
MODEL ANSWERS TO THE THIRD HOMEWORK

1. (i) We apply Gaussian elimination to A. First note that the second
row is a multiple of the first row. So we need to swap the second and
third rows. −1 3 −2 1

2 −6 5 −7
−3 9 −6 3

 .

Since these are the only rows which will need to be swapped, we already
know

P = P2,3 =

1 0 0
0 0 1
0 1 0

 .

We multiply the first row by −1, 1 −3 2 −1
2 −6 5 −7
−3 9 −6 3

 .

We multiply the first row by −2 and 3 and add it to the second and
third rows,

U =

1 −3 2 −1
0 0 1 −5
0 0 0 0

 .

Since this matrix is in echelon form we know that this is the matrix U .
The matrix L is a record of the other steps of Gaussian elimination,−1 0 0

2 1 0
−3 0 1

 .

(ii) Two, since U contains two pivots.
(iii) Clearly this is the same as solving the system Ux = 0. Suppose the
variables are x1, x2, x3 and x4. Then x2 and x4 are free variables. We
pick any value for these variables and use those values to determine the
values for x3 and x1 using back substitution. We can use the second
equation to determine the value for x3, in terms of x4,

x3 − 5x4 = 0,
1
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so that x3 = 5x4. Now use the first equation to determine x1 in terms
of x2 and x4,

x1 − 3x2 + 2(5x4)− x4 = 0,

so that x1 = 3x2 − 9x4. The general solution to the homogeneous is

(x1, x2, x3, x4) = (3x2− 9x4, x2, 5x4, x4) = x2(3, 1, 0, 0) +x4(−9, 0, 5, 1).

(iv) We could solve this equation in the usual fashion, but here is a
slick trick. We want to solve

PLUx = b.

Multiply both sides by P (which is its own inverse) to get

LUx = Pb.

Let y = Ux. Then we need to solve

Ly = Pb and Ux = y.

The trick is that both systems of equations can be solved very quickly.
The first by forward substitution and the second by back substitution.

Pb =

 1
−3
−6

 .

The first equation for Ly = Pb then reads

−y1 = 1,

so that y1 = −1. We use this value of y1 in the second equation to
determine y2,

−2 + y2 = −6,

so that y2 = −4. Finally we use these values of y1 and y2 in the third
equation to determine y3,

3 + y3 = 3,

so that y3 = 0. Now we solve the system Ux = y. Note that these equa-
tions are consistent as y3 = 0. As before x2 and x4 are free variables.
We can use the second equation

x3 − 5x4 = −4,

to determine x3 = −4 + 5x4 in terms of x4. We then use the first
equation to determine x1 in terms of x2 and x4,

x1 − 3x2 + 2(−4 + 5x4)− x4 = −1,

so that x1 = 3x2 − 9x4 + 7. Therefore

(x1, x2, x3, x4) = (3x2−9x4+7, x2, 5x4−4, x4) = x2(3, 1, 0, 0)+x4(−9, 0, 5, 1)+(7, 0,−4, 0).
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Note that a solution to the second equation is the same as a solution to
the first equation plus a particular solution, (7, 0,−4, 0) to the second
equation.
2. We first form the super augmented matrix:1 2 1 | 1 0 0

2 3 0 | 0 1 0
1 2 2 | 0 0 1

 .

Now we apply Gaussian elimination. We multiply the first row by −2
and −1 and add it to the second and third rows to get1 2 1 | 1 0 0

0 −1 −2 | −2 1 0
0 0 1 | −1 0 1

 .

Now we multiply the second row by −1 to get1 2 1 | 1 0 0
0 1 2 | 2 −1 0
0 0 1 | −1 0 1

 .

This completes Gaussian elimination. Now we continue with Gauss
Jordan elimination. We multiply the third row by −2 and −1 and add
it to the second and first rows to get1 2 0 | 2 0 −1

0 1 0 | 4 −1 −2
0 0 1 | −1 0 1

 .

Finally we multiply the second row by −2 and add it to the first row
to get 1 0 0 | −6 2 3

0 1 0 | 4 −1 −2
0 0 1 | −1 0 1

 .

So the inverse matrix is −6 2 3
4 −1 −2
−1 0 1

 .

3. We first form the super augmented matrix:(
a b | 1 0
c d | 0 1

)
.
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We apply Gaussian elimination. We multiply the first row by 1/a, to
get (

1 b/a | 1/a 0
c d | 0 1

)
.

Now multiply the first row by −c and add it to the second row,(
1 b/a | 1/a 0
0 (ad− bc)/a | −c/a 1

)
.

Now multiply the second row by a/(ad− bc) to get(
1 b/a | 1/a 0
0 1 | −c/(ad− bc) a/(ad− bc)

)
.

Finally multiply the second row by −b/a and add it to the first row,(
1 0 | d/(ad− bc) −b/(ad− bc)
0 1 | −c/(ad− bc) a/(ad− bc)

)
.

So we guess that A is invertible if and only if ad − bc 6= 0 and in this
case we guess the inverse matrix is

B =
1

ad− bc

(
d −b
−c a

)
.

By direct computation we see that BA = AB = I2, so B is the inverse
of A, provided ad 6= bc. Now suppose that ad = bc. Suppose that
bd 6= 0. If we multiply the first row by d and the second row by b then
we get (

ad bd
bc = ad bd

)
If we then multiply the first row by −1 and add it the second row we
get a row of zeroes. It follows that the rank of A is at most one and so
A cannot be invertible. Now suppose that bd = 0. If b = 0 and d 6= 0
then a = 0 and again we have a row of zeroes. Similarly if d = 0 and
b 6= 0. Finally if b = d = 0 then the second row is a multiple of the
first row and Gaussian elimination again produces a row of zeroes.
4. (i) False. Let

A =

(
1
1

)
.

A has shape 2× 1. A left inverse has shape 1× 2. Let

B =
(
a b

)
.

We want BA = I1 = (1). This is equivalent to the linear equation
a + b = 1. So

B1 =
(
1 0

)
and B2 =

(
0 1

)
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are two different left inverses of A.
(ii) Suppose that B is a left inverse of A and that v is a solution of the
linear equation Ax = b. Then

b = Av

Multiplying both sides by B

Bb = B(Av)

= (BA)v

= v.

So if there is a solution it must be the vector Bb.
(iii) Since every equation has at most one solution, there must be more
equations than variables, that is m ≥ n.
5. (i) Let A be a m × n matrix. We say that a n ×m matrix B is a
right inverse if AB = Im.
(ii) Every equation Ax = b has at least one solution. Indeed, given b
let v = Bb. Then

Av = A(Bb)

= (AB)b

= b.

So the vector v = Bb is always a solution to the equation Ax = b.
(iii) Since every equation has at least one solution, there must be more
variables than equations, that is m ≤ n.
6. (a) Suppose not, suppose that M is an inverse of N . Pick k > 0
minimal such that Nk = 0. Then

In = NM

Multiplying both sides by Nk−1 we get

0 6= Nk−1 = Nk−1(NM)

= NkM

= 0,

a contradiction. Therefore N is not invertible.
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(b) Let A = In −N and B = In + N + N2 + · · ·+ Nk−1. Then

AB = (In −N)(In + N + N2 + · · ·+ Nk−1)

= In + N + N2 + · · ·+ Nk−1 −N(In + N + N2 + · · ·+ Nk−1)

= In + N + N2 + · · ·+ Nk−1 −N −N2 −N3 − · · ·Nk−1 − 0

= In.

Similarly BA = In. Hence B is the inverse of A.
(c) As A and N commute, we have

(AN)k = AkNk

= 0.

Therefore −AN is nilpotent. But then In + AN is invertible by (b).
7. (a) The elementary permutation matrices and Ei(−1), for any i.
(b) Let P be a permutation matrix.

Claim 0.1. There are elementary permutation matrices P1, P2, . . . , Pk

such that PkPk−1 · · ·P1P = In.

Proof. If P = In then we may take k = 0 (that is there is nothing to
prove). Otherwise let row i be the first row such that the (i, i) entry
is not one. As P 6= In, i < n. The proof proceeds by descending
induction on i.
By assumption row j contains a 1 in the the ith column, for some
j > i. The matrix Q = Pi,jP then has a 1 in the (i, i) entry. By
induction we may find elementary permutation matrices P2, P3, . . . ,
Pk such that PkPk−1 · · ·P2Q = In. But then PkPk−1 · · ·P1P = In,
where P1 = Pi,j. �

Using the claim, we may find P1, P2, . . . , Pk such that PkPk−1 · · ·P1P =
In. But then P = P1P2 · · ·Pk.
To obtain a permutation matrix P , take the identity matrix and per-
mute its rows. There are n possible places to put the first row. Having
decided where to put the first row, there are n − 1 possible places to
put the second row (the only thing we cannot do is put the second row
in the same row as we decided to place the first row). Continuing in
this way, we see that there are

n(n− 1)(n− 2) · · · 1 = n!,

different permutation matrices.
(c) We want to show that P t is the inverse Q of P . First suppose that
P = Pi,j is an elementary permutation matrix. Then

P t = Pi,j and Q = Pi,j,
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and the result is clear. Otherwise we may find elementary permutation
matrices P1, P2, . . . , Pk such that P = P1P2 . . . Pk. But then

Q = PkPk−1Pk−2 · · ·P1

= P t
kP

t
k−1 · · ·P t

1

= (P1P2 · · ·Pk)t = P t.


