
4. Some examples

We present some examples of varieties, mainly surfaces, with inter-
esting Mori cones.

Definition 4.1. Let C ⊂ V ' Rn be a subset of a finite dimensional
real vector space. We say that C is a cone (respectively convex sub-
set) if whenever α and β ∈ C then

λα + µβ ∈ C for all λ ≥ 0, µ ≥ 0,

(respectively such that λ + µ = 1). We say that C is strictly convex
if C contains no positive dimensional linear subspaces.

We say that R ⊂ C is a ray of a cone C if R = R+α, for some non-
zero vector α ∈ C. We say that R is an extremal ray if whenever
β + γ ∈ R, where β and γ ∈ C, then β and γ ∈ R.

It follows by Kleiman’s criteria that the closed cone of curves of a
projective variety is strictly convex.

Lemma 4.2. Let S be a smooth projective surface and let α =
∑
ai[Ci]

and β =
∑
bj[Cj] be two cycles, where ai > 0 and bj > 0.

If α · β < 0 then C = Ci = Cj for some i and j, where C2 < 0. If i
and j are the only two indices with this property then aibjC

2 ≤ α · β.

Proof. Clear, since

α · β =
∑

aibjCi · Cj,

and Ci · Cj ≥ 0 unless Ci = Cj. �

Lemma 4.3. Let S be a smooth projective surface. Let

(1) If R is R = R+α ⊂ NE(S) is an extremal ray of the closed cone
of curves of S then α2 ≤ 0.

(2) If C is an irreducible curve such that C2 < 0 then R = R+[C]
is extremal.

Proof. We will first show that R = R+α is never extremal if α2 > 0.
Let H be an ample divisor. Then H ·α > 0 by Kleiman’s criteria. Pick
a small neighbourhood U of α ∈ V such that

• β2 > 0
• β ·H > 0,

for all β ∈ U . Suppose that β ∈ U is rational. Pick k ∈ N such that
D = kβ is integral. By Asymptotic Riemann-Roch,

h0(S,OS(mD)) + h0(S,OS(KS −mD)) = h0(S,OS(mD)) + h2(S,OS(mD))

≥ χ(S,OS(mD)) > 0,
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for large m. Thus either |mD| or |KS−mD| is non-empty for large m.
But (KS −mD) ·H < 0 so that |(KS −mD)| is empty and so |mD| is
non-empty. Thus [D] ∈ NE(S) and so U ⊂ NE(S). In particular R is
not extremal.

Now suppose that C is an irreducible curve such that C2 ≤ 0. Then
we may write

[C] =
∑

βi

where the βi generate extremal rays of NE(S). As

0 > C2 = [C] · (
∑

βi).

it follows that [C]·βi < 0 for some i. Since βi is a limit of β(j) ∈ NE(S),
(4.2) implies that βi = λ[C] + β′, where β′ ∈ NE(S) and λ > 0. As
βi generates an extremal ray, it follows that R+βi = R+[C] = R is
extremal. �

Let π : X −→ C be a Pr-bundle over a smooth curve. We recall the
classification of such bundles. We have that S = P(E), for some rank
r + 1 vector bundle over C and the two Pr-bundles Si = P(Ei) are
isomorphic over C iff there is a line bundle L and an isomorphism of
vector bundles E1 ⊗ L ' E2.

Now the Picard group of X has rank two, and it is generated by the
class of a line in a fibre and the class of any section. Thus NE(X) ⊂ R2.
Taking a compact slice, we get a closed interval, so that topologically
the situation is an open and closed book. To get a complete description,
we have two rays R1 and R2 and it suffices to determine generators for
each ray.

First suppose that C = P1, so that X = S is a rational surface, a P1-
bundle over C. In this case any rank two vector bundle E has the form
OP1(a)⊕OP1(b) by a Theorem of Grothendieck. We may normalise so
that E = OP1 ⊕ OP1(−n). The resulting surface is denoted Fn. Let
f denote the class of a fibre and e the class of a section of minimal
self-intersection −n. Then

NE(X) = R+f + R+e.

But now suppose that C has higher genus. We need to say something
about all sections and multisections of π. Fortunately in characteristic
zero we only need to keep track of the multisections. We recall some
of the theory of vector bundles:
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Definition 4.4. Let f : E −→ C be a vector bundle over a curve. The
slope of E is the rational number

µ(E) =
degE

rkE
.

We say that E is stable (respectively semi-stable) if for all quotient
vector bundles E −→ F of E, we have

µ(E) < µ(F ) (respectively µ(E) ≤ µ(F )).

We say that E is unstable if it is not semistable. We say that F
destabilises E if F is a quotient E −→ F of E and

µ(F ) < µ(E).

The maximal destabilising quotient is a quotient vector bundle with
the smallest slope and the largest rank amongst quotients with the same
slope.

Example 4.5. Suppose that

E =
r⊕

i=0

Li,

is a direct sum of line bundles. If degLi = di, then

µ(E) =
d0 + d1 + · · ·+ dr

r + 1
and µ(Li) = di.

As F = Li is a quotient of E, E is never stable and it is semistable
iff degLi is independent of i. Let m = mini di. If m 6= µ(E), then the
maximal destabilising quotient is

r⊕
i:di=m

Li.

Lemma 4.6. Let E be a vector bundle over a smooth curve C.
Then E is semi-stable iff E ′ = f ∗E is semi-stable for all covers

f : C ′ −→ C.

Proof. One direction is clear; if E −→ F destabilises E then E ′ −→
F ′ = f ∗F destabilises E ′.

Suppose that E ′ is not semi-stable. By what we already proved,
passing to a finite cover of C ′ we may assume that f is Galois, with
Galois group G ⊂ Aut(C ′). Let E ′ −→ F ′ be a maximal destabilising
subsheaf. Then F ′ is canonical, whence invariant under the action of
G ⊂ Aut(C ′). But this means that F ′ = f ∗F for some vector bundle
F and F destabilises E. �
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Remark 4.7. It is not true that if E is stable then f ∗E is stable.
It can happen that f ∗E is semistable. Also it is not true that if V
is an arbitrary vector bundle on C ′ which is invariant under G then
V = f ∗W , for some vector bundle W on C. In fact this can fail even
for line bundles. We need the fact F ′ is a quotient of E ′ = f ∗E.

Lemma 4.8. Let C be a smooth curve and let π : X = P(E) −→ C be
a Pr-bundle over C. Suppose that r > 1.

TFAE

(1) E is stable (respectively semi-stable).
(2) −KX/C · Σ > 0 (respectively ≥ 0) for all curves Σ ⊂ X, where

KX/C = KX − π∗KC is the relative canonical divisor.

Example 4.9. Let C be a curve of genus at least two. Suppose that
E is a general rank two stable vector bundle, which admits an exact
sequence

0 −→ OC −→ E −→ L −→ 0,

where L is a line bundle of positive degree d ≤ g (such exist by general
theory). If E chosen generically (see for example [1]). Let S = P(E).
Then there is a section C0 of minimal self-intersection d.

Suppose that Σ is a multi-section of S, so that f : D = Σ −→ C is
dominant. I claim that Σ2 > 0. Let Y = P(f ∗E). Then

f ∗Σ = Σ0 + Σ1,

where Σ0 is a section of Y −→ D. But then

Σ2 = Σ0 · f ∗Σ ≥ Σ2
0.

As f ∗E is stable we may replace X by Y and Σ by Σ2
0, so that we may

assume that Σ is a section of X −→ C. But then

(KX + Σ) · Σ = KΣ = π∗KC .

Thus
Σ2 = −KX/C · Σ > 0,

by assumption. Consider NE(S). One edge is given by f the class of
a fibre. What about the other edge? Suppose that this is generated by
α. All curves other than F have positive self-intersection. By (4.3) we
must have α2 = 0. Thus NE(S) is not a closed cone.

Rescaling we may suppose that α = σ − af σ is the class of Σ and
a ≥ 0. We have

d− 2a = (α)2 = 0.

Thus the divisor D = 2Σ− dF = −KX/C is a divisor which intersects
every curve positively, but which is not ample. This gives an example
in characteristic zero where Kleiman’s criteria is sharp.
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Example 4.10. Let S = E × E the product of two general elliptic
curves. Then ρ(S) = 3. Let fi be the class of a fibre and let δ be the
class of the diagonal. Suppose that δ = a1f1 + a2f2. Then

ai = (a1f1 + a2f2) · a2−i = δ · f2−i = 1.

But

0 = δ2 6= (f1 + f2)2 = 2.

Thus f1 and f2 and δ define independent classes, which actually span
the Néron-Severi group.

On the other hand let D ≥ 0 be a Q-Cartier divisor. Then D2 ≥ 0
with equality iff D = 0, as can be seen by acting by a general translation.
Thus NE(S) is half of a classical cone. There are uncountably many
extremal rays, and at most countably many contractions. Most rays are
not rational.

Example 4.11. Let S be obtained from P2 by blowing up nine points
p1, p2, . . . , p9. Suppose first that these points are the nine points of the
intersection of two general smooth cubics. Then S is the total space of
the pencil, and there is a morphism f : S −→ P1 whose fibres are the
elements of the pencil. The nine exceptional divisors E1, E2, . . . , E9 are
then sections of this fibration. The generic fibre C of f is an elliptic
curve (over the function field C(P1) = C(t)) and the nine sections
define nine points e1, e2, . . . , e9. Since the pencil is general, it follows
that these points generate a subgroup of C, isomorphic to Z8. This
subgroup then corresponds to a subgroup of the automorphism group
of S over the base. The orbit of the nine exceptional divisors, gives
infinitely many exceptional divisors. Each exceptional divisor generates
an extremal ray of the closed cone of curves.

What is worse, −1-curves persist under small deformations. If we
therefore perturb these nine points to nine very general points, infinitely
many of these −1-curves survive. The resulting surface does not have
any automorphisms, and yet its Mori cone is still very complicated.

Let us end these series of examples with Zariski’s famous example:

Example 4.12. Pick a smooth cubic curve C in P2 and let S be the
blow up of f : S −→ P2 at ten very general points p1, p2, . . . , p10 of C.
Let E1, E2, . . . , E10 be the ten exceptional divisors and let Σ be the strict
transform of C.

Then Σ is a curve of self-intersection 9− 10 = −1. By a result due
to Artin, there is a contraction morphism π : S −→ T contracting Σ,
where T is a normal algebraic space (or if you will an analytic space).
I claim that T is not a projective variety.
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Suppose it were. Then T would have an ample divisor D. But I
claim it has no Cartier divisors at all. We have

π∗D ∈ A1(S) = Z10 = Z[f ∗H] +
9∑

i=1

Z[Ei],

where H is a line in P2. So

π∗D ∼ aπ∗H −
∑

aiEi.

Now

π∗D · Σ = D · π∗Σ = 0.

Thus

3a =
∑

ai.

Moreover π∗D|Σ would be linearly equivalent to zero. Thus there would
be some curve B of degree d in P2 such that

B|C ∼
∑

bipi.

But this contradicts the fact that our ten points of C are general.
Note that there are then plenty of nef divisors D on S which are zero

on C but which are not semiample (since if D were semiample, it would
descend to T ).

Definition 4.13. A stable n-pointed curve of genus g is a con-
nected curve of arithmetic genus g, with only nodes as singularities,
with n marked points contained in the smooth locus, such that the nor-
malisation of every component isomorphic to P1 has three special points
(either a node or a marked point).

The moduli space of genus g, n-pointed stable curves M g,n is a pro-
jective variety whose points are in natural correspondence with iso-
morphism classes of stable n-pointed curves of genus g. Note that
M1,1 ' M0,4 ' P1. Indeed, the second isomorphism is given by the
j-invariant, and the first is a consequence since an elliptic curve dou-
ble covers P1 over 4 points.

These gives finitely many rational curves in M g,n, which we call vital
curves. Indeed take a stable curve of genus g− 1 with n points (respec-
tively a stable curve of genus g with n−3 points) whose components are
copies of P1 with 3 labelled points, together with one component with
only two labelled points. Now attach an elliptic to the special compo-
nent (or a copy of P1 with three marked points). The resulting curve
is a point of M g,n. Varying the moduli of the elliptic curve (or of the
four points), gives a curve C ⊂M g,n.
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Conjecture 4.14 (Faber, Fulton, Mumford). M g,n is spanned by the
classes of the vital curves.

Theorem 4.15 (Keel, Gibney, Morrison). To prove (4.14) it suffices
to prove the case when g = 0.
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