17. INNER PRODUCT SPACES

Definition 17.1. Let V be a real vector space. An tnner product on

V' is a function
(,):VxV-—R,

which is
e symmetric, that is
(u,v) = (v,u).
e bilinear, that is linear (in both factors):
(Au, vy = AMu, v),
for all scalars \ and
(uy + ug, vy = (ug,v) + (ug, v),

for all vectors uy, us and v.
e positive that is

(v,v) > 0.
e non-degenerate that is if
(u,v) =0

for every v € V then u = 0.

We say that V 1is a real inner product space. The associated
quadratic form is the function

Q:V —R,

defined by

Q(v) = (v, v).
Example 17.2. Let A € M, ,(R) be a real matriz. We can define a
function

(, ) R"xR" — R,

by the rule

(u,v) = u' Av.
The basic rules of matrix multiplication imply that this function is bi-
linear. Note that the entries of A are given by

aij = €§A€j = <6i7€j>~

In particular, it is symmetric if and only if A is symmetric that is
At = A. It is non-degenerate if and only if A is invertible, that is A
has rank n. Positivity is a little harder to characterise.
Perhaps the canonical example is to take A = I,,. In this case if
w=(r1,72,...,7) and v = (81, S2,...,8,) then u'l,v = > r;s;. Note
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that if we take u = v then we get . r2. The square root of this is the
Euclidean distance.

Definition 17.3. Let V' be a real vector space. A morm on V is a
function

I.]l: V — R,
what has the following properties

[ ]
[kl = [F[[lv]],

for all vectors v and scalars k.
e positive that is

loll > 0.
e non-degenerate that is if
[l =0

then v = 0.
e satisfies the triangle inequality, that is

lw 4l < Jlull +l]l-

Lemma 17.4. Let V' be a real inner product space.
Then

I.]l: V — R,

[o]] = /(v v),

defined by

18 a norm on V.

Proof. Tt is clear that the norm satisfies the first property and that it
is positive. Suppose that v € V. By assumption there is a vector v
such that

(u,vy # 0.

Consider
0 < (u+tv,u+tv)
= (u,u) + 2t{u,v) + t*(v,v).
If (v,v) = 0 then certainly (u,u) > 0. Otherwise put

{u, v)
(v, 0)

t=— > 0.

Then

(u,uy + 2t{u,v) + t2<g, v) = (u,u) + t{u,v).



Once again
({u,v))?
(v, v)

(u,u) > > 0.

Thus the norm is non-degenerate.
Now suppose that v and v € V. Then
(u+v,u+v) = (u,u) + 2(u,v) + (v, v)
<l + 2wl - Il + lol®
= (lull + vl
Taking square roots gives the triangle inequality. 0

Note that one can recover the inner product from the norm, using
the formula

2(u,v) = Qu+v) — Qu) — Q(v),
where () is the associated quadratic form. Note the annoying ap-

pearence of the factor of 2.
Notice also that on the way we proved:

Lemma 17.5 (Cauchy-Schwarz-Bunjakowski). Let V' be a real inner
product space.
If u and v € V then

{u, 0) < lull - [[ol].

Definition 17.6. Let V' be a real vector space with an inner product.
We say that two vectors v and w are orthogonal if

(u,v) = 0.

We say that a basis vy, vs, ..., v, is an orthogonal basis if the vectors
V1, V2, ..., U, are pairwise orthogonal. If in addition the vectors v; have
length one, we say that vi,vs, ..., v, s an orthonormal basis.

Lemma 17.7. Let V be a real inner product space.

(1) If the vectors vy, v, ..., vy are pairwise orthogonal then they
are independent. In particular if m = dim V' then vy, v, ..., Uy,
are an orthogonal basis of V.

(2) If v1,v9,...,v, are an orthonormal basis of V and v € V' then

v = E T'iUs,

where
Ty = <U7 vi)'
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Proof. We first prove (1). Suppose that
rv1 + Uy + -+ Uy = 0.
Taking the inner product of both sides with v; gives

0 = (rvy + rove + - - - + T U, v;)

= 7 (Vs U])
i=1
=15V, vj)
As
<Uj7 Uj> 7é 0,
it follows that r; = 0. This is (1).
The proof of (2) is similar. O

So how does one find an orthonormal basis?

Algorithm 17.8 (Gram-Schmidt). Let vy, vq,...,v, be independent
vectors in a real inner product space V.

(1) Let 1 < k < n be the largest index such that vy, ve, ..., vy are
orthonormal.

(2) If k = m then stop.
(3) Otherwise let
Uk+1 = Vg1 — TV — T2U2 — =+ — T'i;mUnm,
where r; = (i1, v;). Replace vgyq by
Uk+1

ksl
and return to (1).

In practice the algorithm works as follows. First we replace vy by
U1
Jodl”

so that v; has unit length. Then we consider v5. We have to subtract
some of v; to ensure that it is orthogonal to v;. So consider a vector
of the form

u = vy + Avy,

where ) is chosen to make u orthogonal to v;. We have
0= (u,v1) = (v2,v1) + Nvyg, v1),

so that
)\ = —<1)2,U1>.
4



Then we rescale to get a vector of unit length. At the next stage, we
can choose A\ and p so that

v3 + A\vy + g,
is orthogonal v; and vy. The key thing is that since v; and vy are
orthogonal, our choice of A\ and p are independent of each other.
For example, consider the vectors
v = (1,-1,1), vy = (1,0,1) and vy = (1,1,2),
in R3 with the usual inner product. The first step is to replace v; by
1

v, = —(1,—-1,1).
1 \/g( )
Now let
2
u=(1,0,1) — 5(1, -1,1)
1
=—(1,2,1).
3( Y ) )
Then we replace u by a vector parallel to v of unit length
1
ve = —(1,2,1).

V6

Finally we put

2 5
w=(11,2) - 5(L-11) - £(1,2,1)

1
= 5(—1,0, 1).
Finally we replace u by a vector of unit length,
1
U3 \/5( 1,0,1).
Thus
1 1 1

v = —1,1) vy = —(1,2,1) and vy =—=(—1,0,1),

—(1,
V3 G
is the orthonormal basis produced by Gram-Schmidt.

One very useful property of inner products is that we get canonically
defined complimentary linear subspaces:

V2

Lemma 17.9. Let V be a finite dimensional real inner product space.
If U C V is a linear subspace, then let

Ut ={weV|{wu)=0,YuecU},

the set of all vectors orthogonal to every element of U. Then
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o Ut is a linear subspace of V.
o UNU* ={0}.
o U and Ut span V.
In particular V is isomorphic to U @ U*.
Proof. We first prove (1). Suppose that w; and w, € Ut. Pick u € U.
Then
(wy + wa, u) = (wy, u) + (ws, u)
=04+0=0.
It follows that wy +wy € UL and so U™ is closed under addition. Now
suppose that w € U+ and )\ is a scalar. Then

(Aw, u) = Mw, )
= A0 =0.
Thus Mw € U+ and so U™ is closed under scalar multiplication. Thus

U+ is a linear subspace of V. This is (1).
Suppose that w € U N U+. Then

(w, w) = 0.

But then w = 0. This is (2).
Suppose that v € V. If v € U there is nothing to prove. Otherwise

pick an orthonormal basis wu,us,...,u; of U. Then the vectors v,
Uy, Us, . .., u, are independent. By Gram-Schmidt we may find scalars
r1,T9,...,Tr such that

w=v— E riu;,

is orthogonal to uy,us,...,u; (in fact r; = (v,u;)). But then w is
orthogonal to U, that isw € Ut. Let u = > ru; € U. Then v = u+w.
This is (3). O
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