
6. Fields and Subspaces

Since linear algebra is such a powerful tool and it appears in so
many places, we want to take as much advantage of this as possible.
The idea then is to abstract many of the techniques we used in the
previous lectures.

The first thing to generalise is the notion of scalar. We need to be
able to add, subtract, multiply and divide.

Definition 6.1. A field F is a set with two operations addition and
multiplication,

+: F × F −→ F and · : F × F −→ F,

which obey the following axioms. (F,+) is an abelian group under
addition:

(1) Addition is associative. That is for every x, y and z ∈ F ,

(x+ y) + z = x+ (y + z).

(2) There is an identity element under addition. This element is
often denoted 0 ∈ F and for every element x ∈ F ,

0 + x = x+ 0 = x.

(3) Every element has an additive inverse. That is given x ∈ F
there is an element −x ∈ F and

x+ (−x) = −x+ x = 0.

(4) Addition is commutative. That is given x and y ∈ F ,

x+ y = y + x.

Let F ∗ = F − {0}. Then (F ∗, ·) is an abelian group under multipli-
cation:

(5) Multiplication is associative. That is for every x, y and z ∈ F ,

(x · y) · z = x · (y · z).

(6) There is an identity element under addition. This element is
often denoted 1 ∈ F and for every element x ∈ F ,

1 · x = x · 1 = x.

(7) Every element has a multiplicative inverse. That is given x ∈ F
there is an element x−1 ∈ F and

x · x−1 = x−1 · x = 0.

(8) Multiplication is commutative. That is given x and y ∈ F ,

x · y = y · x.
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Finally we require that addition and multiplication are compatible,

(9) F satisfies the distributive law. That is given x, y and z ∈ F ,

x(y + z) = xy + xz.

We will often be sloppy and write x−x = 0, x·y = xy and x−1 = 1/x.
Note that (F, ·) is never a group under multiplication (“you cannot
divide by zero”). The axioms have certain consequences. For example

Lemma 6.2. Let (F,+, ·) be a field.
Then for every x ∈ F , 0 · x = x · 0 = 0.

Proof. 0+0 = 0 as 0 is the identity under addition. By the distributive
law

x · 0 = x · (0 + 0) = x · 0 + x · 0.
So

x · 0 = x · 0 + x · 0.
Subtract x · 0 (or better add the additive inverse of x · 0) from both
sides,

0 = x · 0.
As multiplication is commutative, 0 · x = 0 as well. �

So what are examples of fields? Certainly the real numbers R are
a field, with the usual rules for addition and multiplication. Also the
complex numbers C. The only slightly tricky thing is to write down the
multiplicative inverse of any non-zero complex number. If a + bi ∈ C
is a complex number, so that a and b are two real numbers, not both
zero, then

(a+ bi)(a− bi) = a2 + b2 6= 0.

It follows then that c+ di is the multiplicative inverse of a+ bi where

c =
a

a2 + b2
and d =

−b
a2 + b2

.

In fact the rational numbers form a field

Q = { p/q | p ∈ Z, q ∈ N− {0} }.

Note that the integers are not a field. 2 does not have a multiplicative
inverse (it does as a rational number of course). The natural numbers
are not even a group under addition 1 does not have an additive inverse
(again, it does as an integer). There are some more quixotic examples

Q(
√

2) = { a+ b
√

2 | a, b ∈ Q }.
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Again all of the axioms are pretty much clear except finding a multi-
plicative inverse. Given a and b ∈ Q, we have

(a+ b
√

2)(a− b
√

2) = a2 + 2b2.

So c+ d
√

2 is the multiplicative inverse of a+ b
√

2, where

c =
a

a2 + 2b2
and d =

−b
a2 + 2b2

.

Let F be a field and let F [x] denote all polynomials p(x) in x with
coefficients in F . This is not a field but it is pretty easy to make it into
one. Let F (x) denote all rational functions in x, that is the quotient
of two polynomials p(x)/q(x) where q(x) is not the zero polynomial.
In other words the rational numbers are to the integers as the rational
functions are to polynomials.

Given any axioms describing an algebraic system one can always
try to understand the axioms by becoming a minimalist. What is the
smallest set which can be turned into a field? The emptyset? No, we
are forced to put at least one element into F and call it zero. Okay,
how about the set F = {0} with one element? No, F ∗ should contain
one element, which we call 1. Okay, how about the set F = {0, 1}?

The surprising thing is that we can make this into a field. It is
convenient to make addition and multiplication tables. In fact the
axioms force both addition and multiplication:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1.

One can check that all the axioms are satisfied.
Okay, how about a field with three elements? Let us call the third

element 2.
+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1.

It is not so obvious anymore but again we do get a field.

Definition 6.3. Let a ∈ Z be an integer and let m be a natural number.
Then are always integers q and r, called the quotient and remainder
where 0 ≤ r ≤ m− 1 and

a = mq + r.

The number r is called the residue of a modulo m.
3



Definition 6.4. Let p be a prime number. Let Fp be the set of numbers
between 0 and p−1. Define a law of addition by adding the two numbers
i and j the usual way and then taking the residue modulo p. Define a
law of mutiplication by multiplying i and j the usual way and then
taking the residue modulo p.

Lemma 6.5. (Fp,+, ·) is a field.

Note again that most axioms are not hard to check. If i ∈ Fp then
p − i is the additive inverse. The only tricky thing is to define the
multiplicative inverse. To do this we need to use the fact that if two
integers a and b are coprime (that is they have no common factors)
then we may find two other integers x and y such that

xa+ by = 1.

(In fact this follows from Euclid’s algorithm and “backwards substitu-
tiob”). On the other hand, if 0 < a < p and p is prime, then a and p
are automatically prime. So we may find x and y such that

xa+ bp = 1.

Modulo p we then we get

xa ≡ 1 mod p.

So x is the multiplicative inverse of a. Perhaps an example will help.
Consider F7. Pick a = 4. 2 · 4 = 8. So 2 · 4 ≡ 1 mod 7. Thus 2 is the
inverse of 4 in F7.

Perhaps more surprisingly, there is only one field Fp with p elements,
for every prime. The point is that 2 = 1 + 1, 3 = 1 + 1 + 1, up to p− 1
and p = 0. So to calculate

2 · 3 = (1 + 1)(1 + 1 + 1)

= 1 + 1 + 1 + 1 + 1 + 1.

This obviously generalises. It follows that every sum and product is
determined.

Definition 6.6. Let F be a field and let d be a positive integer.

F d = { (a1, a2, . . . , ad) | ai ∈ F }.
d is called the dimension.

We have already seen Rd. At the other extreme, Fd
p is a finite set

with pd elements. We call the elements of F d vectors. We can add
vectors component by component and multiply them by scalars. It
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might seem strange at first, by it makes sense to do geometry in F d

even using unusual fields.

Definition 6.7. Let v1, v2, . . . , vk be vectors and let r1, r2, . . . , rk be
scalars. We say that v is a linear combination of v1, v2, . . . , vk if

v = r1v1 + r2v2 + · · · rkvk.

The span of v1, v2, . . . , vk is the set of all linear combinations of v1, v2, . . . , vk.
It is denoted by span{v1, v2, . . . , vk}.

The span of a single non-zero vector in R3 is the line through the
origin containing this vector. The span of two non-zero vectors in R3

is either the plane containing the vectors or in the degenerate case
when one vector is a multiple of the other, the line through the origin
containing both.

Note that if we take r1 = r2 = · · · = rk = 0, then v = 0. That is
the zero vector is a linear combination of any non-empty collection of
vectors and the zero vector always belongs to the span. For this reason
we adopt the convention that the span of the empty set is {0}.

(4, 3,−1) is a linear combination of (3, 4,−2) and (−2,−1, 1), since

(4, 7,−3) = 2(3, 4,−2) + 1(−2,−1, 1)

Here is a key result:

Proposition 6.8. Let A be the m × n matrix whose columns are the
n vectors v1, v2, . . . , vn in Fm.

Then the vector v is a linear combination of v1, v2, . . . , vn if and only
if the equation Ax = b has a solution.

Proof. Suppose that v is a linear combination of v1, v2, . . . , vn. Then
there are scalars r1, r2, . . . , rn ∈ F such that v =

∑
rivi. Let w =

(r1, r2, . . . , rn) ∈ F n. Then Aw is the vector obtained by summing the
columns of A together, that is Aw = v. Then w is a solution to the
the equation Ax = v.

Conversely suppose that w is a solution of the equation Ax = v.
Suppose that w = (r1, r2, . . . , rn) ∈ F n. Then

v =
∑

rivi,

so that v is a linear combination of v1, v2, . . . , vn. �

Let us see an easy example. Is (1, 1, 3) a linear combination of
(−1, 2, 1) and (1, 3, 1)? Let A be the matrix−1 1

2 3
1 1


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We try to solve the linear equation Ax = b. We first form the aug-
mented matrix −1 1 | 1

2 3 | 1
1 1 | 3

 .

Now we apply Gaussian elimination. We multiply the first row by −1.1 −1 | −1
2 3 | 1
1 1 | 3

 .

Next we multiply the first row by −2 and −1 and add it to the second
row and third rows 1 −1 | −1

0 5 | 3
0 2 | 4

 .

It is convenient to swap the second and third rows,1 −1 | −1
0 2 | 4
0 5 | 3

 .

Now multiply the second row by 1/2,1 −1 | −1
0 1 | 2
0 5 | 3

 .

Finally multiply the second row by −5 and add it to the third row,1 −1 | −1
0 1 | 2
0 0 | −7

 .

This clearly an inconsistent set of equations. Therefore (1, 1, 3) is not
a linear combination of of (−1, 2, 1) and (1, 3, 1). But suppose that we
began with (1, 8 = 7 + 1, 3). If we apply Gaussian elimination then at
every stage the second (until it becomes the third) row is greater by 7.
Thus we end up with 1 −1 | −1

0 1 | 2
0 0 | 0

 .

Solving by back subsitution gives r2 = 2 and r1−2 = −1 so that r1 = 1.
Thus

(1, 8, 3) = (−1, 2, 1) + 2(1, 3, 1),

which is indeed correct.
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We give some provisional definitions:

Definition 6.9. Let V ⊂ F d be any subset. We say that V is closed
under addition if whenever v and w are in V then so is v+w. We say
that V is closed under scalar multiplication if whenever v ∈ V
and λ ∈ F then λv ∈ V .

Definition 6.10. Let F be a field and let V ⊂ F d be a subset.
We say that V is a subspace of F d if

(1) V is not empty.
(2) V is closed under addition.
(3) V is closed under scalar multiplication.

There are two “classic”ways to generate subspaces. Here is the first:

Lemma 6.11. Let F be a field and let v1, v2, . . . , vk ∈ F d be a sequence
of vectors.

If V = span{v1, v2, . . . , vk} then V is a subspace of F d.

Proof. If k > 0 then V is clearly not empty and if k = 0 then 0 ∈ V by
convention. In particular V is not empty. Thus (1) of (6.10) holds.

Suppose that v and w ∈ V . Then v and w are linear combina-
tions of v1, v2, . . . , vk. It follows that there are scalars r1, r2, . . . , rk and
s1, s2, . . . , sk such that

v = r1v1 + r2v2 + · · ·+ rkvk and w = s1v1 + s2v2 + · · ·+ skvk.

But then

v + w = r1v1 + r2v2 + · · ·+ rkvk + s1v1 + s2v2 + · · ·+ skvk

= (r1 + s1)v1 + (r2 + s2)v2 + · · ·+ (rk + sk)vk.

Hence v + w is a linear combination of v1, v2, . . . , vk and so v + w ∈
V = span{v1, v2, . . . , vk}. Thus V is closed under addition. Thus (2)
of (6.10) holds.

Now suppose that v ∈ V and λ ∈ F . As before we may find scalars
r1, r2, . . . , rk such that

v = r1v1 + r2v2 + · · ·+ rkvk.

But then

λv = λ(r1v1 + r2v2 + · · ·+ rkvk)

= (λr1)v1 + (λr2)v2 + · · ·+ (λrk)vk.

Hence λv is a linear combination of v1, v2, . . . , vk and so λv ∈ V =
span{v1, v2, . . . , vk}. Thus V is closed under multiplication. Thus (3)
of (6.10) holds.

As we have checked (1-3) of (6.10) it follows that V is a subspace. �
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Definition 6.12. Let A be a m×n matrix with entries in a field. The
kernel (also known as the nullspace) of A, denoted KerA, is the set
of solutions to the homogeneous equation Ax = 0.

Here is the other way to generate subspaces:

Lemma 6.13. Let F be a field and let A be a m × n matrix whose
entries belong to F .

Then V = KerA is a subspace of F d.

Proof. As 0 is a solution of Ax = 0, 0 ∈ V . In particular V is not
empty.

Suppose that v and w ∈ V . Then v and w are both solutions of
Ax = 0. It follows that

A(v + w) = Av + Aw

= 0 + 0

= 0.

Hence v + w is a solution of Ax = 0 and so v + w ∈ V . Thus V is
closed under addition.

Finally suppose that v ∈ V and λ ∈ F . Then v is a solution of
Ax = 0. But then

A(λv) = λ(Av)

= λ0

= 0.

Thus λv is a solution to Ax = 0 and so λv ∈ V . But then V is closed
under scalar multiplication.

As V is non-empty, and closed under addition and scalar multiplica-
tion it follows that V is subspace of F d. �

There are two trivial subspaces of any vector space. The subset
consisting of only the origin and the whole space F d. One can check
the axioms directly or appeal to either of (6.11) or (6.13).
{0} is the span of the empty set and V is the span of the vectors

e1, e2, . . . , ed, where ei is the vector with a 1 in the ith place and zero
everywhere else. Given v = (r1, r2, . . . , rd) ∈ F d then

v = r1e1 + r2e2 + · · ·+ rded.

Hence every vector in F d is a linear combination of e1, e2, . . . , ed.
On the other hand, V is the set of solutions to be the empty set of

equations (that is take A to a 0 × n matrix). If you don’t like that
possibility one can also take A to be the zero m × n matrix, any m.
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At the other extreme, let A = In. The only solution to the equation
Inx = 0 is clearly the zero vector.
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