
11. Powers of matrices

Consider the sequence

f0 = 0, 1, 1, 2, 3, 5, 8, 13, · · · , fn, · · · .

This sequence satisfies the recurrence

fn = fn−2 + fn−1.

It is called the Fibonacci sequence. As a motivating question, what
is the nth term? That is, can we find a closed form expression for fn?

Here is a seemingly unrelated problem. Consider the matrix

A =

(
1 2
3 4

)
.

What is A100? Even computing small powers of A looks like a pain. A
much easier problem is to compute powers of

D =

(
1 0
0 2

)
.

It is easy to see that

Dn =

(
1 0
0 2n

)
.

The idea is to reduce computing powers of A to powers of a diagonal
matrix, which is easy.

To see how to do this, let us go back to the problem of computing the
nth term fn of the Fibonnaci sequence. To compute the nth term, we
need the previous two terms. This suggests we should create a vector

vn =

(
fn−1

fn

)
.

We then have

vn+1 =

(
fn
fn+1

)
=

(
fn

fn−1 + fn

)
.

The key point is that the last vector is just Avn, where

A =

(
0 1
1 1

)
.

In other words vn = An−1v1, where

v1 =

(
0
1

)
.
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Now if we have a diagonal matrix and we apply it to a vector, what
happens? If we apply the the diagonal matrix

D =

(
1 0
0 1

2

)
.

to v1, we get (
1
1
2

)
.

In general we have

Dnv1 =

(
1
1
2n

)
.

The key point is that if n is large, then 1/2n is negligible in comparison
with 1, so that Dnv1 is very close to

e1 =

(
1
0

)
.

Note that De1 = e1. On the other hand

De2 =

(
0
1
2

)
= e2/2.

In fact if D is a diagonal matrix, with entries λ1, λ2, . . . , λn on the main
diagonal, then we have Dei = λiei. This motivates:

Definition 11.1. Let A ∈ Mn,n(F ). We say that v 6= 0 is an eigen-
vector with eigenvalue λ if Av = λv.

So, a diagonal matrix D, with diagonal entries λ1, λ2, . . . , λn, has
eigenvectors e1, e2, . . . , en, with eigenvalues λ1, λ2, . . . , λn. Note that
the eigenvectors are a basis for F n.

If P is an invertible matrix then the inverse is unique. We denote
the inverse by P−1.

Definition 11.2. Let A and B be two square n× n matrices. We say
that A and B are similar, denoted A ∼ B, if there is an invertible
square n× n matrix P such that A = PBP−1.

We say that A is diagonalisable if A is similar to a diagonal matrix
D.

Lemma 11.3. Suppose that A and B are two n × n square matrices
and that P is an invertible matrix such that

A = PBP−1.

Then
An = PBnP−1.
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Proof. We prove this by induction on n. It is true for n = 1 by as-
sumption. Suppose that

An = PBnP−1,

for some n > 0. Then

An+1 = A · An

= (PBP−1)(PBnP−1)

= P (P−1P )(BBn)P−1)

= PBn+1P−1,

as required. Thus the result holds by induction on n. �

In other words, if A is diagonalisable, then we can compute its powers
very quickly.

Lemma 11.4. Suppose that A is an n×n matrix and that D is a diag-
onal matrix with entries λ1, λ2, . . . , λn. Suppose that P is an invertible
matrix and that A = PDP−1. Let vi = Pei.

Then the vectors v1, v2, . . . , vn are eigenvectors with eigenvalues λ1, λ2, . . . , λn
and they form a basis for F n.

Proof.

Avi = (PDP−1)(Pei)

= (PD)(P−1P )ei

= P (Dei)

= P (λiei)

= λi(Pei) = λivi.

Therefore vi is an eigenvector with eigenvalue λi.
Finally we want to prove that v1, v2, . . . , vn are a basis for F n. Sup-

pose that there are scalars r1, r2, . . . , rn such that

0 = r1v1 + r2v2 + · · ·+ rnvn.

Multiply both sides by P to get

0 = P · 0
= P (r1v1 + r2v2 + · · ·+ rnvn)

= P (r1v1) + P (r2v2) + · · ·+ P (rnvn)

= r1Pv1 + r2Pv2 + · · ·+ rnPvn

= r1e1 + r2e2 + · · ·+ rnen.
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Here we used the fact that Pvi = P (P−1ei) = ei. As e1, e2, . . . , en are
a basis they are independent. Therefore r1, r2, . . . , rn = 0. But then
v1, v2, . . . , vn are independent. Any independent set of vectors can be
extended to a basis. Since any two bases have the same size, it follows
that v1, v2, . . . , vn are a basis to begin with. �

What is the matrix P? When applied to ei we get vi. In fact this
means the columns of P are the vectors v1, v2, . . . , vn.

Theorem 11.5. Let A ∈Mn,n(F ).
Then A is diagonalisable if and only if we can find a basis v1, v2, . . . , vn

of eigenvectors for F n. In this case,

A = PDP−1,

where P is the matrix whose columns are the eigenvectors v1, v2, . . . , vn
and D is the diagonal matrix whose diagonal entries are the correspond-
ing eigenvalues λ1, λ2, . . . , λn.

Proof. We have already seen one direction. By (11.4), if A = PDP−1

where D is a diagonal matrix with entries λ1, λ2, . . . , λn and P is in-
vertible then the vectors v1, v2, . . . , vn are a basis of eigenvectors with
eigenvalues λ1, λ2, . . . , λn.

So suppose that v1, v2, . . . , vn are a basis of eigenvectors. Let P be the
matrix whose columns are the vectors v1, v2, . . . , vn. Since the vectors
v1, v2, . . . , vn are independent, the kernel of P is the trivial subspace
{0}. But then P is an invertible matrix. Let D = P−1AP . Then

Dei = (P−1AP )ei

= P−1Avi

= P−1λivi

= λiP
−1vi

= λiei.

So D is the matrix whose ith row is the vector λiei. But then D is a
diagonal matrix with entries λ1, λ2, . . . , λn on the main diagonal. We
have

D = P−1AP.

Multiplying both sides by P on the left, we get

PD = AP.

Finally multiplying both sides on the right by P−1 we get

A = PDP−1.

�
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Here is one good reason why A might have a basis of eigenvectors:

Theorem 11.6. Let A ∈Mn,n(F ) and let v1, v2, . . . , vk be eigenvectors
of A with distinct eigenvalues λ1, λ2, . . . , λk.

Then v1, v2, . . . , vk are independent. In particular if k = n then
v1, v2, . . . , vn are a basis of eigenvetors for F n and A is diagonalisable.

Proof. Suppose not. Suppose that v1, v2, . . . , vk are dependent. We will
derive a contradiction. By assumption there are scalars r1, r2, . . . , rk,
not all zero, such that

0 = r1v1 + r2v2 + · · ·+ rkvk.

We suppose that k is minimal with this property. In particular we may
assume that ri 6= 0 for all i. Clearly k > 1. We apply A to both sides
of the equation above. We get

0 = A · 0
= A(r1v1 + r2v2 + · · ·+ rkvk)

= r1Av1 + r2Av2 + · · ·+ rkAvk

= r1λ1v1 + r2λ2v2 + · · ·+ rkλkvk.

Take the first equation and multiply by λk. We get

0 = r1λkv1 + r2λkv2 + · · ·+ rkλkvk

0 = r1λ1v1 + r2λ2v2 + · · ·+ rkλkvk.

We subtract the second equation from the first equation:

0 = r1(λk − λ1)v1 + r2(λk − λ2)v2 + · · ·+ rk−1(λk − λk−1)vk−1.

Now si = ri(λk − λi) 6= 0, since the eigenvalues are distinct. But
then we found a linear dependence involving fewer eigenvectors. This
contradicts our choice of k. The only possibility is that the eigenvectors
are independent to start with. �

So now let us turn to the problem of determining the eigenvectors
and eigenvalues of a matrix A.

Definition 11.7. Let A ∈Mn,n(F ) and let λ ∈ F . Let

Eλ(A) = { v ∈ V |Av = λv } ⊂ F n.

Eλ(A) is called an eigenspace of A.

Lemma 11.8. Let A ∈Mn,n(F ) and let λ ∈ F .
Then V = Eλ(A) is a subspace of F n.
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Proof. There are two ways to proceed. In the first way we show that
V is non-empty and closed under addition and scalar multiplication.

A · 0 = 0 = λ0.

So 0 ∈ V . Suppose that v and w ∈ V . Then Av = λv and Aw = λw.
Then

A(v + w) = Av + Aw = λv + λw = λ(v + w).

Hence v + w ∈ V and so V is closed under addition. Suppose that
v ∈ V and r is a scalar. Then

A(rv) = r(Av) = rλv = λ(rv).

Hence rv ∈ V and so V is closed under scalar multiplication. Therefore
V is a subspace of F n.

Here is another way to proceed:

Claim 11.9.

Eλ(A) = Ker(A− λIn).

Proof of (11.9). Suppose that v ∈ Eλ(A). Then Av = λv. But then

(A− λIn)v = Av − λInv = Av − λv = 0.

Therefore v ∈ Ker(A − λ) and so Eλ(A) ⊂ Ker(A − λI). The revere
inclusion is just as easy to prove and this establishes the claim. �

Since the kernel is always a subspace, (11.9) implies that Eλ(A) is a
subspace. �

So what is a quick way to determine if a square matrix has a non-
trivial kernel? This is the same as saying the matrix is not invertible.
Now for 2 × 2 matrices we have seen a quick way to determine if the
matrix is invertible. If

B =

(
a b
c d

)
then B is invertible if and only if ad− bc 6= 0. For us

B = A− λI2 =

(
−λ 1
1 1− λ

)
.

This is not invertible if and only if

−λ(1− λ)− 1 = 0.

This is a quadratic polynomial in λ, which is known as the character-
istic polynomial. Expanding, we get

λ2 − λ− 1 = 0.
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Using the quadratic formula gives

λ =
1±
√

5

2
.

Note that the Golden ratio turns up as one of the roots. If we plug in
λ1 = (1 +

√
5)/2 then we get

B =

(
−1+

√
5

2
1

1 1−
√

5
2

)
.

If we multiply the first row by −(1 −
√

5)/2 and add it to the second
row we get (

−1+
√

5
2

1
0 0

)
,

so that this is indeed a matrix of rank one. The kernel is spanned by

v1 = (1,
1 +
√

5

2
).

This is an eigenvector with eigenvalue λ1. Similarly

v2 = (1,
1−
√

5

2
).

is an eigenvector with eigenvalue

λ2 =
1−
√

5

2
.

Thus A = PDP−1, where

D =

(
1+
√

5
2

0

0 1−
√

5
2

)
and

P =

(
1 1

1+
√

5
2

1−
√

5
2

)
.

It follows that

P−1 = − 1√
5

(
1−
√

5
2

−1

−1+
√

5
2

1

)
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One can check the equality A = PDP−1. Now

Anv1 = PDnP−1v1

=
1

−
√

5

(
1 1

1+
√

5
2

1−
√

5
2

)(1+
√

5
2

)n
0

0
(

1−
√

5
2

)n
( 1−

√
5

2
−1

−1+
√

5
2

1

)(
0
1

)

=
1√
5

(
1 1

1+
√

5
2

1−
√

5
2

)(1+
√

5
2

)n
0

0
(

1−
√

5
2

)n
( 1
−1

)

=
1√
5

(
1 1

1+
√

5
2

1−
√

5
2

) (
1+
√

5
2

)n
−
(

1−
√

5
2

)n


=
1√
5

((
1+
√

5
2

)n
−
(

1−
√

5
2

)n
?

)
.

It follows that

fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
.

Now

−1 <
1−
√

5

2
< 0 whilst

1 +
√

5

2
> 1.

If n is large this means (
1−
√

5

2

)n

≈ 0.

and the other term is the one that matters. But fn is an integer. It
follows that fn is the closest integer to(

1√
5

)(
1 +
√

5

2

)n

.

It is interesting to check this for some values of n. Put in n = 5 and
we get

4.956,

which is very close to the real answer, namely 5. Put in n = 6 and we
get

8.025,

which is even closer to the real answer, namely 8. Put in n = 100 (well
into maxima, or your favourite computer algebra system) we get

3.542248× 1020.
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Actually this is nowhere near the real answer. On the other hand
maxima (or YFCAS) has a function to compute f100 directly (and more
importantly correctly). The problem is as follows. To compute f100

accurately using matrices, which involves real numbers, we need twenty
significant figures of accuracy. Maxima, let’s say, routinely uses ten
significant figures of accuracy, so on the first ten digits are correct.
On the other hand, the routine which maxima uses to compute the
Fibonacci numbers, does the stupid thing and just keeps computing
each term in the sequence until it gets to a hundred. The advantage of
this is that the computer knows exactly how much accuracy it needs
as it computes; if it has an integer like 1450 it needs four significant
figures but if it has a number like 123456 it needs six, and so on.
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