Fall 2016 Math 2B
 Suggested Homework Problems Solutions

Antiderivatives

Exercise 2: For all $x \in]-\infty,+\infty[$, the most general antiderivative of f is given by :

$$
F(x)=\left(\frac{x^{3}}{3}\right)-3\left(\frac{x^{2}}{2}\right)+2 x+C=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+2 x+C .
$$

Exercise 4: For all $x \in]-\infty,+\infty[$, the most general antiderivative of f is given by :

$$
F(x)=6\left(\frac{x^{6}}{6}\right)-8\left(\frac{x^{5}}{5}\right)-9\left(\frac{x^{3}}{3}\right)+C=x^{6}-\frac{8}{5} x^{5}-3 x^{3}+C .
$$

Exercise 8 : For all $x \in[0,+\infty[$, the most general antiderivative of f is given by :

$$
F(x)=\frac{x^{4.4}}{4.4}-2\left(\frac{x^{\sqrt{2}}}{\sqrt{2}}\right)+C=\frac{5}{22} x^{4.4}-\sqrt{2} x^{\sqrt{2}}+C .
$$

Exercise 9: For all $x \in]-\infty,+\infty[$, the most general antiderivative of f is given by :

$$
F(x)=\sqrt{2} x+C
$$

Exercise 11: For all $x \in[0,+\infty[$, the most general antiderivative of f is given by :

$$
F(x)=3\left(\frac{2}{3} x^{3 / 2}\right)-2\left(\frac{3}{4} x^{4 / 3}\right)+C=2 x^{3 / 2}-\frac{3}{2} x^{4 / 3}+C .
$$

Exercise 13 : The most general antiderivative of f is given by :

$$
F(x)=\left\{\begin{array}{l}
\frac{1}{5} x-2 \ln |x|+C_{1}, \text { if } \mathrm{x}<0, \\
\frac{1}{5} x-2 \ln |x|+C_{2}, \text { if } \mathrm{x}>0 .
\end{array}\right.
$$

Exercise 15 : For all $t \in] 0,+\infty[$, the most general antiderivative of g is given by:

$$
G(t)=2 t^{1 / 2}+\frac{2}{3} t^{3 / 2}+\frac{2}{5} t^{5 / 2}+C .
$$

Exercise 17 : For all $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}$ [, the most general antiderivative of h is given by:

$$
H(\theta)=-2 \cos (\theta)+\tan (\theta)+C
$$

Exercise 19: For all $x \in]-\infty,+\infty[$, the most general antiderivative of f is given by

$$
F(x)=\frac{2^{x}}{\ln 2}+4 \cosh (x)+C
$$

Exercise 22 : We can rewrite the expression of f as follows :

$$
f(x)=\frac{2 x^{2}+5}{x^{2}+1}=\frac{2\left(x^{2}+1\right)+3}{x^{2}+1}=2+\frac{3}{x^{2}+1}
$$

Then $F(x)=2 x+3 \tan ^{-1}(x)+C$.
Exercise 27: For all $x \in]-\infty,+\infty\left[\right.$, the most general antiderivative of $f^{\prime \prime}$ is given by: $f^{\prime}(x)=x^{2}+3 e^{x}+C$.
For all $x \in]-\infty,+\infty\left[\right.$, the most general antiderivative of f^{\prime} is given by :

$$
f(x)=\frac{x^{3}}{3}+3 e^{x}+C x+D
$$

Exercise 33 : For all $x \in]-\infty,+\infty\left[\right.$, the most general antiderivative of f^{\prime} is given by:

$$
f(x)=4 \tan ^{-1}(x)+C
$$

We plug in 1 into this expression to get

$$
f(1)=4 \tan ^{-1}(1)+C=4 \frac{\pi}{4}+C=\pi+C
$$

Thus the condition $f(1)=0$ gives us $C=-\pi$ and for all $x \in]-\infty,+\infty[$

$$
f(x)=4 \tan ^{-1}(x)-\pi
$$

Exercise 38 : An antiderivative of f^{\prime} has the following general form

$$
f(t)=\left\{\begin{array}{l}
\frac{3^{t}}{\ln 3}-3 \ln |t|+C_{1}, \text { if } t<0 \\
\frac{3^{t}}{\ln 3}-3 \ln |t|+C_{2}, \text { if } t>0
\end{array}\right.
$$

We use the condition $f(-1)=1$ to determine the constant C_{1}. Thanks to the general form of f, we have

$$
f(-1)=\frac{3^{-1}}{\ln 3}-3 \ln |-1|+C_{1}=\frac{1}{3 \ln 3}+C_{1}
$$

So $C_{1}=-\frac{1}{3 \ln 3}$.
We use the condition $f(1)=2$ to determine the constant C_{2}. Thanks to the general form of f, we have

$$
f(1)=\frac{3^{1}}{\ln 3}-3 \ln |1|+C_{2}=\frac{3}{\ln 3}+C_{2} .
$$

So $C_{2}=2-\frac{3}{\ln 3}$.
Thus

$$
f(t)=\left\{\begin{array}{c}
\frac{3^{t}}{\ln 3}-3 \ln |t|-\frac{1}{3 \ln 3}, \text { if } t<0 \\
\frac{3^{t}}{\ln 3}-3 \ln |t|+2-\frac{3}{\ln 3}, \text { if } t>0
\end{array}\right.
$$

Exercise 47 : An antiderivative of $f^{\prime \prime}$ has the following general form

$$
f^{\prime}(x)=-\frac{1}{x}+C
$$

for all $x \in] 0,+\infty[$.
For all $x \in] 0,+\infty\left[\right.$, the most general antiderivative of f^{\prime} is given by :

$$
f(x)=-\ln |x|+C x+D=-\ln (x)+C x+D
$$

We use the conditions $f(1)=0$ and $f(2)=0$ to determine the constants C and D. Thanks to the general form of f, we have

$$
f(1)=-\ln (1)+C \times 1+D=C+D, \quad f(2)=-\ln (2)+C \times 2+D .
$$

The first condition gives us $C=-D$.
We plug this in the second and get : $-\ln (2)-D=0$.
So we have finally : $C=\ln (2), D=-\ln (2)$ and $f(x)=-\ln (x)+\ln (2) x-\ln (2)$ for all $x>0$.

Exercise 62 : The velocity has the following general form :

$$
v(t)=3 \sin (t)+2 \cos (t)+C
$$

for all $t>0$. We use the initial condition $v(0)=4$ on the velocity to determine C. Thanks to the general form of v, we have $v(0)=3 \sin (0)+2 \cos (0)+C=2+C$. So $C=2$ and

$$
v(t)=3 \sin (t)+2 \cos (t)+2
$$

for all $t>0$. The position has the following general form :

$$
s(t)=-3 \cos (t)+2 \sin (t)+2 t+D
$$

for all $t>0$. We use the initial condition $s(0)=0$ on the position to determine D. Thanks to the general form of s, we have $s(0)=-3 \cos (0)+2 \sin (0)+2 \times 0+D=$ $-3+D$. So $D=3$ and

$$
s(t)=-3 \cos (t)+2 \sin (t)+2 t+3
$$

for all $t>0$.
Exercise 68 : Let s_{1} and s_{2} be the altitudes of the first and second ball. Let v_{1} and v_{2} be the velocities of the first and second ball. Both balls have a negative constant acceleration equal to -32 . The velocities have the following general forms :

$$
\begin{aligned}
& v_{1}(t)=-32 t+C_{1}, \text { for all } t>0, \\
& v_{2}(t)=-32 t+C_{2}, \text { for all } t>1
\end{aligned}
$$

We use the initial conditions $v_{1}(0)=48$ and $v_{2}(1)=24$ to determine C_{1} and C_{2}. Thanks to the general forms of v_{1} and v_{2}, we have :

$$
\begin{gathered}
v_{1}(0)=C_{1}, \\
v_{2}(1)=-32+C_{2} .
\end{gathered}
$$

So $C_{1}=48$ and $C_{2}=56$, and

$$
\begin{aligned}
& v_{1}(t)=-32 t+48, \text { for all } t>0, \\
& v_{2}(t)=-32 t+56, \text { for all } t>1
\end{aligned}
$$

The positions of the two balls have the following general forms :

$$
\begin{aligned}
& s_{1}(t)=-32\left(\frac{t^{2}}{2}\right)+48 t+D_{1}, \text { for all } t>0 \\
& s_{2}(t)=-32\left(\frac{t^{2}}{2}\right)+56 t+D_{2}, \text { for all } t>1
\end{aligned}
$$

We use the initial conditions $s_{1}(0)=432$ and $s_{2}(1)=432$ to determine D_{1} and D_{2}. Thanks to the general forms of s_{1} and s_{2}, we have :

$$
\begin{gathered}
s_{1}(0)=D_{1} \\
s_{2}(1)=-\frac{32}{2}+56+D_{2}=40+D_{2}
\end{gathered}
$$

So $D_{1}=432$ and $D_{2}=432-40=392$, and

$$
\begin{aligned}
& s_{1}(t)=-32\left(\frac{t^{2}}{2}\right)+48 t+432, \text { for all } t>0, \\
& s_{2}(t)=-32\left(\frac{t^{2}}{2}\right)+56 t+392, \text { for all } t>1
\end{aligned}
$$

The balls pass each other if there exits $t>1$ such that $s_{1}(t)=s_{2}(t)$ that is:

$$
-32\left(\frac{t^{2}}{2}\right)+48 t+432=-32\left(\frac{t^{2}}{2}\right)+56 t+392
$$

Or $48 t+432=56 t+392$, that is $8 t=40$ and $t=5$.
The balls pass each other at $t=5 \mathrm{~s}$.
Exercise 78 : (a)The acceleration of the rocket verifies :

$$
\begin{array}{ll}
a(t)=60 t, & \text { for all } 0 \leq t \leq 3 \\
a(t)=-32, & \text { for all } 3 \leq t \leq 17
\end{array}
$$

Therefore the velocity has the following general form :

$$
\begin{array}{ll}
v(t)=30 t^{2}+C_{1}, & \text { for all } 0 \leq t \leq 3 \\
v(t)=-32 t+C_{2}, & \text { for all } 3 \leq t \leq 17
\end{array}
$$

We use the initial condition $v(0)=0$ to determine C_{1}, and get $C_{1}=0$. We use the continuity of the velocity at time $t=3$ to find C_{2}. The first expression of the velocity gives us $v(3)=30 \times 3^{2}=270$. The second expression of the velocity gives us $v(3)=-32 \times 3+C_{2}$. Therefore we have $C_{2}=32 \times 3+270$ and

$$
\begin{array}{ll}
v(t)=30 t^{2}, & \text { for all } 0 \leq t \leq 3 \\
v(t)=-32(t-3)+270, & \text { for all } 3 \leq t \leq 17
\end{array}
$$

At $t=17 \mathrm{~s}$, the second expression gives us $v(17)=-32 \times 14+270=-178 \mathrm{ft} / \mathrm{s}$. Then the rocket slows linearly to $-18 \mathrm{ft} / \mathrm{s}$ in 5 s . So for $17<t<22$,

$$
v(t)=\frac{-18+178}{5}(t-17)-178=32(t-17)-178 .
$$

We have therefore :

$$
\begin{array}{ll}
v(t)=30 t^{2}, & \text { for all } 0 \leq t \leq 3, \\
v(t)=-32(t-3)+270, & \text { for all } 3 \leq t \leq 17, \\
v(t)=32(t-17)-178, & \text { for all } 17 \leq t \leq 22 \\
v(t)=-18, & \text { for all } t \geq 22
\end{array}
$$

The position has then the following general expression :

$$
\begin{array}{ll}
s(t)=10 t^{3}+D_{1}, & \text { for all } 0 \leq t \leq 3 \\
s(t)=-16(t-3)^{2}+270 t+D_{2}, & \text { for all } 3 \leq t \leq 17 \\
s(t)=16(t-17)^{2}-178 t+D_{3}, & \text { for all } 17 \leq t \leq 22 \\
s(t)=-18 t+D_{4}, & \text { for all } t \geq 22
\end{array}
$$

We use the initial condition $s(0)=0$ to determine D_{1}, and get $D_{1}=0$. We use the continuity of the position at time $t=3$,time $t=17$ and time $t=22$ to find D_{2}, D_{3} and D_{4}. The first expression of the position gives us $s(3)=10 \times 3^{3}=270$. The second expression of the position gives us $s(3)=270 \times 3+D_{2}$. Therefore we have $D_{2}=-270 \times 3+270$. and for all $3 \geq t \geq 17$,

$$
s(t)=-16(t-3)^{2}+270(t-3)+270
$$

The second expression of the position gives us $s(17)=-16 \times 14^{2}+270 \times 14+$ $270=914$. Hence $D_{3}=178 \times 17+914$. and $17 \geq t \geq 22$,

$$
s(t)=16(t-17)^{2}-178(t-17)+914
$$

The third expression of the velocity gives us $s(22)=424$ and thus for all $t \leq 22$,

$$
s(t)=-18(t-22)+424
$$

(b) The rocket reaches its maximum height when its velocity is zero for the first time. Let t_{m} be the time for which the rocket reach this maximum height. We know that $v(3)=270$ and $v(17)=-178$. So $3 \leq t_{m} \leq 17$, and t_{m} verifies

$$
-32\left(t_{m}-3\right)+270=0
$$

We hence obtain $t_{m}=231 / 32 \approx 11.4$ s. The maximum height that the rocket reaches is then $s\left(t_{m}\right)=-16\left(t_{m}-3\right)^{2}+270\left(t_{m}-3\right)+270 \approx 1409.1 \mathrm{ft}$.
(c) The rocket lands when its position reaches zero. Let t_{l} be the landing time of the rocket. We know that $s(22)>0$ so $t_{l}>0$ and we have

$$
-18\left(t_{l}-22\right)+424=0 .
$$

That is $t_{l}=424 / 18+22 \approx 45.6 \mathrm{~s}$.

