Practice Final 1

by Nikki Fider and Anton Butenko

December 3, 2014

1. Estimate the area under $f(x)=\sin (x)$ on the interval $[0, \pi]$ by computing the Riemann sum using three subintervals and left endpoints.

$$
\begin{array}{rlr}
n=3, & a=0, b=\pi, & \Delta x=\frac{b-a}{n}=\frac{\pi-0}{3}=\frac{\pi}{3} \\
x_{0}=a=0 & f(0)=0 \\
x_{1}=a+\Delta x=\frac{\pi}{3} & f\left(\frac{\pi}{3}\right)=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
x_{2}=a+2 \Delta x=\frac{2 \pi}{3} & f\left(\frac{2 \pi}{3}\right)=\sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{2} \\
x_{3}=a+3 \Delta x=b=\pi & \\
L_{3}=\sum_{i=0}^{2} f\left(x_{j}\right) \Delta x=\frac{\pi}{3}\left(0+\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}\right)=\frac{\pi \sqrt{3}}{3}
\end{array}
$$

2. Evaluate the integral $\int_{-2 \pi}^{2 \pi} \sqrt{4 \pi^{2}-x^{2}} \sin (x) \mathrm{d} x$. Show all work.

$$
\begin{aligned}
& \text { Notice that } f(x)=\sqrt{4 \pi^{2}-x^{2}} \sin x d x \text { is odd, because } \\
& \qquad f(-x)=\sqrt{4 \pi^{2}-(-x)^{2}} \sin (-x)=-\sqrt{4 \pi^{2}-x^{2}} \sin x=-f(x) \\
& \text { and }[-2 \pi ; 2 \pi] \text { is symmetric about } 0 \text {, thes } \int_{-2 \pi}^{2 \pi} f(x)=0
\end{aligned}
$$

3. Write the integral $\int_{5}^{10}(6 x+\cos (x)-1) \mathrm{d} x$ as a limit of Riemann sums using right endpoints..

$$
\begin{aligned}
& f(x)=6 x+\cos x-1 \\
& a=5, b=10, \Delta x=\frac{10-5}{n}=\frac{5}{n} \\
& x_{i}=a+i \Delta x=5+\frac{5 i}{n} \quad f\left(x_{i}\right)=6 x_{i}+\cos \left(x_{i}\right)-1=6\left(5+\frac{5 i}{n}\right)+\cos \left(5+\frac{5 i}{n}\right)-1 \\
& \int_{5}^{10} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[6\left(5+\frac{5 i}{n}\right)+\cos \left(5+\frac{5 i}{n}\right)-1\right) \cdot \frac{5}{n}
\end{aligned}
$$

4. A function for the basal metabolism rate, in kcal/h, of a young man is $R(t)$, where t is the time in hours measured from $5: 00 \mathrm{AM}$. What does the integral $\int_{0}^{24} R(t) \mathrm{d} t$ represent? What are the units?

Integral mepresents the amount of calories buent by a young man dwring 24-hr period its units are keal
5. (a) Given $\int_{1}^{-3} h(x) \mathrm{d} x=2, \int_{-3}^{1} 3 f(t) \mathrm{d} t=6$. Evaluate $\int_{-3}^{1}\left(4 f(z)-\frac{1}{2} h(z)\right) \mathrm{d} z$.
$\int_{1}^{-3}(f x) d x=2 \Rightarrow \int_{-3}^{1} h(x) d x=-2$ and $\int_{-3}^{1} 3 f(t) d t=6 \Rightarrow \int_{-3}^{1} f t f d t=2$
$\int_{-3}^{1} 4 f\left(z-\frac{1}{2} d(z) d z=4 \int_{-3}^{1} f(z) d z-\frac{1}{2} \int_{-3}^{1} 4 z\right) d z=4 \cdot 2-\frac{1}{2} \cdot(-2)=9$
(b) Let $h(x)=\int_{e^{x}+x}^{x \ln x} \mathrm{~d} t$. Find $h^{\prime}(x)$. Using the FTC and Chair Rule: $\cdot \frac{d}{d x} \int_{h(x)}^{g(x)} f(t) d t=f(g(x)) g^{\prime}(x)-f(h(x)) \cdot h^{\prime}(x)$ First, find $(x \ln x)^{\prime}=\ln x+1$ and $\left(e^{x}+x\right)^{\prime}=e^{x}+1$
Then apply the formula: $\frac{d}{d x} \int_{e^{x}+x}^{x+n} t d t=(x \ln x) \cdot(\ln x+1)+\left(e^{x}+x\right)\left(e^{x}+1\right)$
6. Evaluate $\int_{0}^{1} \sqrt{v}\left(v^{3}+2\right)^{2} \mathrm{~d} v$

$$
\int_{0}^{1} \sqrt{V} \cdot\left(V^{6}+4 V^{3}+4\right) d W=\int_{0}^{1}\left(V^{\frac{B}{2}}+4 V^{\frac{7}{2}}+4 V^{\frac{1}{2}}\right) d V=\left.\left(\frac{2}{15} V^{\frac{15}{2}}+4 \cdot \frac{2}{9} \cdot V^{\frac{1}{2}}+4 \cdot \frac{2}{3} \cdot V^{\frac{3}{2}}\right)\right|_{0} ^{1}=\frac{2}{15}+\frac{8}{9}+\frac{8}{3}=\frac{6+40+120}{45}=\frac{160}{45}
$$

7. Suppose $\int_{1}^{e^{2}} f(z) \mathrm{d} z=10$. Evaluate $\int_{0}^{1} e^{2 x} f\left(e^{2 x}\right) \mathrm{d} x$.

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
\text { substitution } \\
z=e^{2 x} \\
d z=2 e^{2 x} d x \\
\left.\frac{x}{2}|1| 1 \right\rvert\, e^{2} \\
\frac{1}{2} d z=e^{2 x} d x
\end{array} \right\rvert\,=\int_{1}^{e^{2}} f(z) \frac{1}{2} d z=\frac{1}{2} \int_{1}^{e^{2}} f(z) d z=\frac{1}{2} \cdot 10=5
\end{aligned}
$$

8. Evaluate the integral $\int_{1}^{2} \frac{x^{10}}{1+x^{22}} \mathrm{~d} x$. Show all work.

$$
\left|\begin{array}{ll|l|}
\quad \text { substitution } \\
u=x^{\prime \prime} & \left.\frac{x}{u} \right\rvert\, & \frac{2}{208 B} \\
d u=\| x^{10} d x & 1 & 2048 \\
\frac{1}{11} d u=x^{10} d x & 1+x^{22}=1+u^{2}
\end{array}\right|=\int_{1}^{2048} \frac{1}{1+u^{2}} \frac{1}{I I} d u=\left.\frac{1}{11} \arctan u\right|_{1} ^{2048}=\frac{1}{11} \arctan (2048)-\frac{\pi}{44}
$$

9. Evaluate the integral $\int \frac{\ln \left(e^{x \ln x}\right)}{x^{2}} \mathrm{~d} x$. Show all work.

$$
\int \frac{\ln \left(e^{x \ln x}\right)}{x^{2}} d x=\int \frac{x \ln x}{x^{2}} d x=\int \frac{\ln x}{x} d x=\left|\begin{array}{l}
\text { substitution } \\
u=\ln x \\
d u=\frac{1}{x} d x
\end{array}\right|=\int u d u=\frac{1}{2} u^{2}+C=\frac{1}{2}(\ln x)^{2}+C
$$

10. Evaluate the integral $\int_{0}^{\frac{\pi}{2}} 3 x^{2} \cos (x) \mathrm{d} x$. Show all work.

$$
\begin{aligned}
& \left|\begin{array}{cc}
\text { by parts } \\
u=3 x^{2} & d w=\cos x d x \\
d u=6 x & v=\sin x
\end{array}\right|
\end{aligned}=\left.3 x^{2} \sin x\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2} 6 x \sin x d x=\left|\begin{array}{cc}
\text { by parts } \\
u=6 x & d w=\sin x d x \\
d u=6 d x & v=-\cos x
\end{array}\right|=
$$

11. Evaluate the integral $\int e^{2 x} \sin (\pi x) \mathrm{d} x$. Show all work.

$$
\begin{aligned}
& I=\int e^{2 x} \sin \pi x d x=\left|\begin{array}{cc}
\text { by pacts } \\
u=e^{2 x} & d=\sin \pi x d x \\
d u=2 l^{2 x} d x & v=\frac{1}{\pi} \cos \pi x
\end{array}\right|= \\
& =-\frac{1}{\pi} e^{2 x} \cos \pi x+\frac{2}{\pi} \int e^{2 x} \cos \pi x=\left|\begin{array}{cc}
\text { by pacts } \\
u=e^{2 x} & \quad w=\cos \pi x d x \\
d u=2 e^{2 x} d x & v=\frac{1}{\pi} \sin \pi x
\end{array}\right|= \\
& =-\frac{1}{\pi} e^{2 x} \cos \pi x+\frac{2}{\pi}\left[\frac{1}{\pi} e^{2 x} \sin \pi x-\frac{2}{\pi} \int e^{2 x} \sin \pi x d x\right] \\
& I=-\frac{1}{\pi} e^{2 x} \cos \pi x+\frac{2}{\pi^{2}} e^{2 x} \sin \pi x-\frac{4}{\pi^{2}} I \\
& \frac{\pi^{2}+4}{\pi^{2}} I=-\frac{1}{\pi} e^{2 x} \cos \pi x+\frac{2}{\pi^{2}} e^{2 x} \sin \pi x \\
& I=\frac{e^{2 x}}{\pi^{2}+4}(2 \sin \pi x-\pi \cos \pi x)+C
\end{aligned}
$$

12. Evaluate the integral $\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x$. Show all work.

$$
\left|\begin{array}{l}
\quad \text { substitution } \\
x=\tan \theta \\
d x=\sec ^{2} \theta d \theta \\
x^{2}+1=\tan ^{2} \theta+1=\sec ^{2} \theta
\end{array}\right|=\left|\frac{1}{\theta / 4}\right|=\int_{0}^{\pi / 4} \frac{1}{\left(\sec ^{2} \theta\right)^{2}} \cdot \sec ^{2} \theta d \theta=\int_{0}^{\pi / 4} \cos ^{2} \theta d \theta
$$

$$
=\int_{0}^{\pi}\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) d \theta=\left.\left(\frac{\theta}{2}+\frac{1}{4} \sin 2 \theta\right)\right|_{0} ^{n / 4}=\frac{\pi}{8}+\frac{1}{4} \sin \frac{\pi}{2}=\frac{\pi}{8}+\frac{1}{4}
$$

13. Evaluate the integral $\int \frac{x^{2}}{\sqrt{1-9 x^{2}}} \mathrm{~d} x$. Show all work.
$\left|\begin{array}{l}\text { substitution } \\ x=\frac{1}{3} \sin \theta \\ d x=\frac{1}{3} \cos \theta d \theta\end{array} \quad \theta=\sin ^{-1} 3 x\right|=\int \frac{\left(\frac{1}{3} \sin \theta\right)^{2}}{\cos \theta} \frac{1}{3} \cos \theta d \theta=\frac{1}{27} \int \sin ^{2} \theta d \theta=$

$$
=\frac{1}{27} \int\left(\frac{1}{2}-\frac{1}{2} \cos 2 \theta\right) d \theta=\frac{1}{54} \theta-\frac{1}{108} \sin 2 \theta+C=\frac{1}{54} \sin ^{-1} 3 x-\frac{1}{108} \sin \left(2 \sin ^{-1} 3 x\right)+C=\frac{1}{54} \sin ^{-1} 3 x-\frac{1}{18} x \sqrt{1-9 x^{2}}+C
$$

$$
\text { To simplify use } \sin 2 \theta=2 \sin \theta \cdot \cos \theta
$$

$$
\xrightarrow{ } \xrightarrow{\frac{\text { op }}{\text { hop }_{0}}=\sin \theta=\frac{\cos \left(\frac{\sin -1}{\theta} 3 x\right.}{1}}
$$

$$
\sin \left(2 \sin ^{-1} 3 x\right)=2 \sin \left(3 \sin ^{-1} 3 x\right) \cos \left(\sin ^{-1} 3 x\right)=2 \cdot 3 x \cdot \cos \left(\sin ^{-1} 3 x\right)
$$

$$
\cos \theta=\frac{\sqrt{1-9 x^{2}}}{1}
$$

14. Evaluate the integral $\int_{0}^{\frac{\pi}{2}} \sin ^{3}(x) \cos ^{3}(x) \mathrm{d} x$. Show all work.

$$
\left.\begin{aligned}
& \int_{0}^{\pi / 2} \sin ^{3} x \cos ^{2} x \cos x d x=\left|\begin{array}{l}
u=\sin x \\
d u=\cos x d x \\
\cos ^{2} x=1-\sin ^{2} x=1-u^{2}
\end{array} \frac{x|0|| | \mid}{u / 2}\right|
\end{aligned} \right\rvert\,
$$

15. Evaluate the integral $\int \sec ^{20}(x) \tan ^{5}(x) \mathrm{d} x$. Show all work.

$$
\begin{aligned}
& =\int u^{19}\left(u^{2}-1\right)^{2} d u=\int u^{19}\left(u^{4}-2 u^{2}+1\right) d u=\int u^{23}-2 u^{21}+u^{19} d u=\frac{1}{24} u^{24}-\frac{1}{11} u^{22}+\frac{1}{20} u^{20}+C= \\
& =\frac{1}{24} \sec ^{24} x-\frac{1}{11} \sec ^{22} x+\frac{1}{20} \sec ^{20} x+C
\end{aligned}
$$

16. Evaluate the integral $\int_{0}^{1} \frac{2}{2 x^{2}+3 x+1} \mathrm{~d} x$. Show all work.

Partial Fraction Decomposition:

$$
\begin{aligned}
& \frac{2}{2 x^{2}+3 x+1}=\frac{2}{(2 x+1)(x+1)}=\frac{A}{2 x+1}+\frac{B}{x+1}=\frac{A(x+1)+B(2 x+1)}{(2 x+1)(x+1)}=\frac{A x+A+2 B x+B}{(2 x+1)(x+1)}=\frac{(A+2 B) x+(A+B)}{(2 x+1)(x+1)} \Rightarrow\left\{\begin{array} { l }
{ A + B = 2 } \\
{ A + 2 B = 0 }
\end{array} \left\{\begin{array}{l}
B=-2 \\
A=4
\end{array}\right.\right. \\
& \frac{2}{2 x^{2}+3 x+1}=\frac{4}{2 x+1}-\frac{2}{x+1} \\
& \left.\left.\int_{0}^{1}\left(\frac{4}{2 x+1}-\frac{2}{x+1}\right) d x=(2 \ln (2 x+1)-2 \ln / x+1) \right\rvert\,\right)_{0}^{1}=(2 \ln 3-2 \ln 2)-(2 \ln 1-2 \ln 1)=2 \ln \frac{3}{2}
\end{aligned}
$$

17. Evaluate the integral $\int \frac{x^{5}+x-1}{x^{3}+1} \mathrm{~d} x$. Show all work.

$$
\begin{aligned}
& x^{5}+1 \frac{x^{2}}{\frac{x^{5}+x-1}{-x^{2}}+x-1} \\
& \int x^{2}-\frac{x^{2}-x+1}{(x+1)\left(x^{2}-x+1\right)} d x=\int x^{2} d x-\int \frac{1}{x+1} d x=\frac{1}{3} x^{3}-\ln (x+1)+C
\end{aligned} \quad \text { Also recall } x^{3}+1=(x+1)\left(x^{2}-x+1\right)
$$

18. Determine whether the improper integral $\int_{0}^{\infty} r e^{-3 r} d r$ is convergent or divergent. Evaluate the integral if convergent, or explain why it diverges. Show all work.

$$
\int_{0}^{\infty} r e^{-3 r} d r=\left|\begin{array}{ll}
b y & p u r t s \\
u=r & d w=e^{-3 r} d r \\
d u=d r & v=-\frac{1}{3} e^{-3 r}
\end{array}\right|=
$$

$$
=-\left.\frac{1}{3} r e^{-3 r}\right|_{0} ^{\infty}+\frac{1}{3} \int_{0}^{\infty} e^{-3 r} d r=-\left.\frac{1}{3} r e^{-3 r}\right|_{0} ^{\infty}-\left.\frac{1}{9} e^{-3 r}\right|_{0} ^{\infty}=\left.\left(\frac{1}{3} r e^{-3 r}-\frac{1}{9} e^{-3 r}\right)\right|_{0} ^{\infty}=
$$

$$
=\left[\lim _{t \rightarrow \infty}\left(\frac{1}{3} t e^{-3 t}-\frac{1}{9} e^{-3 t}\right)\right]-\left(\frac{1}{3} x e^{-30^{0}}-\frac{1}{9} e^{-30}\right)=\left[\lim _{t \rightarrow \infty}\left(\frac{t}{3 e^{3 t}}-\frac{1}{9 e^{3 t}}\right)\right]+\frac{1}{9}
$$

$=\left[\lim _{t \rightarrow \infty} \frac{3 t-1}{9 e^{3 t}}\right]+\frac{1}{9} \stackrel{L \mu}{=}\left[\lim _{t \rightarrow \infty} \frac{3 z^{0}}{27 e^{2 t}}\right]+\frac{1}{9}=\frac{1}{9}$
Converges to $\frac{1}{9}$
19. Determine whether the improper integral $\int_{0}^{\frac{\pi}{2}} \sec ^{2} \theta d \theta$ is convergent or divergent. Evaluate the integral if convergent, or explain why it diverges. Show all work.

$$
\int_{0}^{\pi / 2} \sec ^{2} \theta d \theta=\left.\lim _{t \rightarrow / 2} \tan \theta\right|_{0} ^{t}=\lim _{t \rightarrow \pi / 2} \tan t-\tan \theta=D N E
$$

diverges

20. A particle moves along a line with velocity function $v(t)=\cos t$, where v is measured in feet per hour. Find (a) the displacement and (b) the distance traveled by the particle during the time interval $\left[0, \frac{2 \pi}{3}\right]$.

$$
\text { (a) } \int_{0}^{2 \pi / 3} \cos t d t=\left.\sin t\right|_{0} ^{2 \pi / 3}=\sin 2 \pi / 3-\sin \theta=\frac{\sqrt{3}}{2}
$$

$$
\begin{aligned}
& \begin{aligned}
& \text { (b) } \int_{0}^{2 \pi / 3} / \cos t \mid d t=\int_{0}^{\pi / 2} / \cos t / d t+\int_{\pi / 2}^{2 \pi / 3} / \cos t / d t \quad \begin{aligned}
& \text { Why } \frac{\pi}{2} ? \text { Because cost changes sigh at } \frac{\pi}{2}, \\
& \text { that is } \cos t \geqslant 0, t \leq \frac{\pi}{2} \\
& \cos t<0, t>\frac{\pi}{2}
\end{aligned} \\
&=\int_{0}^{\pi / 2} \cos t a t+\int_{\pi / 2}^{2 \pi / 3}-\cos t d t= \\
& \text { meaning }|\cos t|= \begin{cases}\cos t, & t \leq \frac{\pi}{2} \\
-\cos t, & t>\frac{\pi}{2}\end{cases}
\end{aligned} \\
& =\left.\sin t\right|_{0} ^{\pi / 2}-\left.\sin t\right|_{\pi / 2} ^{2 \pi / 3}= \\
& =\sin \frac{\pi}{2}-\sin 0-\sin \frac{2 \pi}{3}+\sin \frac{\pi}{2}=1-0-\frac{\sqrt{3}}{2}+1=2-\frac{\sqrt{3}}{2}
\end{aligned}
$$

21-22. Let R be the region bounded by the graphs of $x=2 y^{2}$ and $x=4+y^{2}$.
(a) Sketch the region R and find its area.

$$
\begin{aligned}
& 2 y^{2}=4+y^{2} \\
& y^{2}=4 \\
& \begin{array}{l}
y= \pm 2 \\
x=8
\end{array} \\
& \text { Anna: } \int_{-2}^{2}\left(4+y^{2}\right)-\left(2 y^{2}\right) d y=\int_{-2}^{2} 4-y^{2} d y=4 y-\left.\frac{1}{3} y^{3}\right|_{-2} ^{2} \\
& \left.=\left(4 \cdot 2-\frac{1}{3} \cdot 2^{3}\right)-(41-2)-\frac{1}{3}(-2)^{3}\right)= \\
& =\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)=8-8 / 3+8-\frac{8}{3}=16-\frac{16}{3}=\frac{32}{3}
\end{aligned}
$$

(b) Set up an integral to compute the volume of the solid generated by revolving the region R (from part (a)) about the y-axis. Do not evaluate the integral!

(c) Set up an integral to compute the volume of the solid generated by revolving the region R (from part (a)) about the line $x=-1$. Do not evaluate the integral!

$$
\begin{aligned}
& \text { Volume }=\int_{a}^{b} A(y) d y \\
& \pi \int_{-2}^{2}\left(5+y^{2}\right)^{2}-\left(2 y^{2}+1\right)^{2} d y
\end{aligned}
$$

23. Find the exact length of the curve $y=\frac{1}{4} x^{2}-\ln \sqrt{x}$ for $+1 \leq x \leq 2$.

$$
\begin{aligned}
& y^{\prime}=\frac{1}{2} x-\frac{1}{2 x} \\
& 1+\left[y^{\prime}\right]^{2}=1+\left(\frac{1}{2} x-\frac{1}{2 x}\right)^{2}=1+\frac{1}{4} x^{2}-\frac{1}{2}+\frac{1}{4 x^{2}}=\frac{1}{4} x^{2}+\frac{1}{2}+\frac{1}{4 x^{2}}=\left(\frac{1}{2} x+\frac{1}{2 x}\right)^{2} \\
& L=\int_{1}^{2} \sqrt{\left(\frac{1}{2} x+\frac{1}{2 x}\right)^{2}} d x=\int_{1}^{2}\left|\frac{1}{2} x+\frac{1}{2 x}\right| d x=\int_{1}^{2}\left(\frac{1}{2} x+\frac{1}{2 x}\right) d x=\frac{1}{4} x^{2}+\left.\frac{1}{2} \ln |x|\right|_{1} ^{2}= \\
& =\left(\frac{1}{4} 2^{2}+\frac{1}{2} \ln 2\right)-\left(\frac{1}{4} 1^{2}+\frac{1}{2} \ln 1\right)=\frac{3}{4}+\frac{1}{2} \ln 2
\end{aligned}
$$

24. Find the average of the function $f(x)=\frac{x^{4}+x^{2}+\ln \left(e^{x}\right)}{x^{2}}$ over the interval $[2,3]$. Show all work.

$$
\begin{aligned}
& \text { Recall: } f_{A}=\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& f_{A}=\frac{1}{3-2} \int_{2}^{3} \frac{x^{4}+x^{2}+x}{x^{2}} d x=\int_{2}^{3} x^{2}+1+\frac{1}{x} d x= \\
& =\left.\left(\frac{1}{3} x^{3}+x+\ln (x)\right)\right|_{2} ^{3}=(9+3+\ln 3)-\left(\frac{8}{3}+2+\ln 2\right)= \\
& =\frac{22}{3}+\ln \frac{3}{2}
\end{aligned}
$$

25. Using integration find the area of the triangle with vertices $A=(-2,-4), B=(1,5), C=(10,-1)$ and sides $A B$: $3 x-y=-2, B C: 2 x+3 y=17, C A: x-4 y=14$.

26. For the sequence $b_{n}=n^{-1} \sin \left(\frac{\pi}{2 n}\right)$ determine if the sequence is (a) monotone, (b) bounded, and (c) what conclusion can you make based on (a) and (b)?
a) $\left.f^{\prime}(x)=\frac{\sin \frac{\pi}{2 x}}{x} \quad f^{\prime}(x)=\frac{\cos \frac{\pi}{2 x} \cdot\left(\frac{\pi}{2 x^{2}} \cdot\right.}{x^{2}} \cdot x-\sin \frac{\pi}{2 x}\right)=\frac{-\pi \cos \frac{\pi}{2 x}-2 x \sin \frac{\pi}{2 x}}{x^{3}}<0$ since when $x>0$ denominator is positive but numerator is negative thus $\left\{b_{3}\right\}$ is decreasing
b) b_{n} is bonded above by b_{1}, since it's decreasing, thus $b_{1}>b_{2} 7 b_{3} \ldots$ $b_{n} B$ bumbled below by 0 , since $\frac{\sin \pi / n}{n}>0$ because both numerator and denominator e are positive br is bounded below and above, thus bounded
a) sine his deceasing and bounded it converges
27. Use the Squeeze Theorem to show that the sequence $c_{n}=\frac{4+\sin (n)}{3 n+1}$ converges.

$$
\begin{aligned}
& 0=\lim _{n \rightarrow \infty} \frac{3}{3 n+1} \leqslant \lim _{n \rightarrow \infty} \frac{4+\sin n}{3 n+1} \leqslant \lim _{n \rightarrow \infty} \frac{5}{3 n+1}=0 \\
& \text { By Squege Theorem, }, \lim _{n \rightarrow \infty} \frac{4+\sin n}{3 n+1}=0
\end{aligned}
$$

28. Determine the general term formula for the sequence $\left\{\frac{1}{10}, \frac{1}{15}, \frac{1}{20}, \frac{1}{25}, \frac{1}{30} \ldots\right\}$. Use the formula to find the $100^{t h}$ term.

$$
\begin{aligned}
& \text { Notice: } a_{n}=\frac{1}{10}=\frac{1}{d .5} ; a_{2}=\frac{1}{15}=\frac{1}{3.5} ; \quad a_{3}=\frac{1}{20}=\frac{1}{4.5} \\
& \text { Therefore: : } a=\frac{1}{(n+1) 5} \\
& \text { so } a_{\text {Mos }}=\frac{1}{101.5}=\frac{1}{505}
\end{aligned}
$$

For each of the following sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$, compute the $\lim _{n \rightarrow \infty} a_{n}$. If a limit doesn't exist, expain why not. Show all work.
29. $a_{n}=(-2)^{n}$

$$
\lim _{n \rightarrow \infty}(-2)^{n} \text { DNE, Because } a_{n}=(-2)^{n} \text { is not founded }
$$

30. $a_{n}=\arctan \left(\frac{n^{5}+4}{1-n^{3}}\right)$ Recall: $\lim _{n \rightarrow \infty} \frac{n^{r}+4}{1-n^{3}}=-\infty$ and $\lim _{x \rightarrow-\infty} \arctan x=-\frac{\pi}{2}$

$$
\lim _{n \rightarrow \infty} \arctan \left(\frac{n^{5}+4}{1-n^{3}}\right)=-\frac{\pi}{2}
$$

31. $a_{n}=\sin (2 \pi n)$

$$
\begin{aligned}
& a_{n}=\{\sin (2 \pi)=0, \sin (4 \pi)=0, \sin \pi \pi=0 \ldots\} \\
& \lim _{n \rightarrow \infty} a_{n}=0
\end{aligned}
$$

32. Find the sum $\sum_{n=2}^{\infty} \frac{3^{n}+5^{n}}{7^{n+1}}=\sum_{n=2}^{\infty} \frac{3^{n}}{7^{n+1}}+\sum_{n=2}^{\infty} \frac{5^{n}}{7^{n+1}}$

Note that $\sum_{n=2}^{\infty} \frac{3^{n}}{7^{n+1}}=\sum_{n=2}^{\infty} \frac{1}{7}\left(\frac{3}{7}\right)^{n}$ is a geom. series with $r=\frac{3}{7}$ and first form $n=2: \frac{1}{7}\left(\frac{3}{7}\right)^{2}=\frac{9}{343}$, thus $\sum=\frac{9 / 343}{1-3 / 7}$
Similarly, $\sum_{n=2}^{\infty} \frac{5^{n}}{7^{n+1}}=\sum_{n=2}^{\infty} \frac{1}{7}\left(\frac{5}{7}\right)^{n}$ is a geom. series with $r=\frac{5}{7}$ and first term $n=2: \frac{1}{7}\left(\frac{5}{7}\right)^{2}=\frac{25}{343}$, thus $\sum=\frac{25 / 343}{1-5 / 7}$

Finally, $\frac{9 / 343}{1-3 / 7}+\frac{25 / 343}{1-5 / 7}=\frac{1}{49}\left(\frac{9}{4}+\frac{25}{2}\right)=\frac{59}{196}$
33. Use the Divergence Test to determine that the series $\sum_{n=1}^{\infty} \arctan \left(\frac{1-n^{2}}{n}\right)$ is divergent. Show all work. $\lim _{n \rightarrow \infty} \arctan \left(\frac{1-n^{2}}{n}\right)=-\frac{\pi}{2} \neq 0$ therefore by divergeme test series divergent.
34. Use the Alternating Series Test to determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n}$ is convergent or divergent. Show all work.

35. Use the Direct or Limit Comparison Test to determine whether the series $\sum_{n=1}^{\infty} \frac{5^{n}}{n 3^{n}}$ is convergent or divergent. Show all work.

$$
\begin{aligned}
\frac{5^{n}}{3^{n}}>1 \Rightarrow \frac{5^{n}}{n 3^{n}}>\frac{1}{n} \Rightarrow \sum_{n=1}^{\infty} \frac{5^{2}}{n 3^{n}}>\sum_{n=1}^{\infty} \frac{1}{n} \cdot \text { diverges }_{(\rho=1)} \\
\quad \text { diverges by comparison test }
\end{aligned}
$$

36. Use the Ratio or Root Test to determine whether the following series is convergent or divergent. Show all work.
(a) $\sum_{n=1}^{\infty} \frac{(-5)^{2 n}}{(n+1)!}$

$$
\begin{aligned}
& \text { Ratio test: } \lim _{n \rightarrow \infty}\left|\frac{\frac{(-5)^{2 n+1}}{(n+2)!}}{\frac{(-5)^{2 n}}{(n+1)!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-5)^{2 n+2}(n+1)!}{(-5)^{2 n}(n+2)!}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-5)^{2}}{n+2}\right|=0<1 \\
& \text { Thus } \sum_{n=1}^{\infty} \frac{(-5)^{2 n}}{(n+1)!} \text { converges by Ratio test }
\end{aligned}
$$

(b) $\sum_{n=1}^{\infty}\left(\frac{3 n}{2 n+1}\right)^{5 n}$

$$
\begin{aligned}
\text { Root test: } & \left.\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{3 n}{(2 n+1}\right)^{5 n}}=\lim _{n \rightarrow \infty}\left(\frac{3 n}{2 n+1}\right)^{5}=\left\lvert\, \frac{3}{2}\right.\right)^{5}>1 . \\
& \text { thus } \sum_{n=1}^{\infty}\left(\frac{3 n}{2 n+1}\right)^{3 n} \text { diverges by root test }
\end{aligned}
$$

37. Use any Convergence Test to determine whether the following series is convergent or divergent. Show all work.
(a) $\sum_{n=3}^{\infty} \frac{(\ln n)^{-3}}{n}=\sum_{n=3}^{\infty} \frac{1}{n(\ln n)^{3}}$
$f(x)=\frac{1}{x(\ln x)^{3}}$ is positive, decreasing, continuous for $x \geqslant 3$

$$
\int_{3}^{\infty} \frac{1}{x(\ln x)^{3}} d x=\left(\begin{array}{l}
u=\ln x \\
d u=\frac{1}{x} d x \\
\frac{x}{x(\ln 3)^{\infty}}
\end{array}\left|=\int_{\ln 3}^{\infty} \frac{d u}{u^{3}}=\lim _{t \rightarrow \infty}-\frac{1}{2 u^{2}}\right|_{\ln 3}^{t}=\lim _{t \rightarrow \infty} \frac{1}{2(\ln 3)^{2}}-\frac{1}{2 t^{2}}=\frac{1}{d(x) 3)^{2}}\right.
$$

thus $\sum_{n=3}^{\infty} \frac{1}{n(\ln n)^{3}}$ converges by integral test
(b) $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}-1}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-1}=1^{\infty} \text { therefore } \sum_{n=2}^{\infty} \frac{1}{n^{2}-1} \sim \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

but we know $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges ($\left.p=2>1\right)$
thus $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ converges by Limit Comp. Test
(c) $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}+l n} \bar{n}$
Div. Test: $\lim _{n \rightarrow \infty} \frac{e^{n}}{n^{2}+\ln n}=\left[\frac{\infty}{\infty}\right]=\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}+\ln x} \stackrel{L^{M} h}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{2 x+\frac{1}{x}} \stackrel{L^{\prime \prime} \mu}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{2-\frac{1}{x^{2}}}=\infty$
thus $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}+\ln n}$ diverges.
38. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{3^{n}(x+4)^{n}}{\sqrt{n}}$.

$$
\left.\begin{array}{l}
\lim _{n \rightarrow \infty}\left|\frac{3^{n+1}(x+4)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{3^{n}(x+4)^{n}}\right|=|x+4| \cdot \lim _{n \rightarrow \infty} \frac{3 \sqrt{n}}{\sqrt{n+1}}=3 \cdot|x+4|<1 \\
\Rightarrow|x+4|<\frac{1}{3} \Rightarrow-\frac{1}{3}<x+4<\frac{1}{3} \Rightarrow-\frac{13}{3}<x<-\frac{11}{3} \\
x=-\frac{13}{3}: \sum_{n=1}^{\infty} \frac{3^{n}\left(-\frac{1}{3}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{2}}{\sqrt{n}}-\text { cowerges by alt. Series. Test } \\
x=-\frac{11}{3}: \sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{1}{3}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}-\text { diverges p-series } p=\frac{1}{2}<1
\end{array}\right\} \Rightarrow \begin{array}{r}
{\left[-\frac{13}{3},-\frac{11}{3}\right) \text { interval }} \\
\text { with center at }-4 \\
\text { on radius } \frac{1}{3}
\end{array}
$$

39. Find the first three nonzero terms of the Taylor series expansion of $f(x)=\ln (x)$ about $x=e$.

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{m}(c)}{n!}(x-c)^{\mu} \text { Taylor series with chefs's } a_{n}=\frac{f^{m} /(c)}{n!} \\
& f(x)=\ln x \quad f(c)=\ln c=1 \quad a_{0}=1 \\
& f^{\prime}(x)=\frac{1}{x} \quad f^{\prime}(2)=\frac{1}{e} \quad a_{1}=\frac{1}{e} \\
& f^{\prime \prime}(x)=-\frac{1}{x^{2}} \quad f^{\prime \prime}(2)=-\frac{1}{l^{2}} \quad a_{2}=-\frac{1}{2 L^{2}} \\
& f^{\prime \prime \prime}(x)=\frac{2}{x^{3}} \quad f^{\prime \prime} /=\frac{2}{e^{3}} \quad a_{3}=\frac{2}{3 e^{3}} \\
& P_{4}(x)=1+\frac{1}{e}(x-e)-\frac{1}{2 e^{2}}(x-e)^{2}+\frac{2}{3 e^{3}}(x-e)^{3}
\end{aligned}
$$

40. Find the Maclaurin series for $f(x)=e^{x}+e^{2 x}$.

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \quad e^{2 x}=\sum_{n=0}^{\infty} \frac{1}{n!}(2 x)^{n} \\
& f(x)=e^{x}+e^{2 x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}+\sum_{n=0}^{\infty} \frac{1}{n!}(2 x)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{n!} x^{n}+\frac{1}{n!}(2 x)^{n}\right)=\sum_{n=0}^{\infty} \frac{1+2^{n}}{n!} x^{n}
\end{aligned}
$$

