
7. Classification of Surfaces

The key to the classification of surfaces is the behaviour of the canon-
ical divisor.

Definition 7.1. We say that a smooth projective surface is minimal
if KS is nef.

Warning: This is not the classical definition of a minimal surface.

Definition 7.2. Let S be a smooth projective surface. We say that a
curve C ⊂ S is a −1-curve if

KS · C = C2 = −1.

Theorem 7.3 (Cone Theorem). Let S be a smooth projective surface.
Then there are countably many extremal rays R1, R2, . . . of the closed

cone of curves of S on which KS is negative, such that

NE(S) = NE(S)KX≥0 +
∑

Ri.

Further, if R = Ri is any one of these KS-extremal rays then there is a
birational morphism π : S −→ Z which contracts a curve C iff C spans
the ray R. There are three possibilities:

(1) Z is a point and S ' P2.
(2) π : S −→ Z is a P1-bundle over a smooth curve Z.
(3) π : S −→ Z is a birational morphism contracting a −1-curve

C, where Z is a smooth surface.

In particular the relative Picard number of π is one, each extremal
ray Ri is spanned by a rational curve and if H is any ample divisor,
there are only finitely many extremal rays Ri such that (KX+H)·R < 0.

Remark 7.4. The last two statements are sometimes informally stated
as saying that the closed cone of curves is locally rational polyhedral on
the KS-negative side of the cone.

Theorem 7.5 (Castelnuovo). Let S be a smooth projective surface and
let C ⊂ S be a curve.

Then C is a −1-curve iff there is birational morphism π : S −→ T ,
which blows up a smooth point p ∈ T , with exceptional divisor C.

Theorem 7.6 (Abundance). Let S be a smooth projective surface.
Then KS is nef iff KS is semiample.

Theorem 7.7 (Kodaira-Enriques). Let T be a smooth projective sur-
face, with invariants κ = κ(T ), pg = pq(T ) and q = q(T ). Then T is
birational to a surface S which falls into the following list:

κ = −∞:
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Ruled surface S ' P1 × B where B is a smooth curve of genus. q(S) =
g(B).

κ = 0:
Abelian surface pg = 1, q = 2. S ' C2/Λ.

Bielliptic pg = 0, q = 1. There is a Galois cover of S̃ −→ S of

order at most 12 such that S̃ ' E×F , where E and F are
elliptic curves.

K3 surface pg = 1, q = 0.

Enriques surface pg = 0, q = 0. There is an étale cover S̃ −→ S of order

two, such that S̃ is a K3-surface.
κ = 1:

Elliptic fibration there is a contraction morphism π : S −→ B with general
fibre a smooth curve of genus one. Pm(S) > 0 for all m
divisible by 12.

κ = 2:
General type φm is birational for all m ≥ 5. In particular Pm(X) > 0

for all m ≥ 5.

In particular κ ≥ 0 iff P12 ≥ 0.

Definition 7.8. Let X be a normal projective variety, let D be a nef
divisor and let E be any divisor. The nef threshold is the largest
multiple of E we can add to D, whilst preserving the nef condition:

λ = sup{ t ∈ R |D + tE is nef }.
Definition 7.9. Let X be a projective scheme and let D be a nef divi-
sor. The numerical dimension ν(X,D) of D is the largest positive
integer such that Dk ·Hn−k > 0, where H is an ample divisor.

Note that if D is semiample then κ(D) = ν(D). We will need the
following easy:

Lemma 7.10. Let X be a normal projective variety and let D be a nef
Q-Cartier divisor.

(1) If ν(D) = 0 then D is semiample iff κ(D) = 0.
(2) If ν(D) = 1 then D is semiample iff h0(X,OX(mD)) ≥ 2, for

some m > 0.

In particular if ν(D) ≤ 1 then D is semiample iff ν(D) = κ(D).

Proof. Suppose that ν(D) = 0. Then D is numerically trivial and it is
semiample iff it is torsion. As κ(D) = 0, D ∼Q B ≥ 0 and since B is
numerically trivial, in fact B = 0.

Suppose that ν(D) = 1. Pick m so that |mD| contains a pencil. Let
Bi ∈ |mD|, B1 6= B2. Then B1 ∩B2 = ∅, since otherwise D2 ·Hn−2 =
B1 ·B2 ·Hn−2 = 0. But then |mD| is base point free. �
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Definition 7.11. Let π : X −→ U be a projective morphism.
The relative cone of curves is the cone generated by the classes

of all curves contracted by π,

NE(X/U) = {α ∈ NE(X) |π∗α = 0 }.

We say that a Q-Cartier divisor H is π-ample (aka relatively am-
ple, aka ample over U) if mH is relatively very ample (that is
there is an embedding i of X into Pn

U = Pn × U over U such that
OX(mH) = i∗O(1)).

We say that an R-divisor is relatively ample iff it is a positive linear
combination of ample Q-divisors.

Note that if U is projective, then H is relatively ample iff there is
an ample divisor G on U , such that H + π∗G is ample. Note also that
an R-divisor is relatively ample iff defines a positive linear functionall
on NE(X/U) − {0}. Note that many of the definitions for Q-divisors
extend to Q-divisors. In particular, the property of being nef and the
numerical dimension.

Proof of (7.3). Pick an extremal ray R = R+α of the closed cone of
curves. We may pick an ample R-divisor H such that

(KS +H) · β ≥ 0,

for all β ∈ NE(S) with equality iff R = R+β. In particular D = KS +H
is a nef R-Cartier divisor. The key technical point is to establish that
R is rational, so that we may choose H to be an ample Q-divisor. In
fact we will prove much more, we will prove that R is spanned by a
curve. Let ν = ν(S,D). There are three cases:

• ν = 0,
• ν = 1, and
• ν = 2.

If ν = 0, then KS +H is numerically trivial, and −KS is numerically
equivalent to H. In other words −KS is ample. Moreover every curve
C spans R. Thus S is a Fano surface of Picard number one and it
follows that S ' P2. Note that R is rational in this case.

If ν = 1, then we will defer the proof that R is rational. So assume
that H is rational. We first prove that D is semiample. Consider
asymptotic Riemann-Roch. D2 = 0, by assumption.

D · (−KS) = D ·H > 0,

also by assumption. Thus χ(X,OX(mD)) grows linearly. Since

h2(S,OS(mD)) = h0(S,OS(KS −mD)) = 0,
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for m sufficiently large, it follows that there is a positive integer m > 0
such that |mD| contains a pencil. By (7.10) it follows that D is semi-
ample. Let F by the general fibre of the corresponding morphism
π : S −→ C. Then F is a smooth irreducible curve, F 2 = 0 and
−KS · F > 0. By adjunction,

0 > (KS + F ) · F = KF = 2g − 2.

It follows that g = 0 so that F ' P1. Moreover since R = R+[F ]
is extremal, the relative Picard number is one and so there are no
reducible fibres. By direct classification it follows that there are no
singular fibres. Thus π is a P1-bundle.

If ν = 2 then D is big but not ample. As D is nef D2 > 0. By
continuity there is an ample Q-divisor G such that (KS +G)2 > 0 and
(KS + G) · G > 0, where H − G is ample. Thus KS + G is big. By
Kodaira’s Lemma, KS + G ∼Q A + E, where A is ample and E ≥ 0.
Now

(KS +G) · α = D · α− (H −G) · α < 0.

Since α ∈ NE(S) we may find αi = λi[Ci], where λi > 0 are positive
rational numbers and Ci are curves. But then

0 > D · Ci = A · Ci + E · Ci > E · Ci,

for i sufficiently large. But then Ci is a component of E and Ci has
negative self-intersection. As E has only finitely many components, it
follows that R = R+[C], for some C = Ci. In particular R is rational
and we choose H to be a Q-divisor. We have

0 > (KS + C) · C = KC = 2g − 2.

Thus g = 0 and C is a −1-curve.
Replacing H by a multiple, we may assume that H is very ample (for

the time being, we only need that is Cartier). Suppose thatH ·C = m >
0. We may always assume that m > 1 (simply replace H by a multiple).
If G = H + (m − 2)C, then G is big and it is nef, since G · C = 2.
In particular G is ample by Nakai-Moishezon. Let D = KS + C + G.
Since we may write

D = (KS +H) + C,

the stable base locus of D is contained in C. In particular for every
curve Σ ⊂ S,

D · Σ ≥ 0,

with equality iff Σ = C. There is an exact sequence

0 −→ OS(D − C) −→ OS(D) −→ OC(D) −→ 0.
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Now OC(D) = OC , since D|C is a divisor of degree zero on P1. On the
other hand,

H1(S,OS(D − C)) = H1(S,OS(KS +G)) = 0,

by Kodaira vanishing. Thus there are no base points of D on C, so that
D is semiample, and the resulting morphism π : S −→ Z contracts C.

It remains to prove that Z is smooth. Consider the ample divisor
KS +G. We may always pick H very ample. In this case, I claim that
KS + G is base point free (in fact it is very ample). The base locus is
supported on C. Consider the exact

0 −→ OS(KS +G− C) −→ OS(KS +G) −→ OC(KS +G) −→ 0.

Then OC(KS +G) ' OP1(1). As before,

H1(S,OS(KS +H + (m− 3)C) = 0,

by Kodaira vanishing. Thus KS +G is base point free. Pick a general
curve Σ′ ∈ |KS + G|. Then this must intersect C transversally at a
single smooth point. But then Σ = π∗Σ

′ is a smooth curve in Z. On
the other hand Σ + C ∈ |D|. Since |D| defines the contraction, the
image of Σ + C, which is again Σ′ is Cartier.

But any variety which contains a smooth Cartier divisor, is smooth
in a neighbourhood of the divisor. Thus Z is smooth. �

(7.3) allows us to define the KS-MMP for surfaces. The aim of the
minimal model program is to try to make KS nef.

(1) Start with a smooth projective surface S.
(2) Is KS nef? Is yes, then stop.
(3) Otherwise there is an extremal ray R of the cone of curves

NE(S) on which KS is negative. By (7.3) there is a contraction
π : S −→ Z of R.

Mori fibre space: If dimZ ≤ 1 then the fibres of π are
Fano varieties.

Birational contraction: In this case replace S by Y and
return to (2).

In other words, the KS-MMP produces a sequence of smooth surface
πi : Si−1 −→ Si, where each πi blows down a −1-curve (conversely each
πi blows up a smooth point of Si), starting with S0 = S. This process
must terminate, since the Picard number of Si is one less than the
Picard number of Si−1. At the end we have a smooth surface T = Sk,
such that either KT is nef or π : T −→ C is P1-bundle over a curve, or
T ' P2.
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Definition 7.12. Let X be a normal variety.
We say that X is a Fano variety if X is projective and −KX is

ample.
We say that a projective morphism π : X −→ Z is a Fano fibration

if −KX is π-ample.
Let R be an extremal ray of the closed cone of curves of X. We say

that R is KX-extremal if KX · R < 0. We say π : X −→ Z is the
contraction associated to R if π is a contraction morphism and C
is contracted iff R = R+C.

Lemma 7.13. Let S be a smooth surface. Then the log discrepancy of
S is equal to 2 and the only valuations of log discrepancy 2 are given
by blowing up a point.

Proof. Easy calculation. �

Proof of (7.5). One direction is clear. If π : S −→ T blows up p, and
C is the exceptional divisor, then we have already seen that C2 = −1,
and C ' P1. But then by adjunction

2g − 2 = −2 = KC = (KS + C) · C = KS · C − 1.

Thus KS · C = −1 and C is a −1-curve.
Now suppose that C is a −1-curve. Then R = R+[C] is a KS-

extremal ray of the cone of curves. Let π : S −→ T be the associated
contraction morphism. We will prove later that T is smooth (this is
easy, when viewed the right way). Now suppose that we write

KS + C = π∗KT + aC.

Dotting both sides by C, we see that a = 2, and we are done by
(7.13). �

The MMP for surfaces can be extended in two interesting (but es-
sentially trivial) ways. The first way we restrict the choice of extremal
rays to contract and the second way we group together extremal rays
and contract them simultaneously.

First suppose we are given a projective morphism g : S −→ U . Then
one can ensure that every step of the MMP lies over U , simply by
only contracting rays of the relative cone of curves, NE(S/U). At the
end, either KS is nef over U (meaning that it is nef on every curve
contracted over U) or we get a Mori fibre space over U .

Secondly suppose we have a group G acting on S. By simultaneously
contracting whole faces of the cone of curves, which are orbits of a single
extremal ray, the resulting contraction is thenG-equivariant. This gives
us a KS-MMP which preserves the action of G. Note though, that the
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relative Picard number of each step can be larger than one (in fact the
relative Picard number of the G-invariant part is always one).

A particularly interesting case, is when S is a smooth surface defined
over the real numbers. In this case, we let G be the Galois group of C
over R (namely Z2, generated by complex conjugation). The resulting
steps of the MMP respect the action of complex conjugation, so that
the MMP is defined over R. Clearly similar remarks hold for other
non-algebraically closed fields.

Theorem 7.14 (Hodge Index Theorem). Let S be a smooth projective
surface.

Then the intersection pairing

NS(S)×NS(S) −→ R,
has signature (+,−,−,−, . . . ,−).

In particular if D2 > 0 and D · E = 0 then E2 ≤ 0 with equality iff
E is numerically trivial.

Proof. It suffices to prove the last statement for any D such that D2 >
0. So we may assume that D is ample. Suppose that E2 ≥ 0. Consider
H = D+mE, where m is large. Then H is ample by Nakai-Moishezon.

Suppose that E2 > 0. As H · E > 0, it follows that κ(S,E) > 0, by
Asymptotic Riemann-Roch. But then D · E > 0, a contradiction.

Now suppose that E2 = 0 but that E is not numerically trivial. Then
there is a curve C such that E · C 6= 0. Let E ′ = (D · C)D − (D2)C.
Then E ′ ·D = 0, but E ′ · C 6= 0. Thus replacing E by E ± E ′ we are
reduced to the case when E2 > 0. �

Lemma 7.15 (Negativity of Contraction). Let π : X −→ U be a proper
birational morphism of varieties and let B be a Q-Cartier divisor.

If −B is π-nef then B ≥ 0 iff π∗B ≥ 0.

Proof. One direction is clear, if B ≥ 0 then π∗B ≥ 0.
Otherwise, we may assume that X and U are normal, and U is affine.

Cutting by hyperplanes, we may assume that U is a surface. Passing
to a resolution of X, we may assume that X is a smooth surface.
Compactifying X and U we may assume that X and U are projective.
Let D = π∗H and list the exceptional divisors E1, E2, . . . , Ek. Then
D2 > 0 and D·Ei = 0. It follows that the intersection matrix (Ei ·Ej) is
negative definite. Suppose that B =

∑
biEi +B′, where no component

of B′ ≥ 0 is exceptional. Then

(
∑

biEi) · Ej ≤ B · Ej < 0.

Thus bi ≥ 0. �
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Theorem 7.16 (Strong Factorisation). Let φ : S 99K S ′ be a birational
map between two smooth projective surfaces.

Then there are two birational maps p : T −→ S and q : T −→ S ′

which are both compositions of smooth blow ups of smooth points (and
isomorphisms) and a commutative diagram

T

S
φ

-
�

p

S ′.

q

-

Proof. By elimination of indeterminancy we may assume that q is a
composition of smooth blow ups. Replacing φ by p, we may therefore
assume that φ : T −→ S is a birational morphism.

Consider running the KT -MMP over S. This terminates with a rel-
ative minimal model, π : T −→ T ′ over S. The morphism π contracts
−1-curves, and so π is a composition of smooth blow ups. It suffices
to show that T ′ = S. Replacing T by T ′, it suffices to show that if KT

is nef then T = S.
Suppose not. We may write

KT + E = π∗KS +
∑

aiEi.

Since S is smooth it has log discrepancy two and so each ai ≥ 2. But
then if we write

KT = π∗KS +B,

then B ≥ 0 contains the full exceptional locus. By negativity of con-
traction, there is an exceptional divisor Ei such that B · Ei < 0. But
then KT is not nef, a contradiction. �

Lemma 7.17. Let (X,∆) be a log pair.
If X is a curve and KX + ∆ is nef then it is semiample.

Proof. Let ν be the numerical dimension of KX + ∆, and let d be the
degree. There are two cases:

(1) d = 0 and ν = 0.
(2) d > 0 and ν = 1.

If d > 0 then KX + ∆ is ample and there is nothing to prove. If
d = 0 there are two cases. If g = 1 then ∆ is empty and KX ∼ 0 as
X is an elliptic curve. If g = 0 then X ' P1. Pick m > 0 such that
D = m(KX + ∆) is integral. Then OX(D) = OP1 , so that |D| is base
point free. �
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Definition 7.18. Let X be a smooth projective variety. Then there
is a morphism α : X −→ A to an Abelian variety, which is universal
amongst all such morphisms in the following sense:

Let f : X −→ B be another morphism to an a abelian variety. Then
there is a morphism f̃ : A −→ B and a commutative diagram

X

A

α

? f̃
- B.

f

-

In characteristic zero, α induces an isomorphism

H1(X,OX) ' H1(A,OA).

In particular dimA = q(X).

Lemma 7.19 (Kodaira’s Formula). Let π : S −→ C be a contraction
morphism, where S is a smooth projective surface and C is a smooth
projective curve and the generic fibre is an elliptic curve.

If KS is nef over C then there is a divisor ∆ ≥ 0 on C such that

KS = π∗(KC + ∆).

Sketch of proof of (7.6). Let ν = ν(S,KS) be the numerical dimension.
There are three cases.

If ν = 0 then KS is numerically trivial. Let α : S −→ A be the
Albanese morphism. Let Z be the image. There are three cases, given
by the dimension of Z.

If q = 0, equivalently Z is a point, then every numerically trivial
divisor is torsion and there is nothing to prove. Suppose that Z = C
is a curve. Let F be a general fibre. Then

2g − 2 = KF = (KS + F ) · F = 0,

so that g = 1 and F is an elliptic curve. But then the result follows
by (7.19) and (7.17). Thus we may assume that Z is either a surface
or a point. Finally suppose that Z is a surface. With some work, one
shows that Z = A, and that α is birational, whence an isomorphism.

If ν = 1 we first assume that q = 0. But then,

χ(S,OS) = 1− q + pg > 0.

Riemman-Roch then reads

h0(S,OS(mKS)) ≥ χ(S,OS(mKS)) = χ(S,OS)) > 0.
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It follows that |mKS| 6= ∅, for m > 0. Let C ∈ |mKS|. Then

2g − 2 = KC = (KS + C) · C = (m+ 1)C|C = 0.

But then C is a smooth curve of genus one (or a rational curve with
a single node or cusp). Moreover since KC ∼ 0 it follows that C|C is
torsion. Now there is an exact sequence,

0 −→ OS((k − 1)C) −→ OS(kC) −→ OC(kC) −→ 0.

Note thatOC(kC) = OC infinitely often. Therefore h1(C,OC(kC)) 6= 0
infinitely often. It follows that h1(S,OS(kC)) is an unbounded function
of k. Since

χ(S,OS(kC)) ≥ 0 and h2(S,OS(kC)) = 0,

for k ≥ 2, it follows that h0(S,OS(kC)) is an unbounded function of k
and we are done by (7.10). If ν = 1 and q > 0, then we again have to
carefully analyse the map α.

If ν = 2 then K2
S > 0. If KS is ample there is nothing to prove.

Otherwise, by Nakai-Moishezon, there is a curve C such thatKS ·C = 0.
By Kodaira’s Lemma, KS ∼ A+E, where A is ample and E is effective.
But then C is a component of E and C has negative self-intersection.
We have

2g − 2 = KC = (KS + C) · C < 0.

But then g = 0, C ' P1, and C2 = −2 (C is then called a −2-curve).
With some work, we can contract C, as before, π : S −→ T . In fact

KS = π∗KT . Repeating this process, as in the KS-MMP, we reduce to
the case when KS is ample. The only twist is that if we contract any
curves, the resulting surface is necessarily singular. �

Proof of (7.7). Modulo some interesting details which we will skip, this
essentially follows by applying the KS-MMP and considering the maps
given by abundance and the Albanese. �
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