LECTURE 7: COFIBERS

1. Mapping cone

For $X \in$ Top, let Cone (X) be the space $X \times I / X \times\{0\}$. The cone on X is contractible. For $f: X \rightarrow Y$, we define the mapping cone to be the pushout

$$
\operatorname{Cone}(f)=Y \cup_{X} \operatorname{Cone}(X)
$$

The mapping cone satisfies:
(1) If $i: A \hookrightarrow X$ is an inclusion, then there is an isomorphism $H^{*}(X, A) \cong$ $\widetilde{H}^{*}(\operatorname{Cone}(i))$.
(2) If $i: A \rightarrow X$ is a cofibration, then there is a homotopy equivalence $X / A \simeq$ Cone (i).
For $X \in \operatorname{Top}_{*}$ there is a pointed analog. Let $C(X)$ be the space $X \wedge I$, also contractible. For $f: X \rightarrow Y$, we define the reduced mapping cone or cofiber to be the pushout

$$
C(f)=Y \cup_{X} C(X)
$$

2. Relative CW complexes

If X is obtained from A by iteratively adding cells, then we say $A \hookrightarrow X$ is a relative $C W$ complex. In particular, if A is a subcomplex of X, then it is a relative CW complex.

We have seen that cofibrations have good cofibers. The following proposition states that cofibrations are not uncommon.

Proposition 2.1. If $A \hookrightarrow X$ is a relative CW complex, then it is a cofibration.
The proposition is proven by a sequence of lemmas.
Lemma 2.2. The inclusion $S^{n-1} \hookrightarrow D^{n}$ is a cofibration.
Lemma 2.3. Suppose that $i: A \rightarrow X$ is a cofibration, and that $f: A \rightarrow Y$ is a map. Then the inclusion $Y \rightarrow X \cup_{A} Y$ is a cofibration.

Lemma 2.4. Suppose that

$$
X_{0} \hookrightarrow X_{1} \hookrightarrow X_{2} \hookrightarrow \cdots
$$

is a sequence of cofibrations. Then the map $X_{0} \rightarrow \underline{\lim }_{i} X_{i}$ is a cofibration.

3. Exact sequence of a cofiber

We have the following lemma dual to the lemma for the homotopy fiber.
Lemma 3.1. Let $X \rightarrow Y$ be a map of unpointed spaces and let Z be a pointed space. Consider factorizations:

There is a bijective correspondence

$$
\begin{gathered}
\{\text { pointed factorizations } \widetilde{g}\} \\
\downarrow \\
\{\text { null homotopies } g f \simeq *\}
\end{gathered}
$$

Corollary 3.2. Let $X \rightarrow Y$ be a map of spaces, and let Z be a pointed space. Then the sequence

$$
X \xrightarrow{f} Y \rightarrow \operatorname{Cone}(f)
$$

induces an exact sequence of sets

$$
[\operatorname{Cone}(f), Z]_{*} \rightarrow[Y, Z] \xrightarrow{f^{*}}[X, Z] .
$$

Corollary 3.3. Let $X \rightarrow Y$ be a map of pointed spaces, and let Z be a pointed space. Then the sequence

$$
X \xrightarrow{f} Y \rightarrow C(f)
$$

induces an exact sequence of sets

$$
[C(f), Z]_{*} \rightarrow[Y, Z]_{*} \xrightarrow{f^{*}}[X, Z]_{*} .
$$

Remark 3.4. We will prove later that there are isomorphisms

$$
\begin{aligned}
H^{n}(X, \pi) & \cong[X, K(\pi, n)] \\
\widetilde{H}^{n}(X, \pi) & \cong[X, K(\pi, n)]_{*}
\end{aligned}
$$

The exact sequences of Corollaries 3.2 and 3.3 then recover part of the cohomology LES of a pair.

