
17. Inner product spaces

Definition 17.1. Let V be a real vector space. An inner product on
V is a function

〈 , 〉 : V × V −→ R,
which is

• symmetric, that is

〈u, v〉 = 〈v, u〉.
• bilinear, that is linear (in both factors):

〈λu, v〉 = λ〈u, v〉,
for all scalars λ and

〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉,
for all vectors u1, u2 and v.
• positive that is

〈v, v〉 ≥ 0.

• non-degenerate that is if

〈u, v〉 = 0

for every v ∈ V then u = 0.

We say that V is a real inner product space. The associated
quadratic form is the function

Q : V −→ R,
defined by

Q(v) = 〈v, v〉.

Example 17.2. Let A ∈ Mn,n(R) be a real matrix. We can define a
function

〈 , 〉 : Rn × Rn −→ R,
by the rule

〈u, v〉 = utAv.

The basic rules of matrix multiplication imply that this function is bi-
linear. Note that the entries of A are given by

aij = et
iAej = 〈ei, ej〉.

In particular, it is symmetric if and only if A is symmetric that is
At = A. It is non-degenerate if and only if A is invertible, that is A
has rank n. Positivity is a little harder to characterise.

Perhaps the canonical example is to take A = In. In this case if
u = (r1, r2, . . . , rn) and v = (s1, s2, . . . , sn) then utInv =

∑
risi. Note
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that if we take u = v then we get
∑
r2
i . The square root of this is the

Euclidean distance.

Definition 17.3. Let V be a real vector space. A norm on V is a
function

‖.‖ : V −→ R,
what has the following properties

•
‖kv‖ = |k|‖v‖,

for all vectors v and scalars k.
• positive that is

‖v‖ ≥ 0.

• non-degenerate that is if

‖v‖ = 0

then v = 0.
• satisfies the triangle inequality, that is

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Lemma 17.4. Let V be a real inner product space.
Then

‖.‖ : V −→ R,
defined by

‖v‖ =
√
〈v, v〉,

is a norm on V .

Proof. It is clear that the norm satisfies the first property and that it
is positive. Suppose that u ∈ V . By assumption there is a vector v
such that

〈u, v〉 6= 0.

Consider

0 ≤ 〈u+ tv, u+ tv〉
= 〈u, u〉+ 2t〈u, v〉+ t2〈v, v〉.

If 〈v, v〉 = 0 then certainly 〈u, u〉 > 0. Otherwise put

t = −〈u, v〉
〈v, v〉

> 0.

Then

〈u, u〉+ 2t〈u, v〉+ t2〈v, v〉 = 〈u, u〉+ t〈u, v〉.
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Once again

〈u, u〉 > (〈u, v〉)2

〈v, v〉
> 0.

Thus the norm is non-degenerate.
Now suppose that u and v ∈ V . Then

〈u+ v, u+ v〉 = 〈u, u〉+ 2〈u, v〉+ 〈v, v〉
≤ ‖u‖2 + 2‖u‖ · ‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2.

Taking square roots gives the triangle inequality. �

Note that one can recover the inner product from the norm, using
the formula

2〈u, v〉 = Q(u+ v)−Q(u)−Q(v),

where Q is the associated quadratic form. Note the annoying ap-
pearence of the factor of 2.

Notice also that on the way we proved:

Lemma 17.5 (Cauchy-Schwarz-Bunjakowski). Let V be a real inner
product space.

If u and v ∈ V then

〈u, v〉 ≤ ‖u‖ · ‖v‖.

Definition 17.6. Let V be a real vector space with an inner product.
We say that two vectors v and w are orthogonal if

〈u, v〉 = 0.

We say that a basis v1, v2, . . . , vn is an orthogonal basis if the vectors
v1, v2, . . . , vn are pairwise orthogonal. If in addition the vectors vi have
length one, we say that v1, v2, . . . , vn is an orthonormal basis.

Lemma 17.7. Let V be a real inner product space.

(1) If the vectors v1, v2, . . . , vm are pairwise orthogonal then they
are independent. In particular if m = dimV then v1, v2, . . . , vm

are an orthogonal basis of V .
(2) If v1, v2, . . . , vn are an orthonormal basis of V and v ∈ V then

v =
∑

rivi,

where

ri = 〈v, vi〉.
3



Proof. We first prove (1). Suppose that

r1v1 + r2v2 + · · ·+ rmvm = 0.

Taking the inner product of both sides with vj gives

0 = 〈r1v1 + r2v2 + · · ·+ rmvm, vj〉

=
m∑

i=1

ri〈vi, vj〉

= rj〈vj, vj〉.
As

〈vj, vj〉 6= 0,

it follows that rj = 0. This is (1).
The proof of (2) is similar. �

So how does one find an orthonormal basis?

Algorithm 17.8 (Gram-Schmidt). Let v1, v2, . . . , vn be independent
vectors in a real inner product space V .

(1) Let 1 ≤ k ≤ n be the largest index such that v1, v2, . . . , vk are
orthonormal.

(2) If k = m then stop.
(3) Otherwise let

uk+1 = vk+1 − r1v1 − r2v2 − · · · − rmvm,

where ri = 〈vk+1, vi〉. Replace vk+1 by
uk+1

‖uk+1‖
,

and return to (1).

In practice the algorithm works as follows. First we replace v1 by
v1

‖v1‖
,

so that v1 has unit length. Then we consider v2. We have to subtract
some of v1 to ensure that it is orthogonal to v1. So consider a vector
of the form

u = v2 + λv1,

where λ is chosen to make u orthogonal to v1. We have

0 = 〈u, v1〉 = 〈v2, v1〉+ λ〈v1, v1〉,
so that

λ = −〈v2, v1〉.
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Then we rescale to get a vector of unit length. At the next stage, we
can choose λ and µ so that

v3 + λv1 + µv2,

is orthogonal v1 and v2. The key thing is that since v1 and v2 are
orthogonal, our choice of λ and µ are independent of each other.

For example, consider the vectors

v1 = (1,−1, 1), v2 = (1, 0, 1) and v3 = (1, 1, 2),

in R3 with the usual inner product. The first step is to replace v1 by

v1 =
1√
3

(1,−1, 1).

Now let

u = (1, 0, 1)− 2

3
(1,−1, 1)

=
1

3
(1, 2, 1).

Then we replace u by a vector parallel to u of unit length

v2 =
1√
6

(1, 2, 1).

Finally we put

u = (1, 1, 2)− 2

3
(1,−1, 1)− 5

6
(1, 2, 1)

=
1

2
(−1, 0, 1).

Finally we replace u by a vector of unit length,

v3 =
1√
2

(−1, 0, 1).

Thus

v1 =
1√
3

(1,−1, 1) v2 =
1√
6

(1, 2, 1) and v3 =
1√
2

(−1, 0, 1),

is the orthonormal basis produced by Gram-Schmidt.
One very useful property of inner products is that we get canonically

defined complimentary linear subspaces:

Lemma 17.9. Let V be a finite dimensional real inner product space.
If U ⊂ V is a linear subspace, then let

U⊥ = {w ∈ V | 〈w, u〉 = 0,∀u ∈ U },
the set of all vectors orthogonal to every element of U . Then
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• U⊥ is a linear subspace of V .
• U ∩ U⊥ = {0}.
• U and U⊥ span V .

In particular V is isomorphic to U ⊕ U⊥.

Proof. We first prove (1). Suppose that w1 and w2 ∈ U⊥. Pick u ∈ U .
Then

〈w1 + w2, u〉 = 〈w1, u〉+ 〈w2, u〉
= 0 + 0 = 0.

It follows that w1 +w2 ∈ U⊥ and so U⊥ is closed under addition. Now
suppose that w ∈ U⊥ and λ is a scalar. Then

〈λw, u〉 = λ〈w, u〉
= λ0 = 0.

Thus λw ∈ U⊥ and so U⊥ is closed under scalar multiplication. Thus
U⊥ is a linear subspace of V . This is (1).

Suppose that w ∈ U ∩ U⊥. Then

〈w,w〉 = 0.

But then w = 0. This is (2).
Suppose that v ∈ V . If v ∈ U there is nothing to prove. Otherwise

pick an orthonormal basis u1, u2, . . . , uk of U . Then the vectors v,
u1, u2, . . . , uk are independent. By Gram-Schmidt we may find scalars
r1, r2, . . . , rk such that

w = v −
∑

riui,

is orthogonal to u1, u2, . . . , uk (in fact ri = 〈v, ui〉). But then w is
orthogonal to U , that is w ∈ U⊥. Let u =

∑
riui ∈ U . Then v = u+w.

This is (3). �
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