
WIDE-BAND BUTTERFLY NETWORK: STABLE AND EFFICIENT
INVERSION VIA MULTI-FREQUENCY NEURAL NETWORKS.∗

MATTHEW LI† , LAURENT DEMANET‡ , AND LEONARDO ZEPEDA-NÚÑEZ§

Abstract.
We introduce an end-to-end deep learning architecture called the wide-band butterfly network

(WideBNet) for approximating the inverse scattering map from wide-band scattering data. This archi-
tecture incorporates tools from computational harmonic analysis, such as the butterfly factorization,
and traditional multi-scale methods, such as the Cooley-Tukey FFT algorithm, to drastically reduce
the number of trainable parameters to match the inherent complexity of the problem. As a result
WideBNet is efficient: it requires fewer training points than off-the-shelf architectures, and has stable
training dynamics, thus it can rely on standard weight initialization strategies. The architecture
automatically adapts to the dimensions of the data with only a few hyper-parameters that the user
must specify. WideBNet is able to produce images that are competitive with optimization-based
approaches, but at a fraction of the cost, and we also demonstrate numerically that it learns to
super-resolve scatterers in the full aperture scattering setup.

1. Introduction. There is nowadays extensive documentation on the remark-
able ability of neural networks to approximate high-dimensional, non-linear maps
provided that enough data is available [58]. In many applications the process of
discovering such approximations simply involves enriching the network models, i.e.
making them wider and/or deeper, until favourable stationary points arise in the
empirical loss landscape. This practice can be partially justified by the asymptotic
capacity of neural networks to approximate functions to within arbitrary accuracy, as-
suming only mild regularity conditions [22, 49, 67]. Oftentimes, however, this strategy
results in models that are vastly overparametrized even when compared to the already
massive datasets that are necessary for training. For reasons we outline below, these
approximation-theoretic results also obscure many pre-asymptotic complications that
are particularly acute when neural networks are applied to scientific applications. In
these instances the neural architecture often requires to be specifically tailored to the
task at hand in order to satisfy the stricter requirements of scientific computing.

In this paper we focus on the problem of high-resolution imaging of scatterers
arising from wave-based inverse problems. This task naturally arises in many scien-
tific applications: e.g. biomedical imaging [77], synthetic aperture radar [20], non-
destructive testing [71], and geophysics [75]. This problem also prototypically exhibits
two challenges that are commonly encountered in scientific machine learning. First:
obtaining the training data in this setting – whether synthetically or experimentally
– comes at considerable expense, which bottlenecks the size of the models that can be
reliably trained to satisfy the stringent accuracy requirements. This necessitates the
use of unconventional architectures that are bespoke to each problem. Second: wave
scattering involves non-smooth data that are recordings of highly oscillatory, broad-
band, scattered waveforms. These highly oscillatory (i.e. high-frequency) signals are

∗Submitted to the editors DATE.
Funding: The authors thank Total SA for support. LD is also supported by AFOSR grant

FA9550-17-1-0316. L.Z.-N. is also supported in part by the Wisconsin Alumni Research Fund, the
National Science Foundation under the grant DMS-2012292, and NSF TRIPODS award 1740707.
†Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge MA

02139 (mtcli@mit.edu)
‡Department of Mathematics and Earth Resources Lab, Massachusetts Institute of Technology,

Cambridge MA 02139 (laurent@math.mit.edu)
§Department of Mathematics, University of Wisconsin-Madison, Madison WI 53706 (zepeda-

nunez@wisc.edu)

1

mailto:mtcli@mit.edu
mailto:laurent@math.mit.edu
mailto:zepedanunez@wisc.edu
mailto:zepedanunez@wisc.edu

2 LI, DEMANET, AND ZEPEDA-NÚÑEZ

known to impede the training dynamics of many machine learning algorithms [86] and
thus require new strategies to mitigate their effect.

Existing methods for scientific machine learning address the issue of data scarcity
by “incorporating underlying physics” into the design of neural architectures. In
instances where the problem data is smooth, this demonstrably reduces the total
number of trainable weights which, in turn, reduces the number of training data
required. Broadly categorized, these designs manifest as either: (i) explicitly enforcing
physical symmetries into the network [90, 93, 94], (ii) exploiting signal invariances and
equivariances when processing the data [12], (iii) directly embedding the governing
differential equations into the objective function [51, 74], or (iv) imposing information
flow (i.e. connectivity) within the architecture according to multiscale interactions
inherent to the physics of the data generating process [37, 36, 54]. Surprisingly, in
addition to lowering data requirements these strategies are also observed to improve
on the testing accuracy of comparable conventional models which are trained on a
larger set of training points [46, 67, 92].

In comparison, not much is known about designing architectures for processing
non-smooth data such as high-frequency waves. Here the same challenge that con-
founds the original inverse problem – namely, the processing of highly oscillatory sig-
nals – similarly obstructs direct application of machine learning methods. This idea is
formalized by the “F-principle” conjecture [86] which documents the relation between
machine learning methods and Fourier analysis. Specifically, it is empirically observed
that models with fully-connected and convolutional architectures preferentially cap-
ture the low-frequency features of the target function. On the other hand, considerable
expense (with respect to model size and/or data) is needed to learn high-frequency
features [65]. Some examples even demonstrate that training can completely fail when
the target function lacks low-frequency content even if highly expressive models are
used [15, 85]. The F-principle thus demonstrates that although neural networks are
universal approximators in an asymptotic sense, new strategies are needed to account
for the issue with high frequencies if tractably computable models are to be obtained.

We note that in our application the forward and inverse maps are intrinsically
oscillatory on account of the physics of wave propagation. This can be seen as an
immediate consequence of the dispersion relation,

(1.1) λf = c,

which describes the inverse scaling of the frequency f of propagating waves to their
spatial wavelength λ by a factor of the local wavespeed c. This dispersion relation,
in conjunction with rudimentary signal processing, effectively establishes that images
generated by back-propagating the recorded waves into the medium are constrained
to a resolution limit of λ/2, i.e. the classical diffraction limit [41]. High resolution
imaging of scatterers thus seemingly necessitates the use of high frequency waves to
probe the media.

1.1. Our Contributions. We introduce a custom architecture for the inverse
wave scattering problem which we call WideBNet. We demonstrate that our archi-
tecture overcomes the major deficiencies outlined above for traditional architectures.
Specifically, WideBNet relies on ideas from the butterfly factorization [61] to capture
the Fourier Integral Operators (FIOs) underlying the physics of wave-scattering –
as a result, fewer training data points are needed. Moreover, it addresses the high
frequency limitations identified by F-principle by mimicking the Cooley-Tukey al-
gorithm [27] to process multi-frequency data only at localized length scales – this

MULTI-SCALE BUTTERFLY NETWORKS 3

effectively renders each frequency slice as locally low-frequency information. These
design choices afford WideBNet the following benefits compared to off-the-shelf deep
learning models:

Training Efficiency The architecture builds upon the butterfly factorization
and thus systematically adapts to the input size of the data, i.e. the number of pixels
in the image. As a result, the degrees of freedom in the model scale near-linearly with
the input size, and the depth of the network scales logarithmically with the input
size1. This makes training our network data-efficient as there are relatively fewer
degrees of freedom.

Training Stability WideBNet avoids empirically observed shortcomings with
other network architectures that rely on the butterfly factorization. For example,
in [60] the authors prove that butterfly-networks are capable of efficiently approxi-
mating generic FIO’s, but report that learning such operators requires an accurate
initialization to avoid local minima; this is typically not easily obtainable for most
FIOs, including our application. Similarly [54] introduces a butterfly-network for sin-
gle frequency inversion but requires increasing the width of their network (so that
the degrees of freedom no longer scale linearly) to overcome local minima. In con-
trast, empirically we observe that WideBNet does not require specialized initialization
strategies, it does not routinely get stuck in local minima, and it does not exhibit ex-
ploding/vanishing gradients. We speculate that the training stability of WideBNet can
be attributed to its use of multi-frequency data that is banded to appropriate length
scales to avoid the F-principle limitations.

Imaging Super-resolution In our numerical results we demonstrate that our
network superresolves scatterers, i.e. produces sharp images of sub-wavelength fea-
tures2 such as diffraction corners, in addition to producing competitive images when
compared against classical inversion methods in the traditional super-diffraction regime.

Hyper-parameter Efficiency It is efficient to tune the hyper-parameters of
WideBNet as there are only a few which are used to describe the architecture. We
note that in numerical examples we observe strong robustness to variations in these
hyper-parameters. This indicates that relatively little effort is needed on the user’s
part to optimally tune our architecture.

A detailed discussion of the WideBNet architecture, as well as implementation
notes, can be found in Section 3. Meanwhile, we briefly sketch the intuition behind
the design choice here. The idea to embed the butterfly factorization into the archi-
tecture is to effectively furnish our network with a strong prior on the physics of wave
scattering. Indeed, we provide compelling numerical evidence that it is necessary
to manually encode the long range “non-local” interactions between scatterers and
sources that are inherent to the wave kernel. Mathematically these interactions are
known to described as the action of an FIO [48], which can be discretely represented

1When compared to other machine learning based approaches, we note that a comparable im-
plementation using fully connected networks results in models with degrees of freedom that scale
cubically with the size of the input, i.e. the number of pixels in the image, and are thus prohibitively
expensive to train. Conversely, a purely convolutional neural network implementation for the task
requires far deeper networks (or far wider filters) to properly capture the long-range interactions
governed by the underlying wave physics. Such deep networks are known to exhibit issues with
exploding/vanishing gradients leading to unstable training dynamics [7] . While we do not discount
the possibility of other hybridized (fully connected + convolutional) architectures which achieve the
same task, we emphasize that these architectures would not be immediately transferable for different
image and data resolution requirements.

2We plan to further investigate and document this super-resolution phenomenon in forthcoming
work.

4 LI, DEMANET, AND ZEPEDA-NÚÑEZ

in a complexity-optimal manner by means of the butterfly factorization [61] and the
butterfly algorithm [16, 70, 11].

However we stress that the marriage of the butterfly factorization with network
architectures is not the original contribution of this work; butterfly-like architectures
have been previously proposed by other authors, albeit with different goals [60, 54],
and we review these contributions below in Section 1.2. Instead, our contribution
is the combination of this network architecture with multifrequency data. This data
assimilation strategy takes cues from the Cooley-Tukey algorithm and is done, in
part, to address the F-principle. For reference, one notable strategy for avoiding
the F-principle involves partitioning the model into disjoint Fourier segments and
frequency down-shifting accordingly [14], but this introduces costly convolutions in
data-space and requires a dense data sampling strategy that scales unfavourably with
dimensionality. Our network improves on this approach by exploiting the duality
between frequency f and wavelength λ, as described by the dispersion relation in (1.1),
to introduce data only at their local length scales. This effectively performs frequency
downshifting by spatial downsampling. This strategy is easily accommodated by the
butterfly architecture as these multiscale interactions are already implicitly present
in its formulation.

Outline. The remainder of this document is structured as follows. We close
this section with relevant background material on existing algorithms for inverse scat-
tering and relevant machine learning based approaches for general inverse problems
in Section 1.2. Section 2 describes the technical details of the underlying physical
model, provides background on the problem to solve and the algorithmic ideas behind
the network. In Section 3 we present in detail the network architecture. Finally, in
Section 4 we present and discuss the numerical results.

1.2. Related Literature.

1.2.1. Classical Approaches. One of the earliest modalities in imaging is
travel-time tomography [69, 45, 5], in which the travel time of a wave passing be-
tween two points is used to reconstruct the medium wave-speed [78]. Travel-time to-
mography is a rather mature technique, which can even be easily and cost effectively
implemented in portable ultra-sound devices [23]. However, its resolution deteriorates
greatly when dealing with highly heterogeneous media and in the presence of multiple
scattering.

In response to these drawbacks, several techniques were developed such as reverse
time migration [6], linear sampling method [24], decomposition methods [57] among
many other. See [26] and [83] for excellent historical reviews.

Finally, a high-resolution technique, called full-waveform inversion (FWI) [80]
was developed in the late 80s, which has been shown empirically capable of handling
multiple scattering. FWI solves a constrained optimization problem in which the
misfit between the real data and synthetic data coming from the numerical solution
of the PDE are minimized. This technique, coupled with large computing power, has
been successful at recovering the properties of the sub-surface [73]. Nowadays, it is
considered the gold standard in geophysical exploration [82].

Despite its enormous success, FWI still suffers from three significant challenges:
prohibitive computational cost, cycle-skipping and limited resolution. The prohibitive
computational cost is linked to the cost of computing the gradient within the opti-
mization loop, which requires a large amount of wave solves. The resulting complexity

MULTI-SCALE BUTTERFLY NETWORKS 5

of each iterations is quadratic3 [10] with respect to number of unknowns to recover.
Progress in this direction has focused on developing fast PDE solvers [91, 35] which
are necessary to compute the gradient. In addition, a large number of iterations is
usually required for convergence. This prohibitive computational cost has hampered
the application of this vastly superior technique to domains where images are required
on-the-fly, such as biomedical imaging.

Cycle-skipping is the undesirable convergence to spurious local minima, specially
in the absence of low-frequency data. In a nutshell, the low frequencies help determine
the kinematically relevant, low-wavenumber components of the material properties,
which are in turn needed to avoid convergence of FWI to spurious local minima.
However, in practice, acquiring low-frequency data from the field is a challenging and
expensive task. Progress in this area has focused on regularizing the optimization
routine to handle the lack of low-frequency data [79, 81], using a smooth initial guess
from travel-time tomography [3], or extrapolating the low-frequency component from
higher frequency data [63]. Finally, the resolution of the output of FWI is usually
constrained by the Shannon-Nyquist scaling, i.e., the finest details available in the
output are bound by the shortest wavelength at which data is available. This is
important for accurately imaging discontinuities [4, 13, 31, 30], which in return, are
crucial for properly interpreting geophysical formations, for properly detecting cracks
in materials, and for detecting and interpreting anomalies in biomedical imaging.

1.3. Machine Learning Approaches. Besides the classical, PDE constrained
optimization approaches, several recent methodologies based on machine learning for
more general inverse problems have been proposed lately.

In [19] authors used the recently introduced paradigm of physics informed neural
networks (PINN) to solve for inverse problems in optics. Aggarwal et al. intro-
duce a model-based image reconstruction framework [2] for MRI reconstruction. The
formulation contains a novel data-consistency step that performs conjugate gradient
iterations inside the unrolled algorithm. Gilton et al. proposed in [42] a novel net-
work based on Neumann series coupled with a hand-crafted preconditioner for linear
inverse problems, which recast an unrolled algorithm as elements of a Neumann series.
In [66] Mao et al. use a deep encoder-decoder network reminiscent of U-nets [76] for
image denoising, using symmetric skip connections.

In [38] the authors proposes a rotationally equivariant network for inverse scat-
tering, that is only valid for homogeneous media; the same type of ideas is applied to
travel-time tomography [40] and optical tomography [39].

Among the more general field of computational harmonic analysis, to which the
butterfly algorithm is connected, we have several other applications. Networks based
on the Short-time Fourier transform [88, 87] has been used for hierarchically decom-
posing signals in a non-linear fashion. Networks based on the scattering transform
has been proposed [12] to take in account translation invariance in images. In [89] the
authors introduced another framework based on frames for inverse problems, which
was applied to computer tomography denoising [53].

In addition, machine learning recently has been used for super resolution in the
signal processing context [18] and image processing. Recently newly developed frame-
works such as generative adversarial networks (GANs) [43, 44], and variational au-
toencoders (VAEs) [56, 33] have been used for super resolution in the context of image
processing [52, 59, 68]. These techniques provides a end-to-end map that relies on the

3Using state-of-the-art sparse direct solvers. It can be further reduced to O(N3/2) using state-
of-the-art preconditioner, but with substantially larger constants.

6 LI, DEMANET, AND ZEPEDA-NÚÑEZ

statistical properties of the images to super-resolve them.
The method introduced in this manuscript follows ideas similar to the ones in

[37, 36, 29], where authors introduce tools from numerical analysis into deep learning.
They build on the sparse matrix factorizations that result from exploiting low-rank
interactions arising from the underlying physics of the problem. These factorization
are translated into the machine learning context: each matrix factor becomes a layer
in the network wherein the sparsity pattern informs the connectivity between layers,
and the matrix entries themselves are viewed as learnable weights. In particular,
the authors translate hierarchical matrices (H-matrices), which are factorizations of
operators into low-rank and permutations matrices, into individual layers in neural
network architectures. Although these networks are well suited for smooth data with
compressible long range interactions, which is the underlying motivation for the H-
matrices, they are not well suited for wave-scattering problems where the data is highly
oscillatory, and where the long-range interactions are not typically compressible.

Instead, the correct idea for capturing wave propagation is the choice of the
butterfly factorization, as motivated by their use for representing FIOs. In fact, ar-
chitectures based on butterfly algorithm have been previously proposed, albeit with
different goals as the one considered in this paper. In [28] the authors recover the
butterfly structure of certain linear operators, from permutation operations. In [54]
the authors use a one-level butterfly network with applications to inverse scattering,
though critically they require a super-linear scaling in their number of parameters.
In [60] the authors propose a mono-chromatic butterfly network similar to the archi-
tecture used in this case, which was later simplified in [84]. In [29], the authors use
the backbone of the butterfly structure to learn fast matrix approximations, with a
clever variational relaxation strategy for learning the permutation factors. However,
as mentioned in the prequel, none of these works address the use of butterfly fac-
torizations for super-resolution in wave-based imaging which requires stable training
over a wideband dataset.

2. Background. In this section we briefly review concepts from classical imag-
ing (see [25] for further details) and their connection with fast numerical methods.
We also provide a succinct description of the butterfly factorization and Cooley-Tukey
FFT algorithm to motivate the discussion of our architecture in Section 3.

2.1. Underlying Physical Model. We consider the time-harmonic wave equa-
tion with constant-density acoustic physics, also called the Helmholtz equation, with
frequency ω and squared slowness m, given by

(2.1) (∆ + ω2m(x))u(x) = 0

with radiating boundary conditions. We further suppose the slowness admits a scale
separation into

m(x) = m0(x) + η(x),

where m0 corresponds to the smooth background slowness, assumed known, and η the
rough perturbation that we wish to recover. If the background slowness is constant
and normalized4 so that

m(x) = 1 + η(x),

4This assumption is only made to make the presentation more transparent.

MULTI-SCALE BUTTERFLY NETWORKS 7

Fig. 1. Setup for the inverse scattering problem. In this case we probe the medium with a
planewave with direction s, and we sample the scattered field on the disk D.

then solutions to (2.1) can be expressed in the form

u(x) = eiω(s·x) + usc(x),

where eiω(s·x) is the incoming plane wave, with propagating direction s, that we use to
“probe” the perturbation, and usc(x) is the scattered field produced by the interaction
of the perturbation with the impinging wave. The scattered field satisfies

(2.2)


(
∆ + ω2(1 + η(x)

)
usc(x) = −ω2η(x)eiω(s·x) for x ∈ R2,

lim
|x|→∞

|x|1/2
(

∂

∂|x| − iω

)
us(x) = 0,

following the setup depicted in Fig. 1. Just as in Fig. 1 we select the detector man-
ifold D to be a circle of radius R that is sufficiently large enough to invoke far-field
approximations. For each incoming direction s ∈ S1 the data is given by sampling the
scattered field with receiver elements that are located on D and indexed by r ∈ S1.
This yields the far-field pattern given by

Λs,r = usc(Rr)

where s denotes the incoming probing direction as defined in (2.2). We call Fω[η] the
forward map relating the perturbation η to its corresponding far-field pattern.

Accordingly we can cast the inverse problem for recovering the rough perturbation
as

(2.3) η∗ = argminµ‖Fω[µ]− Λs,r‖

where Λs,r is the measured data. It will be instructive to linearize Fω to shed light
on the essential difficulties of this problem. Using the classical Born approximation
in (2.2) we obtain that

(2.4) usc(x) = ω2

∫
R2

Φω(x,y)η(y)eiω(s·y)dy,

8 LI, DEMANET, AND ZEPEDA-NÚÑEZ

where Φω is the Green’s function of the two-dimensional Helmholtz equation in ho-
mogeneous media, i.e., Φω satisfies

(2.5)


(
∆ + ω2

)
Φω(x,y) = −δ(x,y) for x ∈ R2,

lim
|x|→∞

|x|1/2
(

∂

∂|x| − iω

)
Φω(x,y) = 0.

Furthermore, we can use the classical far-field asymptotics of the Green’s function to
express

(2.6) usc(Rr) = −ω2 e
iωR

√
R

∫
R2

η(y)eiω(s−r)·y)dy +O(R−3/2).

Thus, up to a re-scaling and a phase change, the far-field pattern defined in (2.7) can
be approximately written as a Fourier transform of the perturbation, i.e.,

(2.7) Λs,r(ω) ≈ Fωη = −ω2 e
iωR

√
R

∫
R2

eiω(s−r)·yη(y)dy

is the linearized forward operator acting on the perturbation.
Solving the inverse problem (2.3) using the linearized operator in (2.7) results in

an explicit solution given by the normal equation

(2.8) η∗ =
(
(Fω)

∗
Fω + εI

)−1
(Fω)

∗
Λs,r,

which is often also referred to as filtered back-projection [25]. The constant ε is a
small regularization parameter that remedies the ill-conditioning of (Fω)

∗
Fω.

Performing the inversion numerically requires discretizing the wavespeed and the
sampling geometry. We discretize Ω using N = nx × nz degrees of freedom following
the Nyquist sampling rate of nx ∼ nz ∼ ω. The scattered data Λs,r is discretized into
an nsrc × nrcv matrix.

Fig. 2. Sketch of a matrix exhibiting a complementary low-rank property. Each of the blocks
induced by the different partitions has the same ε-rank.

After discretization and a change of variables, (Fω)∗ in (2.8) is a Fourier trans-
form (which itself is a FIO), and F ∗F is a pseudo-differential operator, which, in

addition, is translation invariant, and (F ∗F + εI)
−1

can be reduced to a convolution-
type operator.

Remark: Thus far we have assumed that we probe the perturbation η using
only a monochromatic time-harmonic wave with fixed frequency ω. As mentioned in
the introduction this is known to be ill-posed and data at additional frequencies is
required to stabilize the reconstruction [50]. In particular, a time-domain formulation

MULTI-SCALE BUTTERFLY NETWORKS 9

known as the imaging condition yields a more stable reconstruction using the full
frequency bandwidth; this formula can be formally stated as

(2.9) η∗ =

∫
R

(
(Fω)

∗
Fω + εI

)−1
(Fω)

∗
Λs,r(ω)dα(ω),

where dα(ω) is a density related to the frequency content of the probing wavelet.
When the density is well approximated by a discrete measure then

(2.10) η∗ ≈
Nfreqs∑
i=1

(
(Fωi)

∗
Fωi + εI

)−1
(Fωi)

∗
Λs,r(ωi)α(ωi),

over a discrete set of frequencies {ωi}Nfreqs

i=1 . We note that the selection of these
frequencies, in addition to the optimal ordering in which the summation is computed
under an iterative regime, remains an open question and an area of active research
[10].

2.2. Butterfly Factorization and Fourier Integral Operator. When the
scattered field is given by (2.7) then one could apply the fast Fourier transform [27]
to compute the estimate (2.10) in quasi-linear time. However, with a heterogeneous
background the linearized forward map is instead given by a more general represen-
tation usually known as a Fourier integral operator (FIO), which has the form

(2.11) (Fωη)(x) =

∫
R2

a(x,y)eiωφ(x,y)η(y)dy.

Here φ(x,y) is referred to as the phase (or travel-time) function while a is typically
a very smooth function that encodes the amplitude5. The work of [16, 72, 70] rec-
ognized that even in this more generalized instance the application of Fω and its
adjoint can be computed in with optimal complexity by means of the butterfly algo-
rithm. The butterfly algorithm is a multi-scale algorithm which takes advantage of
the complementary low-rank property of the discretized operator depicted in Fig. 2.
In its original form the algorithm relies on explicit knowledge of the phase function;
later, in [61] the authors introduced the butterfly factorization, which approximates
the discretized operator (2.11) by the multiplication of sparse matrices with a specific
sparsity pattern6 as shown in Fig. 3.

Fig. 3. Sketch of the butterfly factorization, where the matrix at the left is factorized in sequence
of very sparse matrices with a distinct sparsity pattern, induced by Fig. 2.

In a nutshell, the butterfly factorization approximately factorizes a matrix A that
satisfies the complementary low-rank property in L+ 3 sparse matrices following:

(2.12) A ≈ Abutterfly = ULGL−1 · · ·GL/2SL/2
(
HL/2

)∗
· · ·
(
HL−1)∗ (V L)∗ ,

5The principal symbol, a, is usually either independent of weakly dependent of ω.
6This pattern is for the one-dimensional butterfly factorization, which already captures the key

algorithmic ideas while keeping the presentation clean of ordering issues that arises in higher dimen-
sion.

10 LI, DEMANET, AND ZEPEDA-NÚÑEZ

where UL and V L are block diagonal matrices, SL/2 is a weighted permutation matrix,
usually called a switch matrix, and L is the number of levels in the factorization, which
is usually a power of two.

We can interpret the factors in (2.12) following the original butterfly algorithm.
V L extracts a local representation of the vector, then each factor H` compresses two
neighboring local representations, i.e., decimates by a factor of two the number of
local representations, while increasing the amount of information in each presenta-
tion. The switch matrix SL/2 quickly redistribute the information contained in each
local representation. The factors G` decompress the information contained in each
representation at each stage, i.e., the local representations are split in two by each
factor increasing the spacial resolution, and finally the factor UL, transforms the local
representations to the sampling points.

For the sake of completeness we provide a formal argument to show that the FIO
in (2.11) satisfies the complementary rank property (see [16] for a more comprehen-
sive argument). Suppose that we have two points x0 and y0 in the evaluation and
integration region respectively. We define two neighborhoods around each point, such
that |x − x0| < dx and |y − y0| < dy. We then seek to find the largest values of dx
and dy such that we can efficiently approximate

(2.13)

∫
|y−y0|<dy

a(x,y)eiωφ(x,y)η(y)dy,

using a separable function. The principal symbol, a(x,y) is supposed to be smooth
and independent of ω (or weakly dependent), so we can focus our discussion to the
oscillatory term eiωφ(x,y).

Using a Taylor expansion we have that

φ(x,y) =φ(x0,y0) + ∂xφ(x0,y0) · (x− x0) + ∂yφ(x0,y0) · (y − y0)

+(x− x0)T · ∂2xφ(x0,y0) · (x− x0) + (y − y0)T · ∂2yφ(y0,y0) · (y − y0)

+2(x− x0)T · ∂2x,yφ(x0,y0) · (y − y0) +O(dxdy)

Clearly the first five terms provide separable expressions, the sixth term can be easily
bounded producing

(2.14) eiωφ(x,y) = eiωψ(x)eiωξ(y)(1 +O(ωdxdy))

thus as long as dxdy ≤ ω−1, then eiωφ(x,y) can be locally approximated by a separable
function. In the discrete case this property is translated to the fact that the multi-
plication of the height and the width of each block has a constant ε-rank, which is
exactly the complementary low-rank property showcased in Fig. 2.

Remark: We point out that there exist three different types of butterfly fac-
torizations. The left one sided, the right one sided, and the two sided (see [64] for
a review). In this work we focus on the two-sided version, which provides the best
complexity. It is possible to “neuralize” the other two types of factorizations, which
yield a specific type of CNN networks with sparse channel connections as shown in
[84].

2.3. Cooley-Tukey Algorithm. The Cooley-Tukey FFT algorithm [27] is one
of the most important algorithms in the 20th century [21]. It aims to compute the
discrete Fourier transform (DFT) of a signal {xn}N−1n=0 given by

(2.15) x̂(k) =

N−1∑
k=0

xne
− 2πi

N nk,

MULTI-SCALE BUTTERFLY NETWORKS 11

in N logN time. The algorithm leverages the algebraic structure of the N-th complex
roots of the unit to recursively split the computation. The simplest version of the
algorithm is called the radix-2 decimation-in-time FFT, which computes the DFT of
both even-indexed and odd-indexed inputs, which are then merged to produce the
final result. In particular, for the first level the DFT is rearranged as

x̂(k) =

N/2−1∑
m=0

x2me
− 2πi
N/2

mk + e−
2πi
N k

N/2−1∑
m=0

x2m+1e
− 2πi
N/2

mk,

= x̂e(k) + e−
2πi
N kx̂o(k),

where x̂e(k) and x̂o(k) stand for the even and odd downsampled DFTs respectively.
However, given that we are using decimated DFTs this expression is only valid for
k = 0, ...N/2 − 1. Thus, in order to obtain the full length DFT, one can use the
periodicity of the complex exponential, and we have that

x̂(k) = x̂e(k) + e−
2πi
N kx̂o(k),(2.16)

x̂(k +N/2) = x̂e(k)− e− 2πi
N kx̂o(k).(2.17)

2.4. Wide-Band Butterfly Algorithm. For the sake of simplicity we motivate
the idea behind this paper, which is the multiscale decomposition of the butterfly
factorization, by using the Cooley-Tukey FFT algorithm. We point out that the same
argument can be obtained from a rather involved analysis of the original butterfly
algorithm. In particular, one can follow the description of the algorithm in [32] to
show that if we build a compressed FIO, as the one in (2.11), at frequency ω using the
butterfly algorithm, then most of the computation can be reused to build the same
FIO, but at frequency ω/2.

The cornerstone of the approach is to leverage the recursive nature of the FFT
algorithm to reuse most of the algorithm pipeline when computing the FFT of dec-
imated signals, or in the case of (2.11) at lower frequencies. We focus our attention
on two operations: computing the DFT of a decimated signal using the FFT for a
non-decimated signal, computing the same DFT using a decimated algorithm, but
keeping a non-decimated resolution. These two operations will be key when designing
our network.

From (2.16) and (2.17) we clearly see that we can compute the DFT of a decimated
signal, using the regular FFT algorithm. One only needs to interweave the original
signal with zeros, then apply the FFT for the longer signal, and then truncate half of
the resulting vector. This means that after a modification of the input we can reuse
the algorithmic pipeline from a non-decimated FFT.

Furthermore, if we compute the DFT of a decimated signal, but want to keep the
full frequency resolution of the non-decimated one, then (2.16) and (2.17) provides
an answer to that: one needs to repeat the result from the decimated signal. This
upscaling operation will be key when designing the network in Section 3.

These operations follow the same principle behind the wide-band butterfly net-
work. If we want to implement (2.10), we would need to build a network to process
the data at each frequency independently. However, using the argument above one
can use the recursive decomposition to process the frequencies jointly. In particular,
if we want to process data, say at half frequency, i.e., ω/2, then the complementary
low-rank conditions states that dxdy ≤ 2ω−1. If we suppose, in addition, that the

12 LI, DEMANET, AND ZEPEDA-NÚÑEZ

evaluation grid remains constant7 then dy can be twice as large, thus inducing a dif-
ferent factorization. However, as mentioned above, each factor in H` factor in the
butterfly factorization (see (2.12)) down-samples the local representation in y, while
increasing the resolution in x. This means, that after a small modification at the
beginning, followed by an upscaling operation similar to the one in (2.16) and (2.17)
when the odd signal is zero, one can reuse the rest of the network, which is idea be-
hind merging the networks to treat the different frequencies jointly at the appropriate
scale.

3. WideBNet Architecture. We provide a self-contained overview of the network
architecture in this section. The material here is tailored towards a machine-learning
audience with no prior exposure to the butterfly factorization. Indeed, beyond the
salient aspects which we summarize below, implementing WideBNet becomes essen-
tially algorithmic since the network structure and connectivity are determined once
the dimensions (i.e., grid size) of the data are specified. For clarity our discussion
focuses only on two-dimensional scattering as it captures the essential complexities of
the problem; adapting the architecture to higher dimensions proceeds in a straight-
forward manner.

We split the discussion into several parts. In Section 3.1 we define the sampling
and formatting of the input data. Section 3.2 provides the overarching ideas of the
architecture presented in a modular manner, followed by the definition of each of such
module in terms of layers of a neural network. Specific details of these layers are
further elaborated in their respective Sections 3.3, 3.4, and 3.5. Lastly in Section 3.6
we provide the number of parameters (trainable weights) required for the network.
Pseudo-code for WideBNet is provided in Listing 1 below, but the pseudo-code for
each specialized layer is located in their corresponding subsection.

1def wbnn():

2# inputs: ΛL, . . . ,ΛL/2

3# output: [?, 1, 4L, 1]

4

5y = V L(ΛL)

6for l in range(L-1), L/2-1, -1):

7y = Hl(y, V l(Λl))

8y = SwitchResnet(y)

9for l in range(L/2, L, +1):

10y = Gl(y)

11y = UL(y)

12y = CNN(y)

13return y

Listing 1
Pseudo code for the WideBNet , where each module is explained in detail in Sections 3.4, 3.3,

and 3.5.

3.1. Input formatting. We assume the scatterers (discretized over an nx ×
nz grid) and the scattered data (an nsrc × nrcv matrix for each frequency ω) are
represented using complete quad-trees with L levels8 with leaf size s. In other words,

7This assumption is a direct consequence of (2.10), where the resolution of the perturbation to
be reconstructed is fixed.

8We require that L is divisible by 2. This is a minor restriction and can be accommodated by
e.g. zero padding of the data or by interpolating the data. While the total depth of both quad-trees
must be the same, it is not necessary for them to have the same leaf size. However, for ease of

MULTI-SCALE BUTTERFLY NETWORKS 13

{
<latexit sha1_base64="CAzYes/Q1bk22KqL288AEJ0Yh6o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+12A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2c8G5YpbdRcg68TLSQVyNAblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni0tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rw1s+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtGtV76pae7iu1Jt5HEU4g3O4BA9uoA730IAWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A6GijXk=</latexit> { <latexit sha1_base64="CAzYes/Q1bk22KqL288AEJ0Yh6o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+12A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2c8G5YpbdRcg68TLSQVyNAblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni0tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rw1s+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtGtV76pae7iu1Jt5HEU4g3O4BA9uoA730IAWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A6GijXk=</latexit>

s
<latexit sha1_base64="ZPUno9+sCpQ+FtbsBJzQvj5yRFw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rEF+wFtLJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+W9mSToR3QoecgZNVZq6H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWtasW7rFQbV+XaQx5HAU7hDC7Ag2uowR3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A6F+NFw==</latexit>

s
<latexit sha1_base64="ZPUno9+sCpQ+FtbsBJzQvj5yRFw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rEF+wFtLJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+W9mSToR3QoecgZNVZq6H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWtasW7rFQbV+XaQx5HAU7hDC7Ag2uowR3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A6F+NFw==</latexit>

{
<latexit sha1_base64="CAzYes/Q1bk22KqL288AEJ0Yh6o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+12A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2c8G5YpbdRcg68TLSQVyNAblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni0tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rw1s+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtGtV76pae7iu1Jt5HEU4g3O4BA9uoA730IAWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A6GijXk=</latexit>

s ⇥ s
<latexit sha1_base64="kFaFCLj7WiosCRr6Eq0R9l2MSYA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Ae2sWy2m3bpZhN2J0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbG6x0nC/YgOlQgFo2ilB0N6KCJuiOmXK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaJ2jZ/NL56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex9MhCaM5QTSyjTwt5K2IhqytCGVLIheMsvr5JWrepdVGt3l5X6Yx5HEU7gFM7Bgyuowy00oAkMFDzDK7w5xnlx3p2PRWvByWeO4Q+czx8blZCi</latexit>

Fig. 4. Transformation from the image of dimensions [2`s, 2`s] to the tensorized form of size
[2`, 2`, s2], and then to the flatted tensor using Morton ordering resulting on a tensor of dimensions
[4`, s2].

we require a discretization into n = 2`s points for each matrix dimension, and the
level ` ∈ [L/2, L] indexes the size of the contiguous 2L−`s× 2L−`s sub-matrices. The
choice of L and s is informed by the inherent wavelength scaling in each problem such
that the data inside each s × s voxel (equivalently, each sub-matrix at the highest
resolution ` = L) is non-oscillatory, i.e. contains a fixed amount of oscillations.

Following the Tensorflow convention of [height, width, channels] we reshape
these quad-trees into three-tensors of size [2`, 2`, s2] as shown in Fig. 4. The first two
dimensions of the tensor contain the geometrical information, and the last contains a
local representation. In fact, the data describing the local representation inside each
voxel corresponds to channels. In addition, we refer to slices along the height and
width dimensions, i.e. the geometrical dimensions, as patches, e.g. a 1 × 1 patch
of data describes slices with dimension [1, 1, s2]. At the highest spatial resolution
WideBNet operates on 1× 1 patches, and, as we discuss shortly, at the lowest spatial
resolution it operates on 2L/2 × 2L/2 patches.

For the purpose of describing the operation in terms of linear algebra, it is conve-
nient to view these three-tensors as reshaped two-tensors of size [4`, s2] as depicted
in Fig. 4; this flattening proceeds according to a natural ordering of quad-trees known
as “Morton-ordering” or “Z-ordering”. We refer to [62] for more details.

The input data Λs,r(ω) ∈ Cnsrc×nrcv is a function of the probe frequency ω in
(2.2). To stabilize the inverse problem it is necessary for the input data to be col-
lected from a wideband of frequencies Ω = [ωlow, ωhigh]. We separate this bandwidth
using a dyadic partition containing L/2 + 1 intervals: for L/2 ≤ ` ≤ L we label
the intervals Ω` = (ωlow + 2L−`−1∆ω, ωlow + 2L−`∆ω] where ∆ω = ωhigh − ωlow.
Within each interval Ω` we sample n`ω frequencies, not necessarily equispaced, and

with slight abuse of notation denote the resulting dataset as Λ`s,r ∈ Cnsrc×nrcv×n`ω . Fol-

lowing the quad-tree structure we reshape each data tensor Λ`s,r into a three-tensor

of size [2`, 2`, n`ωs
2], i.e. we concatenate all the multifrequency data collected from

bandwidth Ω` along the channel dimension. The input to WideBNet thus consists of
the collection {Λ`s,r}L/2≤`≤L.

3.2. Architecture Overview. We start by recalling that we aim to build an
operator that emulates (2.10), i.e., for a set of given frequencies {ω`}L`=L/2 we seek a

presentation, our discussion focuses exclusively on this case.

14 LI, DEMANET, AND ZEPEDA-NÚÑEZ

network based on the discrete imaging condition

(3.1)

L∑
`=L/2

α(ω`)
(
(Fω`)

∗
Fω` + εI

)−1
(Fω`)

∗
Λ`s,r.

In the monochromatic case, we know that each operator can be written as

(3.2)
(
(Fω)

∗
Fω + εI

)−1
(Fω)

∗
= AconvAbutterfly

where Aconv is a translation invariant operator and Abutterfly accepts a factorization
similar to

(3.3) Abutterfly = ULGL−1 . . . GL/2SL/2HL/2 . . . HL−1V L.

In the linear case, Abutterfly ∈ C4`s2×4`s2 with U ` ∈ C4`s2×4`r, V ` ∈ C4`r×4`s2 , and
all remaining factors of size 4`r × 4`r, where the inputs are supposed to be morton-
flattened as mentioned above.

A schematic diagram of WideBNet is shown in Fig. 8 complemented by the pseudo
code in Alg. 1. At a high level, WideBNet consists of L + 3 specialized layers that
are non-linear analogues of the butterfly factors9 of Abutterfly in (3.3) where SL/2

is replaced by a switch-resnet module. These layers ultimately send data into a
CNN module, which corresponds to Aconv, that is intended to mimic the effects of the
regularized pseudo-inverse in sharpening the image/estimate.

The main contribution of WideBNet is in how multi-frequency datasets10 are as-
similated by exploiting the connection between spatial resolution and frequency in
wave-scattering problems. In particular, we stress that it is both

(i) the connectivity/permutations inside the specialized layers {H`} and {G`}
that process the wideband data, as well as,

(ii) the non-linearities induced by the middle switch-resnet layer,
that are crucial towards achieving stable training dynamics, as well as image super-
resolution11.

By choosing a dyadic partition of the frequency band WideBNet exploits the in-
herent multiscale nature of the {H`} layers. Analogous to their butterfly factorization
namesakes, each {H`} layer only locally interpolates the data over voxel patches of
effectively 2L−`×2L−`, i.e. the effective length scales at this layer are of order 2L−`. It
follows from the dispersion relation in wave-scattering that only data from bandwidth
Ω` are informative at this length-scale12. As mentioned in Section 2.3 this strategy
of dyadically partitioning the bandwidth to localize spatial information is employed
by the Cooley-Tukey FFT algorithm to achieve quasi-linear time complexity [27]; in
our setting this strategy affords us significant reductions in the number of trainable
weights in the network.

We now proceed with a detailed discussion of each layer following Alg. 1. In what
follows we compare each WideBNet layer to their analogous matrix factor from the
butterfly factorization in (3.3).

9For ease of comparison we retain the transpose ·∗ in our naming conventions but note that
transposition is no longer well defined in the non-linear setting.

10If only data at a single frequency is provided, i.e. using solely Ω`
r,s ∈ Cn×n×n`ω with n`

ω = 1 as
the input, then the network reduces to an equivalent BNet [60] or SwitchNet [54] networks.

11It is know that successful estimators for super-resolution must necessarily involve non-linear
combinations of wideband data [34].

12The {G`} layers have a similar multiresolution property. This suggests that data from bandwidth
Ω` should also be fed into G` similar to the U-Net [76] architecture; however, numerical results
demonstrate that this additional complexity is unnecessary.

MULTI-SCALE BUTTERFLY NETWORKS 15

{
<latexit sha1_base64="CAzYes/Q1bk22KqL288AEJ0Yh6o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+12A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2c8G5YpbdRcg68TLSQVyNAblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni0tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rw1s+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtGtV76pae7iu1Jt5HEU4g3O4BA9uoA730IAWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A6GijXk=</latexit>

s ⇥ s
<latexit sha1_base64="kFaFCLj7WiosCRr6Eq0R9l2MSYA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Ae2sWy2m3bpZhN2J0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbG6x0nC/YgOlQgFo2ilB0N6KCJuiOmXK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaJ2jZ/NL56SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex9MhCaM5QTSyjTwt5K2IhqytCGVLIheMsvr5JWrepdVGt3l5X6Yx5HEU7gFM7Bgyuowy00oAkMFDzDK7w5xnlx3p2PRWvByWeO4Q+czx8blZCi</latexit>

{
<latexit sha1_base64="CAzYes/Q1bk22KqL288AEJ0Yh6o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+12A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2c8G5YpbdRcg68TLSQVyNAblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni0tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rw1s+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtGtV76pae7iu1Jt5HEU4g3O4BA9uoA730IAWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A6GijXk=</latexit> r

<latexit sha1_base64="l05O0QYm/OBD3ktjMs28Ds+LrNs=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rEF+wFtLJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+W9mSToR3QoecgZNVZqqH6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWtasW7rFQbV+XaQx5HAU7hDC7Ag2uowR3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A5tuNFg==</latexit>

s2 ⇥ r
<latexit sha1_base64="XwEKXBmfja/Zotu0nUqIbBT+++8=">AAAB9HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8kXjxiIo8EFjI7DDBhdnad6SUhG77DiweN8erHePNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY38395oRrIyL1iNOY+yEdKjEQjKKVfNOtkA6KkBuiSa9YcsvuAmSdeBkpQYZar/jV6UcsCblCJqkxbc+N0U+pRsEknxU6ieExZWM65G1LFbV7/HRx9IxcWKVPBpG2pZAs1N8TKQ2NmYaB7QwpjsyqNxf/89oJDm79VKg4Qa7YctEgkQQjMk+A9IXmDOXUEsq0sLcSNqKaMrQ5FWwI3urL66RRKXtX5crDdanazeLIwxmcwyV4cANVuIca1IHBEzzDK7w5E+fFeXc+lq05J5s5hT9wPn8Ank+Rbw==</latexit>

Fig. 5. Sketch of the compression carried in the V L layer, from the points contained in a leaf of
size s×s (see Fig. 4) to a local representation of rank r. The grey polygon represent the connections
between the two layers.

3.3. UL and V ` layers. The V ` factor in (3.3) represents a block diagonal
matrix with block size r × s2 as shown in Fig. 5. This operator takes input data
(viewed as a complete quad-tree) and compresses leaf nodes at level L, each with s×s
degrees of freedom, into 1 × 1 patches with

√
r × √r degrees of freedom. Similarly,

the UL factor in (3.3) is also block diagonal except with block sizes of s2 × r. This
operator “samples” the local representation back to its nominal dimensions. In both
instances the compression/decompression is essentially lossless provided the number
of levels L is properly adapted to the probe frequency ω. We emphasize again that
this follows as a consequence of the dispersion relation in wave-scattering: provided
these parameters are chosen correctly, then over s × s length scales the data is non-
oscillatory (i.e. sub-wavelength) and therefore admits a low-rank representation with
rank r.

WideBNet also exploits this relation between spatial resolution and frequency.
However, a key point of departure from the butterfly factorization is that here the
input data is wideband and thus contains multiple length scales (wavelengths). This
motivates the introduction of auxiliary layers V ` for L/2 ≤ ` ≤ L whose inputs are
assumed to be sampled from bandwidth Ω`. Each V ` layer compresses the input data
at level ` such that nodes with 2L−`s × 2L−`s degrees of freedom are mapped into
1 × 1 patches with

√
r × √r degrees of freedom; this also has the interpretation of

spatial downsampling. Note that the dyadic scaling in the definition of Ω` is critical
in maintaining the balance between spatial resolution and frequency.

When the input data Λ`s,r from bandwidth Ω` is represented as a three-tensor of

dimension [2`, 2`, n`ω], each V ` layer can be implemented as a LocallyConnected2D

layer in Tensorflow with rn`ω channels and both the kernel size and stride as 2L−` ×
2L−`. Note this coincides with V ` butterfly factor when l = L and n`ω = 1. The UL

layer can also be implemented as LocallyConnected2D layer with rank s2 and 1× 1
kernel size and stride; the input to this layer is assumed to be of dimension [2`, 2`, c]
with c input channels.

1def V `(X):

2# input: [?, 2, 4L, s2]
3# output: [?, 2, 4L, rnω`]

16 LI, DEMANET, AND ZEPEDA-NÚÑEZ

4yre, yim = X[:,0,:,:], X[:,1,:,:]

5

6xre = LC1D[rnω`,1,1](yre) + LC1D[rnω`,1,1](yim)
7xim = LC1D[rnω`,1,1](yre) + LC1D[rnω`,1,1](yim)
8

9return tf.stack([xre, xim], axis=1)

Listing 2
Pseudo code for the V ` module. where LCN[a,b,c] == LocallyConnected1D(filters=a,

kernel size=b, strides=c)

1def U(X):

2# input: [?, 2, 4L, ·]
3# output: [?, 2, 4L, s2]
4yre, yim = X[:,0,:,:], X[:,1,:,:]

5

6xre = LC1D[s2,1,1](yre) + LC1D[s2,1,1](yim)
7xim = LC1D[s2,1,1](yre) + LC1D[s2,1,1](yim)
8

9return tf.stack([xre, xim], axis=1)

Listing 3
LCN[a,b,c] == LocallyConnected1D(filters=a, kernel size=b, strides=c)

Remark: A major application of the butterfly factorization is for applying FIOs
in linear-time complexity; the rank r then depends on the error tolerance but generally
requires that r � s2. This represents a significant philosophical difference in how in
r is determined in our machine learning setting – it does not matter if r ≥ s2 so as
long as the learned model achieves its intended task. Nevertheless, numerical results
show that (i) it suffices to choose r � s2, and, moreover, that (ii) generalization is
largely insensitive to the choice of r.

3.4. H` and G` layers. The H` and G` factors in (3.3) continue the theme of
multiscale processing. When viewed as matrices, both H` and G` are block diagonal
with block size 4L−`r×4L−`r. Equivalently, when the input is formatted as a complete
quad-tree, this implies both are local operators which process the nodes on the tree at
length scale l to map each 2L−`s× 2L−`s patches. Within each block there is further
structure to the operators, as Figure 6 demonstrates. For each H` each sub-block has
the interpretation of aggregating information, whereas each G` achieves the dual task
of spreading information. We stress, however, that the action of this is entirely local
within each patch. In either case the key observation is that by permuting each nodes
following a set pattern each operator becomes block-diagonal with block size 4`, for
all L/2 ≤ ` ≤ L.

Each G` layer mimics the behaviour of their counterparts can be be implemented
using the LocallyConnected2D layer with 4 × 4 kernel sizes and stride 4. The
number of channels is

∑`
i=l+1 rnωi for symmetry.

The H` layers differ in that they process two inputs: one the output of the V `

layer of dimension [2L−`, 2L−`, rnω`], the other the output from the previous layer of
dimension [2`, 2`, c] for some channel size c. To process the dimensions of both we first
upscale each patch with redundant information to convert the data into [2`, 2`, rnω`].
Then this is concatenated with the other dataset to form a tensor of size [2`, 2`, c +
rnω`].

The ordering of the concatenation along the channel dimension does not matter
so as long as it is performed consistently.

MULTI-SCALE BUTTERFLY NETWORKS 17

{ <latexit sha1_base64="CAzYes/Q1bk22KqL288AEJ0Yh6o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+12A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2c8G5YpbdRcg68TLSQVyNAblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni0tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rw1s+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtGtV76pae7iu1Jt5HEU4g3O4BA9uoA730IAWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A6GijXk=</latexit>r
<latexit sha1_base64="l05O0QYm/OBD3ktjMs28Ds+LrNs=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rEF+wFtLJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+W9mSToR3QoecgZNVZqqH6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWtasW7rFQbV+XaQx5HAU7hDC7Ag2uowR3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A5tuNFg==</latexit>

4 ⇥ r
<latexit sha1_base64="iQV3ImRI10iaZJ5masUiRI4UB5Q=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2A9IY9lsN+3SzSbsToRS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MJXCoOt+O4WNza3tneJuaW//4PCofHzSNkmmGW+xRCa6G1LDpVC8hQIl76aa0ziUvBOOb+d+54lrIxL1gJOUBzEdKhEJRtFKfp30UMTcEE365YpbdRcg68TLSQVyNPvlr94gYVnMFTJJjfE9N8VgSjUKJvms1MsMTykb0yH3LVXU7gmmi5Nn5MIqAxIl2pZCslB/T0xpbMwkDm1nTHFkVr25+J/nZxjdBFOh0gy5YstFUSYJJmT+PxkIzRnKiSWUaWFvJWxENWVoUyrZELzVl9dJu1b1rqq1+3ql8ZjHUYQzOIdL8OAaGnAHTWgBgwSe4RXeHHRenHfnY9lacPKZU/gD5/MHETiQjA==</latexit>

{ <latexit sha1_base64="CAzYes/Q1bk22KqL288AEJ0Yh6o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+12A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2c8G5YpbdRcg68TLSQVyNAblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni0tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rw1s+4TFKDki0XhakgJibzt8mQK2RGTC2hTHF7K2FjqigzNpySDcFbfXmdtGtV76pae7iu1Jt5HEU4g3O4BA9uoA730IAWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A6GijXk=</latexit>

Fig. 6. Sketch of the application of the H` layer. The layer decimates by a factor of four the
number of neurons in the spatial dimension, while increasing four times the number of channels.
From Fig. 4 we can observe that the decimation is equivalent to decimate by a factor two in each of
the first two dimensions, which follows from the Z-ordering.

1def H`(X, W):

2# input X: [?, 2, 4L, ·]
3# input W: [?, 2, 4L, ·]
4# output: [?, 2, 4L, r

∑L
i=` nωi]

5

6X̃ = UpSampling2D[·, ·](X̃)

7

8X = tf.stack([X, X̃], axis=-1)

9

10yre, yim = X[:,0,:,:], X[:,1,:,:]

11

12yre = permute_dim(yre, level=`)
13yim = permute_dim(yim, level=`)
14

15xre = LC1D[4r
∑L

i=` nωi,4,4](yre) + LC1D[4r
∑L

i=` nωi,4,4](yim)

16xim = LC1D[4r
∑L

i=` nωi,4,4](yre) + LC1D[rnω`,1,1](yim)
17

18return tf.stack([xre, xim], axis=1)

Listing 4
LCN[a,b,c] == LocallyConnected1D(filters=a, kernel size=b, strides=c)

3.5. Switch-Resnet layer. We retain the permutation pattern of the switch
layer as this is responsible for capturing the inherent non-locality of wave scattering
(e.g. a point scatterer generates a diffraction pattern that is measured by all receivers
in our geometry). We illustrate this pattern in Fig. 7.

The input this level serves as a condensed representation of the measured data. It
is at this level that we non-linearly process the multifrequency dataset; we speculate
that this also essential in facilitating the model to produce super-resolved images.
We achieve this using a residual network to refine each channel locally following each
resnet unit. The pseudocode is provided in Alg. 12.

1def SwitchResnet():

2# input

3# output

18 LI, DEMANET, AND ZEPEDA-NÚÑEZ

Fig. 7. Sketch of the permutation of information of at the Σ layer. In this case we consider
that r = 1, and that L = 4. In this case the tensor at the middle level is [2L/2, 2L/2, r4L/2] =
[4, 4, 16]. The last dimension is the number of channels, in this case the information contained at
each geometric position is distributed along all the positions.

4

5# apply switch permutation

6for kk in range(Nresnet):

7y = LCD1D(ReLu(LC1D(y)) + y

8

9if kk < Nresnet:

10y = ReLu(y)

Listing 5
LCN[a,b,c] == LocallyConnected1D(filters=a, kernel size=b, strides=c)

3.6. WideBNet Parameter Count. An estimate of how the number of param-
eters (i.e. trainable weights) scales is

d.o.f.(WideBNet) ≈ 4`r2

 ∑̀
l=L/2

n2ω` +
∑̀
l=L/2

(∑̀
i=l

nωi

)2
 .

When only a single frequency is sampled in each sub-band, i.e. nω` = 1 for all l, then
this total becomes O

(
N(logN + log3N)

)
. Note this is essentially linear in the total

degrees of freedom in the data (N) up to polylogarithmic factors. Furthermore, note
if näıvely L separate single channel WideBNet networks were used to compute (2.10)
this would correspond to complexity O

(
N logN2

)
; the multifrequency assimilation

only exceeds this with mild oversampling by a logarithmic factor.
Lastly, we note the effect of the partitioning of the frequencies. If all the frequen-

cies were ingested at length scale L then the scaling becomes O
(
N(logN2 + logN3)

)
.

While to leading order this presents the same asymptotic scaling, in terms of prac-
tical considerations this presents as substantial increase in the number of trainable
parameters.

4. Numerical Results. Synthetic data was generated using numerical finite
differencing for (2.2) over the computational domain [−0.5, 0.5]⊗2. The domain was
discretized with an equispaced mesh of nx = 80 by nz = 80 points which corresponds
to a quad-tree partitioning into L = 4 levels with leaf size s = 5. Training data
was generated using a second-order finite difference scheme while testing data was
computed with fourth-order finite differences. The use of higher quality simulations for
testing serves to validate that WideBNet predictions do not depend on computational
artifacts such as e.g. numerical dispersion. The radiating boundary conditions for
Eq 2.2 were implemented using perfectly matched layers (PML) with a quadratic

MULTI-SCALE BUTTERFLY NETWORKS 19

Switch Resnet

Scattered Data

CNN

Output

Fig. 8. Diagram of WideBNet for data with L = 4 levels, leaf size s, and rank r.

profile with intensity 80 [8]. The width of the PML was chosen to span at least one
wavelength at the lowest frequency.

Unless specified otherwise the dataset consisted of nf = 3 source frequencies at
2.5, 5, and 10 Hz. In a homogeneous background with velocity c0 = 1 this corresponds
to 8 points-per-wavelength (PPW) at the highest frequency. Receivers were located
at equi-angular intervals around a circle of radius r = 0.5 with the recorded data
computed by linearly interpolating the scattered field. We used Nrcv = 80 receivers
and sources for all experiments. For a homogeneous background the direct wave is
given analytically (see (2.2)). In these instances the directions of arrival s ∈ S1 were

20 LI, DEMANET, AND ZEPEDA-NÚÑEZ

aligned with the receiver geometry, i.e. incident from 80 equiangular directions. How-
ever for inhomogeneous media the direct waves had to be computed numerically. This
was achieved by using numerical Dirac deltas as source functions. These sources were
localized on a circle of radius r = 1 at 80 equiangular intervals and the computational
domain was extended to [−1, 1]⊗2 using the same grid spacing ∆x and ∆z as before.
The resulting scattered field was computed by differencing the solutions to (2.2) with
and without scatters. The acquisition geometry was fixed for all frequencies.

Scatterers were selected from a dictionary of simple, convex, geometric objects
such as squares, triangles, and gaussian bumps. The characteristic lengths of the
square and triangular scatterers were measured with respect to their base, rather
than the diameter of the smallest enclosing ball, whereas the characteristic length of
the gaussian was taken to be its standard deviation. In each data point the number
of scatterers was determined by uniformly sampling from {2, 3, 4} objects, and their
locations were uniformly distributed inside a circle of radius r = 0.35. No restrictions
were enforced against overlapping scatterers. In all experiments the amplitude of
each scatterer was fixed to 0.2; we leave to future work how the training data can be
augmented to account for variations in amplitudes.

WideBNet was implemented in Tensorflow [1] and trained with the pixelwise sam-
ple loss function

(4.1)
∑

x=pixel in image

∥∥∥(Khigh ∗ η)(x)− WideBNet [ΛLs,r, . . . ,Λ
L/2
s,r](x)

∥∥∥2
2
,

where η denotes the sample realization of the scatterer wavefield and {Λ`s,r}L/2≤l≤L
the partitioned multifrequency data. This objective function was chosen to promote
the recovery of an image that is smoother than the reference image by a factor of a
two dimensional convolution with high-pass filter Khigh. Critically we still remain in
the super-resolution regime when the support of filter Khigh is significant smaller than
the Nyquist limit of λmin/2

13 as the smoothed image still contains sub-wavelength
features. This strategy was inspired by the work of [17] who relied on this insight for
theoretical proofs on recoverability limits in superresolution. In our experiments we
selected Khigh to be a Gaussian kernel with characteristic width of 0.75 grid points
(compare this the diffraction limit in our bandwidth of 4 pixels). This smoothing was
observed to be integral in promoting stable training dynamics. We also report the
the image-wise relative error

(4.2)

∥∥∥Khigh ∗ η − WideBNet [ΛLs,r, . . . ,Λ
L/2
s,r]

∥∥∥2
2

‖Khigh ∗ η‖22
.

Note that we do not normalize the norms in either (4.1) or (4.2) by the grid lengths
∆x and ∆z.

The training and testing split was 21000 points and 4000 points14, respectively,
with batch size 32. Note, in comparison, an instance of WideBNet with NCNN = 3
convolutional layers and NRNN = 3 residual layers contains 200000 trainable pa-
rameters meaning our models are still in the massively over-parameterized regime.
Unless specified otherwise the testing set follows the same distribution (e.g. scatterer
types) as the training set. The initial learning rate (i.e. step size) was universally set

13The ratio of these two quantities is the so-called super-resolution factor.
14a single “data point” has dimension nx × nz × nf

MULTI-SCALE BUTTERFLY NETWORKS 21

to 5e-3 across all experiments. The learning schedule was set according to Tensor-
flow’s [1] implementation of ExponentialDecay with a decay rate of 0.95 after every
2000 plateaus steps with stair-casing. We chose the Adam optimizer [55] and termi-
nated training after 150 epochs. No special initialization strategy was required and the
network weights were randomly initialized with glorot uniform – we did not observe
the training instabilities with random initialization that were thoroughly documented
in [84] for general butterfly networks. All computations were done with float32 half-
precision. Note that no effort was taken to optimize these hyper-parameters using an
external validation set.

4.1. Homogeneous Background. In this section we present numerical results
for WideBNet models trained with scattered data that propagated through a known
homogeneous background medium of wavespeed c0 = 1. Each row of Figure 11 de-
picts WideBNet predictions on testing data across a variety of scatterer configurations.
With the exception of Figure 11c the data was sampled from the bandwidth of 2.5, 5
and 10 Hz which implies a limiting wavelength of 8 PPW. Figures 11a and 11b involve
a multiscale dictionary of scatterers with characteristic lengths ranging from 3, 5, and
10 pixels; these correspond to the sub-wavelength, wavelength, and super-wavelength
regimes, respectively. We observe that WideBNet correctly localizes each scatterer in
addition to resolving sub-wavelength features such as e.g. the corners of the triangles.
Figure 11d similarly depicts a heterogeneous dictionary but with rotated triangles of
fixed sidelength 5 pixels. These experiments demonstrate that WideBNet performs
a far more complex signal processing task beyond joint blind deconvolution with
point super-resolution. In Figure 11c the same experiment was repeated but with
a bandwidth that was shifted to 1.25, 2.5 and 5 Hz so that the limiting wavelength
increases to 16 PPW; in this regime all scatterers are sub-wavelength. Nevertheless,
WideBNet still produces images that are qualitatively comparable to the higher band-
width experiments. This suggests that our algorithm has a high super resolution
factor. For completeness we include results in Figure 11e for point scatterers that
were originally proposed for super-resolution by Donoho [34].

Table 2 summarizes the training and testing loss for various scatterer configura-
tions. Each row corresponds to a separate experiment with triangular (4), square
(�), or gaussian (©) scatterers. The numbers in the parentheses correspond to the
characteristic length, in pixels, with multiple numbers indicating a multiscale dataset.

Several trends can be observed from this table. In all configurations there is
no evidence of overfitting; indeed, the generalization gap, defined to be the difference
between the testing and training errors, is on average less than an order of magnitude.
Furthermore, both qualitatively and quantitatively there is no significant difference
between datasets with a fixed characteristic length versus the multiscale datasets. This
demonstrates robustness to the choice of the scatterer dictionary. However, we observe
that gaussian scatterers outperform other shapes across all metrics, perhaps owing to
their smoothness. Surprisingly in testing the pixelwise error tends to decrease with
decreasing length scale; we conjecture the exact scaling may depend on the perimeter
to area ratio of the polygons.

4.1.1. Effect of Switch Layer. In Section 3 we emphasized the importance of
the switch permutation pattern in representing the local-to-global physics of wave
scattering. Figure 13 gives weight to this claim by comparing the predictive ability of
WideBNet models trained with and without the inclusion of the switch permutation
layer. Critically all other configurations were held equal with both models containing
the same number of trainable weights.

22 LI, DEMANET, AND ZEPEDA-NÚÑEZ

Table 1
Effect of frequency partition

Pixel-wise Squared Loss Image-wise Relative Loss

DOF Train Test Train Test

AllFreq 2746368 2.92E-06 4.81E-06 1.26E-05 1.72E-05

MultiFreq 1913856 4.06E-06 6.40E-06 1.72E-05 2.27E-05

Figure 13 demonstrates that the predictions without the permutation layer are of
noticeably poorer quality. However, the switch-less configuration manages to local-
ize scatterers and even reproduces subwavelength features to an extent, particularly
when the scatterers are well separated as in Figure 13(b). However, Figures 13(c)
and (d) exposes the deficiencies of this model in the presence of overlapping scatter-
ers. From a physical perspective this is unsurprising as colliding scatterers generate
sub-wavelength diffraction patterns which complicates the imaging problem. These
complication appear to be remedied by the inclusion of the switch permutation layer.
Although the switchless configuration manages to produce reasonable images, we con-
jecture that this is because the model is “reasonably deep” at this length scale. We
suspect the predictive abilities will quickly deteriorate as L → ∞ since the depth of
the network only scales linearly as Θ(L).

4.1.2. Partitioning of frequencies. Table 1 reports on the difference between
two competing frequency partitioning strategies: “AllFreq”, in which the data from
the entire bandwidth is fed into WideBNet at level L, versus “MultiFreq” wherein the
data is only processed at the appropriate length scale `. Qualitatively both strategies
produce comparable images that are sharp and resolve the sub-wavelength features. In
fact, quantitatively the “AllFreq” strategy produces marginally lower losses (though
within the same order of magnitude). However, as noted in Table 1 that the degrees
of freedom of “AllFreq” far exceed that of “MultiFreq”; although both strategies have
the same asymptotic storage complexity of O(N log3(N)) (see Section 3.6), practically
speaking the constant differs by a substantial amount in favour of “MultiFreq“.

We report that we were unable to successfully train a model by mimicking (2.10)
directly, i.e. training single channel WideBNet models for each frequency indepen-
dently, then merging their predictions via a CNN module. This is perhaps unsurpris-
ing since it is known that super-resolution algorithms require non-linear synthesis of
multi-frequency data to succeed. Whereas in both “MultiFreq” and “AllFreq” this is
achieved by the switch-resnet module, in this naive strategy the synthesis is performed
only at the end by the CNN layers. In comparison to the optimal storage complexity
of O(N log2N) in this näıve strategy, note that mildly overparametrizing by a small
logarithmic factor provides significant training stability to the inverse problem.

4.1.3. Training Curves & Hyper-Parameter Sensitivity.

Training Curves. Figure 10(a) reports the training errors for models trained on
datasets containing 5000, 10000, 15000, and 21000 datapoints. The trained models
were evaluated on a fixed testing set of 3000 points (i.e. the same testing set is to
compare all experiments). All remaining hyperparameters such as the learning rate
and number of epochs were held the same as discussed in the beginning of Section 4.
Note in all cases we remain in the over-parametrized regime since the number of

MULTI-SCALE BUTTERFLY NETWORKS 23

datapoints is far fewer than the number of degree of freedom. Nevertheless with only
a few samples WideBNet stably achieves a pixel-wise loss on the order of 10−5.

We observe in Figure 10 that both training and testing errors decrease with in-
creasing training points, as expected. However these training/testing curves quickly
saturate and the differences fall less than an order order of magnitude. Furthermore,
the empirical generalization gap, taken to be the difference between the testing curve
(dashed lines) and the training curve (solid line) remains within the same order of
magnitude as the number of points is increased. These points demonstrate that our
model (i) generalizes with relatively scant training points, and (ii) saturates its model
capacity quickly, which is an indication that the architecture is well adapted to the
task.

Sensitivity to the rank r. While the data essentially specifies the architecture
through requirements on the level L and leaf size s, it remains up to the user to
select the rank r. We reiterate that this choice serves as a significant departure
from the numerical analysis perspective of the Butterfly factorization; whereas in the
original context it is essential to have the scaling r � s2 for the purpose of fast
matrix-vector multiplication15, in the current machine learning context there is no
restriction against choosing r ≥ s2. Nevertheless, as Figure 10b demonstrates, a large
over-parameterization with respect to r is unnecessary. Indeed, while the training
metrics monotonically decrease as the model capacity increases with rank, we observe
that testing errors remain relatively saturated. This suggests that performance of
WideBNet is largely insensitive to the rank and the network topology plays a more
significant role.

Moreover, these results indicate that that allowing for a non-uniform rank for each
patch may not yield be a fruitful exercise. Or, conversely, if the intent is to compress
the model further to e.g. fit on mobile devices [9], this also suggests that tenable
strategy may be to prune a trained model by adaptive patch-wise rank reduction. We
leave this to future work.

Effect of CNN and ResNet Layers. Beyond the selection of the rank r the
only remaining hyper-parameters that determine the WideBNet architecture are the
number of CNN layers NCNN and the number of residual layers NRNN in the switch
module. Figure 14 reports on the sensitivity of the WideBNet model to these pa-
rameters. Evidently from Figure 14b we conclude that the predictive performance is
unaffected by the number of post-processing CNN layers. A similar conclusion can be
drawn about the number of residual layers from Figure 14a; note the fluctuations in
the training and testing curves are negligible in magnitude.

4.2. Heterogeneous Background. In this section we present numerical results
with scattering data from a known inhomogeneous background medium. The varia-
tions in the background wavespeed introduce significant complications to the inverse
problem. For instance, homogeneous backgrounds afford symmetries such as rota-
tional equivariance which can be exploited for efficient network design, see e.g. [40];
in an inhomogeneous background this assumption is no longer valid. The physics of
wave propagation through inhomogeneous media also complicates the signal process-
ing probme as it gives rise to multi-pathing as well as multiple arrivals due to interior
scattering. While the architecture and data formatting remain unchanged, the com-
plexity of the inverse problem for localizing scatterers, let alone super-resolution,

15Typically the rank is determined by computations of SVDs so that ε is close to be machine zero.
Analytical relations between ε and r are kernel dependent and is known explicitly only in few cases.

24 LI, DEMANET, AND ZEPEDA-NÚÑEZ

Table 2
Training and testing errors for various datasets. Each experiment consisted of 21000 training

points and WideBNet was evaluated against an independent testing dataset with 3000 points. The
data was generated using a homogeneous background wavefield c0 = 1 and and data was sampled
at 2.5, 5, and 10 Hz (i.e. the effective wavelength was 8 PPW). Each row denotes a separate
experiment with the scatterers comprising of triangles (4), squares (�), and gaussians (©). The
numbers in the parentheses indicate the characteristic lengths of each scatterer; multiple numbers
indicate a heterogeneous dataset of scatterer sizes, while (rot,5) indicates a dataset with rotated
scatterers. In general we observe that WideBNet does not overfit the data. Surprisingly, on average
the testing pixel-wise error decreases with decreasing lengthscale.

Pixel-wise Squared Loss Image-wise Relative ross

Scatterer Train Test Train Test

4 (3,5,10) 4.06E-06 6.40E-06 5.38E-04 7.12E-04

� (3,5,10) 7.12E-04 1.13E-05 4.63E-04 6.24E-04

© (3,5,10) 1.24E-06 2.01E-06 1.89E-05 2.71E-05

4 (rot,5) 3.03E-06 4.09E-06 5.52E-04 7.32E-04

4 (10) 2.47E-06 2.51E-05 9.26E-05 8.17E-04

4 (5) 1.14E-06 7.19E-06 2.11E-04 1.24E-03

4 (3) 4.35E-06 4.23E-06 2.62E-03 2.62E-03

� (10) 2.63E-06 7.92E-05 4.90E-05 1.24E-03

� (5) 1.24E-06 2.09E-05 1.13E-04 1.75E-03

� (3) 1.19E-05 1.19E-05 3.77E-03 3.80E-03

© (3) 9.89E-08 2.61E-06 5.97E-06 1.30E-04

© (2) 3.19E-07 4.84E-07 4.35E-05 6.28E-05

© (1) 5.86E-07 7.52E-07 4.71E-04 5.87E-04

increases in this setting.
We tested the algorithm for two heterogeneous backgrounds: (i) a smooth linearly

increasing background medium with wavespeed c = 0.5 at the top and c = 1.5 at the
bottom, and (ii) layered background medium with wavespeeds c = 1, c = 2, and c = 4.
The results of trained WideBNet models on testing data are shown in Figure 12. We
observe in Figure 12(b) that WideBNet manages to process the multiple arrivals to
image the triangular scatterers. However, surprisingly, it does significantly poorer
for the smoothly varying background. Explaining this discrepancy remains an open
problem.

Remark: The notion of resolution becomes ambiguous for inhomogeneous medium
as the wavelength changes with background medium c(x, z) following the dispersion
relation in (1.1). Nevertheless across the range of background velocities the scatterers
still contain sub-wavelength features such as e.g. the corners.

MULTI-SCALE BUTTERFLY NETWORKS 25

4.2.1. Comparison versus FWI. In order to make the comparison fair, we
use FWI implemented in PySIT [47] to invert the same perturbation. We start with
a homogeneous background. Given the non-convexity of the objective function, we
use a frequency sweep following standard practices in the geophysical community. We
tested a dozen of different combinations, and we picked the two that produced the
best images. In particular, we used two typical strategies for the frequency sweeps.
In each strategy we use three stages in which data at different frequency is fed to the
optimization loop. In the first strategy, we run the optimization routine for the lowest
frequency data available, then progressively add higher frequency data at each stage.
In the second strategy, at each stage we process data only at a certain frequency,
without combining them, but we use the guess at the end of one stage as the initial
guess for the next one: in the first stage we process the lowest frequency data, we
save the final answer which will be used as an initial guess for the next stage, which
will process data in the immediately higher frequency-band, and we repeat until data
at all frequencies are processed.

We let the optimization run until the residue stagnates at around 10−6, which
is roughly after 20 iterations per stage. Both strategies provide similar results as
shown in Fig. 9. We can observe that the reflectors are properly placed but the
result from the neural network provides a better localization with far fewer oscillatory
artifacts. In addition, WideBNet outperforms FWI in term of the relative `2 error of
the reconstructions, which is 0.0013 for WideBNet compared to 0.0151, and 0.0141,
for the first and second strategy, respectively.

We point out that procuring these images for FWI was labor- and time-intensive.
It took roughly one week to test all the different frequency sweeps and the full com-
putation, performed in PySIT [47], took roughly eight hours in a 16 core workstation
with an AMD 2950X CPU and 128 Gb of RAM. In contrast, the training stage for
WideBNet took in total 12 hours, and the inference takes a fraction of a second, run-
ning on a Nvidia GTX 1080Ti graphics card.

Fig. 9. a) Original wavespeed to be reconstructed, b) result using the first strategy with
three frequencies and 20 iterations of LBFGS at each set of frequencies following [{1.25Hz :
20 it}, {1.25Hz, 2.5Hz : 20 it}, {1.25Hz, 2.5Hz, 5Hz : 20 it}], c) result using the second strategy
with three frequencies and 20 iterations of LBFGS at each set of frequencies following [{1.25Hz :
20 it}, {2.5Hz : 20 it}, {5Hz : 20 it}], d) result using WideBNet .

5. Conclusion & Future Work. In this manuscript we have designed an end-
to-end architecture that is specifically tailored for solving the inverse scattering prob-
lem. We have shown that by assimilating multi-frequency data and coupling them
through non-linearities we can produce images that solve the inverse scattering prob-
lem. Our tool produces results which are competitive with optimization-based ap-
proaches, but at a fraction of the cost. More critically, we have demonstrated that
our architecture design and data assimilation strategy avoids three known shortcom-

26 LI, DEMANET, AND ZEPEDA-NÚÑEZ

Fig. 10. Sensitivity to hyper-parameters: number of training points and the rank r. (a) Per-
formance of WideBNet with increasing number of training points. Note the same testing dataset,
consisting of 3000 points, was used for all experiments. Observe that the generalization gap (the dis-
tance between the dashed and solid lines) remains asymptotically as both training and testing errors
saturate. This exhibits that we are saturating the model capacity. (b) Performance of WideBNet with
increasing rank r. The testing dataset was fixed for all experiments. Note that for leaf size s = 5
the maximum rank of the linearized model is rmax = 25. Although the training error decreases with
increasing rank, we observe that the testing error beings to plateau beyond r = 3.

ings with conventional architectures and also other butterfly-based networks: (i) by
incorporating tools from computational harmonic analysis, such as the butterfly fac-
torization, and multi-scale methods, such as the Cooley-Tukey FFT algorithm, we are
able to drastically reduce the number of trainable parameters to match the inherent
complexity of the problem and lower the training data requirements, (ii) our network
has stable training dynamics and does not encounter issues such poorly conditioned
gradients or poor local minima, and (iii) our network can be initialized using standard
off-the-shelf technologies.

In addition, we have shown that our network recovers features below the diffrac-
tion limit of general, albeit fixed, class of scatterers. Even though there is an under-
lying assumption on the distribution of the scatterers we do not explicitly exploit it.
Thus one future research direction is to use the current architecture within a VAE or
GAN framework, to fully capture the underlying distribution, and to further study
the limits of the current architecture to image sub-wavelength features. Following the
same approach one can seek to extend the applicability of the current architecture to
the cases where there is noise in signal, or uncertainty on the background medium.

Acknowledgments. We thank Yuehaw Khoo, Lexing Ying, Guillaume Bal,
Yingzhou Li, Zhilong Fang, Pawan Bhawardarj, and Nori Nakata for fruitful dis-
cussions.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015, https://www.
tensorflow.org/. Software available from tensorflow.org.

https://www.tensorflow.org/
https://www.tensorflow.org/

MULTI-SCALE BUTTERFLY NETWORKS 27

Fig. 11. Visualization of WideBNet predictions on a testing set. The first column is the exact
solution, the second column the output of WideBNet , and the third column the pointwise error. The
colour scales in each row are normalized with respect to the first column. (a) with 4 (3,5,10). (b)
same as above but with the Gaussian dataset. (c) heterogeneous squares but with a lower bandwidth
(1.25, 2, and 5 Hz) so the effective wavelength is 16 PPW. (d) rotated dictionary. (e) gaussian
scatterers with characteristic length 1.

28 LI, DEMANET, AND ZEPEDA-NÚÑEZ

Fig. 12. Visualization of WideBNet predictions on a testing set with inhomogeneous backgrounds.
The colour scales of each row is normalized to the first column. The background medium is assumed
known. (a) With a lineary increasing gradient in the background. (b) A layered medium increasing
velocity with depth.

[2] H. K. Aggarwal, M. P. Mani, and M. Jacob, Modl: Model-based deep learning architecture
for inverse problems, IEEE Transactions on Medical Imaging, 38 (2019), pp. 394–405.

[3] T. Alkhalifah, Scattering-angle based filtering of the waveform inversion gradients, Geophys.
J. Int., 200 (2014), pp. 363–373, https://doi.org/10.1093/gji/ggu379, https://doi.org/
10.1093/gji/ggu379, https://arxiv.org/abs/http://oup.prod.sis.lan/gji/article-pdf/200/1/
363/2231058/ggu379.pdf.

[4] D. Atkinson and N. D. Aparicio, An inverse problem method for crack detection in viscoelas-
tic materials under anti-plane strain, Int. J. Eng. Sci., 35 (1997), pp. 841 – 849, https://
doi.org/https://doi.org/10.1016/S0020-7225(97)80003-1, http://www.sciencedirect.com/
science/article/pii/S0020722597800031.

[5] G. Backus and F. Gilbert, The Resolving Power of Gross Earth Data, Geophys. J. Int.,
16 (1968), pp. 169–205, https://doi.org/10.1111/j.1365-246X.1968.tb00216.x, https://doi.
org/10.1111/j.1365-246X.1968.tb00216.x, https://arxiv.org/abs/http://oup.prod.sis.lan/
gji/article-pdf/16/2/169/5891044/16-2-169.pdf.

[6] E. Baysal, D. D. Kosloff, and J. W. C. Sherwood, Reverse time migration, GEOPHYSICS,
48 (1983), pp. 1514–1524, https://doi.org/10.1190/1.1441434, https://doi.org/10.1190/1.
1441434, https://arxiv.org/abs/https://doi.org/10.1190/1.1441434.

[7] Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with gradient
descent is difficult, IEEE Transactions on Neural Networks, 5 (1994), pp. 157–166, https:
//doi.org/10.1109/72.279181, https://doi.org/10.1109/72.279181.

https://doi.org/10.1093/gji/ggu379
https://doi.org/10.1093/gji/ggu379
https://doi.org/10.1093/gji/ggu379
https://arxiv.org/abs/http://oup.prod.sis.lan/gji/article-pdf/200/1/363/2231058/ggu379.pdf
https://arxiv.org/abs/http://oup.prod.sis.lan/gji/article-pdf/200/1/363/2231058/ggu379.pdf
https://doi.org/https://doi.org/10.1016/S0020-7225(97)80003-1
https://doi.org/https://doi.org/10.1016/S0020-7225(97)80003-1
http://www.sciencedirect.com/science/article/pii/S0020722597800031
http://www.sciencedirect.com/science/article/pii/S0020722597800031
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
https://arxiv.org/abs/http://oup.prod.sis.lan/gji/article-pdf/16/2/169/5891044/16-2-169.pdf
https://arxiv.org/abs/http://oup.prod.sis.lan/gji/article-pdf/16/2/169/5891044/16-2-169.pdf
https://doi.org/10.1190/1.1441434
https://doi.org/10.1190/1.1441434
https://doi.org/10.1190/1.1441434
https://arxiv.org/abs/https://doi.org/10.1190/1.1441434
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181

MULTI-SCALE BUTTERFLY NETWORKS 29

Fig. 13. Visualization the effect of removing the switch permutation layer. The colour scale of
each row is normalized to the first column. We observe that while WideBNet -without-switch manages
to localize the scatterers, it is unable to fully resolve all subwavelength features.

[8] J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J.
Comput. Phys., 114 (1994), pp. 185–200.

[9] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, What is the state of neural network
pruning?, 2020, https://arxiv.org/abs/2003.03033.

https://arxiv.org/abs/2003.03033

30 LI, DEMANET, AND ZEPEDA-NÚÑEZ

Fig. 14. Sensitivity to hyper-parameters: number of residual layers and number of convolution
post-processing layers. The testing set of 3000 points was fixed across all experiments. (a) The train-
ing error decreases with increasing residual layers, but the testing error increases. Note however the
variation is negligible. (These experiments all had three convolution layers) . (b) WideBNet exhibits
nearly complete insensitivity to the number of CNN post processing layers. (this experiment was
with three residual layers)

[10] C. Borges, A. Gillman, and L. Greengard, High resolution inverse scattering in two
dimensions using recursive linearization, SIAM J. Imaging Sci., 10 (2017), pp. 641–
664, https://doi.org/10.1137/16M1093562, https://doi.org/10.1137/16M1093562, https:
//arxiv.org/abs/https://doi.org/10.1137/16M1093562.

[11] S. Börm, C. Börst, and J. M. Melenk, An analysis of a butterfly algorithm, Comput. Math.
Appl., 74 (2017), pp. 2125 – 2143, https://doi.org/https://doi.org/10.1016/j.camwa.2017.
05.019, http://www.sciencedirect.com/science/article/pii/S0898122117303085. Advances
in Mathematics of Finite Elements, honoring 90th birthday of Ivo Babuška.

[12] J. Bruna and S. Mallat, Invariant scattering convolution networks, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35 (2013), pp. 1872–1886.

[13] M. Burger and S. J. Osher, A survey on level set methods for inverse problems and
optimal design, Eur. J. Appl. Math., 16 (2005), p. 263–301, https://doi.org/10.1017/
S0956792505006182.

[14] W. Cai, X. Li, and L. Liu, Phasednn - a parallel phase shift deep neural network for adaptive
wideband learning, 2019, https://arxiv.org/abs/1905.01389.

[15] W. Cai and Z.-Q. J. Xu, Multi-scale deep neural networks for solving high dimensional PDEs,
ArXiv e-prints, [cs.LG] 1910.11710, https://arxiv.org/abs/arXiv:1910.11710.

[16] E. Candès, L. Demanet, and L. Ying, A fast butterfly algorithm for the computation of
fourier integral operators, Multiscale Model. Sim., 7 (2009), pp. 1727–1750, https://
doi.org/10.1137/080734339, http://dx.doi.org/10.1137/080734339, https://arxiv.org/abs/
http://dx.doi.org/10.1137/080734339.

[17] E. J. Candès and C. Fernandez-Granda, Super-resolution from noisy data, Journal of
Fourier Analysis and Applications, 19 (2013), pp. 1229–1254, https://doi.org/10.1007/
s00041-013-9292-3, https://doi.org/10.1007/s00041-013-9292-3.

[18] E. J. Candès and C. Fernandez-Granda, Towards a mathematical theory of super-resolution,
Comm. Pure and Appl. Math., 67 (2014), pp. 906–956, https://doi.org/10.1002/cpa.21455,
http://dx.doi.org/10.1002/cpa.21455.

[19] Y. Chen, L. Lu, G. E. Karniadakis, and L. D. Negro, Physics-informed neural networks for
inverse problems in nano-optics and metamaterials, Opt. Express, 28 (2020), pp. 11618–
11633, https://doi.org/10.1364/OE.384875, http://www.opticsexpress.org/abstract.cfm?
URI=oe-28-8-11618.

[20] M. Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Rev., 43 (2001),
pp. 301–312, https://doi.org/10.1137/S0036144500368859, https://doi.org/10.1137/
S0036144500368859, https://arxiv.org/abs/https://doi.org/10.1137/S0036144500368859.

[21] B. A. Cipra, The best of the 20th century: Editors name top 10 algorithms, SIAM News, 33
(2000), pp. 1–2.

[22] N. Cohen, O. Sharir, and A. Shashua, On the expressive power of deep learning: A tensor
analysis, in Conference on Learning Theory, 2016, pp. 698–728.

[23] A. Colli, D. Prati, M. Fraquelli, S. Segato, P. P. Vescovi, F. Colombo, C. Balduini,

https://doi.org/10.1137/16M1093562
https://doi.org/10.1137/16M1093562
https://arxiv.org/abs/https://doi.org/10.1137/16M1093562
https://arxiv.org/abs/https://doi.org/10.1137/16M1093562
https://doi.org/https://doi.org/10.1016/j.camwa.2017.05.019
https://doi.org/https://doi.org/10.1016/j.camwa.2017.05.019
http://www.sciencedirect.com/science/article/pii/S0898122117303085
https://doi.org/10.1017/S0956792505006182
https://doi.org/10.1017/S0956792505006182
https://arxiv.org/abs/1905.01389
https://arxiv.org/abs/arXiv:1910.11710
https://doi.org/10.1137/080734339
https://doi.org/10.1137/080734339
http://dx.doi.org/10.1137/080734339
https://arxiv.org/abs/http://dx.doi.org/10.1137/080734339
https://arxiv.org/abs/http://dx.doi.org/10.1137/080734339
https://doi.org/10.1007/s00041-013-9292-3
https://doi.org/10.1007/s00041-013-9292-3
https://doi.org/10.1007/s00041-013-9292-3
https://doi.org/10.1002/cpa.21455
http://dx.doi.org/10.1002/cpa.21455
https://doi.org/10.1364/OE.384875
http://www.opticsexpress.org/abstract.cfm?URI=oe-28-8-11618
http://www.opticsexpress.org/abstract.cfm?URI=oe-28-8-11618
https://doi.org/10.1137/S0036144500368859
https://doi.org/10.1137/S0036144500368859
https://doi.org/10.1137/S0036144500368859
https://arxiv.org/abs/https://doi.org/10.1137/S0036144500368859

MULTI-SCALE BUTTERFLY NETWORKS 31

S. Della Valle, and G. Casazza, The use of a pocket-sized ultrasound device improves
physical examination: Results of an in- and outpatient cohort study, PLOS ONE, 10 (2015),
pp. 1–10, https://doi.org/10.1371/journal.pone.0122181, https://doi.org/10.1371/journal.
pone.0122181.

[24] D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in
the resonance region, Inverse Problems, 12 (1996), pp. 383–393, https://doi.org/10.1088/
0266-5611/12/4/003, https://doi.org/10.1088%2F0266-5611%2F12%2F4%2F003.

[25] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, 2013, https://doi.org/10.1137/1.
9781611973167, http://epubs.siam.org/doi/abs/10.1137/1.9781611973167, https://arxiv.
org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9781611973167.

[26] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-
Verlag New York, New York, PA, 3 ed., 2013, https://doi.org/10.1007/978-1-4614-4942-3.

[27] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comput., 19 (1965), pp. 297–301, http://www.jstor.org/stable/2003354.

[28] T. Dao, A. Gu, M. Eichhorn, A. Rudra, and C. Ré, Learning fast algorithms for linear
transforms using butterfly factorizations, Proceedings of machine learning research, 97
(2019), pp. 1517–1527.

[29] T. Dao, A. Gu, M. Eichhorn, A. Rudra, and C. Ré, Learning fast algorithms for linear
transforms using butterfly factorizations, 2019, https://arxiv.org/abs/1903.05895.

[30] M. de Buhan and M. Darbas, Numerical resolution of an electromagnetic inverse medium
problem at fixed frequency, Comput. Math. Appl., 74 (2017), pp. 3111 – 3128, https://doi.
org/10.1016/j.camwa.2017.08.002.

[31] M. de Buhan and M. Kray, A new approach to solve the inverse scattering problem for
waves: combining the TRAC and the adaptive inversion methods, Inverse Probl., 29 (2013),
p. 085009, https://doi.org/10.1088/0266-5611/29/8/085009.

[32] L. Demanet and L. Ying, Fast wave computation via Fourier integral operators, Math. Com-
put., 81 (2012), pp. 1455–1486.

[33] C. Doersch, Tutorial on variational autoencoders, arXiv:1606.05908.
[34] D. L. Donoho, Superresolution via sparsity constraints, SIAM Journal on Mathematical Anal-

ysis, 23 (1992), pp. 1309–1331, https://doi.org/10.1137/0523074, https://doi.org/10.1137/
0523074, https://arxiv.org/abs/https://doi.org/10.1137/0523074.

[35] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: moving per-
fectly matched layers, Multiscale Model. Sim., 9 (2011), pp. 686–710.

[36] Y. Fan, J. Feliu-Fabà, L. Lin, L. Ying, and L. Zepeda-Núñez, A multiscale neural network
based on hierarchical nested bases, Research in the Mathematical Sciences, 6 (2019), p. 21,
https://doi.org/10.1007/s40687-019-0183-3.

[37] Y. Fan, L. Lin, L. Ying, and L. Zepeda-Núñez, A multiscale neural network based on hier-
archical matrices, arXiv:1807.01883.

[38] Y. Fan and L. Ying, Solving inverse wave scattering with deep learning, arXiv:1911.13202.
[39] Y. Fan and L. Ying, Solving optical tomography with deep learning, arXiv:1910.04756.
[40] Y. Fan and L. Ying, Solving traveltime tomography with deep learning, arXiv:1911.11636.
[41] J. Garnier and G. Papanicolaou, Passive Imaging with Ambient Noise, Cambridge Mono-

graphs on Applied and Computational Mathematic, Cambridge University Press, 2016,
https://books.google.com/books?id=9kfGCwAAQBAJ.

[42] D. Gilton, G. Ongie, and R. Willett, Neumann networks for inverse problems in imaging,
ArXiv e-prints, [cs.CV] 1901.03707, https://arxiv.org/abs/arXiv:1901.03707.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT Press, 2016.
[44] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, Generative adversarial nets, in Advances in Neural
Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, eds., Curran Associates, Inc., 2014, pp. 2672–2680,
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

[45] B. Gutenberg, Ueber erdbebenwellen. vii a. beobachtungen an registrierungen von fernbeben
in göttingen und folgerung über die konstitution des erdkörpers (mit tafel), Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse,
1914 (1914), pp. 125–176, http://eudml.org/doc/58907.

[46] K. He and J. Sun, Convolutional neural networks at constrained time cost, 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), (2015), pp. 5353–5360.

[47] R. J. Hewett and L. Demanet, Pysit, 2013, http://pysit.org/.
[48] L. Hörmander, The Analysis of Linear Partial Differential Operators. IV: Fourier Integral

Operators, vol. 63 of Classics in Mathematics, Springer, Berlin, 2009.

https://doi.org/10.1371/journal.pone.0122181
https://doi.org/10.1371/journal.pone.0122181
https://doi.org/10.1371/journal.pone.0122181
https://doi.org/10.1088/0266-5611/12/4/003
https://doi.org/10.1088/0266-5611/12/4/003
https://doi.org/10.1088%2F0266-5611%2F12%2F4%2F003
https://doi.org/10.1137/1.9781611973167
https://doi.org/10.1137/1.9781611973167
http://epubs.siam.org/doi/abs/10.1137/1.9781611973167
https://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9781611973167
https://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9781611973167
https://doi.org/10.1007/978-1-4614-4942-3
http://www.jstor.org/stable/2003354
https://arxiv.org/abs/1903.05895
https://doi.org/10.1016/j.camwa.2017.08.002
https://doi.org/10.1016/j.camwa.2017.08.002
https://doi.org/10.1088/0266-5611/29/8/085009
https://doi.org/10.1137/0523074
https://doi.org/10.1137/0523074
https://doi.org/10.1137/0523074
https://arxiv.org/abs/https://doi.org/10.1137/0523074
https://doi.org/10.1007/s40687-019-0183-3
https://books.google.com/books?id=9kfGCwAAQBAJ
https://arxiv.org/abs/arXiv:1901.03707
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://eudml.org/doc/58907
http://pysit.org/

32 LI, DEMANET, AND ZEPEDA-NÚÑEZ

[49] K. Hornik, M. Stinchcombe, and H. White, Universal approximation of an unknown map-
ping and its derivatives using multilayer feedforward networks, Neural networks, 3 (1990),
pp. 551–560.

[50] P. Hähner and T. Hohage, New stability estimates for the inverse acoustic inhomogeneous
medium problem and applications, SIAM Journal on Mathematical Analysis, 33 (2001),
pp. 670–685, https://doi.org/10.1137/S0036141001383564.

[51] M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah, and W. Tebbutt,
A differentiable programming system to bridge machine learning and scientific computing,
2019, https://arxiv.org/abs/1907.07587.

[52] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, Image-to-image translation with conditional
adversarial networks, (2017), pp. 5967–5976, https://doi.org/10.1109/CVPR.2017.632.

[53] E. Kang, W. Chang, J. Yoo, and J. C. Ye, Deep convolutional framelet denosing for low-
dose ct via wavelet residual network, IEEE Transactions on Medical Imaging, 37 (2018),
pp. 1358–1369.

[54] Y. Khoo and L. Ying, SwitchNet: A neural network model for forward and inverse scat-
tering problems, SIAM J. Sci. Comput., 41 (2019), pp. A3182–A3201, https://doi.org/
10.1137/18M1222399, https://doi.org/10.1137/18M1222399, https://arxiv.org/abs/https:
//doi.org/10.1137/18M1222399.

[55] D. Kingma and J. Ba, Adam: A method for stochastic optimization, in The 3rd International
Conference for Learning Representations (ICLR), 2015. arXiv:1412.6980v8.

[56] D. P. Kingma and M. Welling, Auto-encoding variational bayes, arXiv:1312.6114.
[57] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Uni-

versity Press, Oxford, first ed., 2008.
[58] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015), p. 436.
[59] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,

A. Tejani, J. Totz, Z. Wang, and W. Shi, Photo-realistic single image super-resolution
using a generative adversarial network, in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017, pp. 105–114, https://doi.org/10.1109/CVPR.
2017.19.

[60] Y. Li, X. Cheng, and J. Lu, Butterfly-Net: Optimal function representation based on convo-
lutional neural networks, arXiv preprint arXiv:1805.07451, (2018).

[61] Y. Li, H. Yang, E. Martin, K. Ho, and L. Ying, Butterfly factorization, Multiscale Model.
Sim., 13 (2015), pp. 714–732, https://doi.org/10.1137/15M1007173, https://doi.org/10.
1137/15M1007173, https://arxiv.org/abs/https://doi.org/10.1137/15M1007173.

[62] Y. Li, H. Yang, and L. Ying, Multidimensional butterfly factorization, Applied and
Computational Harmonic Analysis, 44 (2018), pp. 737 – 758, https://doi.org/https:
//doi.org/10.1016/j.acha.2017.04.002, http://www.sciencedirect.com/science/article/pii/
S1063520317300271.

[63] Y. E. Li and L. Demanet, Full-waveform inversion with extrapolated low-frequency
data, Geophysics, 81 (2016), pp. R339–R348, https://doi.org/10.1190/geo2016-0038.1,
https://doi.org/10.1190/geo2016-0038.1, https://arxiv.org/abs/https://doi.org/10.1190/
geo2016-0038.1.

[64] Y. Liu, X. Xing, H. Guo, E. Michielssen, and X. S. Ghysels, P. Li, Butterfly factorization
via randomized matrix-vector multiplications, arXiv:2002.03400.

[65] T. Luo, Z. Ma, Z.-Q. J. Xu, and Y. Zhang, Theory of the frequency principle for general
deep neural networks, ArXiv e-prints, [cs.LG] 1906.09235, https://arxiv.org/abs/arXiv:
1906.09235.

[66] X. Mao, C. Shen, and Y.-B. Yang, Image restoration using very deep convolutional encoder-
decoder networks with symmetric skip connections, in Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
eds., Curran Associates, Inc., 2016, pp. 2802–2810.

[67] H. Mhaskar, Q. Liao, and T. Poggio, Learning functions: When is deep better than shallow,
arXiv preprint arXiv:1603.00988, (2016).

[68] M. Mirza and S. Osindero, Conditional generative adversarial nets, 2014, http://arxiv.org/
abs/1411.1784. cite arxiv:1411.1784.

[69] R. D. Oldham, The constitution of the interior of the earth, as revealed by earthquakes, Quar-
terly Journal of the Geological Society, 62 (1906), pp. 456–475, https://doi.org/10.1144/
GSL.JGS.1906.062.01-04.21, https://jgs.lyellcollection.org/content/62/1-4/456, https://
arxiv.org/abs/https://jgs.lyellcollection.org/content/62/1-4/456.full.pdf.

[70] M. O’Neil, F. Woolfe, and V. Rokhlin, An algorithm for the rapid evalu-
ation of special function transforms, Appl. Comput. Harmon. A., 28 (2010),
pp. 203 – 226, https://doi.org/https://doi.org/10.1016/j.acha.2009.08.005, http://www.

https://doi.org/10.1137/S0036141001383564
https://arxiv.org/abs/1907.07587
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1137/18M1222399
https://doi.org/10.1137/18M1222399
https://doi.org/10.1137/18M1222399
https://arxiv.org/abs/https://doi.org/10.1137/18M1222399
https://arxiv.org/abs/https://doi.org/10.1137/18M1222399
https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1137/15M1007173
https://doi.org/10.1137/15M1007173
https://doi.org/10.1137/15M1007173
https://arxiv.org/abs/https://doi.org/10.1137/15M1007173
https://doi.org/https://doi.org/10.1016/j.acha.2017.04.002
https://doi.org/https://doi.org/10.1016/j.acha.2017.04.002
http://www.sciencedirect.com/science/article/pii/S1063520317300271
http://www.sciencedirect.com/science/article/pii/S1063520317300271
https://doi.org/10.1190/geo2016-0038.1
https://doi.org/10.1190/geo2016-0038.1
https://arxiv.org/abs/https://doi.org/10.1190/geo2016-0038.1
https://arxiv.org/abs/https://doi.org/10.1190/geo2016-0038.1
https://arxiv.org/abs/arXiv:1906.09235
https://arxiv.org/abs/arXiv:1906.09235
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://doi.org/10.1144/GSL.JGS.1906.062.01-04.21
https://doi.org/10.1144/GSL.JGS.1906.062.01-04.21
https://jgs.lyellcollection.org/content/62/1-4/456
https://arxiv.org/abs/https://jgs.lyellcollection.org/content/62/1-4/456.full.pdf
https://arxiv.org/abs/https://jgs.lyellcollection.org/content/62/1-4/456.full.pdf
https://doi.org/https://doi.org/10.1016/j.acha.2009.08.005
http://www.sciencedirect.com/science/article/pii/S1063520309000888
http://www.sciencedirect.com/science/article/pii/S1063520309000888

MULTI-SCALE BUTTERFLY NETWORKS 33

sciencedirect.com/science/article/pii/S1063520309000888. Special Issue on Continuous
Wavelet Transform in Memory of Jean Morlet, Part I.

[71] J. R. Pettit, A. E. Walker, and M. J. S. Lowe, Improved detection of rough defects for
ultrasonic nondestructive evaluation inspections based on finite element modeling of elastic
wave scattering, IEEE T. Ultrason. Ferr., 62 (2015), pp. 1797–1808, https://doi.org/10.
1109/TUFFC.2015.007140, http://dx.doi.org/10.1109/TUFFC.2015.007140.

[72] J. Poulson, L. Demanet, N. Maxwell, and L. Ying, A parallel butterfly algorithm, SIAM
J. Sci. Comput., 36 (2014), pp. C49–C65, https://doi.org/10.1137/130921544, http://dx.
doi.org/10.1137/130921544, https://arxiv.org/abs/http://dx.doi.org/10.1137/130921544.

[73] R. G. Pratt, Seismic waveform inversion in the frequency domain; part 1: Theory and veri-
fication in a physical scale model, Geophysics, 64 (1999), pp. 888–901, https://doi.org/10.
1190/1.1444597, http://Geophysics.geoscienceworld.org/content/64/3/888.abstract, https:
//arxiv.org/abs/http://Geophysics.geoscienceworld.org/content/64/3/888.full.pdf+html.

[74] M. Raissi and G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear
partial differential equations, J. Comput. Phys., 357 (2018), pp. 125 – 141, https://doi.
org/10.1016/j.jcp.2017.11.039.

[75] N. Rawlinson, S. Pozgay, and S. Fishwick, Phys. Earth Planet. Int., 178 (2010), pp. 101–
135, https://doi.org/10.1016/j.pepi.2009.10.002.

[76] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical
Image Segmentation, Springer International Publishing, Cham, 2015, pp. 234–241, https:
//doi.org/10.1007/978-3-319-24574-4 28, https://doi.org/10.1007/978-3-319-24574-4 28.

[77] H. Schomberg, An improved approach to reconstructive ultrasound tomography, J. of Phys.
D: Appl. Phys., 11 (1978), pp. L181–L185, https://doi.org/10.1088/0022-3727/11/15/004,
https://doi.org/10.1088%2F0022-3727%2F11%2F15%2F004.

[78] P. Stefanov, G. Uhlmann, A. Vasy, and H. Zhou, Travel time tomography, Acta Math. Sin.,
35 (2019), pp. 1085–1114, https://doi.org/10.1007/s10114-019-8338-0, https://doi.org/10.
1007/s10114-019-8338-0.

[79] W. W. Symes and J. J. Carazzone, Velocity inversion by differential semblance optimization,
Geophysics, 56 (1991), pp. 654–663, https://doi.org/10.1190/1.1443082, https://doi.org/
10.1190/1.1443082, https://arxiv.org/abs/https://doi.org/10.1190/1.1443082.

[80] A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, Geophysics,
49 (1984), pp. 1259–1266, https://doi.org/10.1190/1.1441754, http://dx.doi.org/10.1190/
1.1441754, https://arxiv.org/abs/http://dx.doi.org/10.1190/1.1441754.

[81] T. van Leeuwen and F. J. Herrmann, Mitigating local minima in full-waveform inver-
sion by expanding the search space, Geophys. J. Int., 195 (2013), pp. 661–667, https:
//doi.org/10.1093/gji/ggt258, https://doi.org/10.1093/gji/ggt258, https://arxiv.org/abs/
http://oup.prod.sis.lan/gji/article-pdf/195/1/661/1674252/ggt258.pdf.

[82] J. Virieux, A. Asnaashari, R. Brossier, L. Métivier, A. Ribodetti, and W. Zhou, 6. An
introduction to full waveform inversion, 2017, pp. R1–1–R1–40, https://doi.org/10.1190/
1.9781560803027.entry6, https://library.seg.org/doi/abs/10.1190/1.9781560803027.entry6,
https://arxiv.org/abs/https://library.seg.org/doi/pdf/10.1190/1.9781560803027.entry6.

[83] J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics,
Geophysics, 74 (2009), pp. WCC1–WCC26, https://doi.org/10.1190/1.3238367, http://dx.
doi.org/10.1190/1.3238367, https://arxiv.org/abs/http://dx.doi.org/10.1190/1.3238367.

[84] Z. Xu, Y. Li, and X. Cheng, Butterfly-Net2: Simplified Butterfly-Net and Fourier transform
initialization, vol. 107 of Proceedings of Machine Learning Research, Princeton University,
Princeton, NJ, USA, 20–24 Jul 2020, PMLR, pp. 431–450, http://proceedings.mlr.press/
v107/xu20b.html.

[85] Z.-Q. J. Xu, Frequency principle in deep learning with general loss functions and its potential
application, ArXiv e-prints, [cs.LG] 1811.10146, https://arxiv.org/abs/arXiv:1811.10146.

[86] Z.-Q. J. Xu, Y. Zhang, and Y. Xiao, Training behavior of deep neural network in frequency
domain, in Neural Information Processing, T. Gedeon, K. W. Wong, and M. Lee, eds.,
Cham, 2019, Springer International Publishing, pp. 264–274.

[87] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, Deepsense: A unified deep learning
framework for time-series mobile sensing data processing, in Proceedings of the 26th In-
ternational Conference on World Wide Web, WWW ’17, Republic and Canton of Geneva,
CHE, 2017, International World Wide Web Conferences Steering Committee, p. 351–360,
https://doi.org/10.1145/3038912.3052577, https://doi.org/10.1145/3038912.3052577.

[88] S. Yao, A. Piao, W. Jiang, Y. Zhao, H. Shao, S. Liu, D. Liu, J. Li, T. Wang, S. Hu,
L. Su, J. Han, and T. Abdelzaher, Stfnets: Learning sensing signals from the time-
frequency perspective with short-time fourier neural networks, in The World Wide Web
Conference, WWW ’19, New York, NY, USA, 2019, Association for Computing Ma-

http://www.sciencedirect.com/science/article/pii/S1063520309000888
http://www.sciencedirect.com/science/article/pii/S1063520309000888
https://doi.org/10.1109/TUFFC.2015.007140
https://doi.org/10.1109/TUFFC.2015.007140
http://dx.doi.org/10.1109/TUFFC.2015.007140
https://doi.org/10.1137/130921544
http://dx.doi.org/10.1137/130921544
http://dx.doi.org/10.1137/130921544
https://arxiv.org/abs/http://dx.doi.org/10.1137/130921544
https://doi.org/10.1190/1.1444597
https://doi.org/10.1190/1.1444597
http://Geophysics.geoscienceworld.org/content/64/3/888.abstract
https://arxiv.org/abs/http://Geophysics.geoscienceworld.org/content/64/3/888.full.pdf+html
https://arxiv.org/abs/http://Geophysics.geoscienceworld.org/content/64/3/888.full.pdf+html
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.pepi.2009.10.002
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1088/0022-3727/11/15/004
https://doi.org/10.1088%2F0022-3727%2F11%2F15%2F004
https://doi.org/10.1007/s10114-019-8338-0
https://doi.org/10.1007/s10114-019-8338-0
https://doi.org/10.1007/s10114-019-8338-0
https://doi.org/10.1190/1.1443082
https://doi.org/10.1190/1.1443082
https://doi.org/10.1190/1.1443082
https://arxiv.org/abs/https://doi.org/10.1190/1.1443082
https://doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/1.1441754
https://arxiv.org/abs/http://dx.doi.org/10.1190/1.1441754
https://doi.org/10.1093/gji/ggt258
https://doi.org/10.1093/gji/ggt258
https://doi.org/10.1093/gji/ggt258
https://arxiv.org/abs/http://oup.prod.sis.lan/gji/article-pdf/195/1/661/1674252/ggt258.pdf
https://arxiv.org/abs/http://oup.prod.sis.lan/gji/article-pdf/195/1/661/1674252/ggt258.pdf
https://doi.org/10.1190/1.9781560803027.entry6
https://doi.org/10.1190/1.9781560803027.entry6
https://library.seg.org/doi/abs/10.1190/1.9781560803027.entry6
https://arxiv.org/abs/https://library.seg.org/doi/pdf/10.1190/1.9781560803027.entry6
https://doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
https://arxiv.org/abs/http://dx.doi.org/10.1190/1.3238367
http://proceedings.mlr.press/v107/xu20b.html
http://proceedings.mlr.press/v107/xu20b.html
https://arxiv.org/abs/arXiv:1811.10146
https://doi.org/10.1145/3038912.3052577
https://doi.org/10.1145/3038912.3052577

34 LI, DEMANET, AND ZEPEDA-NÚÑEZ

chinery, p. 2192–2202, https://doi.org/10.1145/3308558.3313426, https://doi.org/10.1145/
3308558.3313426.

[89] J. C. Ye, Y. Han, and E. Cha, Deep convolutional framelets: A general deep learning
framework for inverse problems, SIAM Journal on Imaging Sciences, 11 (2018), pp. 991–
1048, https://doi.org/10.1137/17M1141771, https://doi.org/10.1137/17M1141771, https:
//arxiv.org/abs/https://doi.org/10.1137/17M1141771.

[90] L. Zepeda-Núñez, Y. Chen, J. Zhang, W. Jia, L. Zhang, and L. Lin, Deep Density: cir-
cumventing the Kohn-sham equations via symmetry preserving neural networks. https:
//www.math.wisc.edu/∼lzepeda/Deep-Density.pdf, 2019.

[91] L. Zepeda-Núñez and L. Demanet, The method of polarized traces for the 2D
Helmholtz equation, J. Comput. Phys., 308 (2016), pp. 347 – 388, https://doi.
org/http://dx.doi.org/10.1016/j.jcp.2015.11.040, http://www.sciencedirect.com/science/
article/pii/S0021999115007809.

[92] J. Zhang, L. Zepeda-Núñez, Y. Yao, and L. Lin, Learning the mapping x 7→
∑d

i=1 x
2
i : the

cost of finding the needle in a haystack, Comm. App. Math. Comp., (2020).
[93] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Deep potential molecular dynamics: A

scalable model with the accuracy of quantum mechanics, Physical Review Letters, 120
(2018), p. 143001.

[94] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Deepcg: Constructing coarse-grained models
via deep neural networks, J. Chem. Phys., 149 (2018), p. 034101, https://doi.org/10.1063/
1.5027645.

https://doi.org/10.1145/3308558.3313426
https://doi.org/10.1145/3308558.3313426
https://doi.org/10.1145/3308558.3313426
https://doi.org/10.1137/17M1141771
https://doi.org/10.1137/17M1141771
https://arxiv.org/abs/https://doi.org/10.1137/17M1141771
https://arxiv.org/abs/https://doi.org/10.1137/17M1141771
https://www.math.wisc.edu/~lzepeda/Deep-Density.pdf
https://www.math.wisc.edu/~lzepeda/Deep-Density.pdf
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2015.11.040
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2015.11.040
http://www.sciencedirect.com/science/article/pii/S0021999115007809
http://www.sciencedirect.com/science/article/pii/S0021999115007809
https://doi.org/10.1063/1.5027645
https://doi.org/10.1063/1.5027645

MULTI-SCALE BUTTERFLY NETWORKS 35

Appendix A. Permutation and Switch Indices.

1def πl():

2# indices inside each 4L−l × 4L−l block

3∆ = 4L−l−1

4

5# [0,∆,2∆,3∆,0,∆,2∆,3∆,4∆,...]

6πl = np.file(np.arange(4)*∆, ∆)

7

8# + [0,0,0,0,1,1,1,1,...,∆, ∆,∆,∆]

9πl += np.repeat(np.arange(∆), 4)

10

11# indices for entire block diagonal matrix

12πl = np.tile(πl, 4l)

13πl += np.repeat(np.arange(4l)*4L−l, 4L−l)

14

15return πl

Listing 6
LCN[a,b,c] == LocallyConnected1D(filters=a, kernel size=b, strides=c)

1def switchidx():

2# input

3# output

4

5πswitch = np.arange(2L)*(2L)

6

7πswitch = np.tile(πswitch), 2L)

8πswitch += np.repeat(np.arange(2L), 2L)

9

10return πswitch

Listing 7
LCN[a,b,c] == LocallyConnected1D(filters=a, kernel size=b, strides=c)

	Introduction
	Our Contributions
	Related Literature
	Classical Approaches

	Machine Learning Approaches

	Background
	Underlying Physical Model
	Butterfly Factorization and Fourier Integral Operator
	Cooley-Tukey Algorithm
	Wide-Band Butterfly Algorithm

	WideBNet Architecture
	Input formatting
	Architecture Overview
	UL and V layers
	H and G layers
	Switch-Resnet layer
	WideBNet Parameter Count

	Numerical Results
	Homogeneous Background
	Effect of Switch Layer
	Partitioning of frequencies
	Training Curves & Hyper-Parameter Sensitivity

	Heterogeneous Background
	Comparison versus FWI

	Conclusion & Future Work
	References
	Appendix A. Permutation and Switch Indices

