
MODEL ANSWERS TO THE FIFTH HOMEWORK

1. The sequence gn satisfies the recursion gn = gn−2 + 2gn−1. Thus the
previous two elements determine the next element. Let

wn =

(
gn−1

gn

)
.

Then

wn+1 =

(
gn
gn+1

)
=

(
gn

gn−1 + 2gn

)
.

The last expression is Bwn, where

B =

(
0 1
1 2

)
.

In other words wn = Bn−1w1, where

w1 =

(
1
1

)
.

To compute powers of B we diagonalise B. We first compute the
eigenvalues of B, which are roots of the characteristic polynomial.

B − λI2 =

(
−λ 1
1 2− λ

)
.

The characteristic polynomial is

(−λ)(2− λ)− 1 = 0.

Rearranging gives
λ2 − 2λ− 1 = 0.

Using the quadratic formula, we get

λ =
2±
√

4 + 4

2
= 1±

√
2.

If λ = λ1 = 1 +
√

2 then

B − λ1I2 =

(
−1−

√
2 1

1 1−
√

2

)
.

We compute the kernel. If we multiply the second row by −1 −
√

2
then we get (

−1−
√

2 1

−1−
√

2 −(1 +
√

2)(1−
√

2) = 1

)
.

1
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Therefore this matrix has rank one, as expected. The kernel is spanned
by v1 = (1, 1 +

√
2) and this vector is an eigenvector with eigenvalue

λ1. Similarly v2 = (1,−1 +
√

2) is an eigenvector with eigenvalue
λ2 = 1−

√
2). It follows that B = PDP−1, where

D =

(
1 +
√

2 0

0 1−
√

2

)
,

and

P =

(
1 1

1 +
√

2 1−
√

2

)
.

It follows that

P−1 =
1

−2
√

2

(
1−
√

2 −1

−(1 +
√

2) 1

)
.

One can check the equality B = PDP−1. Now

Bnw1 = PDnP−1w1

=
1

−2
√

2

(
1 1

1 +
√

2 1−
√

2

)(
(1 +

√
2)n 0

0 (1−
√

2)n

)(
1−
√

2 −1

−(1 +
√

2) 1

)(
1
1

)
=

1

−2
√

2

(
1 1

1 +
√

2 1−
√

2

)(
(1 +

√
2)n 0

0 (1−
√

2)n

)(
−
√

2

−
√

2

)
=

1

2

(
1 1

1 +
√

2 1−
√

2

)(
(1 +

√
2)n 0

0 (1−
√

2)n

)(
1
1

)
=

1

2

(
1 1

1 +
√

2 1−
√

2

)(
(1 +

√
2)n

(1−
√

2)n

)
=

1

2

(
2gn = (1 +

√
2)n + (1−

√
2)n

2gn+1

)
.

Note that −1 < 1−
√

2 < 0. So for large n, (1−
√

2)n is negative and
very small. Therefore gn is the closest integer to (1 +

√
2)n/2.

It is fun to check that this works for various values of n. For n = 3 we
get 7.03553, which is very close to the real answer, 7. For n = 5 we get
41.00609, which even closer to the real answer, 41.
2. Let

B = A− λI2 =

(
1− λ 1

0 1− λ

)
.

The characteristic polynomial is

(1− λ)(1− λ) = 0.
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This has λ = 1 as a repeated root.

B − I2 =

(
0 1
0 0

)
.

The kernel is spanned by (0, 1). This is an eigenvector with eigenvalue
1.
(ii) If A were diagonalisable it would have a basis of eigenvectors. 1
is the only eigenvalue and the corresponding eigenspace is one dimen-
sional. Therefore A does not have a basis of eigenvectors and so A is
not diagonalisable.
3. (i) This matrix represents rotation through Θ radians. If A is
diagonalisable then it has a basis of eigenvectors. An eigenvector would
span a line that is fixed under rotation through Θ radians. There are
only two possibilities, Θ = 0 and Θ = π. In the first case A = I2, which
is surely diagonalisable. In the second every vector is an eigenvector,
with eigenvalue −1. So A certainly has a basis of eigenvectors and A
is diagonalisable.
(ii) We just have to show that A has two distinct complex eigenvalues.
The characteristic polynomial is a quadratic polynomial. If Θ = 0 or
Θ = π then A has two real eigenvectors with real eigenvalues. Oth-
erwise the eigenvalues are not real. But the roots to a real quadratic
polynomial come in complex conjugate pairs. So if one root is not real
the other one is the complex conjugate. In particular the two roots are
different. For each root we can find an eigenvector and so we have a
basis of eigenvectors, and since the dimension is two, we have a basis
of eigenvectors.
(iii) Now we have to do some work. Let

B = A− λI2 =

(
cos θ − λ − sin θ

sin θ cos θ − λ

)
.

The characteristic polynomial is

(cos θ − λ)(cos θ − λ) + sin θ sin θ = 0.

Rearranging gives,

cos2 θ + sin2 θ − 2λ cos θ + λ2 = 0.

Using a well-known identity we finally get

λ2 − 2 cos θλ+ 1 = 0.
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Using the quadratic formula gives,

λ =
2 cos θ ±

√
4 cos2 θ − 4

2

= cos θ ±
√

cos2 θ − 1

= cos θ ±
√
− sin2 θ

= cos θ ± i sin θ

= e±iθ.

As expected the two roots are complex conjugate. Suppose we plug in
λ1 = eiθ. We get

B =

(
−i sin θ − sin θ

sin θ −i sin θ

)
.

The second row is i times the first row. Solving in the usual way to
find the kernel gives v1 = (1,−i). The other eigenvector is v2 = (1, i)
(what else but the complex conjugate of v1). Therefore A = PDP−1,
where

D =

(
eiθ 0
0 e−iθ

)
,

and

P =

(
1 1
−i i

)
.

Note that

P−1 =
1

2i

(
i −1
i 1

)
.

4. Suppose that there are scalars r1, r2, . . . , rn such that

0 = r1v1 + r2v2 + · · ·+ rnvn.

If we apply T to both sides we get

0 = T (r1v1 + r2v2 + · · ·+ rnvn).

By linearity the RHS expands to

r1T (v1) + r2T (v2) + · · ·+ rnT (vn).

Thus
0 = r1T (v1) + r2T (v2) + · · ·+ rnT (vn).

By independence of the vectors T (v1), T (v2), . . . , T (vn), we have r1 =
r2 = · · · = rn = 0. But then v1, v2, . . . , vn are independent.
5. The matrices(

0 0
0 0

) (
1 0
0 0

) (
0 0
0 1

) (
1 0
0 1

)
,
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are diagonalisable as they are diagonal to start with. The matrices(
1 1
0 0

) (
0 1
0 1

) (
0 0
1 1

) (
1 0
1 0

)
,

all have distinct eigenvalues (namely 0 and 1) and so they are diago-
nalisable as well. The matrices(

0 1
1 1

) (
1 1
1 0

)
,

have characteristic polynomial

(1 + λ)λ+ 1.

Neither 0 nor 1 is a root of this polynomial and so these matrices
don’t have any eigenvectors. Therefore these matrices cannot be diag-
onalised.
This leaves (

0 1
0 0

) (
0 0
1 0

) (
1 1
1 1

)
,

which have characteristic polynomial λ2 and(
1 1
0 1

) (
1 0
1 1

) (
0 1
1 0

)
,

which have characteristic polynomial (λ + 1)2. In all six cases one
can compute that the corresponding eigenspace is one dimensional.
Therefore these matrices cannot be diagonalised.
6. (a) Consider the set of all functions WX from a set X to a vector
space W . This is naturally a vector space, where we define addition
and scalar multiplication pointwise. We just need to check that the set
of linear maps is a vector subspace.
The function which sends every vector to zero is easily seen to be linear.
Therefore the subset of linear functions is non-empty. Given two linear
transformations φ : F n −→ Fm and ψ : F n −→ Fm, let

φ+ ψ : F n −→ Fm,

be the function

(φ+ ψ)(v) = φ(v) + ψ(v).
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We check that this is a linear transformation. Given two vectors v and
w, we have

(φ+ ψ)(v + w) = φ(v + w) + ψ(v + w)

= φ(v) + φ(w) + ψ(v) + ψ(w)

= φ(v) + ψ(v) + φ(w) + ψ(w)

= (φ+ ψ)(v) + (φ+ ψ)(w).

Thus φ+ ψ respects addition. Now suppose that v is a vector and r is
a scalar. We have

(φ+ ψ)(rv) = φ(rv) + ψ(rv)

= rφ(v) + rψ(v)

= r(φ(v) + ψ(v))

= r(φ+ ψ)(v).

Thus φ + ψ respects scalar multiplication. It follows that φ + ψ is a
linear transformation. Thus the set of linear transformations is closed
under addition.
Now suppose we are given φ : F n −→ Fm and a scalar λ. Define a
function

λφ : F n −→ Fm,

by the rule (λφ)(v) = λφ(v). Suppose that v and w are vectors. Then

(λφ)(v + w) = λ(φ(v + w))

= λ(φ(v) + φ(w))

= λφ(v) + λφ(w)

= (λφ)(v) + (λφ)(w).

Therefore λφ respects addition. Now suppose that v is a vector and r
is a scalar. Then

(λφ)(rv) = λφ(rv)

= λrφ(v)

= rλφ(v)

= r(λφ)(v).

Therefore λφ respects scalar multiplication. It follows that λφ is a
linear transformation. Hence the set of linear transformations is closed
under scalar multiplication. But then the set of linear transformations
is a subvector space of the set of all functions (Fm)F

n
.
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(b) Let φ and ψ be two linear functions and let A and B be the asso-
ciated matrix.

(φ+ ψ)(ei) = φ(ei) + ψ(ei) = Aei +Bei = (A+B)ei.

Therefore A + B is the matrix associated to φ + ψ. Thus the func-
tion which assigns to a linear transformation the corresponding matrix
respects addition. Now suppose that λ is a scalar. Then

(λφ)(ei) = λ(φ(ei)) = λ(Aei) = (λA)ei.

Thus the matrix associated to λφ is λA. Thus the function which
assigns to a linear transformation the corresponding matrix respects
scalar multiplication. Thus the function which assigns to a linear trans-
formation the corresponding matrix is linear.


