
MODEL ANSWERS TO THE EIGHTH HOMEWORK

1. (i) Let

A =

1 2 −1 3
2 4 −1 2
3 6 −2 5

 .

Then φ(v) = Av, where v = (r1, r2, r3, r4). In particular φ is linear.
(ii) We apply Gauss-Jordan elimination to A. We multiply the first
row by −2 and −3 and add it to the second and third rows to get1 2 −1 3

0 0 1 −4
0 0 1 −4

 .

Now we multiply the second row by −1 and add it to the third row to
get 1 2 −1 3

0 0 1 −4
0 0 0 0

 .

This completes the Gaussian elimination. Now add the second row to
the first to get 1 2 0 −1

0 0 1 −4
0 0 0 0

 .

This competes the Gauss-Jordan elimination. The product of the cor-
responding elementary row matrices is

E = E2,1(1)E2,3(−1)E1,3(−3)E1,2(−2)

=

1 1 0
0 1 0
0 0 1

1 0 0
0 1 0
0 −1 1

 1 0 0
0 1 0
−3 0 1

 1 0 0
−2 1 0
0 0 1


=

−1 1 0
−2 1 0
−1 −1 1

 .

This defines a linear isomorphism

g : R3 −→ R3,

by the rule

g(s1, s2, s3) = (−s1 + s2,−2s1 + s2,−0s1 − s2 + s3).
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To finish off, we need to apply Gaussian elimination to the tranpose
matrix, 

1 0 0
2 0 0
0 1 0
2 −1 0

 .

We multiply the first row by −2 and add it to the second and forth
rows to get 

1 0 0
0 0 0
0 1 0
0 −1 0

 .

Now we swap the second and third rows and add the second row to the
fourth row to get 

1 0 0
0 1 0
0 0 0
0 0 0

 .

The product of the corresponding elementary row operations is then

E ′ = E2,4(1)P1,2E1,4(−2)E1,2(−2)

=


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
−2 0 0 1




1 0 0 0
−2 1 0 0
0 0 1 0
0 0 0 1



=


1 0 0 0
0 0 1 0
−2 1 0 0
−4 0 1 1

 .

The inverse matrix is 
1 0 0 0
2 0 1 0
0 1 0 0
2 0 −1 1

 .

The transpose of this matrix is
1 2 0 2
0 0 1 0
0 1 0 −1
0 0 0 1

 .
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This defines a linear map f : R4 −→ R4 by the rule

f(r1, r2, r3, r4) = (r1 + 2r2 + 2r4, r3, r2 − r4, r4).

The corresponding map ψ, which is given by the transpose of the last
4× 3 matrix above, is ψ(r1, r2, r3, r4) = (r1, r2, 0).
2. (i) One direction is clear. If f(x) = (x − α)g(x) then f(α) =
(α− α)g(α) = 0 so that α is a root of f(x).
Now suppose that α is a root of f(x). By the division algorithm

f(x) = (x− α)g(x) + r(x),

where r(x) = 0 or r(x) has degree zero. Either way r(x) = r0 is a
constant polynomial. If we plug in α then both f(α) and the term
(α− α)g(α) are zero. But then r0 = 0 as well. It follows that x− α is
a factor of f(x).
(ii) Suppose that g(x) = gmx

m + gm−1x
m−1 + · · · + g0 and h(x) =

hnx
n + hn−1x

n−1 + · · ·+ h0, where gm and hn 6= 0.

f(x) = gmhnx
n+m + · · · ,

where dots indicate lower terms. As F is a field, gmhn 6= 0. Then the
degree of g(x) is m, the degree of h(x) is n and the degree of f(x) is
n+m, the sum of the degrees.
3. (i) Suppose that f(x) = g(x)h(x). Then the degree of f(x) is the
sum of the degrees of g(x) and h(x). But if f(x) has degree at most
three and g(x) and h(x) have degree at least one then at least one
of g(x) and h(x) has degree one. Possibly switching g(x) and h(x),
we may assume that g(x) has degree one. But then g(x) = g1x + g0,
where g1 6= 0. Let g1(x) = x + g0/g1 and h1(x) = g1h(x). Then
f(x) = g1(x)h1(x). But g1(x) = x− α, where α = −g0/g1.
(ii) A general monic degree two polynomial with coefficients in F3 looks
like

f(x) = x2 + ax+ b,

where a and b ∈ {0, 1, 2}. Such a polynomial is irreducible, provided it
has no roots. 0 is a root if and only if b = 0. So we may assume that
b = 1 or 2. Suppose that b = 1. Then

f(1) = 1 + a+ 1.

So 1 is a root if and only if a = 1.

f(2) = 4 + 2a+ 1 = 2a+ 2.

So 2 is a root if and only if a = 2. Thus

f(x) = x2 + 1,
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is irreducible. Now suppose that b = 2. Then

f(1) = 1 + a+ 2,

so that 1 is a root if and only if a = 0.

f(2) = 4 + 2a+ 2,

so that 2 is a root if and only if a = 0. Thus

f(x) = x2 + x+ 2 and f(x) = x2 + 2x+ 2,

are the only other irreducible monic polynomials of degree three.
(iii) A general degree three polynomial with coefficients in F2 looks like

f(x) = x3 + ax+ bx+ c,

where a, b and c belong to {0, 1}. 0 is a root if and only if c = 0. So
we may assume that c = 1.

f(1) = 1 + a+ b+ 1 = a+ b.

So 1 is a root if and only if a = b = 0 or a = b = 1. Thus the irreducible
polynomials of degree three are

x3 + x2 + 1 and x3 + x+ 1.

4. (i) False. x2 + 1 is a real polynomial of degree two without any real
roots. Therefore x2 + 1 is irreducible.
(ii) False. A = (0) ∈ M1,1(F ) is not invertible but it is diagonal and
therefore clearly diagonalisable.
(iii) True. By assumption B = PAP−1, for some invertible matrix
P ∈ Mn,n(F ). On the other hand A = QDQ−1, for some invertible
matrix Q ∈Mn,n(F ) and diagonal matrix D ∈Mn,n(F ). Therefore

B = PAP−1

= P (QDQ−1)P−1

= (PQ)D(P−1Q−1)

= (PQ)D(PQ)−1

= RDR−1,

where R = PQ. So B is diagonalisable.
(iv) False. Let

A =

(
0 1
−1 0

)
Then A is a real 2× 2 matrix. The characteristic equation is

λ2 + 1 = 0.
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This has no real roots and so A is not diagonalisable as a real matrix.
It has two distinct complex roots ±i and so it is diagonalisable as a
complex matrix.
5. The general degree four polynomial looks like

f(x) = x4 + ax3 + bx2 + cx+ d.

Now this has a linear factor if and only if it has a root. 0 is a root if
and only if d = 0. So we may assume that d = 1. In this case 1 is a
root if and only if a + b + c = 0. Let z be the number of a, b and c
equal to zero. Then we may assume that z is zero or two.
The remaining possibility is if f(x) factors as a product of two quadrat-
ics g(x) and h(x). Now we may assume that both of these quadratics
are irreducible (else f(x) has a linear factor, whence it has a root, which
we have already eliminated).
Now the general quadratic looks like

x2 + ex+ f.

0 is a root if and only if f = 0. So we may assume that f = 1. Then 1
is a root if and only if

1 + e+ 1 = 0,

that is e = 0. So x2 + x + 1 is the unique irreducible quadratic. Its
square is

x4 + x2 + 1.

(Note that (a+ b)2 = a2 + b2 over F2!). Thus

x4 + x+ 1, x4 + x3 + 1 and x4 + x3 + x2 + x+ 1,

are the irreducible quartics with coefficients in F2.


