ∈ P but (−1) · 1 = −1 /∈ P .
5. If we add the second column to the first column, we get∣∣∣∣∣∣∣∣

2 −2 1 −1
3 −2 2 1
1 −1 1 4
0 0 2 −1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
0 −2 1 −1
1 −2 2 1
0 −1 1 4
0 0 2 −1

∣∣∣∣∣∣∣∣ .
Expanding about the first column gives,

−

∣∣∣∣∣∣
−2 1 −1
−1 1 4
0 2 −1

∣∣∣∣∣∣ .
Expanding about the first column of this matrix gives,

2

∣∣∣∣1 4
2 −1

∣∣∣∣− ∣∣∣∣1 −1
2 −1

∣∣∣∣ = 2(−1− 8)− (−1 + 2) = −18− 1 = −19.

6. Let vn = (sn−1, sn, sn+1), so that v1 = (0, 0, 1), and let

A =

 0 1 0
0 0 1
−2 1 2

 .

Then Avn = vn+1. It follows that vn = An−1v1, and so we need to
compute powers of A. To this end, we need to diagonalise A. The
characteristic polynomial of A is

det(A− λI3) =

∣∣∣∣∣∣
−λ 1 0
0 −λ 1
−2 1 2− λ

∣∣∣∣∣∣
= −λ

∣∣∣∣−λ 1
1 2− λ

∣∣∣∣− ∣∣∣∣ 0 1
−2 2− λ

∣∣∣∣
= −λ(−λ(2− λ)− 1)− 2

= −λ3 + 2λ2 + λ− 2.

Thus we want to find the solutions to the equation

λ3 − 2λ2 − λ+ 2 = 0.

By inspection λ = ±1 are both solutions. If the roots of x3+ax2+bx+c
are α, β and γ then

x3 + ax2 + bx+ c = (x− α)(x− β)(x− γ),
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and multiplying out we see that the product of the roots is −c. Thus
the third root is 2. We calculate the eigenspaces in all three cases. For
λ = λ1 = 1 we want the kernel of

A− I3 =

−1 1 0
0 −1 1
−2 1 1

 .

Multiplying the first row by −1 we get 1 −1 0
0 −1 1
−2 1 1

 .

Multiplying the first row by 2 and adding it to the third row we get1 −1 0
0 −1 1
0 −1 1

 .

Multiplying the second row by −1 and then adding it to the third row
gives 1 −1 0

0 1 −1
0 0 0

 ,

a row of zeroes, as expected. z is a free variable. Put z = 1. Then
y = 1 and x = 1, so that the kernel is spanned by (1, 1, 1). Thus
(1, 1, 1) is an eigenvector with eigenvalue λ1 = 1.
Now suppose λ = λ2 = −1. Then we want the kernel of

A+ I3 =

 1 1 0
0 1 1
−2 1 3

 .

Adding twice the first row to the third row gives1 1 0
0 1 1
0 3 3

 .

Subtracting the second row from the third gives1 1 0
0 1 1
0 0 0

 .

Once again z is a free variable. If we put z = 1, then y = −1 and
x = 1. Thus (1,−1, 1) is an eigenvector with eigenvalue λ2 = −1.
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Finally suppose that λ = λ3 = −2. Then we want the kernel of

A− 2I3 =

−2 1 0
0 −2 1
−2 1 0

 .

Subtracting the first row from the third row gives−2 1 0
0 −2 1
0 0 0

 .

If we put z = 4, then y = 2 and x = 1. Thus (1, 2, 4) is an eigenvector
with eigenvalue λ3 = 2. It follows that A = PDP−1, where

D =

1 0 0
0 −1 0
0 0 2

 and P =

1 1 1
1 −1 2
1 1 4

 .

We compute the inverse of P , by using Gauss-Jordan elimination1 1 1 | 1 0 0
1 −1 2 | 0 1 0
1 1 4 | 0 0 1

 .

We subtract the first row from the second and third rows to get1 1 1 | 1 0 0
0 −2 1 | −1 1 0
0 0 3 | −1 0 1

 .

Now we multiply the second row by −1/2 and the third row by 1/3 to
get 1 1 1 | 1 0 0

0 1 −1/2 | 1/2 −1/2 0
0 0 1 | −1/3 0 1/3

 .

Now we multiply the third row by 1/2 and −1 and add it to the second
and first rows to get1 1 0 | 4/3 0 −1/3

0 1 0 | 1/3 −1/2 1/6
0 0 1 | −1/3 0 1/3

 .

Finally we multiply the second row by −1 and add it to the first row
to get 1 0 0 | 1 1/2 −1/2

0 1 0 | 1/3 −1/2 1/6
0 0 1 | −1/3 0 1/3

 .
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Therefore

P−1 =

 1 1/2 −1/2
1/3 −1/2 1/6
−1/3 0 1/3

 .

It follows that An = PDnP−1. Now vn+1 = Anv1. Note that we only
want the first entry of vn+1. Now

P−1v0 = (−1/2, 1/6, 1/3)t.

Therefore

DnP−1v0 = (−1/2, (−1)n/6, 2n/3)t.

Thus the first entry of vn+1 is

sn = −1/2 + (−1)n/6 + 2n/3 =
(−1)n + 2n+1 − 3

6
.

which is a closed form expression for sn.
7. First the diagonal matrices,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The minimal polynomials are x, x(x− 1), x(x− 1), x(x− 1) and x− 1.
The characteristic polynomials are x4, x3(x− 1), x2(x− 1)2, x(x− 1)3

and (x− 1)4. Now the matrices with one Jordan block of size 2× 2:
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 and


0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,

with minimal polynomials x2, x2(x−1) and x2(x−1), and characteristic
polynomials x4, x3(x− 1) and x2(x− 1)2, and

1 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0




1 1 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 and


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

with minimal polynomials (x− 1)2, (x− 1)2x and (x− 1)2x, and char-
acteristic polynomials (x−1)2x2, (x−1)3x and (x−1)4. There are the
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matrices with two Jordan blocks of type 2× 2,
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 1

 and


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,

with minimal polynomials x2, x2(x−1)2 and (x−1)2, and characteristic
polynomials x4, (x − 1)2x2 and (x − 1)4. There are the matrices with
one Jordan block of size three,

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1




1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0

 and


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,

with minimal polynomials x3, x3(x − 1), (x − 1)3x and (x − 1)3, and
characteristic polynomials x4, x3(x−1), (x−1)3x and (x−1)4. Finally
there are two matrices with one Jordan block,

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 and


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 ,

with minimal polynomials x4 and (x − 1)4 and characteristic polyno-
mials x4 and (x− 1)4.
8. The determinant is ∏

i>j

(λi − λj).

Here is how to see this. Suppose that we turn λi into a variable x.
If we expand the determinant about the ith column, then we clearly
get a polynomial fi(x) of degree n− 1 in x. On the other hand, if we
set x = λj, then two columns of the matrix are duplicates and so the
determinant is zero. This tells us that x− λj is factor of fi(x).
Going back to the original problem, if we expand the determinant, we
get a polynomial of degree n − 1 in each variable. By what we just
proved λi − λj is a factor. If we expand

µ
∏
i>j

(λi − λj),

where µ is a scalar, then we get a polynomial of degree n − 1 in each
variable. The only thing that is left to determine is the factor µ. One
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can see that it is 1 by comparing coefficients of the same monomial,
say the one that comes from the diagonal,

λ2λ3 . . . λ
n−1
n .

For the determinant it is one. For the product, one needs to take the
first term from every bracket, so that for the product it is µ. Thus
µ = 1.


