
6. Fibre Products

We start with some basic properties of schemes.

Definition 6.1. We say that a scheme is connected (respectively ir-
reducible) if its topological space is connected (respectively irreducible).

Definition 6.2. We say that a scheme is reduced if OX(U) contains
no nilpotent elements, for every open set U .

Remark 6.3. It is straightforward to prove that a scheme is reduced
iff the stalk of the structure sheaf at every point contains no nilpotent
elements.

Definition 6.4. We say that a scheme X is integral if for every open
set U ⊂ X, OX(U) is an integral domain.

Proposition 6.5. A scheme X is integral iff it is irreducible and re-
duced.

Proof. Suppose that X is integral. Then X is surely reduced. Suppose
that X is reducible. Then we can find two non-empty disjoint open
sets U and V . But then

OX(U ∪ V ) ' OX(U)×OX(V ),

which is surely not an integral domain.
Now suppose that X is reduced and irreducible. Let U ⊂ X be an

open set and suppose that we have f and g ∈ OX(U) such that fg = 0.
Set

Y = {x ∈ U | fx ∈ mx } and Z = {x ∈ U | gx ∈ mx }.
Then Y and Z are both closed and by assumption Y ∪Z = U . As X is
irreducible, one of Y and Z is the whole of U , say Y . We may assume
that U = SpecA is affine. But then f ∈ A belongs to the intersection
of all the prime ideals of A, which is the zero ideal, as A contains no
nilpotent elements. �

Definition 6.6. We say that a scheme X is locally Noetherian,
if there is an open affine cover, such that the corresponding rings are
Noetherian. If in addition the topological space is compact, then we say
that X is Noetherian.

Remark 6.7. There are examples of schemes whose topological space
is Noetherian which are not Noetherian schemes.

A key issue in this definition is whether or not we can replace an
open cover, by every affine cover.

1



Proposition 6.8. A scheme X is locally Noetherian iff for every open
affine U = SpecA, A is a Noetherian ring.

Proof. It suffices to prove that if X is locally Noetherian, and U =
SpecA is an open affine subset then A is a Noetherian ring. Now if B
is a Noetherian ring, then so is any localisation Bf . But the open sets
Uf = SpecBf form a base for the topology on SpecB, and so it follows
that on a locally Noetherian scheme, there is a base of open affine sets,
which are the spectra of Noetherian rings.

Thus we have reduced to proving that if X = SpecA is an affine
scheme which can be covered by open affine schemes, which are the
spectra of Noetherian rings, then A is Noetherian. Let U = SpecB,
with B a Noetherian ring. Then there is an element f ∈ A such that
Uf ⊂ U . Let g be the image of f in B. Then Af ' Bg, whence Af is
Noetherian. So we can cover X by open subsets Uf = SpecAf , with
Af Noetherian. As X is compact, we may assume that we have a finite
cover. Now apply (6.9). �

Lemma 6.9. Let A be a ring, and let f1, f2, . . . , fr be elements of A
which generate the unit ideal.

If Afi
is Noetherian, for 1 ≤ i ≤ r then so is A.

Proof. Suppose that we have an ascending chain of ideals,

a1 ⊂ a2,⊂ . . . ,

of A. Then for each i,

φi(a1) · Afi
⊂ φi(a2) · Afi

. . . ,

is an ascending chain of ideals inside Afi
, where φi : A −→ Afi

is then
natural map. As each Afi

is Noetherian, all of these chains stabilise.
But then the first chain stabilises, by (6.10). �

Lemma 6.10. Let A be a ring, and let f1, f2, . . . , fr be elements of
A which generate the unit ideal. Suppose that a is an ideal and let
φi : A −→ Afi

be the natural maps. Then

a =
r⋂
i=1

φ−1
i (φi(a) · Afi

).

Proof. The fact that the LHS is included in the RHS is clear. Con-
versely suppose that b is an element of the RHS. In this case

φi(b) =
ai
fni

,
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for some ai ∈ a and some positive integer ni. As there are only finitely
many indices, we may assume that n = ni is fixed. But then

fmi(fnb− a) = 0,

for 1 ≤ i ≤ r. Once again, we may assume that m = mi is fixed. It
follows that fNi b ∈ a, for 1 ≤ i ≤ r, where N = n + m. But since
f1, f2, . . . , fr generate the unit ideal, then so does their Nth power.
Hence we may write

1 =
∑
i

cif
N
i .

But then
b =

∑
i

cif
N
i b ∈ a.

�

Definition 6.11. A morphism f : X −→ Y is locally of finite type
if there is an open affine cover Vi = SpecBi of Y , such that f−1(Vi)
is a union of affine sets Uij = SpecAij, where each Aij is a finitely
generated Bi-algebra. If in addition, we can take Uij to be a finite
cover of f−1(Vi), then we say that f is of finite type.

Definition 6.12. We say that a morphism f : X −→ Y is finite if we
may cover Y by open affines Vi = SpecBi, such that f−1(Vi) = SpecAi
is an affine set, where Ai is a finitely generated Bi-module.

In both cases, it is easy to prove that we can take Vi to be any affine
subset of Y .

Example 6.13. Let
f : A1

k − {0} −→ A1
k

by the natural map given by the natural localisation map

k[x] −→ k[x]x

As an algebra over k[x], the ring k[x]x ' k[x, x−1] is generated by x−1,
so that f is of finite type. However the k[x]-module k[x, x−1] is not
finitely generated (there is no way to generate all the negative powers
of x), so that f is not finite.

Example 6.14. If V is an irreducible variety over an algebraically
closed field, then t(V ) is an integral variety of finite type over Spec k.

Definition 6.15. A variety is any reduced scheme of finite type over
an algebraically closed field.

There are varieties in the sense of (6.15) which do not correspond to
quasi-projective varieties.
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Definition 6.16. Let X be a scheme and U an open subset of X. Then
the pair (U,OX |U) is a scheme, which is called an open subscheme of
X. An open immersion is a morphism f : X −→ Y which induces
an isomorphism of X with an open subset of Y .

Definition 6.17. A closed immersion is a morphism of schemes
φ = (f, f#) : Y −→ X such that f induces a homeomorphism of Y
with a closed subset of X and futhermore the map f# : OX −→ f∗OY
is surjective. A closed subscheme of a scheme X is an equivalence
class of closed immersions, where we say that two closed immersions
f : Y −→ X and f ′ : Y ′ −→ X are equivalent if there is an isomorphism
i : Y ′ −→ Y such that f ′ = f ◦ i.

Despite the seemingly tricky nature of the definition of a closed im-
mersion, in fact it is easy to give examples of closed subschemes of an
affine variety.

Lemma 6.18. Let A be a ring and let a be an ideal of A. Let X =
SpecA and Y = SpecA/a.

Then Y is a closed subscheme of X.

Proof. The quotient map map A −→ A/a certainly induces a morphism
of schemes φ : Y −→ X. Indeed f is certainly a homeomorphism of Y
with V (a) and f# : OX −→ f∗OY is surjective as the map on stalks is
induced by the quotient map, which is surjective. �

In fact, it turns out that every closed subscheme of an affine scheme
is of this form. It is interesting to look at some examples.

Example 6.19. Let X = A2
k. First consider a = 〈y2〉. The support

of Y is the x-axis. However the scheme Y is not reduced, even though
it is irreducible. It is clear from this example that in general there are
many closed subschemes with the same support (equivalently there are
many ideals with the same radical). Now consider the ideal 〈x2, xy, y2〉,
the double of the maximal ideal of a point. Similarly consider 〈x, y2〉.
Finally consider 〈x2, xy〉. The support of this ideal is the y-axis. But
this time the only local ring which has nilpotents is the local ring of the
origin. We call the origin an embedded point.

Definition 6.20. Let V be an irreducible affine variety and let W
be a closed irreducible subvariety, defined by the prime ideal p. Let
X = t(V ) and Y = t(W ). Then X = SpecA and Y is defined by p.
The nth infinitessimal neighbourhood of Y in X, denoted Yn, is
the closed subscheme of X corresponding to pn.

Note that the nth infinitessimal neighbourhood of Y in X is a closed
subscheme whose support coincides with Y , but whose structure sheaf
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contains lots of nilpotent elements. As the name might suggest, Yn
carries more information about how Y sits inside X, than does Y itself.

Definition-Lemma 6.21. Let X be scheme and let Y be a closed
subset. Then Y has a unique reduced subscheme structure, called the
reduced induced subscheme structure.

Proof. We first assume that X = SpecA is affine. Let a be the ideal
obtained by intersecting all the prime ideals in Y . Then a is the largest
ideal for which V (a) = Y .

Now suppose that X is an arbitrary scheme. For each open affine
subset Ui ⊂ X, let Yi ⊂ Ui be the reduced induced subscheme structure
on Y ∩ Ui. I claim that the restriction to Yi ∩ Yj of the two scheme
structures on Yi and Yj are isomorphic, by an isomorphism which agrees
on triple intersections. Using this, it is a straightforward result in sheaf
theory to obtain a sheaf OY on Y .

It is not hard to reduce to the case where U = SpecA, V = SpecAf
and the restriction of the reduced induced subscheme structure to V is
the same as the reduced induced subscheme structure on V . But this
is the same as to say that if a is the intersection of those prime ideals
of A which are contained in Y , then aAf is the intersection of those
prime ideals of Af which are contained in Y , which is clear. �

Note that if a scheme X has a topological space with one point, then
X must be affine, and the stalk of the structure sheaf at the unique
point completely determines X, and this ring have exactly one prime
ideal. Moreover a morphism of X into another scheme Y , is equivalent
to picking a point y of Y and a morphism of local rings

OY,y −→ OX,x
But to give a morphism of local rings is the same as to give an inclusion
of the quotients of the maximal ideals. Thus to give a morphism of
X = {x} into Y , sending x to y, we need to specify an inclusion of the
residue field of x into the residue field of y.

The main result of this section is

Theorem 6.22. The category of schemes admits fibre products.

A key part of the proof is to pass from the local case (in which case
all three schemes are affine) to the global case. To do this, we need to
be able to construct morphisms, by constructing them locally. We will
need:

Theorem 6.23. Let fi : Ui −→ Y be a collection of morphisms of
schemes, with a varying domain, but a fixed target.
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Suppose that for each pair of indices i and j, we are given open sub-
sets Uij ⊂ Ui, and isomorphisms φij : Ui −→ Uj, such that fi|Uij

=
fj ◦ φij : Uij −→ Y , where the morphisms φij satisfy two patching con-
ditions:

(1) φii is the identity,
(2) For all i, j and k,

φik = φjk ◦ φij,

on the triple intersection Uijk.

(Note that in particular φ−1
ij = φji.)

Then there is a morphism of schemes f : X −→ Y , an open cover
of X by open sets Xi and isomorphisms ψi : Ui −→ Xi, such that fi =
f ◦ ψi : Ui −→ Y and ψi|Uij

= ψj ◦ φij : Uij −→ Y .
X is unique, up to unique isomorphism, with these properties.

We prove (6.23) in two steps (one of which can be further broken
down into two substeps):

• Construct the scheme X.
• Construct the morphism f .

In fact, having constructed X, it is straightforward to construct f .
Since a scheme consists of two parts, a topological space and a sheaf,
we can break the first step into two smaller pieces:

• Construct the underlying topological space.
• Construct the structure sheaf.

We first show how to patch a sheaf, which is the hardest part:

Lemma 6.24. Let X be a topological space, and let {Xi} be an open
cover of X. Suppose that we are given sheaves Fi on Xi and for each
i and j an isomorphism

φi,j : Fi|Xij
−→ Fj|Xij

We suppose further that our isomorphisms satisfy two conditions:

(1) φii is the identity,
(2) For all i, j and k,

φik = φjk ◦ φij,

on the triple intersection Xijk.

Then there is a sheaf F on X, together with isomorphisms, ψi : F|Ui
−→

Fi, which satisfy ψj = φij ◦ ψi. Further F is unique up to unique iso-
morphism, with these properties.
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Proof. We just show how to define F and leave the rest to the interested
reader. Let U ⊂ X be any open set, and let Ui = U ∩Xi.

F(U) = { (si) ∈
⊕
i

F(Ui) |φij(si|Uij
) = sj|Uji

}. �

The next step is to bump this up to schemes:

Lemma 6.25. Suppose that we are given schemes Ui, and subschemes
Uij ⊂ Ui, together with isomorphisms,

φij : Uij −→ Uji,

which satisfy:

(1) φii is the identity,
(2) For all i, j and k,

φik = φjk ◦ φij,
on the triple intersection Uijk.

Then there is a scheme X, together with open sets Xi and isomor-
phisms ψi : Ui −→ Xi which satsify ψi|Uij

= φij ◦ ψi : Uij −→ X.

Proof. We first construct the topological space X. Let

X =
∐
i

Ui/ ∼ where xi ∈ Uij ∼ xj ∈ Uji iff φij(xi) = xj.

Here ∼ denotes the equivalence relation generated by the rule on the
RHS, andX is just the quotient topological space (which always exists).
Note that Xi = Ui/ ∼⊂ X is an open subset of X and there are
homeomorphisms φi : Ui −→ Xi. Now construct a sheaf OX on X,
using (6.24). This gives us a locally ringed space (X,OX) and the
remaining properties can be easily checked. �

Proof of (6.23). LetX be the scheme constructed in (6.25). But to give
a morphism f : X −→ Y is the same as to give morphisms fi : Xi −→
Y , compatible on overlaps. �

There are a couple of interesting examples of the construction of
schemes. The first is to take Uij empty (so that there are no patching
conditions at all). The resulting scheme is called the disjoint union and
is denoted ∐

i

Xi.

Another more interesting one proceeds as follows. Take two copies U1

and U2 of the affine line. Let U12 = U21 be the complement of the origin,
and let φ12 be the identity. Then X is obtained by identifying every
point, except the origin. Note that this is like the classical construction
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of a topological space, which is locally a manifold, but which is not
Hausdorff. Of course no scheme is ever Hausdorff (apart from the most
trivial examples) and it turns out that there is an appropriate condition
to express the Hausdorff condition for schemes, which we shall see later.

Finally we turn to the problem of glueing morphisms. Suppose that
we are given two schemes X and Y . Then to give a morphism f : X −→
Y is the same as to give a collection of morphisms fi : Ui −→ Y , such
that fi and fj restrict to the same morphism on Uij.

Proof of (6.22). Let X and Y be two schemes over S. We want to
construct the fibre product.

First suppose that X = SpecA, Y = SpecB and S = SpecR. Then
there are ring homomorphisms R −→ A and R −→ B and so A and
B are R-algebras. As C = A ⊗

R
B. is the pushout in the category of

rings, it follows that Z = SpecC is the fibre product in the category
of affine schemes.

Note that if X ×
S
Y is the fibre product of X and Y over S and U

is an open subset of X, then p−1
1 (U) ×

S
Y is a fibre product for U and

Y over S. Indeed, suppose that Z maps to U and Y . Then Z maps
to X and Y , whence to the fibre product. By definition of the fibre
product, Z lies over U under projection down to X. But then Z lands
in p−1

1 (U)×
S
Y .

Note that if Ui is an open cover of X and the fibre product Ui ×
S

Y exists, then since both the restriction of Ui ×
S
Y and Uj ×

S
Y to

p−1
1 Uij are fibre products, there are natural isomorphisms on overlaps,

satisfying conditions (1) and (2) above. It follows that we may patch
these schemes together to obtain a scheme which we denote X ×

S
Y .

The universal property follows, since we can patch morphisms.
Since an arbtirary scheme X can be covered by open affines, it follows

that we can form the fibre product X×
S
Y whenever Y and S are affine.

Similarly, switching X and Y , it follows that we can form the fibre
product, whenever S is affine.

Now take an affine cover Si of S. Let Xi and Yi be the inverse image
of Si (meaning take the open subscheme on the open set p−1

j (Si)). Then
the fibre product Xi×

S
Yi exists. But in fact this is also a fibre product

for Xi ×
S
Y , since anything lying over Xi automatically lies over Yi.

Since Xi forms an open cover of X we are done. �

It turns out that the fibre product is extremely useful.
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Definition 6.26. Let f : X −→ S be a morphism of schemes, and let
s ∈ S be a point of S. The fibre over s is the fibre product over the
morphism f and the inclusion of s in S, where the point s is given a
scheme structure by taking the residue field κ(s).

It is interesting to see what happens in some specific examples. First
consider a family of conics in the plane,

X = Spec
k[x, y, t]

〈ty − x2〉
.

The inclusion

k[t] −→ k[x, y, t]

〈ty − x2〉
,

realises X as a family over the affine line over k,

f : X −→ A1
k.

Pick a point p ∈ A1. If the point is maximal, this is the same as picking
a scalar, and of course the residue field is nothing more than k. If we
pick a non-zero scalar a, then we just get the conic defined by ay − x2

in k[x, y] (since tensoring by k won’t change anything),

Xp = Spec
k[x, y]

〈ay − x2〉
.

But now suppose that a = 0. In this case the above reduces to

X0 = Spec
k[x, y]

〈x2〉
,

a double line. It is also interesting to consider the fibre over the generic
point ξ, corresponding to the maximal ideal 〈0〉. In this case the residue
field is k(t), and the generic fibre is

Xξ = Spec
k(t)[x, y]

〈ty − x2〉
,

which is the conic V (ty − x2) ⊂ A2
k(t) over the field k(t).

Similarly, if we pick the family

X = Spec
k[x, y, t]

〈xy − t〉
.

then, for a 6= 0, the fibre is a smooth conic, but for t = 0 the fibre is a
pair of lines.

Once again, the point is that there are some more exotic exam-
ples, which can be treated in the same fashion. Consider for example
Spec Z[x]. Once again this is a scheme over Spec Z, and once again
it is interesting to compute the fibres. Suppose first that we take the
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generic point. Then this has residue field Q. If we tensor Z[x] by Q,
then we get Q[x]. If we take spec of this, we get the affine line over Q.
Now suppose that we take a maximal ideal 〈p〉. In this case the residue
field is Fp the finite field with p elements. Tensoring by this field we
get Fp[x] and taking spec we get the affine line over the finite field with
p elements.

It is also possible to figure out all the prime ideals in Z[x]. They are

(1) 〈0〉
(2) 〈p〉, p a prime number.
(3) 〈f(x)〉, f(x) irreducible over Q, with content one,
(4) maximal ideals of the form 〈p, f(x)〉, where f(x) is a monic

polynomial whose reduction modulo p is irreducible.

Note that the zero ideal is the generic point, and the closure of the
ideal 〈p〉 is the fibre over the same ideal downstairs. The closure of an
ideal of type (3) is perhaps the most interesting. It will consists of all
maximal points 〈p, g〉, where g is a factor of f inside Fp.

It is now possible to consider closed subschemes of A1
Z. For example

consider

X = Spec
Z[x]

〈3x− 16〉
.

Fibre by fibre, we get a collection of subschemes of A1
Fp

. If we reduce
modulo 5, that is tensor by F5, then we get

X = Spec
F5[x]

〈3x− 1〉
,

a single point. However something strange happens over the prime 3,
since we get an equation which cannot be satifisied. If we think of this
as the graph of the rational map 16/3, then we have a pole at 3, which
cannot be removed. Of course over 2, this rational function is zero.

Now suppose that we consider x2 − 3. Then we get a conic. In fact,
this is the same as considering

Z[x]

〈x2 − 3〉
= Z[
√

3].

So the seemingly strange picture we had before becomes a little more
clear. Now suppose that we consider a plane conic in A2

Z,

X = Spec
Z[x, y]

〈x2 − y2 − 5〉
.

Over the typical prime, we get a smoooth conic in the corresponding
affine plane over a finite field. But now consider what happens over 〈2〉
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and 〈5〉. Modulo two, we have

x2 − y2 − 5 = (x+ y + 1)2,

and modulo 5 we have

x2 − ty2 − 5 = (x− y)(x+ y).

Thus we get a double line over 〈2〉 and a pair of lines over 〈5〉.
Let us return to the case of x2 − 3, and consider the residue fields.

Recall that there are three cases.

(1) If p divides the discriminant of K/Q (which in this case is 12),
that is p = 2 or 3, then the ideal 〈p〉 is a square in A.

〈2〉A = (〈1 +
√

3〉)2,

and

〈3〉A = (〈
√

3〉)2.

(2) If 3 is a square modulo p, the prime 〈p〉 factors into a product
of distinct primes,

〈11〉A = 〈4 + 3
√

3〉〈4− 3
√

3〉,

or

〈13〉A = 〈4 +
√

3〉〈4−
√

3〉,
(3) If p > 3 and 3 is not a square mod p (e.g p = 5 and 7), the ideal
〈p〉 is prime in A.

Let us consider the stalks and residue fields in all three cases. In the
first case we get

A/p2,

and the residue field is Fp. In the second case there are two points with
coordinate rings Fp. Finally in the third case there is a single point
with coordinate ring

F2
p,

the unique finite field with p2 elements. Note that in all three cases, the
coordinate ring of the inverse image has length two over the coordinate
ring of the base (in our case Fp). In fact this is the general picture.
Finite maps have a degree, and the length of the coordinate ring over
the base is equal to this degree.

Another useful way to think of the fibre product, is as a base change.
In arithmetic, one always wants to compare what happens over different
fields, or even different rings.
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Now consider an interesting example over non-algebraically close
fields. Consider the inclusion R −→ C. This gives a morphism of
schemes,

f : X −→ Y,

where X and Y are schemes with only one point, but the first has
coordinate ring C and the second C. Now consider what happens when
we make the base change f over f . Then we get a scheme

X ×
Y
X.

Note that this has degree two over X. Since C is algebraically closed,
in fact this must consist of two points, even though f only has one
point in the fibre. Algebraically,

C⊗
R

C ' C2.

In particular, the property of being irreducible is not preserved by
base change. Consider also the example of x2 − t over the affine line,
with coordinate t, say over an algebraically closed field. Then the fibre
over every closed point, except zero, is reducible. But the fibre over the
generic point is irreducible, since x2− t won’t factor. However suppose
that we make a base change of the affine line by the affine line given
by

A1
k −→ A1

k given by t −→ t2.

After base change, the new scheme is given by x2− t2. But this factors,
even over the generic point

x2 − t2 = (x− t)(x+ t).

Definition 6.27. Let P be a property of schemes. We say that a
morphism f : X −→ S is universally P if the fibres of f have property
P , after any base change S ′ −→ S.

In particular, we say that f is universally irreducible, if every
fibre of f is irreducible, after any base change. It turns out the locus
in the base where a morphism is universally irreducible is open, even
though the same is not true for irreducible.
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