
A multiscale neural network based on hierarchical matrices ∗1

Yuwei Fan† , Lin Lin‡ , Lexing Ying§ , and Leonardo Zepeda-Núñez¶2

3

Abstract. In this work we introduce a new multiscale artificial neural network based on the structure of H-4
matrices. This network generalizes the latter to the nonlinear case by introducing a local deep neural5
network at each spatial scale. Numerical results indicate that the network is able to efficiently ap-6
proximate discrete nonlinear maps obtained from discretized nonlinear partial differential equations,7
such as those arising from nonlinear Schrödinger equations and the Kohn-Sham density functional8
theory.9

Key words. H-matrix; multiscale neural network; locally connected neural network; convolutional neural net-10
work11

AMS subject classifications.12

1. Introduction. In the past decades, there has been a great combined effort in developing13

efficient algorithms to solve linear problems issued from discretization of integral equations14

(IEs), and partial differential equations (PDEs). In particular, multiscale methods such as15

multi-grid methods [7], the fast multipole method [17], wavelets [38], and hierarchical matrices16

[19, 6], have been strikingly successful in reducing the complexity for solving such systems.17

In several cases, for operators of pseudo-differential type, these algorithms can achieve linear18

or quasi-linear complexity. In a nutshell, these methods aim to use the inherent multiscale19

structure of the underlying physical problem to build efficient representations at each scale,20

thus compressing the information contained in the system. The gains in complexity stem21

mainly from processing information at each scale, and merging it in a hierarchical fashion.22

Even though these techniques have been extensively applied to linear problems with out-23

standing success, their application to nonlinear problems has been, to the best of our knowl-24

edge, very limited. This is due to the high complexity of the solution maps. In particular,25

building a global approximation of such maps would normally require an extremely large26

amount of parameters, which in return, is often translated to algorithms with a prohibitive27

computational cost. The development of algorithms and heuristics to reduce the cost is an28

area of active research [4, 18, 37, 15, 14]. However, in general, each method is application-29

∗Submitted to the editors July 4, 2018.
Funding: The work of Y.F. and L.Y. is partially supported by the U.S. Department of Energys Advanced

Scientific Computing Research program under award DE-FC02-13ER26134/DE-SC0009409 and the National Science
Foundation under award DMS-1521830. The work of L.L and L. Z. is partially supported by the Department of
Energy under Grant No. DE-SC0017867 and the CAMERA project.
†Department of Mathematics, Stanford University, Stanford, CA 94305 (ywfan@stanford.edu, http://web.

stanford.edu/∼ywfan/)
‡Department of Mathematics, University of California, Berkeley, and Computational Research Division, Lawrence

Berkeley National Laboratory, Berkeley, CA 94720 (linlin@math.berkeley.edu, https://math.berkeley.edu/∼linlin/)
§Department of Mathematics and Institute for Computational and Mathematical Engineering, Stanford University,

Stanford, CA 94305 (lexing@stanford.edu, https://web.stanford.edu/∼lexing/)
¶Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (lzepeda@lbl.gov,

http://math.mit.edu/∼lzepeda/)

1

This manuscript is for review purposes only.

mailto:ywfan@stanford.edu
http://web.stanford.edu/~ywfan/
http://web.stanford.edu/~ywfan/
mailto:linlin@math.berkeley.edu
https://math.berkeley.edu/~linlin/
mailto:lexing@stanford.edu
https://web.stanford.edu/~lexing/
mailto:lzepeda@lbl.gov
http://math.mit.edu/~lzepeda/

2 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

dependent, and requires a deep understanding of the physics behind.30

On the other hand, the surge of interest in machine learning methods, in particular, deep31

neural networks, has dramatically improved speech recognition [25], visual object recognition32

[31], object detection, etc. This has fueled breakthroughs in many domains such as drug dis-33

covery [36], genomics [33], and automatic translation [45], among many others. Several recent34

reviews include [32] and [43]. Deep neural networks have empirically shown that it is possible35

to obtain efficient representations of very high-dimensional functions. Even though the uni-36

versality theorem holds for neural networks [27, 39, 11], i.e., they can approximate arbitrarily37

well any function with mild regularity conditions, how to build such approximation efficiently38

remains an open question. In particular, the degree of approximation depends dramatically on39

the architecture of the neural network, i.e. how the different layers are connected. In addition,40

there is a fine balance between the number of parameters, the architecture, and the degree of41

approximation [22, 23, 39].42

This paper aims to combine the tools developed in deep neural networks with ideas from43

multiscale methods. In particular, we extend hierarchical matrices (H-matrices) to nonlinear44

problems within the framework of neural networks. Let45

(1.1) u =M(v), u, v ∈ Ω ⊂ Rn,46

be a nonlinear map, issued from an underlying physical problem, described by either an47

integral equation or a partial differential equation, where v can be considered as a parameter48

in the equation, u is either the solution of the equation or a function of it, and n is the number49

of variables.50

We build a neural network with a novel multiscale structure inspired by hierarchical ma-51

trices. To this end, we interpret the application of an H-matrix to a vector using a neural52

network structure as follows. We first reduce the dimensionality of the vector, or restrict it,53

by multiplying it by a structured short and wide matrix. Then we process the encoded vector54

by multiplying it by a structured square matrix. Then we bring the vector to its original size,55

or interpolate it, by multiplying it with a structured tall and skinny matrix. Such operations56

are performed at different spatial scales separately. The contributions from all spatial scales,57

together with the near-field contribution represented by a near-diagonal matrix, are added58

together to obtain the final approximation to the matrix-vector multiplication. Since every59

step is linear, the overall operation is also a linear mapping. For nonlinear problems, such60

an interpretation allows us to directly generalize the H-matrix by replacing the structured61

square matrix in the processing stage by a structured nonlinear network with several layers.62

The resulting artificial neural network, which we call multiscale neural network, maintains a63

relatively modest amount of parameters even for large problems.64

We demonstrate the performance of the multiscale neural network by approximating the65

solution to the nonlinear Schrödinger equation [40, 2], as well as the Kohn-Sham map [26, 30].66

These mappings are highly nonlinear, and yet can be well approximated by the proposed67

neural network, with a relative accuracy on the order of 10−4 ∼ 10−3. Furthermore, we do68

not observe overfitting even in the presence of a relatively small set of training samples.69

1.1. Related work. Although machine learning and deep learning literature is extremely70

vast, the application of deep learning to numerical analysis problems is relatively new, though71

This manuscript is for review purposes only.

MULTISCALE NEURAL NETWORKS 3

that seems to be rapidly changing. Several works have used deep neural networks to solve72

PDEs [5, 42, 9, 13, 44, 34]. A combination of machine learning and multiscale methods was73

applied by Chan, and Elsheikh using a multiscale finite elements with a response trained us-74

ing a neural network [8]. For general applications of machine learning to nonlinear numerical75

analysis problems the work of Raissi and Karnidiakis uses machine learning, in particular,76

Gaussian processes, to find parameters in nonlinear equations [41]; Khoo, Lu and Ying used77

neural network in the context of uncertainty quantification [28]; Zhang et al used neural net-78

work in the context of generating high-quality interatomic potentials for molecular dynamics79

[51, 50]. Wang et al. used multiscale model reduction methods coupled with deep neural80

networks [47].81

1.2. Organization. The reminder of the paper is organized as follows. Section 2 re-82

views the H-matrices and interprets the H-matrices using the framework of neural networks.83

Section 3 extends the neural network representation of H-matrices to the nonlinear case. Sec-84

tion 4 discusses the implementation details and demonstrates the accuracy of the architecture85

in representing nonlinear maps, followed by the conclusion and future directions in section 5.86

2. Neural network architecture for H-matrices. In this section, we aim to represent the87

matrix-vector multiplication of H-matrices within the framework of neural networks. For88

the sake of clarity, we succinctly review the structure of H-matrices for the one dimensional89

case in subsection 2.1. We interpret H-matrices using the framework of neural networks in90

subsection 2.2, and then extend it to the multi-dimensional case in subsection 2.3.91

2.1. H-matrices. Hierarchical matrices (H-matrices) were first introduced by Hackbusch92

et al. in a series of papers [19, 21, 20] as an algebraic framework for representing matrices with93

a hierarchically off-diagonal low-rank structure. This framework provides efficient numerical94

methods for solving linear systems arising from integral equations (IE) and partial differential95

equations (PDE) [6]. In the sequel, we follow the notation in [35] to provide a brief introduction96

to the framework of H-matrices in a simple uniform and Cartesian setting. The interested97

readers are referred to [19, 6, 35] for further details.98

Consider the integral equation99

(2.1) u(x) =

∫
Ω
g(x, y)v(y) dy, Ω = [0, 1),100

where u and v are periodic in Ω and g(x, y) is smooth and numerically low-rank away from101

the diagonal. A discretization with an uniform grid with N = 2Lm discretization points yields102

the linear system given by103

(2.2) u = Av,104

where A ∈ RN×N , and u, v ∈ RN are the discrete analogues of u(x) and v(x) respectively.105

We introduce a hierarchical dyadic decomposition of the grid in L + 1 levels as follows.106

We start by the 0-th level of the decomposition, which corresponds to the set of all grid points107

defined as108

(2.3) I(0) = {k/N : k = 0, . . . , N − 1}.109

This manuscript is for review purposes only.

4 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

At each level ` (0 ≤ ` ≤ L), we decompose the grid in 2` disjoint segments.110

Each segment is defined by I(`)
i = I(0) ∩ [(i − 1)/2`, i/2`) for i = 1, . . . , 2`. Throughout111

this manuscript, I(`)(or J (`)) denote a generic segment of a given level `, and the superscript112

` will be omitted when the level is clear from the context. Moreover, following the usual113

terminology in H-matrices, we say that a segment J (l) (` ≥ 1) is the parent of a segment114

I(l−1) if I(l−1) ⊂ J (l). Symmetrically, I(l−1) is called a child of J (l). Clearly, each segment,115

except those on level L, have two child segments.116

l = 2

I(2)
2

l = 3

I(3)
3

l = 4

I(4)
5

I(2)
1

I(3)
1

I(4)
1

Box I
Adjacent

Interaction

Figure 1: Illustration of the computational domain at level ` = 2, 3, 4. The left and right figures
represent an interior segment and a boundary segment and their adjacent and interaction list
at different levels.

In addition, for a segment I on level ` ≥ 2, we define the following lists:117

NL(I) neighbor list of I. List of the segments on level ` that are adjacent to I including I118

itself;119

IL(I) interaction list of I. If ` = 2, IL(I) contains all the segments on level 2 minus NL(I).120

If ` > 2, IL(I) contains all the segments on level ` that are children of segments in121

NL(P) with P being I’s parent minus NL(I).122

Figure 1 illustrates the dyadic partition of the computational domain and the lists on123

levels ` = 2, 3, 4. Clearly, J ∈ NL(I) if and only if I ∈ NL(J), and J ∈ IL(I) if and only if124

I ∈ IL(J).125

off-diagonal l = 2

A(2)

off-diagonal l = 3

A(3)

off-diagonal l = 4

A(4)

adjacent

A(ad)

partition

A

⇒ + + +

Figure 2: Partition of the matrix A for L = 4 and nonzero blocks of A(`), ` = 2, 3, 4 (colored
blue) and A(ad) (colored orange). Nonzero blocks of A(`) are approximated by low rank
approximation and nonzero blocks of A(ad) are retained.

For a vector v ∈ RN , vI denotes the elements of v indexed by I and for a matrix A ∈126

RN×N , AI,J represents the submatrix given by the elements of A indexed by I × J . The127

dyadic partition of the grid and the interaction lists induce a multilevel decomposition of A128

This manuscript is for review purposes only.

MULTISCALE NEURAL NETWORKS 5

as follows129

(2.4) A =

L∑
`=2

A(`) +A(ad),

A
(`)
I,J =

{
AI,J , I ∈ IL(J);

0, otherwise,
I,J at level `, 2 ≤ ` ≤ L,

A
(ad)
I,J =

{
AI,J , I ∈ NL(J);

0, otherwise,
I,J at level L.

130

In a nutshell, A(`) considers the interaction at level ` between a segment and its interaction131

list, and A(ad) considers all the interactions between adjacent segments at level L.132

Figure 2 illustrates the block partition of A induced by the dyadic partition, and the133

decomposition induced by the different interaction lists at each level that follows (2.4).134

u(`) U (`) M (`) (V (`))T v

(a) u(`) = A(`)v ≈ U (`)M (`)(V (`))T v

u(ad) A(ad) v

(b) u(ad) = A(ad)v

Figure 3: Diagram of matrix-vector multiplication (2.7) of the low-rank part and adjacent
part of H-matrices. The blocks of M (`) colored by pale orange are zero blocks, and if we treat
these blocks as non-zero blocks, the matrices M (`) are block cyclic band matrices.

The key idea behind H-matrices is to approximate the nonzero blocks A(`) by a low rank135

approximation (see [29] for a thorough review). This idea is depicted in Figure 2, in which136

each non-zero block is approximated by a tall and skinny matrix, a small squared one and a137

short and wide one, respectively. In this work, we focus on the uniform H-matrices [16], and,138

for simplicity, we suppose that each block has a fixed rank at most r, i.e.139

(2.5) A
(`)
I,J ≈ U

(`)
I M

(`)
I,J (V

(`)
J)T , U

(`)
I , V

(`)
J ∈ RN/2

`×r, M
(`)
I,J ∈ Rr×r.140

where I, and J are any interacting segments at level `.141

The main observation is that it is possible to factorize each A(`) as A(`) ≈ U (`)M (`)(V (`))T142

depicted in Figure 3. U (`) is a block diagonal matrix with diagonal blocks U
(`)
I for I at level143

`, V (`) is a block diagonal matrix with diagonal blocks V
(`)
J for J at level `, and finally M (`)144

aggregates all the blocks M
(`)
I,J for all interacting segments I,J at level `. This factorization145

induces a decomposition of A given by146

(2.6) A =
L∑
`=2

A(`) +A(ad) ≈
L∑
`=2

U (`)M (`)(V (`))T +A(ad).147

This manuscript is for review purposes only.

6 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

Thus the matrix-vector multiplication (2.2) can be expressed as148

(2.7) u ≈
L∑
`=2

u(`) + u(ad) =
L∑
`=2

U (`)M (`)(V (`))T v +A(ad)v,149

as illustrated in Figure 3, which constitutes the basis for writing H-matrices as a neural150

network.151

In addition, the matrices {U (`), V (`),M (`)}L`=2 and A(ad) have the following properties.152

Property 1. The matrices153

1. U (`) and V (`), ` = 2, · · · , L are block diagonal matrices with block size N/2` × r;154

2. A(ad) is a block cyclic tridiagonal matrix with block size m×m;155

3. M (`), ` = 2, · · · , L are block cyclic band matrices with block size r × r and band size156

n
(`)
b , which is 2 for ` = 2 and 3 for ` ≥ 3, if we treat all the pale orange colored blocks157

of M (`) in Figure 3a as nonzero blocks.158

We point out that the band sizes n
(`)
b and n

(ad)
b depend on the definitions of NL and IL. In159

this case, the list were defined using the strong admissible condition in H-matrices. Other160

conditions can be certainly used, such as the weak admissibility condition, leading to similar161

structures.162

2.2. Matrix-vector multiplication as a neural network. An artificial neural network,163

in particular, a feed-forward network, can be thought of the composition of several simple164

functions, usually called propagation functions, in which the intermediate one-dimensional165

variables are called neurons, which in return, are organized in vector, or tensor, variables166

called layers. For example, an artificial feed-forward neural network167

(2.8) u = F(v), u, v ∈ Rn168

with K + 1 layer can be written using the following recursive formula169

ξ(0) = v,

ξ(k) = φ(W (k)ξ(k−1) + b(k)),

u = ξ(K),

(2.9)170

where for each k = 1, ...,K we have that ξ(k), b(k) ∈ Rnk ,W (k) ∈ Rnk×nk−1 . Following the171

terminology of machine learning, φ is called the activation function that is applied entry-wise,172

W (k) are the weights, b(k) are the biases, and ξ(k) is the k-th layer containing nk number173

of neurons. Typical choices for the activation function are linear function, the rectified-174

linear unit (ReLU), or sigmoid function. In addition, (2.9) can easily be rewritten using175

tensors by replacing the matrix-vector multiplication by the more general tensor contraction.176

We point out that representing layers with tensors or vectors is equivalent up to reordering177

and reshaping. The main advantage of using the former is that layers, and its propagating178

functions, can be represented in a more compact fashion. Therefore, in what follows we179

predominantly use a tensor representation.180

Within this context, training a network refers to finding the weights and biases, whose181

entries are collectively called parameters, in order to approximate a given map. This is usually182

done by minimizing a loss function using a stochastic optimization algorithm.183

This manuscript is for review purposes only.

MULTISCALE NEURAL NETWORKS 7

2.2.1. Locally connected networks. We interpret the structure of H-matrices (2.6) using184

the framework of neural networks. The different factors in (2.7) possess a distinctive structure,185

which we aim to exploit by using locally connected (LC) network. LC networks are propagating186

functions whose weights have a block-banded constraint. For the one-dimensional example,187

we also treat ξ as a 2-tensor of dimensions α × Nx, where α is the channel dimension and188

Nx is the spatial dimension, and ζ be a 2-tensor of dimensions α′ × N ′x. We say that ξ is189

connected to ζ by a LC networks if190

(2.10) ζc′,i = φ

 (i−1)s+w∑
j=(i−1)s+1

α∑
c=1

Wc′,c;i,jξc,j + bc′,i

 , i = 1, . . . , N ′x, c
′ = 1, . . . , α′,191

where w and s ∈ N are the kernel window size and stride, respectively. In addition, we say192

that ζ is a locally connected (LC) layer if it satisfies (2.10).193

Space

La
ye
r Flatten

s = w = Nx
N ′x

, α = 1 s = 1, N ′x = Nx s = 1, w = 1, N ′x = Nx

(a) LCR[φ;Nx, N
′
x, α

′] with
Nx = 32, N ′x = 8 and α′ = 3

(b) LCK[φ;Nx, α, α
′, w]

with Nx = 8, α = α′ = 3
and w = 3

(c) LCI[φ;Nx, α, α
′] with

Nx = 8, α = 3 and α′ = 4

Figure 4: Three instances of locally connected networks used the represent the matrix-vector
multiplication in (2.7). The upper portions of each column depicts the patterns of the matrices
and the lower portions are their respective analogues using locally connect networks.

Each LC network requires 6 parameters, Nx, α, N ′x, α′, w and s to be characterized. Next,194

we define three types of LC network by specifying some of their parameters,195

LCR Restriction network: we set s = w = Nx
N ′x

and α = 1 in LC. This network represents the196

multiplication of a block diagonal matrix with block sizes α′× s and a vector with size197

Nxα, as illustrated by Figure 4 (a). We denote this network using LCR[φ;Nx, N
′
x, α

′].198

The application of LCR[linear; 32, 8, 3] is depicted in Figure 4 (a).199

This manuscript is for review purposes only.

8 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

LCK Kernel network: we set s = 1 and N ′x = Nx. This network represents the multipli-200

cation of a cyclic block band matrix of block size α′ × α and band size w−1
2 times201

a vector of size Nxα, as illustrated by the upper portion of Figure 4b. To account202

for the periodicity we pad the input layer ξc,j on the spatial dimension to the size203

(Nx + w − 1)× α. We denote this network by LCK[φ;Nx, α, α
′, w]. This network has204

two steps: the periodic padding of ξc,j on the spatial dimension, and the application205

of (2.10). The application of LCK[linear; 8, 3, 3, 3] is depicted in Figure 4 (b).206

LCI Interpolation network: we set s = w = 1 and N ′x = Nx in LC. This network represents207

the multiplication of a block diagonal matrix with block size α′ × α, times a vector of208

size Nxα, as illustrated by the upper figure in Figure 4 (c). We denote the network209

LCI[φ;Nx, α, α
′], which has two steps: the application of (2.10), and the reshaping of210

the output to a vector by column major indexing. The application of LCI[linear; 8, 3, 4]211

is depicted in Figure 4 (c).212

2.2.2. Neural network representation. Following (2.7), in order to construct the neural213

network (NN) architecture for (2.7), we need to represent the following four operations:214

ξ(`) = (V (`))T v,(2.11a)215

ζ(`) = M (`)ξ(`),(2.11b)216

u(`) = U (`)ζ(`),(2.11c)217

u(ad) = A(ad)v.(2.11d)218219

From Property 1.1 and the definition of LCR and LCI, the operations (2.11a) and (2.11c) are220

equivalent to221

(2.12) ξ(`) = LCR[linear;N, 2`, r](v), u(`) = LCI[linear; 2`, r,
N

2`
](ζ(`)),222

respectively. Analogously, Property 1.3 indicates that (2.11b) is equivalent to223

(2.13) ζ(`) = LCK[linear; 2`, r, r, 2n
(`)
b + 1](ξ(`)).224

We point out that ξ(`) is a vector in (2.11c) but a 2-tensor in (2.12) and (2.13). In principle,225

we need to flatten ξ(`) in (2.12) to a vector and reshape it back to a 2-tensor before (2.13).226

These operations do not alter the algorithmic pipeline, so they are omitted.227

Given that v, u(ad) are vectors, but LCK is defined for 2-tensors, we explicitly write the228

reshape and flatten operations. Denote as Reshape[n1, n2] the map that reshapes a vector of229

size n1n2 into a 2-tensor of size n1 × n2 by column major indexing, and Flatten is defined as230

the inverse of Reshape. Using Property 1.2, we can write (2.11d) as231

(2.14)

ṽ = Reshape[m, 2L](v), ũ(ad) = LCK
[
linear; 2L,m,m, 2n

(ad)
b + 1

]
(ṽ), u(ad) = Flatten(ũ(ad)).232

Combining (2.12), (2.13) and (2.14), we obtain Algorithm 1, whose architecture is illus-233

trated in Figure 5. In particular, Figure 5 is the translation to the neural network framework234

of (2.7) (see Figure 3) using the building blocks depicted in Figure 4.235

This manuscript is for review purposes only.

MULTISCALE NEURAL NETWORKS 9

Adjacent𝑙 = 𝐿𝑙 = 2

Copy Copy Copy

LCR-linear

LCK-linear

LCI-linear

LCR-linear

LCK-linear

LCI-linear

LCK-linear

Flatten

Reshape

FlattenFlatten

sum

Figure 5: Neural network architecture for H-matrices.

Algorithm 1 Application of the NN representation of an H-matrix to a vector v ∈ RN .
1: u = 0;
2: for ` = 2 to L do
3: ξ = LCR[linear;N, 2`, r](v);

4: ζ = LCK[linear; 2`, r, r, 2n
(`)
b + 1](ξ);

5: u = u+ LCI[linear; 2`, r, N
2`

](ζ);
6: end for

7: ṽ = Reshape[m, 2L](v);

8: ũ(ad) = LCK
[
linear; 2L,m,m, 2n

(ad)
b + 1

]
(ṽ);

9: u(ad) = Flatten(ũ(ad));
10: u = u+ u(ad);

Moreover, the memory footprints of the neural network architecture and H-matrices are236

asymptotically the same with respect the spatial dimension of u and v. This can be readily237

shown by computing the total number of parameters. For the sake of simplicity, we only count238

the parameters in the weights, ignoring those in the biases. A direct calculation yields the239

number of parameters in LCR, LCK and LCI:240

(2.15) NLCR
p = Nxα

′, NLCK
p = Nxαα

′w, NLCI
p = Nxαα

′,241

respectively. Hence, the number of parameters in Algorithm 1 is242

(2.16)

NHp =

L∑
`=2

(
Nr + 2`r2(2n

(`)
b + 1) + 2`r

N

2`

)
+ 2Lm2(2n

(ad)
b + 1)

≤ 2LNr + 2L+1r2(2
L

max
`=2

n
(`)
b + 1) +Nm(2n

(ad)
b + 1)

≤ 2N log(N)r + 3Nm(2nb + 1) ∼ O(N log(N)),

243

where nb = max(n
(ad)
b , n

(`)
b , ` = 2, · · · , L), and r ≤ m is used.244

This manuscript is for review purposes only.

10 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

2.3. Multi-dimensional case. Following the previous section, the extension of Algorithm 1245

to the d-dimensional case can be easily deduced using the tensor product of one-dimensional246

cases. Consider d = 2 below for instance, and the generalization to higher dimensional case247

will be straight-forward. Suppose that we have an IE in 2D given by248

(2.17) u(x) =

∫
Ω
g(x, y)v(y) dy, Ω = [0, 1)× [0, 1),249

we discretize the domain Ω with a uniform grid with n = N2 (N = 2Lm) discretization points,250

and let A be the resulting matrix obtained from discretizing (2.17). We denote the set of all251

grid points as252

(2.18) I(d,0) = {(k1/N, k2/N) : k1, k2 = 0, . . . , N − 1}.253

Clearly I(d,0) = I(0) ⊗ I(0), where I(0) is defined in (2.3), and ⊗ is tensor product. At each254

level ` (0 ≤ ` ≤ L), we decompose the grid in 4l disjoint boxes as I(d,`)
i = I(`)

i1
⊗ I(`)

i2
for255

i1, i2 = 1, . . . , 2l. The definition of the lists NL and IL can be easily extended. For each box I,256

NL(I) contains 3 boxes for 1D case, 32 boxes for 2D case. Similarly, the decomposition (2.4)257

on the matrix A can easily to extended for this case. Following the structure of H-matrices,258

the off-diagonal blocks of A(`) can be approximated as259

(2.19) A
(`)
I,J ≈ U

(`)
I M

(`)
I,J (V

(`)
J)T , I,J ∈ I(`), U

(`)
I , V

(`)
J ∈ R(N/2`)2×r,M

(`)
I,J ∈ Rr×r.260

As mentioned before, we can describe the network using tensor or vectors. In what follows261

we will switch between representations in order to illustrate the concepts in a compact fashion.262

We denote an entry of a tensor T by Ti,j , where i is 2-dimensional index i = (i1, i2). Using263

the tensor notations, U (`), V (`) in (2.7), can be treated as 3-tensors of dimension N ×N × r.264

We generalize the notion of band matrix to band tensors. A band tensor T satisfies that265

(2.20) Ti,j = 0, if |i1 − j1| > nb,1 or |i2 − j2| > nb,2,266

where nb = (nb,1, nb,2) is called the band size for tensor. Thus Property 1 can be generalized267

to tensors yielding the following properties.268

Property 2. 1. The 3-tensor U (`) and V (`), ` = 2, · · · , L are block diagonal tensors269

with block size N/2` ×N/2` × r;270

2. the 4-tensor A(ad) is a block band cyclic tensor with block size m ×m ×m ×m and271

band size n
(ad)
b = (1, 1);272

3. the 4-tensors M (`), ` = 2, · · · , L are block band cyclic tensor with block size r × r and273

band size n
(`)
b , which is (2, 2) for ` = 2 and (3, 3) for ` ≥ 3.274

Next, we characterize LC networks for the 2D case. An NN layer for 2D can be represented275
by a 3-tensor of size α×Nx,1 ×Nx,2, in which α is the channel dimension and Nx,1, Nx,2 are276
the spatial dimensions. If a layer ξ with size α×Nx,1×Nx,2 is connected to a locally connected277

layer ζ with size α′ ×N ′x,1 ×N ′x,2, then278

(2.21) ζc′,i = φ

 (i−1)s+w∑
j=(i−1)s+1

α∑
c=1

Wc′,c;i,jξc,j + bc′,i

 , i1 = 1, . . . , N ′x,1, i2 = 1, . . . , N ′x,2, c
′ = 1, . . . , α′,279

This manuscript is for review purposes only.

MULTISCALE NEURAL NETWORKS 11

where (i−1)s = ((i1−1)s1, (i2−1)s2). As in the 1D case, the channel dimension corresponds280

to the rank r, and the spatial dimensions correspond to the grid points of the discretized281

domain. Analogously to the 1D case, we define the LC networks LCR, LCK and LCI and282

use them to express the four operations in (2.11) which constitute the building blocks of the283

neural network. The extension is trivial, the parameters Nx, s and w in the one-dimensional284

LC networks are replaced by their 2-dimensional counterpart Nx = (Nx,1, Nx,2), s = (s1, s2)285

and w = (w1, w2), respectively. We point out that s = w = Nx
N ′x

for the 1D case is replaced by286

sj = wj =
Nx,j
N ′x,j

, j = 1, 2 for the 2D case in the definition of LC.287

⟹

Figure 6: Diagram of Reshape[22, 3, 3] in Algorithm 2.

Using the notations above we extend Algorithm 1 to the 2D case in Algorithm 2. We288

crucially remark that the Reshape[r2, n1, n2] function in Algorithm 2 is not the usual major289

column based reshaping. It reshapes a 2-tensor T with size rn1 × rn2 to a 3-tensor S with290

size r2×n1×n2, by treating the former as a block tensor with block size r× r, and reshaping291

each block as a vector following the formula S(k, i, j) = T ((i − 1)r + k1, (j − 1)r + k2) with292

k = (k1 − 1)r + k2, for k1, k2 = 1, . . . , r, i = 1, . . . , n1 and j = 1, . . . , n2. Figure 6 provides an293

example for the case Reshape[22, 3, 3]. The Flatten is its inverse.294

Algorithm 2 Application of NN architecture for H-matrices on a vector v ∈ RN2
.

1: u = 0;
2: for ` = 2 to L do
3: ξ = LCR[linear; (N,N), (2`, 2`), r](v);

4: ζ = LCK[linear; (2`, 2`), r, r, (2n
(`)
b,1 + 1, 2n

(`)
b,2 + 1)](ξ);

5: u = u+ LCI[linear; (2`, 2`), r,
(
N
2`

)2
](ζ);

6: end for
7: ṽ = Reshape[m2, 2L, 2L](v);

8: ũ(ad) = LCK
[
linear; (2L, 2L),m2,m2, (2n

(ad)
b,1 + 1, 2n

(ad)
b,2 + 1)

]
(ṽ);

9: u(ad) = Flatten(ũ(ad));
10: u = u+ u(ad);

3. Multiscale neural network. In this section, we extend the aforementioned NN archi-295

tecture to represent a general nonlinear mapping of the form296

(3.1) u =M(v), u, v ∈ RN
d
,297

Due to its multiscale structure, we refer to the resulting NN architecture as the multiscale298

neural network (MNN). We consider the one-dimensional case below for simplicity, and the299

This manuscript is for review purposes only.

12 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

generalization to higher dimensions follows directly as in subsection 2.3.300

Algorithm 3 Application of multiscale neural network to a vector v ∈ RN .

1: u = 0;
2: for ` = 2 to L do
3: ξ0 = LCR[linear;N, 2`, r](v);
4: for k = 1 to K do
5: ξk = LCK[φ; 2`, r, r, 2n

(`)
b + 1](ξk−1);

6: end for
7: u = u+ LCI[linear; 2`, r, N

2`
](ξK);

8: end for

9: ξ0 = Reshape[m, 2L](v);
10: for k = 1 to K do
11: ξk = LCK[φ; 2L,m,m, 2n

(ad)
b + 1](ξk−1);

12: end for
13: u(ad) = Flatten(ξK);
14: u = u+ u(ad);

Adjacent𝑙 = 𝐿𝑙 = 2

Copy Copy Copy

LCR-linear

LCK-φ

LCK-φ

LCK-φ

LCI-linear

Flatten

LCR-linear

LCK-φ

LCK-φ

LCK-φ

LCI-linear

Flatten

LCK-φ

LCK-φ

LCK-linear

Reshape

Flatten

sum

Figure 7: Multiscale neural network architecture for nonlinear mappings, which is an exten-
sion of the neural network architecture for H-matrices Figure 5. φ is an activation function.

3.1. Algorithm and architecture. NN can represent nonlinearity by choosing the acti-301

vation function, φ, to be nonlinear, such as ReLU or sigmoid. The range of the activation302

function also imposes constraints on the output of the NN. For example, the range of “ReLU”303

in [0,∞) and the range of the sigmoid function is [0, 1]. Thus, the last layer is often chosen304

to be a linear layer to relax such constraint. Algorithm 1 is then revised to Algorithm 3, and305

the architecture is illustrated in Figure 7. We remark that the nonlinear activation function306

is only used in the LCK network. The LCR and LCI networks in Algorithm 1 are still treated307

as restriction and interpolation operations between coarse grid and fine grid, respectively, so308

we use linear activation functions in these layers. Particularly, we also use linear activation309

function for the last layer of the adjacent part, i.e. the φ in line 11 in Algorithm 3 is linear310

when k = K.311

This manuscript is for review purposes only.

MULTISCALE NEURAL NETWORKS 13

As in the linear case, we calculate the number of parameters of MNN and obtain (neglecting312

the number of parameters in b in (2.10))313

(3.2)

NMNN
p =

L∑
`=2

(
Nr +K2`r2(2n

(`)
b + 1) + 2`r

N

2`

)
+K2Lm2(2n

(ad)
b + 1)

≤ 2LNr +K2L+1r2(2
L

max
`=2

n
(`)
b + 1) +NKm(2n

(ad)
b + 1)

≤ 2N log(N)r + 3NKm(2nb + 1).

314

3.2. Translation-invariant case. For the linear case (2.1), if the kernel is translation in-315

variant, i.e. g(x, y) = g(x−y), then the matrix A is a Toeplitz matrix. Then the matrices M (`)316

and A(ad) are Toeplitz matrices and all matrix blocks of U (`) (resp. V (`)) can be represented317

by the same matrix. This leads to the convolutional neural network (CNN) as318

(3.3) ζc′,i = φ

 (i−1)s+w∑
j=(i−1)s+1

α∑
c=1

Wc′,c;jξc,j + bc′

 , i = 1, . . . , N ′x, c
′ = 1, . . . , α′.319

Compared to the LC network, the only difference is that the parameters W and b are indepen-320

dent of i. Hence, inheriting the definition of LCR, LCK and LCI, we define the layers CR, CK321

and CI, respectively. By replacing the LC layers in Algorithm 1 by the corresponding CNN322

layers, we obtain the neural network architecture for the translation invariant kernel.323

For the nonlinear case, the translation invariant kernel for the linear case can be extended324

to kernels that are equivariant to translation, i.e. for any translation T ,325

(3.4) TM(v) =M(T v).326

For this case, all the LC layers in Algorithm 3 can be replaced by its corresponding CNN327

layers. The number of parameters of CR, CK and CI are328

(3.5) NCR
p =

Nx

N ′x
α′, NCK

p = αα′w, NCI
p = αα′.329

Thus, the number of parameters in Algorithm 3 using CNN is330

(3.6)
NMNN
p,CNN =

L∑
`=2

(
r
N

2`
+Kr2(2n

(`)
b + 1) + r

N

2`

)
+Km2(2n

(ad)
b + 1)

≤ rN + (r2 log(N) +m2)(2nb + 1)K.

331

4. Numerical results. In this section we discuss the implementation details of MNN.332

We demonstrate the accuracy of the MNN architecture using two nonlinear problems: the333

nonlinear Schrödinger equation (NLSE), and the Kohn-Sham map (KS map) in the Kohn-334

Sham density functional theory.335

This manuscript is for review purposes only.

14 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

4.1. Implementation. Our implementation of MNN uses Keras [10], a high-level applica-336

tion programming interface (API) running, in this case, on top of TensorFlow [1] (a library337

of toolboxes for training neural networks). The loss function is chosen as the mean squared338

relative error, in which the relative error is defined with respect to `2 norm as339

(4.1) ε =
||u− uNN ||`2
||u||`2

,340

where u is the target solution generated by a numerical discretization of the PDEs and uNN341

is the predicted solution by MNN. The optimization is performed using the NAdam optimizer342

[12]. The weights and biases in MNN are initialized randomly from the normal distribution343

and the batch size is always set between 1/100th and 1/50th of the number of train samples.344

In all the tests, the band size is chosen as nb,ad = 1 and n
(l)
b is 2 for l = 2 and 3 otherwise.345

The nonlinear activation function is chosen as ReLU. All the test are run on GPU with data346

type float32. All the numerical results are the best results by repeating the training a few347

times, using different random seeds. The selection of parameters r (number of channels), L348

(N = 2Lm) and K (number of layers in Algorithm 3) are problem dependent.349

4.2. NLSE with inhomogeneous background potential. The nonlinear Schrödinger equa-350

tion (NLSE) is widely used in quantum physics to describe the single particle properties of351

the Bose-Einstein condensation phenomenon [40, 2]. Here we study the NLSE with inhomo-352

geneous background potential V (x)353

(4.2)

−∆u(x) + V (x)u(x) + βu(x)3 = Eu(x), x ∈ [0, 1)d,

s.t.

∫
[0,1]d

u(x)2 dx = 1, and

∫
[0,1]d

u(x) dx > 0,
354

with period boundary condition, to find its ground state uG(x). We take a strongly nonlinear355

case β = 10 in this work and thus consider a defocusing cubic Schrödinger equation. Due356

to the cubic term, an iterative method is required to solve (4.2) numerically. We employ the357

method in [3] for the numerical solution, which solves a time-dependent NLSE by a normalized358

gradient flow. The MNN is used to learn the map from the background potential to the ground359

state360

(4.3) V (x)→ uG(x).361

This map is equivariant to translation, and thus MNN is implemented using the CNN layers.362

In the following, we study MNN on 1D and 2D cases, respectively.363

The potential V is chosen as364

(4.4) V (x) = −
ng∑
i=1

∞∑
j1,...,jd=−∞

ρ(i)

√
2πT

exp

(
−|x− j − c

(i)|2
2T

)
,365

where the periodic summation imposes periodicity on the potential, and the parameters ρ(i) ∼366

U(1, 4), c(i) ∼ U(0, 1)d, i = 1, . . . , ng and T ∼ U(2, 4)× 10−3.367

This manuscript is for review purposes only.

MULTISCALE NEURAL NETWORKS 15

4.2.1. One-dimensional case. For the one-dimensional case, the number of discretization368

points is N = 320, and we set L = 6 and m = N
2L

= 5. In all the tests, the number of test369

samples is the same as that the number of train samples if not properly specified. We perform370

numerical experiments to study the behavior of MNN for different number of channels r,371

different number of CK layers K, different number of Gaussians ng and different number of372

training samples N train
samples.373

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-25

-20

-15

-10

-5

0

0.9

0.95

1

1.05

1.1

1.15

 V

 u
G

 u
NN,1

 u
NN,5

0.3 0.32 0.34

1.115

1.12

1.125

x

V uG

Figure 8: An example of the potential V and its corresponding solution uG and predicted
solution uNN,K by MNN with r = 6, ng = 2.

N train
samples N test

samples Training error Validation error

500 5000 2.1e-4 2.4e-4

1000 5000 1.8e-4 2.0e-4

5000 5000 1.4e-4 1.5e-4

20000 20000 1.5e-4 1.5e-4

Table 1: Relative error in approximating the ground state of NLSE for different number of
samples N train

samplesfor 1D case with r = 6, K = 5 and ng = 2.

r Nparams Training error Validation error

2 1895 4.0e-4 4.0e-4

4 4555 2.0e-4 2.0e-4

6 8535 1.4e-4 1.5e-4

Table 2: Relative error in approximating the ground state of NLSE for different number of
channels r for 1D case with K = 5, ng = 2 and N train

samples= 5000.

This manuscript is for review purposes only.

16 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

K Nparams Training error Validation error

1 3343 7.5e-4 7.5e-4

3 5939 2.1e-4 2.1e-4

5 8535 1.4e-4 1.5e-4

Table 3: Relative error in approximating the ground state of NLSE for different number of
CK layers K for 1D case with r = 6, ng = 2 and N train

samples= 5000.

ng Training error Validation error

2 1.4e-4 1.5e-4

4 2.6e-4 2.7e-4

6 2.6e-4 2.6e-4

8 2.8e-4 2.9e-4

Table 4: Relative error in approximating the ground state of NLSE for different number of
Gaussians ng for 1D case with K = 5, r = 6 and N train

samples= 5000.

Usually, the number of samples should be greater than that of parameters to avoid over-374

fitting. But in neural network, it has been consistently found that the number of samples375

can be less than that of parameters [48, 49] We present the numerical results for different376

N train
sampleswith K = 5, r = 6 and ng = 2 in Table 1. In this case, the number of parameters377

is Nparams= 8535. There is no overfitting even N train
samples= 500, and the error is only slightly378

larger than that when N train
samples= 20000. For the case N train

samples= 5000, the error is close to that379

for N train
samples= 20000. This allows us to train MNN with N train

samples< Nparams. This feature is380

quite useful for high-dimensional case, because for high-dimensional case, Nparamsis usually381

very large and generating samples is expensive.382

Table 2 presents the numerical results for different number of channels (i.e. the rank of383

the H-matrix) r with K = 5, ng = 2 and N train
samples= 5000. As r increases, we find that the384

error first consistently decreases and then stagnates. We use r = 6 for the 1D NLSE below to385

balance between efficiency and accuracy.386

Similarly, Table 3 presents the numerical results for different number of CK layers K with387

r = 6, ng = 2 and N train
samples= 5000. The error consistently decreases with respect to the388

increase of K, as NN can represent increasingly more complex functions with respect to the389

depth of the network. However, after a certain threshold, adding more layers provides very390

marginal gains in accuracy. In practice, K = 5 is a good choice for the NLSE for 1D case.391

Table 4 presents the numerical results for different number of Gaussians in the potential392

V , for fixed K = 5, r = 6 and N train
samples=5000. Table 4 shows that within the class of input393

functions considered here, MNN is not sensitive to the complexity of the input. In particular,394

it shows that for the cases considered, increasing the number of wells only marginally increases395

the error.396

Across the results in Tables 2 to 4, the validation errors are very close to the corresponding397

This manuscript is for review purposes only.

MULTISCALE NEURAL NETWORKS 17

training errors, and no overfitting is observed. Figure 8 presents a sample for the potential398

V and its corresponding solution and prediction solution by MNN. The prediction solution399

agrees with the target solution very well.400

4.2.2. Two-dimensional case. For two-dimensional case, the number of discretization401

points is n = 80 × 80, and we set L = 4 and m = 5. In all the tests, the number of test402

data is same as that of the train data. We perform simulation to study the behavior of MNN403

for different number of channels r, different number of CK layers K and different number of404

Gaussians ng. As is discussed in 1D case, MNN allows N train
samples< Nparams. In all the tests, the405

number of samples is always 20000 and numerical test shows no overfitting for all the test.406

0.95

1

1

1

1.05

0.8

1.1

0.5 0.6

1.15

0.4

0.2
0 0

(a) uNN

-2

1

-1

1

0

10
-3

0.8

1

0.5 0.6

2

0.4

0.2
0 0

(b) uG − uNN

Figure 9: Prediction solution of MNN for K = 5, r = 6 and ng = 2 and its error with respect
to the reference solution.

r Nparams Training error Validation error

2 33371 4.9e-4 4.9e-4

6 57323 1.5e-4 1.5e-4

10 100955 1.4e-4 1.4e-4

Table 5: Relative error in approximating the ground state of NLSE for different number of
channels r for 2D case with K = 5, ng = 2 and N train

samples= 20000.

Tables 5 and 6 present the numerical results for different number of channels r and different407

number of CK layers K, respectively. We find that similar to the 1D case, the choice of408

parameters r = 6 and K = 5 also yield accurate results in the 2D case. Table 7 presents the409

numerical results for different number of Gaussians in the potential V for K = 5, r = 6 and410

N train
samples=20000. We can find that MNN is also not sensitive to the complexity of the number411

of Gaussians. Figure 9 presents the prediction of a sample and its corresponding error with412

respect to the reference.413

This manuscript is for review purposes only.

18 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

K Nparams Training error Validation error

1 16939 6.9e-4 7.0e-4

3 37131 2.1e-4 2.1e-4

5 57323 1.5e-4 1.5e-4

7 77515 1.4e-4 1.4e-4

Table 6: Relative error in approximating the ground state of NLSE for different number of
CK layers K for 2D case with r = 6, ng = 2 and N train

samples= 20000.

ng Training error Validation error

2 1.5e-4 1.5e-4

4 1.5e-4 1.5e-4

6 2.4e-4 2.4e-4

8 2.2e-4 2.2e-4

Table 7: Relative error in approximating the ground state of NLSE for different number of
Gaussians ng for the 2D case with r = 6, K = 5 and N train

samples= 20000.

4.3. Kohn-Sham map. Kohn-Sham density functional theory [26, 30] is the most widely414

used electronic structure theory. It requires the solution of the following set of nonlinear415

eigenvalue equations (real arithmetic assumed for all quantities):416 (
−1

2
∆ + V [ρ](x)

)
ψi(x) = εiψi(x), x ∈ Ω = [−1, 1)d∫

Ω
ψi(x)ψj(x) dx = δij , ρ(x) =

ne∑
i=1

|ψi(x)|2.
(4.5)417

Here ne is the number of electrons (spin degeneracy omitted), d is the spatial dimension,418

and δij stands for the Kronecker delta. In addition, all eigenvalues {εi} are real and ordered419

non-decreasingly, and ρ(x) is the electron density, which satisfies the constraint420

(4.6) ρ(x) ≥ 0,

∫
Ω
ρ(x) dx = ne.421

The Kohn-Sham equations (4.5) need to be solved self-consistently, which can also viewed as422

solving the following fixed point map423

(4.7) ρ = FKS[V [ρ]].424

Here the mapping FKS[·] from V to ρ is called the Kohn-Sham map, which for a fixed potential425

is reduced to a linear eigenvalue problem, and it constitues the most computationally intensive426

step for solving (4.5). We seek to approximate the Kohn-Sham map using a multiscale neural427

network, whose output was regularized so it satisfies (4.6).428

This manuscript is for review purposes only.

MULTISCALE NEURAL NETWORKS 19

r Nparams Training error Validation error

2 2117 6.7e-4 6.7e-4

4 5183 3.3e-4 3.4e-4

6 9833 2.8e-4 2.8e-4

8 16067 3.3e-4 3.3e-4

10 33013 1.8e-4 1.9e-4

Table 8: Relative error on the approximation of the Kohn-Sham map for different r, with
K = 6, N train

samples=16000, and N test
samples=4000.

In the following numerical experiments the potential, V , is given by429

(4.8) V (x) = −
ng∑
i=1

∑
j∈Zd

ci exp

(
−(x− ri − 2j)2

2σ2

)
, x ∈ [−1, 1)d,430

where d is the dimension and ri ∈ [−1, 1)d. We set σ = 0.05 for 1D and σ = 0.2 for 2D case.431

The coefficients ci are randomly chosen following the uniform distribution U([0.8, 1.2]), and the432

centers of the Gaussian wells ri, are chosen randomly under the constraint that |ri−ri′ | > 2σ.433

The Kohn-Sham map is discretized using a pseudo-spectral method [46], and solved by a434

standard eigensolver.435

4.3.1. One-dimensional case. We generated 7 data sets using different number of wells,436

ng, which in this case is also equal to the number of electrons ne, ranging from 2 to 8. The437

number of discretization points is N = 320. We trained the architecture defined in section 3438

for each ng, setting the number of levels L = 6, using different values for r and K.439

Table 8 shows that there is no overfitting, even at this level of accuracy and number of440

parameters. This behavior is found in all the numerical examples, thus we only report the441

test error in what follows.442

From Table 9 we can observe that as we increase r the error decreases sharply. Figure 10443

depict this behavior. In Figure 10 we have that if r = 2, then the network output ρNN , fails to444

approximate ρ accurately; however, by modestly increasing r, the network is able to properly445

approximate ρ.446

However, the accuracy of the network stagnates rapidly. In fact, increasing r beyond 10447

does not provide any considerable gains. In addition, Table 9 shows that the accuracy of the448

network is agnostic to the number of Gaussian wells present in the system.449

In addition, we studied the relation between the quality of the approximation and K. We450

fixed r = 6, and we trained several networks using different values of K, ranging from 2, i.e.,451

a very shallow network, to 10. The results are summarized in Table 10. We can observe that452

the error decreases sharply as the depth of the network increases, and then stagnates as K453

becomes large.454

4.3.2. Two-dimensional case. The discretization is the standard extension to 2D using455

tensor products, using a 64 × 64 grid. In this case we only used ng = 2 and we followed the456

same number of training and test samples as that in the 1D case. We fixed K = 6, L = 4,457

This manuscript is for review purposes only.

20 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

ng\r 2 4 6 8 10

2 6.7e-4 3.3e-4 2.8e-4 3.3e-4 1.8e-4

3 7.3e-4 3.6e-4 3.0e-4 2.0e-4 2.8e-4

4 8.5e-4 4.1e-4 2.9e-4 3.8e-4 2.4e-4

5 9.0e-4 5.9e-4 4.0e-4 3.6e-4 3.6e-4

6 6.3e-4 4.8e-4 3.8e-4 4.0e-4 4.2e-4

7 8.6e-4 5.5e-4 3.9e-4 3.7e-4 3.5e-4

8 1.2e-3 5.1e-4 3.7e-4 4.5e-4 3.7e-4

Table 9: Relative test error on the approximation of the Kohn-Sham map for different ranks
r, with fixed K = 6 and N train

samples=16000.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4
ρ
ρNN r = 2

ρNN r = 6

−0.08 −0.06 −0.04 −0.02

0.2

0.3

0.4

0.00 0.05 0.10
0.0

0.1

Figure 10: Estimation using two different multiscale networks with r = 2, and r = 6; with
K = 6, and L = 5 fixed.

and we trained the network for different number of channels, r. The results are displayed in458

Table 11, which shows the same behavior as for the 1D case, in which the error decays sharply459

and then stagnates, and there is no overfitting. In particular, the network is able to effectively460

approximate the Kohn-Sham map as shown in Figure 11. Figure 11a shows the output of461

neural network for a test sample and Figure 11b shows the approximation error with respect462

to the reference.463

5. Conclusion. We have developed a multiscale neural network (MNN) architecture for464

approximating nonlinear mappings, such as those arising from the solution of integral equa-465

tions (IEs) or partial differential equations (PDEs). In order to control the number of param-466

eters, we first rewrite the widely used hierarchical matrix into the form of a neural network,467

which mainly consists of three sub-networks: restriction network, kernel network, and interpo-468

lation network. The three sub-networks are all linear, and correspond to the components of a469

singular value decomposition. We demonstrate that such structure can be directly generalized470

to nonlinear problems, simply by replacing the linear kernel network by a multilayer kernel471

network with nonlinear activation functions. Such “nonlinear singular value decomposition472

operation” is performed at different spatial scales, which can be efficiently implemented by473

a number of locally connected (LC) networks, or convolutional neural networks (CNN) when474

the mapping is equivariant to translation. Using the parameterized nonlinear Schrödinger475

This manuscript is for review purposes only.

MULTISCALE NEURAL NETWORKS 21

ng\K 2 4 6 8 10

2 1.4e-3 3.1e-4 2.8e-4 3.5e-4 2.3e-4

3 2.0e-3 5.4e-4 3.0e-4 5.6e-4 5.3e-4

4 1.9e-3 5.8e-4 2.8e-4 6.0e-4 7.1e-4

5 1.8e-3 7.2e-4 4.0e-4 8.0e-4 7.4e-4

6 2.1e-3 7.3e-4 3.8e-4 6.7e-4 6.7e-4

7 2.2e-3 7.9e-4 3.8e-4 7.4e-4 5.8e-4

8 2.0e-3 8.8e-4 3.7e-4 6.7e-4 6.8e-4

Table 10: Relative test error on the approximation of the Kohn-Sham map for different K
and fixed rank r = 6, and N train

samples= 16000.

r Training error Validation error

4 5.2e-3 5.2e-3

6 1.6e-3 1.7e-3

8 1.2e-3 1.1e-3

10 9.1e-4 9.3e-4

Table 11: Relative errors on the approximation of the Kohn-Sham map for 2D case for different
r and K = 6, N train

samples=16000 and N test
samples=4000.

equation and the Kohn-Sham map as examples, we find that MNN can yield accurate ap-476

proximation to such nonlinear mappings. When the mapping has N degrees of freedom, the477

complexity of MNN is only O(N logN). Thus the resulting MNN can be further used to478

accelerate the evaluation of the mapping, especially when a large number of evaluations are479

needed within a certain range of parameters.480

In this work, we only provide one natural architecture of multiscale neural network based481

on hierarchical matrices. The architecture can be altered depending on the target application.482

Some of the possible modifications and extensions are listed below. 1) In this work, the neural483

network is inspired by a hierarchical matrix with a special case of strong admissible condition.484

One can directly construct architectures for H-matrices with the weak admissible condition,485

as well as other structures such as the fast multiple methods, H2-matrices and wavelets. 2)486

The input, u, and output, v, in this work are periodic. The network can be directly extended487

to the non-periodic case, by replacing the periodic padding in LCK by some other padding488

functions. One may also explore the mixed usage of LC networks and CNNs in different489

components of the architecture. 3) The matrices A(ad) and M (`) can be block-partitioned in490

different ways, which would result in different setups of parameters in the LCK layers. 4) The491

LCR and LCI networks in Algorithm 3 can involve nonlinear activation functions as well and492

can be extended to networks with more than one layer. 5) The LCK network in Algorithm493

3 can be replaced by other architectures. In principle, for each scale, these LCK layers can494

be altered to any network, for example the sum of two parallel subnetworks, or the ResNet495

structure[24]. 6) It is known thatH-matrices can well approximate smooth kernels but become496

This manuscript is for review purposes only.

22 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

0

1

0.05

1

0.1

0

0.15

0

-1 -1

(a) ρNN

-2

1

-1

1

0

10
-4

1

0

2

0

-1 -1

(b) |ρNN − ρ|

Figure 11: (a) Output of the trained network on a test sample for K = 6, and α = 10; (b)
error with respect to the reference solution.

less efficient for highly oscillatory kernels, such as those arising from the Helmholtz operator497

in the high frequency regime. The range of applicability of the MNN remains to be studied498

both theoretically and numerically.499

Acknowledgements. The authors thank Yuehaw Khoo for constructive discussions.500

REFERENCES501

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,502
M. Isard, et al., Tensorflow: A system for large-scale machine learning., in OSDI, vol. 16, 2016,503
pp. 265–283.504

[2] J. R. Anglin and W. Ketterle, Bose–Einstein condensation of atomic gases, Nature, 416 (2002),505
p. 211.506

[3] W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized507
gradient flow, SIAM Journal on Scientific Computing, 25 (2004), pp. 1674–1697.508

[4] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ‘empirical interpolation’ method:509
application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus510
Mathematique, 339 (2004), pp. 667 – 672, https://doi.org/10.1016/j.crma.2004.08.006.511

[5] J. Berg and K. Nyström, A unified deep artificial neural network approach to partial differential512
equations in complex geometries, arXiv preprint arXiv:1711.06464, (2017).513

[6] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with applications,514
Engineering analysis with boundary elements, 27 (2003), pp. 405–422.515

[7] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation, 31516
(1977), pp. 333–390.517

[8] S. Chan and A. H. Elsheikh, A machine learning approach for efficient uncertainty quantification using518
multiscale methods, Journal of Computational Physics, 354 (2018), pp. 493 – 511, https://doi.org/10.519
1016/j.jcp.2017.10.034.520

[9] P. Chaudhari, A. Oberman, S. Osher, S. Soatto, and G. Carlier, Partial differential equations for521
training deep neural networks, in 2017 51st Asilomar Conference on Signals, Systems, and Computers,522
Oct 2017, pp. 1627–1631, https://doi.org/10.1109/ACSSC.2017.8335634.523

[10] F. Chollet et al., Keras. https://keras.io, 2015.524

This manuscript is for review purposes only.

https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1016/j.jcp.2017.10.034
https://doi.org/10.1016/j.jcp.2017.10.034
https://doi.org/10.1016/j.jcp.2017.10.034
https://doi.org/10.1109/ACSSC.2017.8335634
https://keras.io

MULTISCALE NEURAL NETWORKS 23

[11] N. Cohen, O. Sharir, and A. Shashua, On the expressive power of deep learning: A tensor analysis,525
arXiv preprint arXiv:1603.00988, (2018).526

[12] T. Dozat, Incorporating nesterov momentum into adam, 2015.527
[13] W. E, J. Han, and A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic528

partial differential equations and backward stochastic differential equations, Communications in Math-529
ematics and Statistics, 5 (2017), pp. 349–380, https://doi.org/10.1007/s40304-017-0117-6.530

[14] Y. Efendiev, J. Galvis, G. Li, and M. Presho, Generalized multiscale finite element methods.531
nonlinear elliptic equations, Communications in Computational Physics, 15 (2014), pp. 733–755,532
https://doi.org/10.4208/cicp.020313.041013a.533

[15] Y. Efendiev and T. Hou, Multiscale finite element methods for porous media flows and their applica-534
tions, Applied Numerical Mathematics, 57 (2007), pp. 577 – 596, https://doi.org/10.1016/j.apnum.535
2006.07.009. Special Issue for the International Conference on Scientific Computing.536

[16] M. Fenn and G. Steidl, FMM and H-matrices: a short introduction to the basic idea, Tech. Report537
TR-2002-008, Department for Mathematics and Computer Science, University of Mannheim, 2002,538
https://ub-madoc.bib.uni-mannheim.de/744/1/TR-02-008.pdf.539

[17] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of computational540
physics, 73 (1987), pp. 325–348.541

[18] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera, Efficient reduced-basis treatment of non-542
affine and nonlinear partial differential equations, ESAIM: Mathematical Modelling and Numerical543
Analysis, 41 (2007), p. 575–605, https://doi.org/10.1051/m2an:2007031.544

[19] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. part I: Introduction to H-matrices,545
Computing, 62 (1999), pp. 89–108.546

[20] W. Hackbusch, L. Grasedyck, and S. Börm, An introduction to hierarchical matrices, Math. Bohem.,547
127 (2002).548

[21] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic: general complexity estimates,549
Journal of Computational and Applied Mathematics, 125 (2000), pp. 479–501.550

[22] K. He and J. Sun, Convolutional neural networks at constrained time cost, 2015 IEEE Conference on551
Computer Vision and Pattern Recognition (CVPR), (2015), pp. 5353–5360.552

[23] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2016 IEEE553
Conference on Computer Vision and Pattern Recognition (CVPR), (2016), pp. 770–778.554

[24] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of555
the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.556

[25] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,557
P. Nguyen, T. N. Sainath, and B. Kingsbury, Deep neural networks for acoustic modeling in558
speech recognition: The shared views of four research groups, IEEE Signal Processing Magazine, 29559
(2012), pp. 82–97, https://doi.org/10.1109/MSP.2012.2205597.560

[26] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical review, 136 (1964), p. B864.561
[27] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, 4 (1991),562

pp. 251–257, https://doi.org/10.1016/0893-6080(91)90009-T.563
[28] Y. Khoo, J. Lu, and L. Ying, Solving parametric PDE problems with artificial neural networks, arXiv564

preprint arXiv:1707.03351, (2017).565
[29] N. Kishore Kumar and J. Schneider, Literature survey on low rank approximation of matrices, Linear566

and Multilinear Algebra, 65 (2017), pp. 2212–2244.567
[30] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical568

review, 140 (1965), p. A1133.569
[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neu-570

ral networks, in Proceedings of the 25th International Conference on Neural Information Processing571
Systems - Volume 1, NIPS’12, USA, 2012, Curran Associates Inc., pp. 1097–1105.572

[32] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015).573
[33] M. K. K. Leung, H. Y. Xiong, L. J. Lee, and B. J. Frey, Deep learning of the tissue-regulated splicing574

code, Bioinformatics, 30 (2014), pp. i121–i129, https://doi.org/10.1093/bioinformatics/btu277.575
[34] Y. Li, X. Cheng, and J. Lu, Butterfly-Net: Optimal function representation based on convolutional576

neural networks, arXiv preprint arXiv:1805.07451, (2018).577
[35] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from matrix–vector578

This manuscript is for review purposes only.

https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.4208/cicp.020313.041013a
https://doi.org/10.1016/j.apnum.2006.07.009
https://doi.org/10.1016/j.apnum.2006.07.009
https://doi.org/10.1016/j.apnum.2006.07.009
https://ub-madoc.bib.uni-mannheim.de/744/1/TR-02-008.pdf
https://doi.org/10.1051/m2an:2007031
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1093/bioinformatics/btu277

24 Y. FAN, L. LIN, L. YING AND L. ZEPEDA-NÚÑEZ

multiplication, Journal of Computational Physics, 230 (2011), pp. 4071–4087.579
[36] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, Deep neural nets as a method580

for quantitative structure–activity relationships, Journal of Chemical Information and Modeling, 55581
(2015), pp. 263–274, https://doi.org/10.1021/ci500747n. PMID: 25635324.582

[37] Y. Maday, O. Mula, and G. Turinici, Convergence analysis of the generalized empirical interpolation583
method, SIAM Journal on Numerical Analysis, 54 (2016), pp. 1713–1731, https://doi.org/10.1137/584
140978843.585

[38] S. Mallat, A wavelet tour of signal processing: the sparse way, in A wavelet tour of signal processing: the586
sparse way, Academic press, Boston, third ed., 2008, https://doi.org/10.1016/B978-0-12-374370-1.587
50001-9.588

[39] H. Mhaskar, Q. Liao, and T. Poggio, Learning functions: When is deep better than shallow, arXiv589
preprint arXiv:1603.00988, (2018).590

[40] L. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, 13 (1961), pp. 451–454.591
[41] M. Raissi and G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear partial592

differential equations, Journal of Computational Physics, 357 (2018), pp. 125 – 141, https://doi.org/593
10.1016/j.jcp.2017.11.039.594

[42] K. Rudd, G. D. Muro, and S. Ferrari, A constrained backpropagation approach for the adaptive solu-595
tion of partial differential equations, IEEE Transactions on Neural Networks and Learning Systems,596
25 (2014), pp. 571–584, https://doi.org/10.1109/TNNLS.2013.2277601.597

[43] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 61 (2015), pp. 85 –598
117, https://doi.org/10.1016/j.neunet.2014.09.003.599

[44] K. Spiliopoulos and J. Sirignano, Dgm: A deep learning algorithm for solving partial differential600
equations, arXiv preprint arXiv:1708.07469, (2018).601

[45] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural networks, in602
Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes,603
N. D. Lawrence, and K. Q. Weinberger, eds., Curran Associates, Inc., 2014, pp. 3104–3112.604

[46] L. Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics, 2000,605
https://doi.org/10.1137/1.9780898719598.606

[47] Y. Wang, C. W. Siu, E. T. Chung, Y. Efendiev, and M. Wang, Deep multiscale model learning,607
arXiv preprint arXiv:1806.04830, (2018).608

[48] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep learning requires609
rethinking generalization, arXiv:1611.03530, (2016).610

[49] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian denoiser: Residual learning611
of deep CNN for image denoising, IEEE Transactions on Image Processing, 26 (2017), pp. 3142–3155.612

[50] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Deepcg: constructing coarse-grained models via deep613
neural networks, arXiv preprint arXiv:1802.08549, (2018).614

[51] L. Zhang, H. Wang, and W. E, Adaptive coupling of a deep neural network potential to a classical force615
field, arXiv preprint arXiv:1806.01020, (2018).616

This manuscript is for review purposes only.

https://doi.org/10.1021/ci500747n
https://doi.org/10.1137/140978843
https://doi.org/10.1137/140978843
https://doi.org/10.1137/140978843
https://doi.org/10.1016/B978-0-12-374370-1.50001-9
https://doi.org/10.1016/B978-0-12-374370-1.50001-9
https://doi.org/10.1016/B978-0-12-374370-1.50001-9
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1109/TNNLS.2013.2277601
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1137/1.9780898719598

	Introduction
	Related work
	Organization

	Neural network architecture for H-matrices
	H-matrices
	Matrix-vector multiplication as a neural network
	Locally connected networks
	Neural network representation

	Multi-dimensional case

	Multiscale neural network
	Algorithm and architecture
	Translation-invariant case

	Numerical results
	Implementation
	NLSE with inhomogeneous background potential
	One-dimensional case
	Two-dimensional case

	Kohn-Sham map
	One-dimensional case
	Two-dimensional case

	Conclusion

