
12. Linear transformations

Definition 12.1. Let φ : V −→ W be a function between two vector
spaces V and W over the same field F . We say that φ respects ad-
dition if

φ(v1 + v2) = φ(v1) + φ(v2),

whenever v1 and v2 belong to V . We say that φ respects scalar
multiplication if

φ(rv) = rφ(v),

whenever v ∈ V and r ∈ F .
We say that φ is linear if it respects addition and scalar multiplica-

tion. We say that φ is an linear isomorphism (or isomorphism of
vector spaces) if φ is linear and φ is a bijection.

We have already seen that any matrix gives rise to a function. In
fact these functions are always linear:

Lemma 12.2. Let A ∈Mm,n(F ).
If φ : F n −→ Fm is the function φ(v) = Av then φ is linear.

Proof. This is easy. Suppose v and w ∈ F n. Then

φ(v + w) = A(v + w)

= Av + Aw

= φ(v) + φ(w).

So φ respects addition. Suppose v ∈ F n and λ ∈ F . Then

φ(λv) = A(λv)

= λ(Av)

= λφ(v).

Hence φ respects scalar multiplication. Thus φ is linear. �

The interesting thing is that the opposite is true:

Theorem 12.3. Let φ : F n −→ Fm be a linear map.
Then there is a matrix Mm,n(F ) such that φ(v) = Av.

1



Proof. Let A be the matrix whose ith column is φ(ei). Suppose that
v ∈ V . If v = (r1, r2, . . . , rn) ∈ F n then v =

∑
riei. In this case

φ(v) = φ(r1e1 + r2e2 + · · ·+ rnen)

= r1φ(e1) + r2φ(e2) + · · ·+ rnφ(en)

= r1Ae1 + r2Ae2 + · · ·+ rnAen

= A(r1e1 + r2e2 + · · ·+ rnen)

= Av. �

These two results make it easy to check if a map F n −→ Fm is linear
or not:

Example 12.4. Let T : F 3 −→ F 2 be the function

T (x, y, z) = (2x− 3y + 7z, 6x+ y − 3z).

Then T is the linear map associated to the matrix(
2 −3 7
6 1 −3

)
.

It is easy to write down examples of linear maps between abstract
vector spaces.

Example 12.5. Let
φ : V −→ W,

be the function which sends everything to 0. It is easy to check that
this map is linear. Similarly the identity map

φ : V −→ V which sends v −→ v,

is linear. For a slightly more complicated example, consider the map

φ : V −→ V which sends v −→ λv,

where λ is a fixed scalar. Then φ is linear. Indeed

φ(v + w) = λ(v + w)

= λv + λw

= φ(v) + φ(w).

Thus φ respects addition. Similarly, ir r ∈ F then

φ(rv) = λ(rv)

= (λr)v

= (rλ)v

= r(λv)

= rφ(v).
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Thus φ respects scalar multiplication and so φ is linear.
Let

φ : Mm,n(F ) −→Mn,m(F ),

be the function which sends a matrix A = (aij) to its transpose At =
(aji). Since the tranpose of a sum of two matrices is the sum of the
tranposes, φ respects addition. Formally if A = (aij) and B = (bij) ∈
Mm,n(F ) then At is the matrix with entries (aji) and Bt is the matrix
with entries (bji). A + B is the matrix with entries (aij + bij). The
transpose of A + B is the matrix with entries (aji + bji), which is the
same as the entries of the matrix At + Bt. Thus φ respects addition.
Similarly φ respects scalar multiplication. Thus φ is linear.

Let

φ : Pd(F ) −→ F,

be the function which sends a polynomial f(x) of degree at most d to
its value f(0) at 0. It is easy to check that this map is linear. For a
slightly more interesting example, consider the function

φ : Pd(R) −→ Pd−1(R),

defined by the rule φ(f(x)) = f ′(x) the derivative of f(x). Basic prop-
erties of the derivative ensure that this map is linear.

Definition-Lemma 12.6. Let V be a finite dimensional vector space
over a field F . Suppose we pick a basis v1, v2, . . . , vn. Then we define
a function

φ : V −→ F n

by the following rule: Given v ∈ V there are unique scalars r1, r2, . . . , rn

such that v =
∑
rivi. Let φ(v) = (r1, r2, . . . , rn) ∈ F n.

Then φ is a linear isomorphism.

Proof. Since every vector v has a unique expression in the form v =∑
rivi it is clear that φ is well-defined and that φ is a bijection. We

check that φ is linear. Given v and w ∈ V we may find scalars
r1, r2, . . . , rn and s1, s2, . . . , sn such that

v =
∑

i

rivi and w =
∑

i

sivi.

Then

v + w =
∑

(ri + si)vi.
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Thus

φ(v + w) = (r1 + s1, r2 + s2, . . . , rn + sn)

= (r1, r2, . . . , rn) + (s1, s2, . . . , sn)

= φ(v) + φ(w),

and so φ respects addition. Suppose that λ ∈ F . Then

λv = (λr1)v1 + (λr2)v2 + · · ·+ (λrn)vn.

It follows that

φ(λv) = (λr1, λr2, . . . , λrn)

= λ(r1, r2, . . . , rn)

= λφ(v),

and so φ respects scalar multiplication. Hence φ is linear and so φ is a
linear isomorphism. �

Definition-Lemma 12.7. Let φ : V −→ W and ψ : U −→ V be two
linear maps between vector spaces over a field F .

Then

(1) The composition φ ◦ ψ : U −→ W is linear.
(2) φ(0) = 0.
(3)

Ker(φ) = { v ∈ V |φ(v) = 0 },
is a subspace of V , called the kernel (aka nullspace) of φ. The
dimension of Ker(φ) is called the nullity of φ and is denoted
ν(φ).

(4)

Im(φ) = {w ∈ W |w = φ(v), v ∈ V },
is a subspace of W , called the image of φ. The dimension of
Im(φ) is called the rank of φ and is denoted rk(φ).

Proof. We check that the composition respects addition and leave the
fact that the composition respects scalar multiplication to the reader.
Suppose that u1 and u2 ∈ U . We have

(φ ◦ ψ)(u1 + u2) = φ(ψ(u1 + u2))

= φ(ψ(u1) + ψ(u2))

= φ(ψ(u1)) + φ(ψ(u2))

= (φ ◦ ψ)(u1)) + (φ ◦ ψ)(u2).

Thus φ ◦ ψ respects addition. Hence (1).
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We have

φ(0) = φ(0 + 0)

= φ(0) + φ(0).

If we subtract φ(0) from both sides then we get (2).
We check that the kernel is non-empty and closed under addition

and scalar multiplication. (2) implies that 0 ∈ Ker(φ). Suppose that
v1 and v2 ∈ Ker(φ). Then

φ(v1 + v2) = φ(v1) + φ(v2)

= 0 + 0

= 0.

But then v1 + v2 ∈ Ker(φ) and so Ker(φ) is closed under addition.
Similarly if v ∈ Ker(φ) and λ ∈ F then

φ(λv) = λφ(v)

= λ0

= 0.

Thus λv ∈ Ker(φ) and so Ker(φ) is closed under scalar multiplication.
Thus Ker(φ) is a linear subspace of V and this is (3).

0 ∈ Im(φ) by (2). Suppose that w1 and w2 ∈ Im(φ). Then there are
vectors v1 and v2 such that w1 = φ(v1) and w2 = φ(v2). We have

w1 + w2 = φ(v1) + φ(v2)

= φ(v1 + v2).

Thus w1 + w2 ∈ Im(φ). Hence Im(φ) is closed under addition. Now
suppose w ∈ Im(φ) and λ ∈ F . Then

λw = λφ(v)

= φ(λv).

Thus Im(T ) is closed under scalar multiplication. It follows that Im(T )
is a linear subspace. �

Suppose we are given a function f : X −→ Y between two sets X and
Y . If A ⊂ X is a subset of X then we get a function from f1 : A −→ Y
in a natural way. If a ∈ A then f1(a) = f(a) ∈ Y . f1 = f |A is called
the restriction of f to A. In fact there is a natural map i : A −→ X
called the inclusion map. It is defined by i(a) = a. Then f1 = f ◦ i,
the composition. Note that the functions f and f1 are not the same
functions, since they have different domains (namely X and A). Now
suppose that the image of f lands inside B a subset of Y . Then we
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get a function f2 : X −→ B. f2(x) = f(x) ∈ B. If j : B −→ Y is the
natural inclusion of then f2 factors f that is f = j ◦ f2. In particular
if B is the image of f then f2 is surjective.

Lemma 12.8. Let φ : V −→ W be a surjective linear map.
TFAE

(1) φ is a linear isomorphism.
(2) φ is injective.
(3) Ker(φ) = {0}.

Proof. (1) implies (2) is clear. (2) implies (3) is easy.
Suppose that Ker(φ) = {0}. Suppose that φ(v1) = φ(v2). Then

0 = φ(v1)− φ(v2)

= φ(v1) + φ(−v2)

= φ(v1 − v2).

But then v1 − v2 ∈ Ker(φ). It follows that v1 − v2 = 0 so that v1 = v2.
Thus φ is injective. As φ is surjective by assumption it follows that φ
is an isomorphism. Thus (3) implies (1). �

Example 12.9. Let V ⊂ Pd(R) be the set of polynomials whose con-
stant term is zero. Note that V is a subspace (easy check left to the
reader). Let

φ : V −→ Pd−1(F ),

be the derivative. Note that φ is onto. Indeed

φ

(
xi+1

i+ 1

)
= xi for i ≤ d− 1.

Since 1, x, x2, . . . , xd−1 span Pd−1(F ) (they are even a basis) it follows
that Im(φ) = Pd−1(R). On the other hand the kernel is trivial (since
we threw out the constant polynomials) and so φ is an isomorphism.

It is curious to observe that even though we can define the formal
derivative over any field (see the hwk) this result fails in general. For
example suppose we work over F2. The problem is that

x2

2
,

makes no sense (2 = 0 in F2). Put differently

φ(x2) = 2x = 0 ∈ P (F2).

So x is not in the image of φ (equivalently one cannot integrate x).

Lemma 12.10. Let φ : V −→ W be a linear isomorphism.
If ψ : W −→ V is the inverse of φ then ψ is a linear map.
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Proof. Suppose that w1 and w2 ∈ W . Let vi = ψ(wi) so that wi =
φ(vi), i = 1 and 2.

φ(v1 + v2) = φ(v1) + φ(v2) = w1 + w2,

as φ respects addition. As ψ is the inverse of φ it follows that

ψ(w1 + w2) = v1 + v2 = ψ(w1) + ψ(w2).

Thus ψ respects addition. Now suppose that w ∈ W and r ∈ F . Let
v = ψ(v) so that w = φ(v).

φ(rv) = rφ(v) = rw,

as φ respects scalar multiplication. As ψ is the inverse of φ it follows
that

ψ(rw) = rv = rψ(w).

Thus ψ respects scalar multiplication. Hence ψ is linear. �

Lemma 12.11. Let V and W be isomorphic vector spaces.
If one of V and W is finite dimensional then they are both finite

dimensional and they both have the same dimension.

Proof. By assumption there is a bijective linear map φ : V −→ W . By
(12.10) the situation is symmetric and we may suppose that V is finite
dimensional. Let v1, v2, . . . , vn be a basis of V . It suffices to prove that
w1, w2, . . . , wn is a basis of W , where wi = φ(vi).

Suppose that w ∈ W . As φ is surjective we may find v ∈ V such
that φ(v) = w. As v1, v2, . . . , vn span V it follows that we may find
scalars r1, r2, . . . , rn such that

v = r1v1 + r2v2 + · · ·+ rnvn.

But then

w = φ(v)

= φ(r1v1 + r2v2 + · · ·+ rnvn)

= r1φ(v1) + r2φ(v2) + · · ·+ rnφ(vn)

= r1w1 + r2w2 + · · ·+ rnwn.

It follows that w1, w2, . . . , wn span W . Now suppose that r1, r2, . . . , rn

are scalars such that

0 = r1w1 + r2w2 + · · ·+ rnwn.
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If we apply ψ : W −→ V , the inverse of φ, to both sides, we get

0 = ψ(r1w1 + r2w2 + · · ·+ rnwn)

= r1ψ(w1) + r2ψ(w2) + · · ·+ rnψ(wn)

= r1v1 + r2v2 + · · ·+ rnvn.

As v1, v2, . . . , vn are independent it follows that r1, r2, . . . , rn = 0. But
then w1, w2, . . . , wn are independent. �

Theorem 12.12 (Rank-nullity, bis). Let φ : V −→ W be a linear map
between two finite dimensional vector spaces.

Then rk(φ) + ν(φ) = dimV .

Proof. Let v1, v2, . . . , vn and w1, w2, . . . , wm be bases of V and W . By
(12.6) this gives rise to two linear isomorphisms

f : V −→ F n and g : W −→ Fm.

Let ψ = g ◦ φ ◦ f−1 : F n −→ Fm. As the composition of linear maps
is linear and the inverse of a linear map is linear it follows that ψ is a
linear map.

Claim 12.13. The kernel of ψ is equal to the image of the kernel of
φ, that is

Ker(ψ) = f(Ker(φ)).

Proof of (12.13). Pick u ∈ Ker(ψ). Then

g ◦ φ ◦ f−1(u) = 0.

Let v = f−1(u) ∈ V . Then g(φ(v)) = 0. As g is injective, φ(v) = 0
and so v ∈ Ker(φ). But then u = f(v) ∈ f(Ker(φ)). Thus

Ker(ψ) ⊂ f(Ker(φ)).

Now suppose that u ∈ f(Ker(φ)). Then u = f(v) where φ(v) = 0.
Then

ψ(u) = g(φ(f−1)(u)) = g(φ(v)) = g(0) = 0.

This proves the reverse inclusion and establishes the claim. �

Therefore, restricting f to Ker(φ), we get a surjective linear map

f1 : Ker(φ) −→ Ker(ψ).

Since f1 is injective, it is a linear isomorphism.

Claim 12.14. The image of ψ is equal to the image of the kernel of φ,
that is

Im(ψ) = g(Im(φ)).
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Proof of (12.14). Pick t ∈ Im(ψ). Then there is a vector u ∈ F n such
that ψ(u) = t. Let v = f−1(u) ∈ V . Then

g(φ(v)) = g(φ(f−1(u))) = ψ(u) = t.

Thus t ∈ g(Im(φ)). Hence

Im(ψ) ⊂ g(Im(φ)).

Now suppose that t ∈ g(Im(φ)). Then there is a vector v ∈ V such
that t = g(φ(v)). Let u = f(v). Then

ψ(u) = g(φ(f−1(u))) = g(φ(v)).

This proves the reverse inclusion and establishes the claim. �

Therefore, restricting g to Im(φ), we get a surjective linear map

g1 : Im(φ) −→ Im(ψ).

Since g1 is injective, it is also a linear isomorphism.
(12.11) implies that

ν(φ) = ν(ψ) and rk(φ) = rk(ψ).

On the other hand, we know that ψ is given by a matrix A, that is
ψ(v) = Av. It is almost immediate that Ker(ψ) = Ker(A). Now the
image of ψ is the same as the column space. But we know that the
dimension of the column space of A is the same as the rank. Putting
all of this together we have

ν(φ) = ν(ψ) = ν(A) and rk(φ) = rk(ψ) = rk(A).

Thus this result reduces to rank-nullity for A. �
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