
2. Echelon form

It is time to make some more definitions and actually prove that
Gaussian elimination works:

Definition 2.1. Let m and n ∈ Z be two positive integers. Let

I = { i ∈ Z | 0 < i ≤ m } and J = { j ∈ Z | 0 < i ≤ n }.
A real m× n matrix is a function A : I × J −→ R.

Let A be an m × n matrix. Let i ∈ I and j ∈ J be two indices, so
that 1 ≤ i ≤ m and 1 ≤ j ≤ n. The (i, j) entry of the matrix A is
the value of the function A at (i, j), that is A(i, j). It is customary to
write A = (aij) which means that A(i, j) = aij and we refer to this as
the entry in the ith row and j column (in the usual fashion).

Note however that the definition given in (2.1) is convenient for two
reasons. First it is immediate that two matrices are equal if and only if
they have the same entries (since this is what it means for two functions
to be the same). It is also straightforward to generalise this definition
to complex matrices, integer matrices and so on (the possibilities are
endless); just change the range of the function to the appropriate set.

Now let us define the end product of Gaussian elimination. This is
a little harder to define than one might first imagine:

Definition 2.2. Let A be a matrix. We say that A is in echelon
form if A satisfies the following properties:

• The first (reading left to right) non-zero entry in every row is
a one. Such entries are called pivots.
• Every row which contains a pivot occurs before every row which

does not contain a pivot.
• Pivots in earlier rows (again, reading left to right) come in ear-

lier columns (reading top to bottom).

One can express the first and third rules using indices. The first rule
says that if we fix i, and j has the property that aij 6= 0 whilst aij′ = 0
for all j′ < j then aij = 1. The third rule says that if there is a pivot
at position (i, j) and there is a pivot at position (i′, j′), where i < i′

then j < j′.
Okay, so what are the basic steps of Gaussian elimination?

Definition 2.3. Let A be a matrix. An elementary row operation
is one of three operations:

(1) Multiply a row by a non-zero scalar.
(2) Multiply a row by a non-zero scalar and add the result to another

row.
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(3) Swap two rows.

We say that two matrices A1 and A2 are row equivalent if we can
get from A1 to A2 by a (finite) sequence of elementary row operations.

So Gaussian elimination takes any matrix A, performs a sequence
of elementary row operations until A is in echelon form. By definition
this means that A is row equivalent to a matrix in echelon form. Let
us first see that performing row operations does not change the set of
solutions:

Theorem 2.4. Let C1 = (A1|b1) and C2 = (A2|b2) be two row equiva-
lent augmented matrices.

Then the system of equations A1v = b1 and A2v = b2 have the same
solution set.

Proof. By an obvious induction it suffices to prove this result if C2 is
obtained from C1 by an elementary row operation. Note first that all
of the elementary row operations are reversible. If we multiply the ith
row of C1 by λ to get C2 then if we multiply the ith row of C2 by 1/λ
we get C1. If we swap the ith row and jth row of C1 to get C2 then
we simply swap the same rows to get from C2 to C1. Finally if we take
the ith row of C1, multiply by λ and add it to the jth row then, to get
back, take the ith row of C2, multiply by −λ and add it to the jth row.
In other words if there is an elementary row operation to get from C1

to C2 then there is an elementary row operation to get from C2 to C1

(of the same type even).
Let S1 be the solution set of A1v = b1 and let S2 be the solution

set of A2v = b2. Then it suffices to show that S1 ⊂ S2. Indeed by
symmetry, S2 ⊂ S1 and in this case S1 = S2.

Note that swapping rows has no effect on the solutions. Swapping
rows of both C1 and C2, we may therefore assume that the elementary
row operation only acts on the first two rows. Let Fi be the solution
set of the equations corresponding to those rows of Ci and let Li be
the solution set of the remaining rows. Then the solutions sets are
precisely S1 = F1 ∩ L1 and S2 = F2 ∩ L2. But L1 = L2 since they are
the solutions sets corresponding to the same rows and so to the same
equations. So we might as well assume that m ≤ 2 (the two cases,
m = 1 and m = 2 depend on which elementary row operation we use).

Consider multiplying the first row by a non-zero scalar λ. In this
case m = 1 and the two equations read,

a1x1+a2x2+· · ·+anxn = b (λa1)x1+(λa2)x2+· · ·+(λan)xn = λb.
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Suppose that v = (r1, r2, . . . , rn) ∈ S1. By definition this means

a1r1 + a2r2 + · · ·+ anrn = b.

Multiply both sides by λ to get

(λa1)λr1 + (λa2)r2 + · · ·+ (λan)rn = λb.

But then v is a solution of the second equation, that is v ∈ S2. Hence
S1 ⊂ S2 and so by symmetry S1 = S2.

Now consider the only remaining case, multiplying the first row by a
non-zero scalar λ and adding it to the second row. In this case m = 2.
If the equations corresponding to C1 are

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2,

then the equations corresponding to C2 are

a11x1 + a12x2 + · · ·+ a1nxn = b1

(λa11 + a21)x1 + (λa11 + a22)x2 + · · ·+ (λa1n + a2n)xn = (λb1 + b2).

Suppose that v = (r1, r2, . . . , rn) ∈ S1. By definition this means

a11r1 + a12r2 + · · ·+ a1nrn = b1

a21r1 + a22r2 + · · ·+ a2nrn = b2.

But then

(λa11 + a21)r1 + (λa11 + a22)r2 + · · ·+ (λa1n + a2n)rn =

λa11r1 + a21r1 + λa11r2 + a22r2 + · · ·+ λa1nrn + a2nrn =

λ(a11r1 + a11r2 + · · ·+ a1nrn) + (a21r1 + a22r2 + · · ·+ a2nrn) = λb1 + b2,

so that v satisfies the second equation of the second system. Since v
clearly satisfies the first equation of the second system (which is nothing
but the first equation of the first system), v ∈ S2. Hence S1 ⊂ S2 and
so S1 = S2 by symmetry. �

Now we describe Gaussian elimination as an algorithm.

Algorithm 2.5 (Gaussian elimination). Let A be an m× n matrix.

(1) Let l = 0.
(2) Set i = l+1. If there is no row below the lth row which contains

a non-zero entry then STOP.
(3) Otherwise pick the smallest j such that there is an index i′ > i

such that ai′j 6= 0.
(4) Swap rows i and i′.

(a) Let λ = 1/aij and multiply the ith row by λ = 1/µ.
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(b) If there are no non-zero elements below the ith row in the
jth column then increase l by 1 and then return to (2).

(c) Pick the smallest j such that there is an index i′ > i with
λ = ai′j 6= 0. Multiply the ith row by −λ and add it to the
row i′ and return to (b).

The basic idea is that the index l measures how many rows are in
echelon form. At the beginning we don’t know any rows are in echelon
form, so we put l = 0. If the only rows left are rows of zeroes then
we are done. Otherwise we pick the first non-zero entry to the left
below row l and we put this in the next row (row l+ 1). We make this
number a pivot and eliminate all the entries in the same column below
this entry. At this stage we know that the first l+1 rows are in echelon
form and we repeat the whole process.

We need a little notation. Let A = (aij) a matrix. A submatrix
B of A is any matrix which is obtained from A by deleting rows and
columns.

Theorem 2.6. Gaussian elimination always terminates with a matrix
in echelon form.

In particular every matrix is row equivalent to a matrix in row ech-
elon form.

Proof. Let Bl be the l × n submatrix of A obtained by deleting the
last m = l rows of A. I claim that at every stage of the algorithm the
matrix Bl is in echelon form.

This is certainly true at the beginning (since then l = 0 and this is
a vacuous statement). On the other hand, the steps of the algorithm
never alter the first l rows, so if don’t change l we never lose the fact
that Bl is in echelon form. Finally every time we increase l by one then
it easy to see that the matrix Bl+1 is in echelon form.

Suppose that Gaussian elimination stops. The only place we can
stop is at step (2) in which case all the entries below the lth row are
zeroes. But then the matrix A is in echelon form.

Therefore it suffices to prove that Gaussian elimination always ter-
minates. Note that there are two places where the algorithm loops
(and this is of course the only reason the algorithm could continue
indefinitely).

Suppose that we are at step (c). Every time we go to step (b), we
create one more zero in the jth column in a row below the ith row.
Since there are at most m − i rows below the ith row, this can only
happen at most m− i times.
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Now suppose that we are at step (b) and we return to step (2). Since
l increases by one every time and l ≤ m this can only happen at most
m times. �
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