
9. Basis and dimension

Definition 9.1. Let V be a vector space over a field F .
A basis B of V is a finite set of vectors v1, v2, . . . , vn which span V

and are independent. If V has a basis then we say that V is finite di-
mensional, and the dimension of V , denoted dim V , is the cardinality
of B.

One way to think of a basis is that every vector v ∈ V may be
uniquely expressed as

v = r1v1 + r2v2 + · · ·+ rnvn.

The existence of such a decomposition is given by the fact the vectors
v1, v2, . . . , vn span V . If there were two ways to write v as a sum,

s1v1 + s2v2 + · · ·+ snvn = v = r1v1 + r2v2 + · · ·+ rnvn,

then we would have a way to write 0 as a linear combination of v1, v2, . . . , vn,

(s1 − r1)v1 + (s2 − r2)v2 + · · ·+ (sn − rn)vn = 0.

By independence s1 − r1 = s2 − r2 = · · · = sn − rn = 0. But then
r1 = s1, r2 = s2, · · · , rn = sn and so the decomposition is unique.

F n has dimension n. A basis is given by e1, e2, . . . , en, where ei is
the vector with a 1 in the ith row and zero everywhere else.

Mm,n(F ) has dimension mn. A basis is given by the matrices Ai,j,
which have a 1 in the (i, j) entry and zero everywhere else.

Pn(F ) has dimension n + 1. A basis is given by the polynomials
1, x, x2, · · · , xn.

There is one problem with all of this. We have not checked that the
size of a basis is independent of the basis. For example why couldn’t
a vector space have dimension three and five at the same time (that
is why could there not be a basis with three elements and another
with five)? If the vector space is F n we can appeal to the fact that a
basis B cannot have more than n elements, since then the vectors are
dependent. On the other hand, it cannot have less than n elements
since then they cannot span.

In fact

Theorem 9.2. Let v1, v2, . . . , vm be m vectors in F n. Let A be the
matrix whose columns are the vectors v1, v2, . . . , vm.

The set B = {v1, v2, . . . , vm} is a basis for if and only if the equation
Ax = b always has a unique solution. In particular m = n.

Proof. This simply puts together two statements. The fact that B
spans means that the equation Ax = b always has a solution. The fact
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that Ax = 0 has a unique solution means that the vectors v1, v2, . . . , vn

are independent. �

In an arbitrary vector space there is another way to proceed.

Lemma 9.3. Let v1, v2, . . . , vn be a finite collection of vectors in a
vector space V .

(1) If vn is a linear combination of v1, v2, . . . , vn−1 then

span{v1, v2, . . . , vn−1} = span{v1, v2, . . . , vn}.
(2) If v1, v2, . . . , vn−1 are independent and vn is not a linear combi-

nation of v1, v2, . . . , vn−1 then v1, v2, . . . , vn are independent.

Proof. Both of these results are easy to prove and are left as exercises.
�

(1) and (2) of (9.3) give two useful ways to construct bases:

Algorithm 9.4. Let V be a vector space. Suppose that v1, v2, . . . , vn

span V .

(1) If v1, v2, . . . , vn are independent then STOP.
(2) Otherwise we may write vi as a linear combination of the other

vectors. Throw away vi and return to (1).

Algorithm 9.5. Let V be a vector space. Suppose that v1, v2, . . . , vn

are independent.

(1) If v1, v2, . . . , vn span V then STOP.
(2) Otherwise pick vn+1 not in the span of v1, v2, . . . , vn. Then

v1, v2, . . . , vn+1 are independent. Replace v1, v2, . . . , vn by v1, v2, . . . , vn+1

and return to (1).

In other words, we can either start with a set that spans and throw
away vectors to get a basis or start with a set which is independent
(e.g the empty set) and add vectors until we get a basis. Note that the
first algorithm always terminates; the second one only terminates if V
is finite dimensional.

Theorem 9.6. Let V be a finite dimensional vector space.
Then any two bases have the same cardinality.

Proof. Suppose that B = {v1, v2, . . . , vm} and C = {w1, w2, . . . , wn}
are two bases of V . We want to show that m = n. We may assume
that m, n > 0.

Consider the set B∪{wn}. wn ∈ V belongs to the span of v1, v2, . . . , vm.
Therefore we may find r1, r2, . . . , rm such that

wn = r1v1 + r2v2 + · · · rmvm.
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wn 6= 0 and so at least one of r1, r2, . . . , rm is non-zero. We may assume
that rm 6= 0. In this case

vm = wn − (r1v1 + r2v2 + · · · rm−1vm−1)/rm,

and so vm is a linear combination of v1, v2, . . . , vm−1 and wn. (1) of
(9.3) implies that B− {vm} ∪ {wn} also spans V .

So now consider v1, v2, . . . , vm−1, wn−1 and wn. As v1, v2, . . . , vm−1

and wn span V it follows that wn−1 is a linear combination of v1, v2, . . . , vm−1

and wn,
wn−1 = r1v1 + r2v2 + · · ·+ rm−1vm−1 + snwn.

Suppose that every ri = 0. Then wn−1 and wn are dependent, which
contradicts the fact that C is a basis. Thus ri 6= 0 some i. Relabelling
we may suppose that rm−1 6= 0. As before this implies that vm−1 is a
linear combination of v1, v2, . . . , vm−2, wn−1 and wn. But then (1) of
(9.3) implies that v1, v2, . . . , vm−2, wn−1 and wn span V .

We can repeat this process for every vector in C. It follows that
m ≤ m. By symmetry n ≤ m. But then m = n. �

A careful analysis of the proof yields that every set of vectors which
spans is always bigger than any set of independent vectors. In particu-
lar (9.5) always terminates in a finite dimensional vector space (in fact
in exactly dim V − n steps).
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