MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. By assumption there is an invertible matrix P such that $A = PBP^{-1}$. Let $\lambda \in F$.

Claim 0.1.

$$E_{\lambda}(B) = P(E_{\lambda}(A)).$$

Proof. Pick $v \in E_{\lambda}(B)$. Then $Bv = \lambda v$ and so $A(Pv) = (PBP^{-1})Pv$ $= PB(P^{-1}P)v$ = PBv $= P(\lambda v)$ $= \lambda(Pv).$

Thus $Pv \in E_{\lambda}(A)$. It follows that

 $E_{\lambda}(B) \subset P(E_{\lambda}(A)).$

Let $Q = P^{-1}$. Then $B = QAQ^{-1}$ and so by what we have already proved,

 $E_{\lambda}(A) \subset Q(E_{\lambda}(B)).$

Multiply both sides by P (here we mix up slightly the difference between multiplication by P and applying the linear function $\psi: V \longrightarrow V$ given by P), to get

$$P(E_{\lambda}(A)) \subset P(Q(E_{\lambda}(B))) = (P \circ Q)(E_{\lambda}(B)) = E_{\lambda}(B).$$

This gives the reverse inclusion and establishes the claim.

Since P is invertible, it follows that

$$\dim E_{\lambda}(B) = \dim E_{\lambda}(A).$$

The matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

are similar. Indeed, just take

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

 $E_0(A)$ is spanned by (1,0) and $E_0(B)$ is spanned by (0,1). So the two eigenspaces are not equal, even though they have the same dimension.

2. Denote by A the first matrix and by B the second matrix. (a) $E_1(A)$ span of (1,0) whilst $E_1(B) = F^2$. Thus

$$\dim E_1(A) = 1 \neq 2 = \dim E_1(B)$$

Thus A and B are not similar.

(b) $E_0(A) = \{0\}$ whilst $E_0(B)$ is the span of (1, 0). Thus

$$\dim E_0(A) = 0 \neq 1 = \dim E_0(B).$$

Thus A and B are not similar. (c) Let

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then P is its own inverse and $A = PBP^{-1}$. So A and B are similar. 3. Let v_1, v_2, \ldots, v_n be a basis of eigenvectors for A. Since A and B have the same eigenspaces, A and B have the same eigenvectors. But then v_1, v_2, \ldots, v_n is a basis of eigenvectors for B. Let P be the matrix whose columns are the vectors v_1, v_2, \ldots, v_n . We proved in class that $A = PDP^{-1}$ and $B = PEP^{-1}$, where D and E are diagonal matrices. We have

$$AB = (PDP^{-1})(PEP^{-1}) = (PD)(P^{-1}P)(EP^{-1}) = P(DE)P^{-1}.$$

Similarly (or by symmetry)

$$BA = P(ED)P^{-1}.$$

But DE = ED as D and E are diagonal matrices and so AB = BA. 4. Let $v \in W$. If v = 0 then $T(v) = 0 \in W$. Otherwise we can find scalars r_1, r_2, \ldots, r_k and eigenvectors v_1, v_2, \ldots, v_k such that

$$v = \sum_{i} r_i v_i.$$

Suppose that v_i is an eigenvector with eigenvalue λ_i . Then

$$T(v) = T(\sum_{i} r_{i}v_{i})$$
$$= \sum_{i} r_{i}T(v_{i})$$
$$= \sum_{i} r_{i}\lambda_{i}v_{i}$$
$$= \sum_{i} s_{i}v_{i},$$

where $s_i = r_i \lambda_i$. But then $T(v) \in W$ and so $T(W) \subset W$.

5. Let $v_1, v_2, \ldots, v_{n-1}$ be a basis for the kernel and let v_n be an eigenvector with non-zero eigenvalue $\lambda \neq 0$. Then $T(v_n) = \lambda v_n \neq 0$ so v_n does not belong to the kernel of T. In particular v_n is not in the span of $v_1, v_2, \ldots, v_{n-1}$ and so v_1, v_2, \ldots, v_n are independent. As V has dimension n it follows that v_1, v_2, \ldots, v_n is a basis of V. But then T is diagonalisable.

6. As T is diagonalisable, V has a basis of eigenvectors v_1, v_2, \ldots, v_m for T. Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_m$ are the eigenvalues. Then

$$T^n(v_i) = \lambda_i^n v_i.$$

So v_i is an eigenvector with eigenvalue λ_i^n . Therefore v_1, v_2, \ldots, v_m is a basis of eigenvectors for T^n .