
16. The characteristic polynomial

We have already seen that given a 2× 2 matrix

A =

(
a b
c d

)
,

there is a single number ad − bc such that A is invertible if and only
if ad − bc 6= 0. It is a somewhat amazing fact that one can generalise
this function to any n:

Theorem 16.1. There is a function

det : Mn,n(F ) −→ F,

called the determinant, which is uniquely determined by the following
properties:

(1) the determinant respects multiplication, that is

det(AB) = detA detB.

(2)

detE1(λ) = λ.

There are three points to realise:

• with some, admittedly abstract, algebraic machinery, (16.1) is
straightforward to prove;
• the condition that the determinant respects multiplication is

very strong. In particular note that the statement that the
determinant is uniquely determined by (1) and (2).
• if n is reasonably large, computing the determinant is computa-

tionally very expensive. Formulae which compute determinants
or formulae with determinants in them are invariably useless.

Lemma 16.2. Let n be a positive integer and let F be a field.

(1) det In = 1.
(2) det 0n = 0.
(3) If A is invertible then detA 6= 0 and in fact detA−1 = 1/ detA.
(4) If A and B are similar then detA = detB.
(5) detEij(λ) = 1.
(6) detEi(λ) = λ.
(7) detPij = −1.

Proof. We first prove (1). By assumption det is not the constant func-
tion. So there is at least one matrix A such that detA 6= 0. But
then

detA = det InA = det In detA.
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As detA 6= 0 this implies det In = 1. This is (1).
We now prove (2). By assumption there is a matrix B such that

detB 6= 1. But then

det 0n = det 0nB = det 0n detB.

As detB 6= 1 the only possibility is that det 0n = 0. This is (2).
We now prove (3). Suppose that B is the inverse of A. As AB = In

it follows that

1 = det In = detAB = detA detB.

But then detA 6= 0 and detB = 1/ detA. This is (3).
We now prove (4). Suppose that A and B are similar. Then there is

an invertible matrix P such that B = PAP−1. Taking determinants,
we see that

detB = det(PAP−1)

= detP detA detP−1

= detA.

This is (4).
We now prove (5). Suppose that λ 6= 0. Note that, considering row

operations,

Eij(λ) = Ei(λ
−1)Eij(1)Ei(λ).

Thus Eij(λ) and Eij(1) are similar. By (4) it follows that their deter-
minants are the same. But

In = Eij(0) = Eij(1)Eij(−1).

Taking determinants, we get

detEij(1)2 = 1.

But the polynomial equation x2 = 1 only has two roots, ±1, since the
polynomial x2 − 1 factors as (x− 1)(x+ 1).

There are two possibilities. If 2 = 0 (for example, consider the field
F2) then 1 = −1 and there is nothing to prove. Otherwise consider the
equation

Eij(2) = Eij(1)2.

Taking determinants, we see that

detEij(1) = detEij(1)2 = (detEij(1))2,

and the only possibility is that detEij(1) = 1. This is (5).
We now prove (6). Note that Ei(λ) is similar to E1(λ). Using (4)

this gives (6).
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We now prove (7). Note that Pij is similar to P12 which in turn is
similar to E1(−1). This proves (7). �

Since the determinant is an invariant of similar matrices, in fact one
can define the determinant of any linear function φ : V −→ V , where V
is a finite dimensional vector space. Indeed, pick any basis v1, v2, . . . , vn
of V . In the usual way, this gives rise to a linear function ψ : F n −→ F n

and so to a matrix A, representing ψ. The key point is that if we choose
a different basis, say w1, w2, . . . , wn of V , we would get a different linear
function τ and a different matrix B, but since A and B are similar, the
determinant would be the same.

Now that we know what the determinant of an elementary matrix is,
we can now compute any determinant by Gauss-Jordan elimination.

For example, if P is any permutation matrix, then its determinant is
±1, depending on whether P is a product of an even or an odd number
of elementary permutation matrices (it is in fact quite hard to prove
that the parity is invariant without using determinants).

Now suppose that D is a diagonal matrix, with diagonal entries
λ1, λ2, . . . , λn. Then D is a product of Ei(λi), and so its determinant
is the product λ1λ2 . . . λn.

Now suppose that U is an upper triangular matrix, with 1’s on the
main diagonal. Then applying Gauss-Jordan elimination, we can row
reduce U to the identity matrix In, multiplying by only the elementary
matrices Eij(λ). It follows that the determinant of U is 1. On the other
hand, if U has a row of zeroes, then it is easy to see that detU = 0. It
is also not hard to see that detAt = detA.

Putting all of this together, gives the most efficient method of com-
puting the determinant of a matrix A ∈ Mn,n(F ). Applying Gaussian
elimination, we can find matrices P , L and U such that

A = PLU.

The determinant of P is ±1. The determinant of U is equal to 1. L is
the product of L′ and D where L′ is a lower triangular matrix with 1
on the main diagonal and D is a diagonal matrix with diagonal entries
equal to the diagonal entries of L. So the determinant of A is ±d, where
d is the product of the diagonal entries of L. We have also proved:

Theorem 16.3. Let A ∈Mn,n(F ).
Then detA is non-zero if and only if A is invertible.

Proof. Indeed, if we write A = PLU , then A is invertible if and only if
U is invertible, that is U has no rows of zeroes. But detU = 0 if and
only if U has a row of zeroes. �
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There is a recursive way to compute the determinant of a matrix,
which is in someways only of theoretical interest (and of interest if you
want to compute the determinant of a 3 × 3 matrix without using a
computer whilst doing your hwk).

The rule is as follows. Take the matrix A and pick a row or a
column. For each entry in this row or column, take the determinant of
the submatrix you get by deleting the row and the column to which this
entry lives, multiply by this entry and take an alternating sum. The
sum starts positive if you are in an odd row or column and otherwise
starts negatively. For example, consider the following determinant:∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
Suppose we decide to expand about the third column. Then we get

3

∣∣∣∣4 5
7 8

∣∣∣∣− 6

∣∣∣∣1 2
7 8

∣∣∣∣ + 9

∣∣∣∣1 2
4 5

∣∣∣∣ .
If we decided instead to expand about the second row, we would start
with −4, progress to 5 and finish with −6. In fact notice that all of
this is consistent with the fact that the determinant of the tranpose is
the same as the original determinant and that we could put the third
row into the position of the first row by switching the first and third
rows and then switching the second and third rows. This involves two
changes of sign and so in total there is no change of sign.

However in this fantasy world, where supposedly it is a good idea
to compute determinants by hand, normally you are supposed to use
tricks to compute determinants. For example, always expand about
rows or columns with lots of zeroes. Look to see if two rows or columns
look similar; if so, subtract one from the other to cheaply create lots
more zeroes.

Definition 16.4. Let A ∈Mn,n(F ) be a matrix.
The characteristic polynomial of A is the polynomial in λ

det(A− λIn).

Lemma 16.5. The roots of the characteristic polynomial are the eigen-
values of A.

Proof. λ1 is a root of the characteristic polynomial if and only ifA−λ1In
is not invertible if and only if the eigenspace Eλ1(A) is non-trivial if
and only if A has an eigenvector with eigenvalue λ1 �
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Theorem 16.6 (Cayley-Hamilton). Let A ∈Mn,n(C).
Then the minimal polynomial divides the characteristic polynomial.

In particular A satisfies its own characteristic polynomial.

Proof. We may assume that A is in Jordan canonical form. It is then
not hard to see that we may assume that A is a single Jordan block. In
this case the minimal polynomial is (x−λ)n and by direct computation
the characteristic polynomial is the same. �
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