17. INNER PRODUCT SPACES

Definition 17.1. Let V be a real vector space. An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \longrightarrow \mathbb{R},$$

which is

• *symmetric*, that is

$$\langle u, v \rangle = \langle v, u \rangle.$$

• **bilinear**, that is linear (in both factors):

$$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle,$$

for all scalars λ and

$$\langle u_1 + u_2, v \rangle = \langle u_1, v \rangle + \langle u_2, v \rangle,$$

for all vectors u_1 , u_2 and v.

• positive that is

$$\langle v, v \rangle \ge 0.$$

• non-degenerate that is if

$$\langle u, v \rangle = 0$$

for every $v \in V$ then u = 0.

We say that V is a real inner product space. The associated quadratic form is the function

$$Q: V \longrightarrow \mathbb{R},$$

defined by

 $Q(v) = \langle v, v \rangle.$

Example 17.2. Let $A \in M_{n,n}(\mathbb{R})$ be a real matrix. We can define a function

 $\langle , \rangle \colon \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R},$

by the rule

 $\langle u, v \rangle = u^t A v.$

The basic rules of matrix multiplication imply that this function is bilinear. Note that the entries of A are given by

$$a_{ij} = e_i^t A e_j = \langle e_i, e_j \rangle.$$

In particular, it is symmetric if and only if A is **symmetric** that is $A^t = A$. It is non-degenerate if and only if A is invertible, that is A has rank n. Positivity is a little harder to characterise.

Perhaps the canonical example is to take $A = I_n$. In this case if $u = (r_1, r_2, \ldots, r_n)$ and $v = (s_1, s_2, \ldots, s_n)$ then $u^t I_n v = \sum r_i s_i$. Note

that if we take u = v then we get $\sum r_i^2$. The square root of this is the Euclidean distance.

Definition 17.3. Let V be a real vector space. A **norm** on V is a function

 $\|.\|\colon V \longrightarrow \mathbb{R},$

what has the following properties

•

$$||kv|| = |k|||v||,$$

for all vectors v and scalars k.

• **positive** that is

$$\|v\| \ge 0.$$

• non-degenerate that is if

$$||v|| = 0$$

then v = 0.

• satisfies the triangle inequality, that is

 $||u + v|| \le ||u|| + ||v||.$

Lemma 17.4. Let V be a real inner product space. Then

 $\|.\|\colon V \longrightarrow \mathbb{R},$

defined by

$$\|v\| = \sqrt{\langle v, v \rangle},$$

is a norm on V.

Proof. It is clear that the norm satisfies the first property and that it is positive. Suppose that $u \in V$. By assumption there is a vector v such that

 $\langle u, v \rangle \neq 0.$

Consider

$$0 \le \langle u + tv, u + tv \rangle$$

= $\langle u, u \rangle + 2t \langle u, v \rangle + t^2 \langle v, v \rangle.$

If $\langle v, v \rangle = 0$ then certainly $\langle u, u \rangle > 0$. Otherwise put

$$t = -\frac{\langle u, v \rangle}{\langle v, v \rangle} > 0.$$

Then

$$\langle u, u \rangle + 2t \langle u, v \rangle + t^2 \langle v, v \rangle = \langle u, u \rangle + t \langle u, v \rangle.$$

Once again

$$\langle u, u \rangle > \frac{(\langle u, v \rangle)^2}{\langle v, v \rangle} > 0.$$

Thus the norm is non-degenerate.

Now suppose that u and $v \in V$. Then

Taking square roots gives the triangle inequality.

Note that one can recover the inner product from the norm, using the formula

$$2\langle u, v \rangle = Q(u+v) - Q(u) - Q(v),$$

where Q is the associated quadratic form. Note the annoying appearence of the factor of 2.

Notice also that on the way we proved:

Lemma 17.5 (Cauchy-Schwarz-Bunjakowski). Let V be a real inner product space.

If u and $v \in V$ then

$$\langle u, v \rangle \le \|u\| \cdot \|v\|.$$

Definition 17.6. Let V be a real vector space with an inner product. We say that two vectors v and w are **orthogonal** if

$$\langle u, v \rangle = 0.$$

We say that a basis v_1, v_2, \ldots, v_n is an **orthogonal basis** if the vectors v_1, v_2, \ldots, v_n are pairwise orthogonal. If in addition the vectors v_i have length one, we say that v_1, v_2, \ldots, v_n is an **orthonormal basis**.

Lemma 17.7. Let V be a real inner product space.

- (1) If the vectors v_1, v_2, \ldots, v_m are pairwise orthogonal then they are independent. In particular if $m = \dim V$ then v_1, v_2, \ldots, v_m are an orthogonal basis of V.
- (2) If v_1, v_2, \ldots, v_n are an orthonormal basis of V and $v \in V$ then

$$v = \sum r_i v_i,$$

where

$$r_i = \langle v, v_i \rangle.$$

Proof. We first prove (1). Suppose that

$$r_1v_1 + r_2v_2 + \dots + r_mv_m = 0.$$

Taking the inner product of both sides with v_i gives

$$0 = \langle r_1 v_1 + r_2 v_2 + \dots + r_m v_m, v_j \rangle$$
$$= \sum_{i=1}^m r_i \langle v_i, v_j \rangle$$
$$= r_j \langle v_j, v_j \rangle.$$

As

$$\langle v_i, v_i \rangle \neq 0,$$

it follows that $r_j = 0$. This is (1). The proof of (2) is similar.

So how does one find an orthonormal basis?

Algorithm 17.8 (Gram-Schmidt). Let v_1, v_2, \ldots, v_n be independent vectors in a real inner product space V.

- (1) Let $1 \leq k \leq n$ be the largest index such that v_1, v_2, \ldots, v_k are orthonormal.
- (2) If k = m then **stop**.
- (3) Otherwise let

$$u_{k+1} = v_{k+1} - r_1 v_1 - r_2 v_2 - \dots - r_m v_m,$$

where $r_i = \langle v_{k+1}, v_i \rangle$. Replace v_{k+1} by

$$\frac{u_{k+1}}{\|u_{k+1}\|},$$

and return to (1).

In practice the algorithm works as follows. First we replace v_1 by

$$\frac{v_1}{\|v_1\|},$$

so that v_1 has unit length. Then we consider v_2 . We have to subtract some of v_1 to ensure that it is orthogonal to v_1 . So consider a vector of the form

$$u = v_2 + \lambda v_1$$

where λ is chosen to make u orthogonal to v_1 . We have

$$0 = \langle u, v_1 \rangle = \langle v_2, v_1 \rangle + \lambda \langle v_1, v_1 \rangle,$$

so that

$$\lambda = -\langle v_2, v_1 \rangle.$$

Then we rescale to get a vector of unit length. At the next stage, we can choose λ and μ so that

$$v_3 + \lambda v_1 + \mu v_2,$$

is orthogonal v_1 and v_2 . The key thing is that since v_1 and v_2 are orthogonal, our choice of λ and μ are independent of each other.

For example, consider the vectors

$$v_1 = (1, -1, 1),$$
 $v_2 = (1, 0, 1)$ and $v_3 = (1, 1, 2),$

in \mathbb{R}^3 with the usual inner product. The first step is to replace v_1 by

$$v_1 = \frac{1}{\sqrt{3}}(1, -1, 1).$$

Now let

$$u = (1, 0, 1) - \frac{2}{3}(1, -1, 1)$$
$$= \frac{1}{3}(1, 2, 1).$$

Then we replace u by a vector parallel to u of unit length

$$v_2 = \frac{1}{\sqrt{6}}(1,2,1).$$

Finally we put

$$u = (1, 1, 2) - \frac{2}{3}(1, -1, 1) - \frac{5}{6}(1, 2, 1)$$
$$= \frac{1}{2}(-1, 0, 1).$$

Finally we replace u by a vector of unit length,

$$v_3 = \frac{1}{\sqrt{2}}(-1,0,1).$$

Thus

$$v_1 = \frac{1}{\sqrt{3}}(1, -1, 1)$$
 $v_2 = \frac{1}{\sqrt{6}}(1, 2, 1)$ and $v_3 = \frac{1}{\sqrt{2}}(-1, 0, 1),$

is the orthonormal basis produced by Gram-Schmidt.

One very useful property of inner products is that we get canonically defined complimentary linear subspaces:

Lemma 17.9. Let V be a finite dimensional real inner product space. If $U \subset V$ is a linear subspace, then let

$$U^{\perp} = \{ w \in V \mid \langle w, u \rangle = 0, \forall u \in U \},\$$

the set of all vectors orthogonal to every element of U. Then

- U^{\perp} is a linear subspace of V.
- $U \cap U^{\perp} = \{0\}.$
- U and U^{\perp} span V.

In particular V is isomorphic to $U \oplus U^{\perp}$.

Proof. We first prove (1). Suppose that w_1 and $w_2 \in U^{\perp}$. Pick $u \in U$. Then

$$\langle w_1 + w_2, u \rangle = \langle w_1, u \rangle + \langle w_2, u \rangle$$

= 0 + 0 = 0.

It follows that $w_1 + w_2 \in U^{\perp}$ and so U^{\perp} is closed under addition. Now suppose that $w \in U^{\perp}$ and λ is a scalar. Then

$$\langle \lambda w, u \rangle = \lambda \langle w, u \rangle \\ = \lambda 0 = 0.$$

Thus $\lambda w \in U^{\perp}$ and so U^{\perp} is closed under scalar multiplication. Thus U^{\perp} is a linear subspace of V. This is (1).

Suppose that $w \in U \cap U^{\perp}$. Then

$$\langle w, w \rangle = 0.$$

But then w = 0. This is (2).

Suppose that $v \in V$. If $v \in U$ there is nothing to prove. Otherwise pick an orthonormal basis u_1, u_2, \ldots, u_k of U. Then the vectors v, u_1, u_2, \ldots, u_k are independent. By Gram-Schmidt we may find scalars r_1, r_2, \ldots, r_k such that

$$w = v - \sum r_i u_i,$$

is orthogonal to u_1, u_2, \ldots, u_k (in fact $r_i = \langle v, u_i \rangle$). But then w is orthogonal to U, that is $w \in U^{\perp}$. Let $u = \sum r_i u_i \in U$. Then v = u + w. This is (3).