
18. Canonical forms III

Definition 18.1. Let φ : V −→ W be a linear map between two real
inner product spaces. We say that φ is an isometry if φ respects the
inner products, that is

〈u, v〉 = 〈φ(u), φ(v)〉,
for every u and v ∈ V .

Note that rotation and flips are isometries of R2. Note also that φ is
an isometry if and only if φ respects the norms, that is

‖v‖ = ‖φ(v)‖.
This is because one can recover the inner product from the norm.

Lemma 18.2. Let φ : V −→ W be an isometry.
Then φ is injective.

Proof. It suffices to prove that the kernel is trivial.
Suppose that v ∈ Kerφ. Then

〈v, v〉 = 〈φ(v), φ(v)〉 = 0.

But then v = 0 and Kerφ = {0}. �

Theorem 18.3. Let V be a real inner product space of dimension n.
Then V is isometric to Rn (with the standard inner product).

Proof. Pick any linear isomorphism f : V −→ Rn. Define an inner
product on Rn using the inner product on V ,

〈u, v〉 = 〈f−1(u), f−1(v)〉.
It is easy to check that this does define an inner product on Rn. So it
is enough to show that any inner product on Rn is equivalent to the
standard inner product.

Pick any basis v1, v2, . . . , vn of Rn. Applying Gram-Schmidt we may
assume that this basis is orthonormal. But then

〈vi, vj〉 =

{
1 if i = j

0 if i 6= j,

and this inner product is equivalent to the standard one. In fact the
isometry is given by the linear map given by the orthonormal basis,
v1, v2, . . . , vn. �

Lemma 18.4. Let A ∈Mn,n(R). Let u and v ∈ Rn. Then

〈u,Av〉 = 〈Atu, v〉.
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Proof. This is easy:

〈Atu, v〉 = (Atu)tv

= utAv

= 〈u,Av〉. �

Definition 18.5. If A is invertible and A−1 = At then we say that A
is orthogonal.

Proposition 18.6. Let A ∈ Mn,n(R). Let φ : Rn −→ Rn be the corre-
sponding linear function.

Then φ is an isometry of Rn (with the standard inner product) iff A
is orthogonal.

Proof. Suppose that u and v are in Rn. Suppose that φ is an isometry.
By assumption

〈u, v〉 = 〈φ(u), φ(v)〉
= 〈Au,Av〉
= 〈u,AtAv〉.

Therefore

〈u, v − AtAv〉 = 〈u, v〉 − 〈u,AtAv〉.
As the inner product is non-degenerate, and u is arbitrary, it follows
that v − AtAv = 0, that is v = AtAv. As v is aribtrary, the AtA =
In. But then A is invertible and the inverse is At. Therefore A is
orthogonal.

Now suppose that A is orthogonal. Then

〈φ(u), φ(v)〉 = 〈Au,Av〉
= 〈u,AtAv〉
= 〈u, v〉.

Thus φ is an isometry. �

Note that it is very useful to know that A is orthogonal. For example,

R =

(
cos θ − sin θ
sin θ cos θ

)
,

represents rotation through an angle of θ. The transpose is

Rt =

(
cos θ sin θ
− sin θ cos θ

)
,
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and we can see this is the inverse as this represents rotation through
−θ. On the other hand,

F =

(
0 1
1 0

)
,

represents a flip about the line y = x. The tranpose is the same matrix
and the inverse is also the same matrix. Note that the determinant of
an orthogonal matrix is ±1, since

1 = det In

= detAAt

= (detA)(detAt)

= (detA)2.

Rotations have determinant one; the rest have determinant −1.
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