Fall 2016 Math 2B - Midterm I

Name :

Student ID \# :

Seat :

I certify that this exam was taken by the person named and done without any form of assistance including books, notes, calculators and other people.

Signature :

1		2			
3		4			
5		6			
Total					

- This exam consists of 6 problems.
- Read directions for each problem carefully.
- Please show all work needed to arrive at your solutions.
- Justify all your answers.

Problem 1:

1) Below is the graph of the function f. Let $g(x)=\int_{0}^{x} f(t) d t$ for all x in $[0,5]$.

(a) On which interval is g decreasing? Justify your answer.
(b) Where does g reach its minimum on the interval $[0,5]$? Give the value of g at this point.
2) Evaluate the following $\frac{d}{d x}\left(\int_{\frac{1}{x}}^{2 x} \cos \left(t^{2}\right) d t\right)$.

Problem 2: (a) Use the midpoint rule with 3 equal subintervals to approximate

$$
\int_{1}^{7} \frac{x^{2}}{4}+1 d x
$$

(b) Express the previous integral as a limit of a Riemann sum. Do not evaluate the sum.

Problem 3: Evaluate the following integrals.
(a) $\int_{0}^{1} \frac{x}{x^{2}-2} d x$.
[5 pts.]
(b) $\int \frac{\sqrt{\tan x+1}}{\cos ^{2} x} d x$.
[5 pts.]

Problem 4 : Find the average value of the function $f(x)=e^{3 x+1}$ on $\left[0, \frac{1}{3}\right]$. [5 pts.]

Problem 5: A particle moves along a line and has velocity $v(t)=2 \cos t-1$, for all $t \geq 0$. Evaluate the total distance traveled by the particle between the times $t=0$ and $t=\frac{\pi}{2}$, that is $\int_{0}^{\frac{\pi}{2}}|v(t)| d t$.

Problem 6: Let \mathcal{S} be the region bounded by the curve $y=\sqrt{2 x}$ and the line $y=x$. 1) Compute the area of \mathcal{S}.

[^0](b) Set up an integral to find the volume of the solid obtained by revolving \mathcal{S} about the line $x=3$. (You do not need to evaluate it.)

[^0]: 2) (a) Find the volume of the solid obtained by revolving \mathcal{S} about the x-axis. [6 pts.]
