
4. Matrices as elementary transformations

Definition 4.1. Let m be a positive integer. Let i and j be any two
integers 1 ≤ i, j ≤ m and let λ be any real number.

If λ 6= 0 then let Ei(λ) be the m×m square matrix with (a, b) entry
λ if a = b = i

1 if a = b 6= i

0 otherwise.

Suppose i 6= j. Let Ei,j(λ) be the m × m square matrix with (a, b)
entry 

λ if (a, b) = (j, i)

1 if a = b

0 otherwise.

Let Pi,j be the m×m square matrix with (a, b) entry
1 if either (a, b) = (i, j) or (a, b) = (j, i)

1 if a = b 6= i, j

0 otherwise.

In other words, the matrix Pi,j is obtained from the matrix In by
switching the ith and jth rows, the matrix Ei(λ) is obtained from the
matrix In by multiplying the ith row by λ and the matrix Ei,j(λ) is
obtained from the matrix In by changing the (j, i) entry to λ.

Lemma 4.2. Let m and n be two positive integers. Let i and j be any
two integers 1 ≤ i, j ≤ m and let λ be any real number.

Let A be an m× n matrix. Then the matrix

(1) Ei(λ)A is obtained from the matrix A by multiplying the ith row
by λ.

(2) Ei,j(λ)A is obtained from the matrix A by multiplying the ith
row of A by λ and adding it the jth row.

(3) Pi,jA is obtained from the matrix A by switching the ith and the
jth rows.

Proof. Easy calculation left to any student taking 18.700. �

In other words, the elementary row operations are represented by
multiplying by the corresponding elementary matrix.

Definition 4.3. Let m be a positive integer. Let L be an m×m matrix.
We say that L is lower triangular if aij = 0 if i < j.
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Theorem 4.4. Let m and n be any positive integers and let A be a
m× n matrix.

Then we may write

A = PLU,

where P is a m×m permutation matrix (a product of elementary per-
mutation matrices) L is a lower triangular m ×m matrix and U is a
m× n matrix in echelon form.

We need some easy:

Lemma 4.5. Let n be a positive integer and let A1, A2, . . . , Ak be a se-
quence of invertible matrices of type n×n with inverses B1, B2, . . . , Bk.

Then the product matrix A = A1A2A3 · · ·Ak is invertible with inverse
B = BkBk−1 · · ·B1.

Proof. By an obvious induction, it suffices to prove the case k = 2. We
compute

BA = (B2B1)(A1A2)

= (B2(B1A1))A2

= (B2In)A2

= B2A2 = In.

Similarly one can check AB = In. �

Lemma 4.6. The product of lower triangular matrices is lower trian-
gular.

Proof. By an obvious induction it suffices to prove that if A = (aij)
and B = (bij) are two lower triangular matrices of shape n×n then so
is the product AB. Suppose 1 ≤ i < j ≤ n. Now if l < j then blj = 0
as B is lower triangular. If l > i then ail = 0 as A is lower triangular.
The (i, j) entry of AB is∑

l

ailblj =
∑
l≤i

ailblj +
∑
i<l<j

bilblj +
∑
l≥j

ailblj

=
∑
l≤i

ail · 0 +
∑
i<l<j

0 · 0 +
∑
l≥j

0 · blj

= 0.

But then AB is lower triangular. �

Proof of (4.4). Apply Gaussian elimination to A. Suppose that U is
the end result of Gaussian elimination. Then U is a m × n matrix
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in echelon form. Let E1, E2, . . . , Es ble the elementary matrices corre-
sponding to the steps of Gaussian elimination and let E ′ be the product,

E ′ = EsEs−1 · · ·E2E1.

Then

E ′A = U.

The first thing to observe is that one can change the order of some
of the steps of the Gaussian elimination. Some of the matrices Ei

are elementary permutation matrices corresponding to swapping two
rows. In fact, one can perform all of these operations first (in the same
order) and then apply elimination. Let Q be the product of all of these
matrices and let E be the product of the rest. Then

(EQ)A = U.

Now let P be the product of all the permutation matrices but now in
the opposite order and let L be the product of the inverse elementary
transformations, in the reverse order. By (4.5) PL is the inverse matrix
of EQ (note that Pi,j is its own inverse). We have

A = ImA

= ((PL)(EQ))A

= PL((EQ)A)

= (PL)U

= PLU.

Note that the elementary matrices Ei(λ) and Ei,j(λ) corresponding to
the elementary row operations that appear in Gaussian elimination
are all lower triangular. On the other hand, since one can undo any
elementary row operation by an elementary row operation of the same
type, these matrices are invertibility and their inverses are of the same
type. Since L is a product of such matrices, (4.6) implies that L is
lower triangular. �

(4.4) can be turned into a very efficient method to solve linear equa-
tions.

For example suppose that we start with the matrix

A =

1 −1 3 1
2 −2 6 2
1 −1 5 −1

 .

Now if we apply Gaussian elimination straight away then we get a row
of zeroes and we need to swap the second and third rows. In order to
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make sure that all permutations go at the front, the first thing we do
is swap the second and third rows,

A =

1 −1 3 1
1 −1 5 −1
2 −2 6 2

 .

Okay, now we apply Gaussian elimination. We multiply the first row
by −1 and and −2 add it to the second and third rows,1 −1 3 1

0 0 2 −2
0 0 0 0

 .

Now we multiply the second row by 1/2 to get

U =

1 −1 3 1
0 0 1 −1
0 0 0 0

 .

This completes the Gaussian elimination. The corresponding elemen-
tary matrices, written in the correct order are1 0 0

0 1/2 0
0 0 1

  1 0 0
0 1 0
−2 0 1

  1 0 0
−1 1 0
0 0 1

 1 0 0
0 0 1
0 1 0

 .

The inverse of this product is then1 0 0
0 0 1
0 1 0

 1 0 0
1 1 0
0 0 1

 1 0 0
0 1 0
2 0 1

 1 0 0
0 2 0
0 0 1

 ,

that is the inverse of the individual elementary matrices, taken in the
opposite order. Therefore

P =

1 0 0
0 0 1
0 1 0


and

L =

1 0 0
1 1 0
0 0 1

 1 0 0
0 1 0
2 0 1

 1 0 0
0 2 0
0 0 1

 =

1 0 0
1 2 0
2 0 1

 .

Putting all of this together, we get

A =

1 −1 3 1
2 −2 6 2
1 −1 5 −1

 =

1 0 0
0 0 1
0 1 0

 1 0 0
1 2 0
2 0 1

 1 −1 3 1
0 0 1 −1
0 0 0 0

 = PLU.
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Theorem 4.7. Let A and B be two m× n matrices.
If A and B are row equivalent then there are elementary matrices

E1, E2, . . . , Es such that

B = EsEs−1 · · ·E2E1A.

Proof. This statement is implicit in the proof of (4.4), cf. the book. �

Lemma 4.8. Let A and B be two matrices in row echelon form.
If A and B are row equivalent then they have same number of pivots.

Proof. We proceed by induction on m. If every row of A and B contains
a pivot there is nothing to prove. In particular we may assume that
m > 0.

By symmetry we may assume that A has a row of zeroes. Since A
and B are row equivalent, for every b ∈ Rm there is another vector
c ∈ Rm such that the equations

Ax = b and Bx = c,

have the same solutions.
Suppose that the ith row of A is a row of zeroes. Let b be the m× 1

vector whose ith row is 1 and whose other entries are zero. Then the
system Ax = b has no solutions. Therefore the system Bx = c has no
solutions, for some unknown vector c. It follows that some row of B
is a row of zeroes, else we could solve the system Bx = c using back
substitution.

Since A and B are in echelon form the last row of A and the last row
of B are both rows of zeroes. Let A′ be the submatrix of A obtained by
deleting the last row of A and let B′ be the submatrix of B obtained by
deleting the last row of B. Then A′ and B′ are row equivalent. Since
they have m− 1 rows, by induction A′ and B′ have the same number
of pivots. But A′ and A have the same number of pivots and the same
is true of B and B′. �

Definition 4.9. Let A be a matrix.
The rank of A, denoted rk(A) is the number of pivots for any matrix

U in echelon form, which is row equivalent to A.

Note that (4.8) implies that the rank is well defined:

Lemma 4.10. Let A be a matrix and let U1 and U2 be two matrices in
row echelon form which are row equivalent to A.

Then U1 and U2 have the same number of pivots. In particular the
rank is well defined.

Proof. Since U1 and U2 are row equivalent to A they are row equivalent
to each other. Now apply (4.7). �
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