18. CANONICAL FORMS III

Definition 18.1. Let $\phi: V \longrightarrow W$ be a linear map between two real inner product spaces. We say that ϕ is an **isometry** if ϕ respects the inner products, that is

$$\langle u, v \rangle = \langle \phi(u), \phi(v) \rangle,$$

for every u and $v \in V$.

Note that rotation and flips are isometries of \mathbb{R}^2 . Note also that ϕ is an isometry if and only if ϕ respects the norms, that is

$$||v|| = ||\phi(v)||.$$

This is because one can recover the inner product from the norm.

Lemma 18.2. Let $\phi: V \longrightarrow W$ be an isometry. Then ϕ is injective.

Proof. It suffices to prove that the kernel is trivial. Suppose that $v \in \text{Ker } \phi$. Then

$$\langle v, v \rangle = \langle \phi(v), \phi(v) \rangle = 0.$$

But then v = 0 and Ker $\phi = \{0\}$.

Theorem 18.3. Let V be a real inner product space of dimension n. Then V is isometric to \mathbb{R}^n (with the standard inner product).

Proof. Pick any linear isomorphism $f: V \longrightarrow \mathbb{R}^n$. Define an inner product on \mathbb{R}^n using the inner product on V,

$$\langle u, v \rangle = \langle f^{-1}(u), f^{-1}(v) \rangle.$$

It is easy to check that this does define an inner product on \mathbb{R}^n . So it is enough to show that any inner product on \mathbb{R}^n is equivalent to the standard inner product.

Pick any basis v_1, v_2, \ldots, v_n of \mathbb{R}^n . Applying Gram-Schmidt we may assume that this basis is orthonormal. But then

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j, \end{cases}$$

and this inner product is equivalent to the standard one. In fact the isometry is given by the linear map given by the orthonormal basis, v_1, v_2, \ldots, v_n .

Lemma 18.4. Let $A \in M_{n,n}(\mathbb{R})$. Let u and $v \in \mathbb{R}^n$. Then

$$\langle u, Av \rangle = \langle A^t u, v \rangle.$$

Proof. This is easy:

Definition 18.5. If A is invertible and $A^{-1} = A^t$ then we say that A is orthogonal.

Proposition 18.6. Let $A \in M_{n,n}(\mathbb{R})$. Let $\phi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be the corresponding linear function.

Then ϕ is an isometry of \mathbb{R}^n (with the standard inner product) iff A is orthogonal.

Proof. Suppose that u and v are in \mathbb{R}^n . Suppose that ϕ is an isometry. By assumption

$$\langle u, v \rangle = \langle \phi(u), \phi(v) \rangle \\ = \langle Au, Av \rangle \\ = \langle u, A^t Av \rangle.$$

Therefore

$$\langle u, v - A^t A v \rangle = \langle u, v \rangle - \langle u, A^t A v \rangle.$$

As the inner product is non-degenerate, and u is arbitrary, it follows that $v - A^t A v = 0$, that is $v = A^t A v$. As v is arbitrary, the $A^t A =$ I_n . But then A is invertible and the inverse is A^t . Therefore A is orthogonal.

Now suppose that A is orthogonal. Then

$$\begin{split} \langle \phi(u), \phi(v) \rangle &= \langle Au, Av \rangle \\ &= \langle u, A^t Av \rangle \\ &= \langle u, v \rangle. \end{split}$$

Thus ϕ is an isometry.

Note that it is very useful to know that A is orthogonal. For example,

$$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix},$$

represents rotation through an angle of θ . The transpose is ,

$$R^{t} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix},$$

、

and we can see this is the inverse as this represents rotation through $-\theta$. On the other hand,

$$F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

represents a flip about the line y = x. The transpose is the same matrix and the inverse is also the same matrix. Note that the determinant of an orthogonal matrix is ± 1 , since

$$1 = \det I_n$$

= det AA^t
= (det A)(det A^t)
= (det A)^2.

Rotations have determinant one; the rest have determinant -1.