1. Compute the derivatives of the following functions and specify the domain of each of them.
(a)

$$
f(x)=\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x}}}}
$$

(b)

$$
f(x)=x^{2} \ln \left(\frac{\sin (x)}{x}\right)
$$

(c)

$$
f(x)=\left(x^{2}+2\right)^{2}\left(x^{4}+4\right)^{4}
$$

(d)

$$
f(x)=x^{\sin x}
$$

(e)

$$
f(x)=(\sin x)^{\ln x}
$$

(f)

$$
f(x)=\frac{\ln x}{1+\ln x}
$$

(g)

$$
f(x)=(\ln x)^{\cos x}
$$

(h)

$$
f(x)=(\tan x)^{1 / x}
$$

(i)

$$
\left.f(x)=\sin \left(\cos \left(\tan ^{-1} x\right)\right)\right)
$$

(j)

$$
f(x)=\sin (\ln (x))
$$

(k)

$$
f(x)=\sin ^{-1}(\sqrt{\sin x})
$$

(1)

$$
f(x)=\sqrt{\frac{1+x}{1-x}}
$$

(m)

$$
f(x)=\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)
$$

(n)

$$
f(x)=\ln \left(\frac{1+x \sqrt{2}+x^{2}}{1-x \sqrt{2}+x^{2}}\right)
$$

2. Find a formula for $f^{(n)}(x)$ if $f(x)=\ln (x-1)$.
3. Find a formula for $f^{(n)}(x)$ if $f(x)=x e^{x}$. (Hint: Show that f satisfies $f^{\prime}=e^{x}+f$ and find a recursion formula for $\left.f^{(n)}(x)\right)$
4. Let g be a twice differentiable function, such that $g^{\prime}(x) \neq 0$, and $\kappa \in \mathbb{R}$. Then define

$$
f(x)=\cos (\kappa g(x))
$$

(a) Show that f satisfies

$$
f^{\prime \prime}-f^{\prime} \frac{g^{\prime \prime}}{g^{\prime}}+\left(\kappa g^{\prime}\right)^{2} f=0
$$

(b) Using the different equation, compute $f^{(n)}(0)$ for $g(x)=x$.
5. Find $f^{(n)}(x)$ of
(a)

$$
f(x)=a \cos (a x)
$$

(b)

$$
f(x)=a^{x}
$$

(c)

$$
f(x)=\sin (x)
$$

(d)

$$
f(x)=\frac{1-x}{1+x}
$$

(e)

$$
f(x)=\sin ^{2}(x)
$$

$$
\begin{equation*}
f(x)=x^{n-1} \ln (x) \tag{f}
\end{equation*}
$$

6. Show that the functions $f(x)=x^{2}-\cos (x)$ and $g(x)=2 x^{2}-x \sin (x)-\cos ^{2}(x)$ only have two zeros. (Hint: Use the Intermediate value Theorem, with carefully chosen points to show that the zeros exist, and use a growth argument to show that they are unique)
7. Find the tangent line of the following curves at the specified points
(a) The curve given by $e^{2 \sin ^{-1}(y x)}=\ln \left(1+x^{2}+y^{2}\right)$, at the point in which the curve intersects $y=0$ such that $x>0$.
(b) The curve given by $y=(2+x) e^{-x}$, at $(0,2)$.
(c) The curve given by $y \sin 2 x=x \cos 2 y$, at $(\pi / 2, \pi / 4)$.
8. Suppose that $g(x)$ is given by the following implicit relation $g(x)+x \sin g(x)=x^{2}$; find $g^{\prime}(0)$.
9. Show that if $f(x)=(x-a)(x-b)(x-c)$ then

$$
\frac{f^{\prime}(x)}{f(x)}=\frac{1}{x-a}+\frac{1}{x-b}+\frac{1}{x-c} .
$$

10. Compute the limit

$$
\lim _{x \rightarrow 0} x^{2} \ln \left(\frac{\sin (x)}{x}\right) .
$$

11. Let $f(x)=e^{1 / \ln (x)}$.
(a) Find the domain in which f can be properly defined.
(b) Find all the vertical and horizontal asymptotes.
(c) Compute the derivative of f.
(d) Compute the second derivative of f.
12. Let $f(x)=\left(1-\frac{1}{x}+\frac{2}{x^{2}}\right) e^{1 / x}$
(a) Find the domain in which f can be properly defined.
(b) Find the zeros, and provide the intervals in which f is constant.
(c) Find all the vertical and horizontal asymptotes.
(d) Compute the derivative of f.
(e) Compute the second derivative of f.
13. Let

$$
f(x)=\left\{\begin{array}{cl}
\frac{x \ln x}{x-1} & \text { if } x>1, \text { and } x \neq 1 \\
\alpha & \text { if } x=1
\end{array}\right.
$$

(a) find the value of α such that f is continuous in \mathbb{R}_{*}^{+}.
(b) Does f^{\prime} exists for $x>0$? (be careful when $x=1$). If it exists, compute $f^{\prime}(x)$. (Hint: You may need to compute by definition the derivative at the problematic points)
(c) Find where f^{\prime} is continuous in \mathbb{R}_{*}^{+}.
14. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. Now suppose that f^{\prime} changes sign at least once. Explain why f can not be one-to-one

