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Introduction

LetX be a topological space and G an abelian group. There are many different definitions for the cohomology
group Hn(X;G); we will single out three of them for discussion here. First of all, we have the singular
cohomology groups Hn

sing(X;G), which are defined to be cohomology of a chain complex of G-valued singular
cochains on X. An alternative is to regard Hn(•, G) as a representable functor on the homotopy category
of topological spaces, so that Hn

rep(X;G) can be identified with the set of homotopy classes of maps from X
into an Eilenberg-MacLane space K(G,n). A third possibility is to use the sheaf cohomology Hn

sheaf(X;G)
of X with coefficients in the constant sheaf G on X.

If X is a sufficiently nice space (for example, a CW complex), then these three definitions give the same
result. In general, however, all three give different answers. The singular cohomology of X is constructed
using continuous maps from simplices ∆k into X. If there are not many maps into X (for example if every
path in X is constant), then we cannot expect Hn

sing(X;G) to tell us very much about X. Similarly, the
cohomology group Hn

rep(X;G) is defined using maps from X into a simplicial complex, which (ultimately)
relies on the existence of continuous real-valued functions on X. If X does not admit many real-valued
functions, we should not expect Hn

rep(X;G) to be a useful invariant. However, the sheaf cohomology of X
seems to be a good invariant for arbitrary spaces: it has excellent formal properties and sometimes gives
interesting information in situations to which the other approaches do not apply (such as the étale topology
of algebraic varieties).

We will take the position that the sheaf cohomology of a space X is the correct answer in all cases. It is
then natural to ask for conditions under which the other definitions of cohomology give the same answer. We
should expect this to be true for singular cohomology when there are many continuous functions into X, and
for Eilenberg-MacLane cohomology when there are many continuous functions out of X. It seems that the
latter class of spaces is much larger than the former: it includes, for example, all paracompact spaces, and
consequently for paracompact spaces one can show that the sheaf cohomology Hn

sheaf(X;G) coincides with
the Eilenberg-MacLane cohomology Hn

rep(X;G). One of the main results of this paper is a generalization of
the preceding statement to non-abelian cohomology, and to the case where the coefficient system G is not
necessarily constant.

Classically, the non-abelian cohomology H1(X;G) of X with coefficients in a possibly non-abelian group
G can be understood as the set of isomorphism classes of G-torsors over X. When X is paracompact, such
torsors can be classified by homotopy classes of maps from X into an Eilenberg-MacLane space K(G, 1).
Note that the group G and the space K(G, 1) are essentially the same piece of data: G determines K(G, 1)
up to homotopy equivalence, and conversely G may be recovered as the fundamental group of K(G, 1). More
canonically, specifying the group G is equivalent to specifying the space K(G, 1) together with a base point;
the space K(G, 1) alone only determines G up to inner automorphisms. However, inner automorphisms
of G act by the identity on H1(X;G), so that H1(X;G) really depends only on K(G, 1). This suggests
the proper coefficients for non-abelian cohomology are not groups, but “homotopy types” (which we regard
as purely combinatorial entities, represented for example by simplicial complexes). We may define the
non-abelian cohomology Hrep(X;K) of X with coefficients in an arbitrary space K to be the collection
of homotopy classes of maps from X into K. This leads to a good theory whenever X is paracompact.
Moreover, we can learn a great deal by considering the case where K is not an Eilenberg-MacLane space.
For example, if K = BU×Z is the classifying space for complex K-theory and X is a compact Hausdorff
space, then Hrep(X;K) is the usual complex K-theory of X, defined as the Grothendieck group of the monoid
of isomorphism classes of complex vector bundles on X.

When X is not paracompact, we are forced to seek a better way of defining H(X;K). Given the apparent
power and flexibility of sheaf-theoretic methods, it is natural to look for some generalization of sheaf coho-
mology, using as coefficients “sheaves of homotopy types on X.” This is an old idea, laid out by Grothendieck
in his vision of a theory of higher stacks. This vision has subsequently been realized in the work of various
authors (most notably Brown, Joyal, and Jardine; see for example [28]), who employ various formalisms
based on simplicial (pre)sheaves on X. The resulting theories are essentially equivalent, and we shall refer
to them collectively as the Brown-Joyal-Jardine theory. According to the philosophy of this approach, if K
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is a simplicial set, then the cohomology of X with coefficients in K is given by

Ĥ(X;K) = π0(F(X)),

where F is a fibrant replacement for the constant simplicial (pre)sheaf with value K on X. The process of
“fibrant replacement” should be regarded as a kind of “sheafification”: the simplicial presheaf F is obtained
from the constant (pre)sheaf by forcing it to satisfy a descent condition for arbitrary hypercoverings of open
subsets of X.

If K is an Eilenberg-MacLane space K(G,n), the Brown-Joyal-Jardine theory recovers the classical
sheaf-cohomology group (or set, if n ≤ 1) Hn

sheaf(X;G). It follows that if X is paracompact and K is an
Eilenberg-MacLane space, then there is a natural isomorphism Ĥ(X;K) ' Hrep(X;K). However, it turns out
that Ĥ(X;K) 6= Hrep(X;K) in general, even when X is paracompact. In fact, one can give an example of a
compact Hausdorff space for which Ĥ(X;BU×Z) does not coincide with the complex K-theory of X. We will
proceed on the assumption that the classical K-group K(X) is the “correct” answer in this case, and give an
alternative to the Brown-Joyal-Jardine theory which computes this answer. Our alternative is distinguished
from the Brown-Joyal-Jardine theory by the fact that we require our “sheaves of spaces” to satisfy a descent
condition only for ordinary coverings of a space X, rather than for arbitrary hypercoverings. Aside from
this point we can proceed in the same way, setting H(X;K) = π0(F′(X)), where F′ is the (simplicial) sheaf
which is obtained by forcing the “constant presheaf with value K” to satisfy this weaker descent condition.
In general, F′ will not satisfy descent for hypercoverings, and consequently it will not be equivalent to the
simplicial presheaf F used in the definition of Ĥ.

The resulting theory has the following properties:

(1) If X is paracompact, H(X;K) may be identified with the set of homotopy classes from X into K.

(2) There is a canonical map θ : H(X;K)→ Ĥ(X;K).

(3) If X is a paracompact topological space of finite covering dimension (or a Noetherian topological space
of finite Krull dimension), then θ is an isomorphism.

(4) If K has only finitely many nonvanishing homotopy groups, then θ is an isomorphism. In particular,
taking K to be an Eilenberg-MacLane space K(G,n), then H(X;K(G,n)) is isomorphic to the sheaf
cohomology group Hn

sheaf(X;G).

Our theory of higher stacks enjoys good formal properties which are not always shared by the Brown-
Joyal-Jardine theory; we will summarize the situation in §6.5.4. However, these good properties come with
a price attached. The essential difference between ∞-stacks (sheaves of spaces which are required to satisfy
descent only for ordinary coverings) and ∞-hyperstacks (sheaves of spaces which are required to satisfy
descent for arbitrary hypercoverings) is that the former can fail to satisfy the Whitehead theorem: one can
have, for example, a pointed stack (E, η) for which πi(E, η) is a trivial sheaf for all i ≥ 0, and yet E is not
“contractible” (for the definition of these homotopy sheaves, see §6.5.1).

In order to make a thorough comparison of our theory of stacks on X and the Brown-Joyal-Jardine theory
of hyperstacks on X, it seems desirable to fit both of them into some larger context. The proper framework
is provided by the theory ∞-topoi. Roughly speaking, an ∞-topos is an ∞-category that “looks like” the
∞-category of ∞-stacks on a topological space, just as an ordinary topos is supposed to be a category that
“looks like” the category of sheaves (of sets) on a topological space. For every topological space (or topos)
X, the ∞-stacks on X constitute an ∞-topos, as do the ∞-hyperstacks on X. However, it is the former
∞-topos which enjoys a more universal position among ∞-topoi related to X.

The aim of this book is to construct a theory of∞-topoi which will permit us to make sense of the above
discussion, and to illustrate some connections between this theory and classical topology. The ideas involved
are fundamentally homotopy-theoretic in nature, and cannot be adequately described in the language of
classical category theory. Consequently, most of this book is concerned with the construction of a suitable
theory of higher categories. The language of higher category theory has many other applications, which we
will discuss elsewhere ([34], [35]).
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Summary

We will begin in §1 with an introduction to higher category theory. Our intention is that §1 can be used as a
short “user’s guide” to higher categories. Consequently, many proofs are deferred until later chapters, which
contain a more detailed and technical account of ∞-category theory. Our hope is that a reader who does
not wish to be burdened with technical details can proceed directly from §1 to the (far more interesting)
material of §5 and beyond, referring back to §2 through §4 as needed.

In order to work effectively with ∞-categories, it is important to have a flexible relative theory which
allows us to discuss∞-categories fibered over a given∞-category C. We will formalize this idea by introducing
the notion of a Cartesian fibrations between simplicial sets. We will study the theory of Cartesian fibrations
in §2 alongside several related notions, each of which play an important role in higher category theory.

In §3, we will study the theory of Cartesian fibrations in more detail. Our main objective is to prove that
giving a Cartesian fibration of ∞-categories C → D is equivalent to giving a (contravariant) functor from
D into a suitable ∞-category of ∞-categories. The proof of this result uses the theory of marked simplicial
sets, and is quite technical.

In §4, we will finish laying the groundwork by analyzing in detail the theory of ∞-categorical limits and
colimits. We will show that just as in classical category theory, the limit of a complicated diagram can be
decomposed in terms of the limits of simpler diagrams. We will also introduce relative versions of colimit
constructions, such as the formation of left Kan extensions.

In some sense, the material of §1 through §4 of this book should be regarded as completely formal. All
of our main results can be summarized as follows: there exists a reasonable theory of ∞-categories, and
it behaves in more or less the same way as the theory of ordinary categories. Many of the ideas that we
introduce are straightforward generalizations of their classical counterparts, which should be familiar to most
mathematicians who have mastered the basics of category theory.

In §5, we introduce ∞-categorical analogues of more sophisticated concepts from ordinary category
theory: presheaves, Pro and Ind-categories, accessible and presentable categories, and localizations. The
main theme is that most of the ∞-categories which appear “in nature” are large, but are determined by
small subcategories. Taking careful advantage of this fact will allow us to deduce a number of pleasant
results, such as our ∞-categorical version of the adjoint functor theorem.

In §6 we come to the heart of the book: the study of∞-topoi, which can be regarded as the∞-categorical
analogues of Grothendieck topoi. Our first main result is an analogue of Giraud’s theorem, which asserts
the equivalence of “extrinsic” and “intrinsic” approaches to the subject. Roughly speaking, an ∞-topos is
an ∞-category which “looks like” the ∞-category of spaces. We will show that this intuition is justified in
the sense that it is possible to reconstruct a large portion of classical homotopy theory inside an arbitrary
∞-topos.

In §7 we will discuss the relationship between our theory of∞-topoi and ideas from classical topology. We
show that, if X is a paracompact space, then the ∞-topos of “sheaves of spaces” on X can be interpreted
in terms of the classical homotopy theory of spaces over X: this will allow us to obtain the comparison
result mentioned in the introduction. The main theme is that various ideas from geometric topology (such
as dimension theory and shape theory) can be reformulated using the language of ∞-topoi. We will also
formulate and prove “nonabelian” generalizations of classical cohomological results, such as Grothendieck’s
vanishing theorem for the cohomology of Noetherian topological spaces, and the proper base change theorem.

We have included an appendix, in which we summarize the ideas from classical category theory and the
theory of model categories which we will use in the body of the text. We advise the reader to refer to it only
as needed.

Terminology

A few comments on some of the terminology which appears in this book:

• The word topos will always mean Grothendieck topos.

3



• We will refer to a category C as accessible or presentable if it is locally accessible or locally presentable
in the terminology of [37].

• Unless otherwise specified, the term ∞-category will be used to indicate a higher category in which all
n-morphisms are invertible for n > 1.

• We will study higher category theory in Joyal’s setting of quasicategories. However, we do not always
follow Joyal’s terminology. In particular, we will use the term∞-category to refer to what Joyal calls a
quasicategory (which are, in turn, the same as the weak Kan complex of Boardman and Vogt); we will
use the terms inner fibration and inner anodyne map where Joyal uses mid-fibration and mid-anodyne
map.
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Chapter 1

An Overview of Higher Category
Theory

This chapter is intended as a general introduction to higher category theory. We begin with what we feel
is the most intuitive approach to the subject, based on topological categories. This approach is easy to
understand, but difficult to work with when one wishes to perform even simple categorical constructions.
As a remedy, we will introduce the more convenient formalism of ∞-categories (called weak Kan complexes
in [7] and quasi-categories in [30]), which provides a more suitable setting for adaptations of sophisticated
category-theoretic ideas. Our goal in §1.1.1 is to introduce both approaches and to explain why they are
equivalent to one another. The proof of this equivalence will rely on a crucial result (Theorem 1.1.5.12)
which we will prove in §1.3.

Our second objective in this chapter is to give the reader an idea of how to work with the formalism of
∞-categories. In §1.2 we will establish a vocabulary which includes ∞-categorical analogues (often direct
generalizations) of most of the important concepts from ordinary category theory. To keep the exposition
brisk, we will postpone the more difficult proofs until later chapters of this book. Our hope is that, after
reading this chapter, a reader who does not wish to be burdened with the details will be able to understand
(at least in outline) some of the more conceptual ideas described in §5 and beyond.

10



f

1.1 Foundations for Higher Category Theory

1.1.1 Goals and Obstacles

Category theory is a powerful organizational tool in many areas of mathematics. Recall that an ordinary
category C consists of a collection of objects, together a morphism set HomC(X,Y ) for every pair of objects
X,Y ∈ C (these morphism sets are furthermore equipped with an associative compositon law). Virtually
every class of mathematical structures can be realized as the objects of some category C, where the morphisms
express the relationships which exist between the objects of C. In many situations, these morphisms are
themselves a basic object of study. We might then want to know not only what the morphisms are, but how
they are related to one another. A formalization of this idea leads to the theory of 2-categories, in which
we have not only morphisms but also morphisms between the morphisms, called 2-morphisms. The vision of
higher category theory is that we should have a notion of n-category for all n ≥ 0, in which we have not only
objects, morphisms, and 2-morphisms, but also k-morphisms for all k ≤ n. Finally, in some sort of limit we
might hope to obtain a theory of ∞-categories, where there are morphisms of all orders.

Example 1.1.1.1. Let X be a topological space, and 0 ≤ n ≤ ∞. We can extract an n-category π≤nX
(roughly) as follows. The objects of π≤nX are the points of X. If x, y ∈ X, then the morphisms from x to
y in π≤nX are given by continuous paths [0, 1] → X starting at x and ending at y. The 2-morphisms are
given by homotopies of paths, the 3-morphisms by homotopies between homotopies, and so forth. Finally,
if n < ∞, then two n-morphisms of π≤nX are considered to be the same if and only if they are homotopic
to one another.

If n = 0, then π≤nX can be identified with the set π0X of path components of X. If n = 1, then our
definition of π≤nX agrees with usual definition for the fundamental groupoid of X. For this reason, π≤nX is
often called the fundamental n-groupoid of X. It is an n-groupoid (rather than a mere n-category) because
every k-morphism of π≤kX has an inverse (at least “up to homotopy”).

There are many approaches to realizing the vision of higher category theory. We might begin by defining
a 2-category to be a “category enriched over Cat.” In other words, we consider a collection of objects
together with a category of morphisms Hom(A,B) for any two objects A and B, and composition functors
cABC : Hom(A,B)×Hom(B,C)→ Hom(A,C) (to simplify the discussion, we will ignore identity morphisms
for a moment). These functors are required to satisfy an associative law, which asserts that for any quadruple
(A,B,C,D) of objects, the diagram

Hom(A,B)×Hom(B,C)×Hom(C,D)

��

// Hom(A,C)×Hom(C,D)

��
Hom(A,B)×Hom(B,D) // Hom(A,D)

commutes; in other words, one has an equality of functors

cACD ◦ (cABC × 1) = cABD ◦ (1× cBCD)

from Hom(A,B)×Hom(B,C)×Hom(C,D) to Hom(A,D). This leads to the definition of a strict 2-category.
At this point, we should object that the definition of a strict 2-category violates one of the basic philo-

sophical principles of category theory: one should never demand that two functors F and F ′ be equal to
one another. Instead one should postulate the existence of a natural isomorphism between F and F ′. This
means that the associative law should not take the form of an equation, but of additional structure: a col-
lection of isomorphisms γABCD : cACD ◦ (cABC × 1) ' cABD ◦ (1× cBCD). We should further demand that
the isomorphisms γABCD be functorial in the quadruple (A,B,C,D) and satisfy certain higher associativity
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conditions, which generalize the “Pentagon axiom” described in §A.1.3. After formulating the appropriate
conditions, we arrive at the definition of a weak 2-category.

Let us contrast the notions of “strict 2-category” and “weak 2-category.” The former is easier to define,
since we do not have to worry about the higher associativity conditions satisfied by the transformations
γABCD. On the other hand, the latter notion seems more natural if we take the philosophy of category
theory seriously. In this case, we happen to be lucky: the notions of “strict 2-category” and “weak 2-
category” turn out to be equivalent. More precisely, any weak 2-category is equivalent (in the relevant sense)
to a strict 2-category. The choice of definition can therefore be regarded as a question of aesthetics.

We now plunge onward to 3-categories. Following the above program, we might define a strict 3-category
to consist of a collection of objects together with strict 2-categories Hom(A,B) for any pair of objects A
and B, together with a strictly associative composition law. Alternatively, we could seek a definition of weak
3-category by allowing Hom(A,B) to be only a weak 2-category, requiring associativity only up to natural
2-isomorphisms, which satisfy higher associativity laws up to natural 3-isomorphisms, which in turn satisfy
still higher associativity laws of their own. Unfortunately, it turns out that these notions are not equivalent.

Both of these approaches have serious drawbacks. The obvious problem with weak 3-categories is that
an explicit definition is extremely complicated (see [22], where a definition is given along these lines), to
the point where it is essentially unusable. On the other hand, strict 3-categories have the problem of not
being the correct notion: most of the weak 3-categories which occur in nature (such as the fundamental
3-groupoids of topological spaces) are not equivalent to strict 3-categories. The situation only gets worse
(from either point of view) as we pass to 4-categories and beyond.

Fortunately, it turns out that major simplifications can be introduced if we are willing to restrict our
attention to ∞-categories in which most of the higher morphisms are invertible. Let us henceforth use
the term (∞, n)-category to refer to ∞-categories in which all k-morphisms are invertible for k > n. The
∞-categories described in Example 1.1.1.1 (when n = ∞) are all (∞, 0)-categories. The converse, which
asserts that every (∞, 0)-category has the form π≤∞X for some topological space X, is a generally accepted
principle of higher category theory. Moreover, the ∞-groupoid π≤∞X encodes the entire homotopy type of
X. In other words, (∞, 0)-categories (that is, ∞-categories in which all morphisms are invertible) have been
extensively studied from another point of view: they are essentially the same thing as “spaces” in the sense
of homotopy theory, and there are many equivalent ways to describe them (for example, we can use CW
complexes or simplicial sets).

Convention 1.1.1.2. We will often refer to (∞, 0)-categories as ∞-groupoids and (∞, 2)-categories as ∞-
bicategories. Unless otherwise specified, the generic term ∞-category will mean (∞, 1)-category.

In this book, we will restrict our attention almost entirely to the theory of ∞-categories (in which we
have only invertible n-morphisms for n ≥ 2). Our reasons are threefold:

(1) Allowing noninvertible n-morphisms for n > 1 introduces a number of additional complications to the
theory, at both technical and conceptual levels. As we will see throughout this book, many ideas from
category theory generalize to the∞-categorical setting in a natural way. However, these generalizations
are not so straightforward if we allow noninvertible 2-morphisms. For example, one must distinguish
between strict and lax fiber products, even in the setting of “classical” 2-categories.

(2) For the applications studied in this book, we will not need to consider (∞, n)-categories for n > 2. The
case n = 2 is of some relevance, because the collection of (small) ∞-categories can naturally be viewed
as a (large) ∞-bicategory. However, we will generally be able to exploit this structure in an ad-hoc
manner, without developing any general theory of ∞-bicategories.

(3) For n > 1, the theory of (∞, n)-categories is most naturally viewed as a special case of enriched
(higher) category theory. Roughly speaking, an n-category can be viewed as a category enriched over
(n − 1)-categories. As we explained above, this point of view is inadequate because it requires that
composition satisfies an associative law up to equality, while in practice the associativity only holds up
to isomorphism or some weaker notion of equivalence. In other words, to obtain the correct definition
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we need to view the collection of (n − 1)-categories as an n-category, not as an ordinary category.
Consequently, the naive approach is circular: though it does lead to the correct theory of n-categories,
we can only make sense of it if the theory of n-categories is already in place.

Thinking along similar lines, we can view an (∞, n)-category as an ∞-category which is enriched over
(∞, n−1)-categories. The collection of (∞, n−1)-categories it itself organized into an (∞, n)-category
Cat(∞,n−1), so at a first glance this definition suffers from the same problem of circularity. However,
because the associativity properties of composition are required to hold up to equivalence, rather than
up to arbitrary natural transformation, the noninvertible k-morphisms in Cat(∞,n−1) are irrelevant for
k > 1. We may therefore view an (∞, n)-category as a category enriched over Cat(∞,n−1), where the
latter is regarded as an ∞-category by discarding noninvertible k-morphisms for 2 ≤ k ≤ n. In other
words, the naive inductive definition of higher category theory is reasonable, provided that we work in
the ∞-categorical setting from the outset. We refer the reader to [49] for a definition of n-categories
which follows this line of thought.

The theory of enriched ∞-categories is a useful and important one, but will not be treated in this
book. Instead we refer the reader to [34] for an introduction using the same language and formalism
we employ here.

Though we will not need a theory of (∞, n)-categories for n > 1, the case n = 1 is the main subject matter
of this book. Fortunately, the above discussion suggests a definition. Namely, an ∞-category C should be
consist of a collection of objects, and an ∞-groupoid MapC(X,Y ) for every pair object objects X,Y ∈ C.
These∞-groupoids can be identified with “spaces”, and should be equipped with an associative composition
law. As before, we are faced with two choices as to how to make this precise: do we require associativity on
the nose, or only up to (coherent) homotopy? Fortunately, the answer turns out to be irrelevant: as in the
theory of 2-categories, any ∞-category with a coherently associative multiplication can be replaced by an
equivalent ∞-category with a strictly associative multiplication. We are led to the following:

Definition 1.1.1.3. A topological category is a category which is enriched over CG, the category of compactly
generated (Hausdorff) topological spaces. The category of topological categories will be denoted by Cattop.

More explicitly, a topological category C consists of a collection of objects, together with a (compactly
generated) topological space MapC(X,Y ) for any pair of objects X,Y ∈ C. These mapping spaces must be
equipped with an associative composition law, given by continuous maps

MapC(X0, X1)×MapC(X1, X2)× . . .MapC(Xn−1, Xn)→ MapC(X0, Xn)

(defined for all n ≥ 0). Here the product is taken in the category of compactly generated topological spaces.

Remark 1.1.1.4. The decision to work with compactly generated topological spaces, rather than arbitrary
spaces, is made in order to facilitate the comparison with more combinatorial approaches to homotopy theory.
This is a purely technical point which the reader may safely ignore.

It is possible to use Definition 1.1.1.3 as a foundation for higher category theory: that is, to define an
∞-category to be a topological category. However, this approach has a number of technical disadvantages.
We will describe an alternative (though equivalent) formalism in the next section.

1.1.2 ∞-Categories

Of the numerous formalizations of higher category theory, Definition 1.1.1.3 is the quickest and most trans-
parent. However, it is one of the most difficult to actually work with. Fortunately, there exist several
approaches in which the difficulties become more tractable, including the theory of Segal categories, the
theory of complete Segal spaces, and Quillen’s theory of model categories. To review all of these notions and
their interrelationships would involve too great a digression from the main purpose of this book. However,
the frequency with which we will encounter sophisticated categorical constructions necessitates the use of
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one of these more efficient approaches. We will employ the theory of weak Kan complexes, which goes back
to Boardman-Vogt ([7]). These objects have subsequently been studied more extensively by Joyal ([30] and
[31]), who calls them quasicategories. We will simply call them ∞-categories.

To get a feeling for what an ∞-category C should be, it is useful to consider two extreme cases. If every
morphism in C is invertible, then C is equivalent to the fundamental ∞-groupoid of a topological space X.
In this case, higher category theory reduces to classical homotopy theory. On the other hand, if C has no
nontrivial n-morphisms for n > 1, then C is equivalent to an ordinary category. A general formalism must
capture the features of both of these examples. In other words, we need a class of mathematical objects
which can behave both like categories and like topological spaces. In §1.1.1, we achieved this by “brute
force”: namely, we directly amalgamated the theory of topological spaces and the theory of categories, by
considering topological categories. However, it is possible to approach the problem more directly using the
theory of simplicial sets. We will assume that the reader has some familiarity with the theory of simplicial
sets; a brief review of this theory is included in §A.2.10, and a more extensive introduction can be found in
[21].

The theory of simplicial sets originated as a combinatorial approach to homotopy theory. Given any
topological spaceX, one can associated a simplicial set SingX, whose n-simplices are precisely the continuous
maps |∆n| → X, where |∆n| = {(x0, . . . , xn) ∈ [0, 1]n+1|x0 + . . . + xn = 1} is the standard n-simplex.
Moreover, the topological space X is determined, up to weak homotopy equivalence, by SingX. More
precisely, the singular complex functor

X 7→ SingX

has a left adjoint, which carries every simplicial set K to its geometric realization |K|. For every topological
space X, the counit map

|SingX| → X

is a weak homotopy equivalence. Consequently, if one is only interested in studying topological spaces up to
weak homotopy equivalence, one might as well work simplicial sets instead.

If X is a topological space, then the simplicial set SingX has an important property, which is captured
by the following definition:

Definition 1.1.2.1. Let K be a simplicial set. We say that K is a Kan complex if, for any 0 ≤ i ≤ n and
any diagram of solid arrows

Λni //
� _

��

K

∆n

>>|
|

|
|

there exists a dotted arrow as indicated rendering the diagram commutative. Here Λni ⊆ ∆n denotes the ith
horn, obtained from the simplex ∆n by deleting the interior and the face opposite the ith vertex.

The singular complex of any topological space X is a Kan complex: this follows from the fact that the
horn |Λni | is a retract of the simplex |∆n| in the category of topological spaces. Conversely, any Kan complex
K “behaves like” a space: for example, there are simple combinatorial recipes for extracting homotopy groups
from K (which turn out be isomorphic to the homotopy groups of the topological space |K|). According to
a theorem of Quillen (see [21] for a proof), the singular complex and geometric realization provide mutually
inverse equivalences between the homotopy category of CW complexes and the homotopy category of Kan
complexes.

The formalism of simplicial sets is also closely related to category theory. To any category C, we can
associate a simplicial set N(C), called the nerve of C. For each n ≥ 0, we let N(C)n = MapSet∆(∆n,N(C))
denote the set of all functors [n] → C. Here [n] denotes the linearly ordered set {0, . . . , n}, regarded as a
category in the obvious way. More concretely, N(C)n is the set of all composable sequences of morphisms

C0
f1→ C1 . . .

fn→ Cn
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having length n. In this description, the face map di carries the above sequence to

C0
f1→ C1 . . .

fi−1→ Ci−1
fi+1◦fi→ Ci+1

fi+2→ . . .
fn→ Cn

while the degeneracy si carries it to

C0
f1→ C1 . . .

fi→ Ci
idCi→ Ci

fi+1→ Ci+1
fi+2→ . . .

fn→ Cn.

It is more or less clear from this description that the simplicial set N(C) is just a fancy way of encoding
the structure of C as a category. More precisely, we note that the category C can be recovered (up to
isomorphism) from its nerve N(C). The objects of C are simply the vertices of N(C); that is, the elements
of N(C)0. A morphism from C0 to C1 is given by an edge φ ∈ N(C)1 with d1(φ) = C0 and d0(φ) = C1.
The identity morphism from an object C to itself is given by the degenerate simplex s0(C). Finally, given a

diagram C0
φ→ C1

ψ→ C2, the edge of N(C) corresponding to ψ ◦ φ may be uniquely characterized by the fact
that there exists a 2-simplex σ ∈ N(C)2 with d2(σ) = φ, d0(σ) = ψ, and d1(σ) = ψ ◦ φ.

It is not difficult to characterize those simplicial sets which arise as the nerve of a category:

Proposition 1.1.2.2. Let K be a simplicial set. Then the following conditions are equivalent:

(1) There exists a small category C and an isomorphism K ' N(C).

(2) For each 0 < i < n and each diagram
Λni� _

��

// K

∆n

>>|
|

|
|

there exists a unique dotted arrow rendering the diagram commutative.

Proof. An easy exercise for the reader; see Proposition 1.2.17.9 for a generalization.

We note that condition (2) of Proposition 1.1.2.2 is very similar to Definition 1.1.2.1. However, it is
different in two important respects. First, it requires the extension condition only for inner horns Λni with
0 < i < n. Second, the asserted condition is stronger in this case: not only does any map Λni → K extend
to the simplex ∆n, but the extension is unique.

Remark 1.1.2.3. It is easy to see that it is not reasonable to expect condition (2) of Proposition 1.1.2.2 to
hold for “outer” horns Λni , i ∈ {0, n}. Consider, for example, the case where i = n = 2, and where K is the
nerve of a category C. Giving a map Λ2

2 → K corresponds to supplying the solid arrows in the diagram

C1

!!B
BB

BB
BB

B

C0
//

>>}
}

}
}

C2,

and the extension condition would amount to the assertion that one could always find a dotted arrow
rendering the diagram commutative. This is true in general only when the category C is a groupoid.

We now see that the notion of a simplicial set is a flexible one: a simplicial set K can be a good model
for an ∞-groupoid (if K is a Kan complex), or for an ordinary category (if it satisfies the hypotheses of
Proposition 1.1.2.2). Based on these observations, we might expect that some more general class of simplicial
sets could serve as models for ∞-categories in general.
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Consider first an arbitrary simplicial set K. We can try to envision K as a generalized category, whose
objects are the vertices of K (that is, the elements of K0), and whose morphisms are the edges of K (that
is, the elements of K1). A 2-simplex σ : ∆2 → K should be thought of as a diagram

Y
ψ

��@
@@

@@
@@

X

φ
>>~~~~~~~ θ // Z

together with an identification (or homotopy) between θ and ψ◦φ which renders the diagram “commutative”.
(Note that, in higher category theory, this is not merely a condition: the homotopy θ ' ψ ◦φ is an additional
datum). Simplices of larger dimension may be thought of as verifying the commutativity of certain higher-
dimensional diagrams.

Unfortunately, for a general simplicial set K, the analogy outlined above is not very strong. The essence
of the problem is that, though we may refer to the 1-simplices of K as “morphisms”, there is in general no
way to compose them. Taking our cue from the example of N(C), we might say that a morphism θ : X → Z
is a composition of morphisms φ : X → Y and ψ : Y → Z if there exists a 2-simplex σ : ∆2 → K as in the
diagram indicated above. We must now consider two potential difficulties: the 2-simplex σ may not exist,
and if it does it exist it may not be unique, so that we have more than one choice for the composition θ.

The existence of σ can be formulated as an extension condition on the simplicial set K. We note that a
composable pair of morphisms (ψ, φ) determines a map of simplicial sets Λ2

1 → K. Thus, the assertion that
σ can always be found may be formulated as a extension property: any map of simplicial sets Λ2

1 → K can
be extended to ∆2, as indicated in the following diagram:

Λ2
1

//
� _

��

K

∆2

>>~
~

~
~

The uniqueness of θ is another matter. It turns out to be unnecessary (and unnatural) to require that θ
be uniquely determined. To understand this point, let us return to the example of the fundamental groupoid
of a topological space X. This is a category whose objects are the points x ∈ X. The morphisms between
a point x ∈ X and a point y ∈ X are given by continuous paths p : [0, 1] → X such that p(0) = x and
p(1) = y. Two such paths are considered to be equivalent if there is a homotopy between them. Composition
in the fundamental groupoid is given by concatenation of paths. Given paths p, q : [0, 1]→ X with p(0) = x,
p(1) = q(0) = y, and q(1) = z, the composite of p and q should be a path joining x to z. There are many
ways of obtaining such a path from p and q. One of the simplest is to define

r(t) =

{
p(2t) if 0 ≤ t ≤ 1

2

q(2t− 1) if 1
2 ≤ t ≤ 1.

However, we could just as well use the formula

r′(t) =

{
p(3t) if 0 ≤ t ≤ 1

3

q( 3t−1
2 ) if 1

3 ≤ t ≤ 1

to define the composite path. Because the paths r and r′ are homotopic to one another, it does not matter
which one we choose.

The situation becomes more complicated if try to think 2-categorically. We can capture more information
about the space X by considering its fundamental 2-groupoid. This is a 2-category whose objects are the
points of X, whose morphisms are paths between points, and whose 2-morphisms are given by homotopies
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between paths (which are themselves considered modulo homotopy). In order to have composition of mor-
phisms unambiguously defined, we would have to choose some formula once and for all. Moreover, there
is no particularly compelling choice; for example, neither of the formulas written above leads to a strictly
associative composition law.

The lesson to learn from this is that in higher-categorical situations, we should not necessarily ask for
a uniquely determined composition of two morphisms. In the fundamental groupoid example, there are
many choices for a composite path but all of them are homotopic to one another. Moreover, in keeping
with the philosophy of higher category theory, any path which is homotopic to the composite should be just
as good as the composite itself. From this point of view, it is perhaps more natural to view composition
as a relation than as a function, and this is very efficiently encoded in the formalism of simplicial sets: a
2-simplex σ : ∆2 → K should be viewed as “evidence” that d0(σ) ◦ d2(σ) is homotopic to d1(σ).

Exactly what conditions on a simplicial set K will guarantee that it behaves like a higher category?
Based on the above argument, it seems reasonable to require that K satisfy an extension condition with
respect to certain horn inclusions Λni , as in Definition 1.1.2.1. However, as we observed in Remark 1.1.2.3,
this is reasonable only for the inner horns where 0 < i < n, which appear in the statement of Proposition
1.1.2.2.

Definition 1.1.2.4. An∞-category is a simplicial set K which has the following property: for any 0 < i < n,
any map f0 : Λni → K admits an extension f : ∆n → K.

Definition 1.1.2.4 was first formulated by Boardman and Vogt ([7]). They referred to ∞-catgories as
weak Kan complexes, motivated by the obvious analogy with Definition 1.1.2.1. Our terminology places
more emphasis on the analogy with the characterization of ordinary categories given in Proposition 1.1.2.2:
we require the same extension conditions, but drop the uniqueness assumption.

Example 1.1.2.5. Any Kan complex is an ∞-category. In particular, if X is a topological space, then
we may view its singular complex SingX as an ∞-category: this one way of defining the fundamental
∞-groupoid π≤∞X of X, introduced informally in Example 1.1.1.1.

Example 1.1.2.6. The nerve of any category is an ∞-category. We will occasionally abuse terminology by
identifying a category C with its nerve N(C); by means of this identification, we may view ordinary category
theory as a special case of the study of ∞-categories.

The weak Kan condition of Definition 1.1.2.4 leads to a very elegant and powerful version of higher
category theory. This theory has been developed by Joyal in the papers [30] and [31] (where simplicial sets
satisfying the condition of Definition 1.1.2.4 are called quasi-categories), and will be used throughout this
book.

Notation 1.1.2.7. Depending on the context, we will use two different notations in connection with simpli-
cial sets. When emphasizing their role as∞-categories, we will often denote them by calligraphic letters such
as C, D, and so forth. When casting simplicial sets in their different (though related) role of representing
homotopy types, we will employ capital Roman letters. To avoid confusion, we will also employ the latter
notation when we wish to contrast the theory of ∞-categories with some other other approach to higher
category theory, such as the theory of topological categories.

1.1.3 Equivalences of Topological Categories

We have now introduced two approaches to higher category theory: one based on topological categories,
and one based on simplicial sets. These two approaches turn out to be equivalent to one another. However,
the equivalence itself needs to be understood in a higher-categorical setting. We take our cue from classical
homotopy theory, in which we can take the basic objects to be either topological spaces or simplicial sets.
It is not true that every Kan complex is isomorphic to the singular complex of a topological space, or that
every CW complex is isomorphic to the geometric realization of a simplicial set. However, both of these
statements become true if we replace the words “isomorphic to” by “homotopy equivalent to”. We would like
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to formulate a similar statement regarding our approaches to higher category theory. The first step is to find
a concept which replaces “homotopy equivalence”. If F : C→ D is a functor between topological categories,
under what circumstances should we regard F as an “equivalence” (so that C and C′ really represent the
same higher category)?

The most naive answer is that F should be regarded as an equivalence if it is an isomorphism of topological
categories. This means that F induces a bijection between the objects of C and the objects of D, and a
homeomorphism MapC(X,Y ) → MapD(F (X), F (Y )) for every pair of objects X,Y ∈ C. However, it is
immediately obvious that this condition is far too strong; for example, in the case where C and D are
ordinary categories (which we may view also topological categories, where all morphism sets are endowed
with the discrete topology), we recover the notion of an isomorphism between categories. This notion does
not play an important role in category theory. One rarely asks whether or not two categories are isomorphic;
instead, one asks whether or not they are equivalent. This suggests the following definition:

Definition 1.1.3.1. A functor F : C → D between topological categories is a strong equivalence if it is an
equivalence in the sense of enriched category theory. In other words, F is a strong equivalence if it induces
homeomorphisms MapC(X,Y ) → MapD(F (X), F (Y )) for every pair of objects X,Y ∈ C, and every object
of D is isomorphic (in D) to F (X) for some X ∈ C.

The notion of strong equivalence between topological categories has the virtue that, when restricted to
ordinary categories, it reduces to the usual notion of equivalence. However, it is still not the right definition:
for a pair of objects X and Y of a higher category C, the morphism space MapC(X,Y ) should itself only be
well-defined up to homotopy equivalence.

Definition 1.1.3.2. Let C be a topological category. The homotopy category hC is defined as follows:

• The objects of hC are the objects of C.

• If X,Y ∈ C, then we define HomhC(X,Y ) = π0 MapC(X,Y ).

• Composition of morphisms hC is induced from the composition of morphisms in C by applying the
functor π0.

Example 1.1.3.3. Let C be the topological category whose objects are CW-complexes, where MapC(X,Y )
is the set of continuous maps from X to Y , equipped with the (compactly generated version of the) compact-
open topology. We will denote the homotopy category of C by H, and refer to H as the homotopy category
of spaces.

There is a second construction of the homotopy category H, which will play an important role in what
follows. First, we must recall a bit of terminology from classical homotopy theory.

Definition 1.1.3.4. A map f : X → Y between topological spaces is said to be a weak homotopy equivalence
if it induces a bijection π0X → π0Y , and if for every point x ∈ X and every i ≥ 1, the induced map of
homotopy groups

πi(X,x)→ πi(Y, f(x))

is an isomorphism.

Given a space X ∈ CG, classical homotopy theory ensures the existence of a CW-complex X ′ equipped
with a weak homotopy equivalence φ : X ′ → X. Of course, X ′ is not uniquely determined; however, it is
unique up to canonical homotopy equivalence, so that the assignment

X 7→ [X] = X ′

determines a functor θ : CG→ H. By construction, θ carries weak homotopy equivalences in CG to isomor-
phisms in H. In fact, θ is universal with respect to this property. In other words, we may describe H as
the category obtained from CG by formally inverting all weak homotopy equivalences. This is one version
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of Whitehead’s theorem, which is usually stated as follows: every weak homotopy equivalence between CW
complexes admits a homotopy inverse.

We can now improve upon Definition 1.1.3.2 slightly. We first observe that the functor θ : CG →
H preserves products. Consequently, we can apply the construction of Remark A.1.4.3 to convert any
topological category C into a category enriched over H. We will denote this H-enriched category by hC, and
refer to it as the homotopy category of C. More concretely, the homotopy category hC may be described as
follows:

(1) The objects of hC are the objects of C.

(2) For X,Y ∈ C, we have
MaphC(X,Y ) = [MapC(X,Y )].

(3) The composition law on hC is obtained from the composition law on C by applying the functor θ :
CG→ H.

Remark 1.1.3.5. If C is a topological category, we have now defined hC in two different ways: first as an
ordinary category, and then as a category enriched over H. These two definitions are compatible with one
another, in the sense that hC (as an ordinary category) is the underlying category of hC (as an H-enriched
category). This follows immediately from the observation that for every topological space X, there is a
canonical bijection

π0X ' MapH(∗, [X]).

If C is a topological category, we may imagine that hC is the object which is obtained by forgetting
the topological morphism spaces of C and remembering only their (weak) homotopy types. The following
definition codifies the idea that these homotopy types should be “all that really matter”.

Definition 1.1.3.6. Let F : C → D be a functor between topological categories. We will say that F is a
weak equivalence, or simply an equivalence, if the induced functor

hC→ hD

is an equivalence of H-enriched categories.

More concretely, a functor F is an equivalence if and only if:

• For every pair of objects X,Y ∈ C, the induced map

MapC(X,Y )→ MapD(F (X), F (Y ))

is a weak homotopy equivalence of topological spaces.

• Every object of D is isomorphic in hD to F (X), for some X ∈ C.

Remark 1.1.3.7. A morphism f : X → Y in D is said to be an equivalence if the induced morphism in hD

is an isomorphism. In general, this is much weaker than the condition that f be an isomorphism in D; see
Proposition 1.2.4.1.

It is Definition 1.1.3.6 which gives the correct notion of equivalence between topological categories (at
least, when one is using them to describe higher category theory). We will agree that all relevant properties of
topological categories are invariant under this notion of equivalence. We say that two topological categories
are equivalent if there is an equivalence between them, or more generally if there is a chain of equivalences
joining them. Equivalent topological categories should be regarded as “the same” for all relevant purposes.
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Remark 1.1.3.8. According to Definition 1.1.3.6, a functor F : C → D is an equivalence if and only if
the induced functor hC → hD is an equivalence. In other words, the homotopy category hC (regarded as a
category which is enriched over H) is an invariant of C which is sufficiently powerful to detect equivalences
between ∞-categories. This should be regarded as analogous to the more classical fact that the homotopy
groups πi(X,x) of a CW complex X are homotopy invariants which detect homotopy equivalences between
CW complexes (by Whitehead’s theorem). However, it important to remember that hC does not determine
C up to equivalence, just as the homotopy type of a CW complex is not determined by its homotopy groups.

1.1.4 Simplicial Categories

In the previous sections we introduced two very different approaches to the foundations of higher category
theory: one based on topological categories, the other on simplicial sets. In order to prove that they are
equivalent to one another, we will introduce a third approach, which is closely related to the first but shares
the combinatorial flavor of the second.

Definition 1.1.4.1. A simplicial category is a category which is enriched over the category Set∆ of simplicial
sets. The category of simplicial categories (where morphisms are given by simplicially enriched functors)
will be denoted by Cat∆.

Remark 1.1.4.2. Every simplicial category can be regarded as a simplicial object in the category Cat.
Conversely, a simplicial object of Cat arises from a simplicial category if and only if the underlying simplicial
set of objects is constant.

Like topological categories, simplicial categories can be used as models of higher category theory. If C is a
simplicial category, then we will generally think of the simplicial sets MapC(X,Y ) as “spaces”, or homotopy
types.

Remark 1.1.4.3. If C is a simplicial category with the property that each of the simplicial sets MapC(X,Y )
is an ∞-category, then we may view C itself as a kind of ∞-bicategory. We will not use this interpretation
of simplicial categories in this book. Usually we will consider only fibrant simplicial categories: that is,
simplicial categories for which the mapping objects MapC(X,Y ) are Kan complexes.

The relationship between simplicial categories and topological categories is easy to describe. Let Set∆
denote the category of simplicial sets and CG the category of compactly generated Hausdorff spaces. We
recall that there exists a pair of adjoint functors

Set∆
|| // CG

Sing
oo

which are called the geometric realization and singular complex functors, respectively. Both of these functors
commute with finite products. Consequently, if C is a simplicial category, we may define a topological
category |C | in the following way:

• The objects of |C | are the objects of C.

• If X,Y ∈ C, then Map|C |(X,Y ) = |MapC(X,Y )|.

• The composition law for morphisms in |C | is obtained from the composition law on C by applying the
geometric realization functor.

Similarly, if C is a topological category, we may obtain a simplicial category Sing C by applying the
singular complex functor to each of the morphism spaces individually. The singular complex and geometric
realization functors determine an adjunction between Cat∆ and Cattop. This adjunction should be understood
as determining an “equivalence” between the theory of simplicial categories and the theory of topological

20



categories. This is an essentially a formal consequence of the fact that the geometric realization and singular
complex functors determine an equivalence between the homotopy theory of topological spaces and the
homotopy theory of simplicial sets. More precisely, we recall that a map f : S → T of simplicial sets is said
to be a weak homotopy equivalence if the induced map |S| → |T | of topological spaces is a weak homotopy
equivalence. A theorem of Quillen (see [21] for a proof) asserts that the unit and counit morphisms

S → Sing |S|

|SingX| → X

are weak homotopy equivalences, for every (compactly generated) topological space X and every simplicial
set S. It follows that the category obtained from CG by inverting weak homotopy equivalences (of spaces) is
equivalent to the category obtained from Set∆ by inverting weak homotopy equivalences. We use the symbol
H to denote either of these (equivalent) categories.

If C is a simplicial category, we let hC denote the H-enriched category obtained by applying the functor
Set∆ → H to each of the morphism spaces of C. We will refer to hC as the homotopy category of C. We
note that this is the same notation that was introduced in §1.1.3 for the homotopy category of a topological
category. However, there is little risk of confusion: the above remarks imply the existence of canonical
isomorphisms

hC ' h|C |

hD ' hSing D

for every simplicial category C and every topological category D.

Definition 1.1.4.4. A functor C→ C′ between simplicial categories is an equivalence if the induced functor
hC→ hC′ is an equivalence of H-enriched categories.

In other words, a functor C → C′ between simplicial categories is an equivalence if and only if the
geometric realization |C | → |C′ | is an equivalence of topological categories. In fact, one can say more. It
follows easily from the preceding remarks that the unit and counit maps

C→ Sing |C |

|Sing D | → D

induce isomorphisms between homotopy categories. Consequently, if we are working with topological or
simplicial categories up to equivalence, we are always free to replace a simplicial category C by |C |, or
a topological category D by Sing D. In this sense, the notions of topological and simplicial category are
equivalent and either can be used as a foundation for higher category theory.

1.1.5 Comparing ∞-Categories with Simplicial Categories

In §1.1.4, we introduced the theory of simplicial categories and explained why (for our purposes) it is
equivalent to the theory of topological categories. In this section, we see that the theory of simplicial
categories is also closely related to the theory of ∞-categories. Our discussion requires somewhat more
elaborate constructions than were needed in the previous sections; a reader who does not wish to become
bogged down in details is urged to skip ahead to §1.2.1.

We will relate simplicial categories with simplicial sets by means of the simplicial nerve functor

N : Cat∆ → Set∆ .

Recall that the nerve of an ordinary category C is defined by the formula

HomSet∆(∆n,N(C)) = HomCat([n],C),
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where [n] denotes the linearly ordered set {0, . . . , n}, regarded as a category. This definition makes sense
also when C is a simplicial category, but is clearly not very interesting: it makes no use of the simplicial
structure on C. In order to obtain a more interesting construction, we need to replace the ordinary category
[n] by a suitable “thickening”, a simplicial category which we will denote by C[∆n].

Definition 1.1.5.1. Let J be a linearly ordered set. The simplicial category C[∆J ] is defined as follows:

• The objects of C[∆J ] are the elements of J .

• If i, j ∈ J , then

MapC[∆J ](i, j) =

{
∅ if j < i

N(Pi,j) if i ≤ j.

Here Pi,j denotes the partially ordered set {I ⊆ J : (i, j ∈ I) ∧ (∀k ∈ I)[i ≤ k ≤ j])}.

• If i0 ≤ i1 ≤ . . . ≤ in, then the composition

MapC[∆J ](i0, i1)× . . .×MapC[∆J ](in−1, in)→ MapC[∆J ](i0, in)

is induced by the map of partially ordered sets

Pi0,i1 × . . .× Pin−1,in → Pi0,in

(I1, . . . , In) 7→ I1 ∪ . . . ∪ In.

In order to help digest Definition 1.1.5.1, let us analyze the structure of the topological category |C[∆n]|.
The objects of this category are elements of the set [n] = {0, . . . , n}. For each 0 ≤ i ≤ j ≤ n, the
topological space Map|C[∆n]|(i, j) is homeomorphic to a cube; it may be identified with the set of all functions
p : {k ∈ [n] : i ≤ k ≤ j} → [0, 1] which satisfy p(i) = p(j) = 1. The morphism space Map|C[∆n]|(i, j) is
empty when j < i, and composition of morphisms is given by concatenation of functions.

Remark 1.1.5.2. Let us attempt to better understand the simplicial category C[∆n] and its relationship
to the ordinary category [n]. These categories have the same objects, namely the elements of {0, . . . , n}. In
the category [n], there is a unique morphism qij : i → j whenever i ≤ j. In virtue of the uniqueness, these
elements satisfy qjk ◦ qij = qik for i ≤ j ≤ k.

In the simplicial category C[∆n], there is a vertex pij ∈ MapC[∆n](i, j), given by the element {i, j} ∈ Pij .
We note that pjk ◦ pij 6= pik (unless we are in one of the degenerate cases where i = j or j = k). Instead,
the collection of all compositions

pinin−1 ◦ pin−1in−2 ◦ . . . ◦ pi1i0 ,

where i = i0 < i1 < . . . < in−1 < in = j constitute all of the different vertices of the cube MapC[∆n](i, j). The
weak contractibility of MapC[∆n](i, j) expresses the idea that although these compositions do not coincide,
they are all canonically homotopic to one another. We observe that there is a (unique) functor C[∆n]→ [n]
which is the identity on objects, and that this functor is an equivalence of simplicial categories. We can
summarize the situation informally as follows: the simplicial category C[∆n] is a “thickened version” of [n],
where we have dropped the strict associativity condition

qjk ◦ qij = qik

and instead have imposed associativity only up to (coherent) homotopy.

The construction J 7→ C[∆J ] is functorial in J , as we now explain.

Definition 1.1.5.3. Let f : J → J ′ be a monotone map between linearly ordered sets. The simplicial
functor C[f ] : C[∆J ]→ C[∆J′ ] is defined as follows:
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• For each object i ∈ C[∆J ], C[f ](i) = f(i) ∈ C[∆J′ ].

• If i ≤ j in J , then the map MapC[∆J ](i, j) → MapC[∆J′ ](f(i), f(j)) induced by f is the nerve of the
map

Pi,j → Pf(i),f(j)

I 7→ f(I).

Remark 1.1.5.4. Using the notation of Remark 1.1.5.2, we note that Definition 1.1.5.3 has been rigged so
that the functor C[f ] carries the vertex pij ∈ MapC[∆J ](i, j) to the vertex pf(i)f(j) ∈ MapC[∆J′ ](f(i), f(j)).

It is not difficult to check that the construction described in Definition 1.1.5.3 is well-defined, and com-
patible with composition in f . Consequently, we deduce that C determines a functor

∆→ Cat∆

∆n 7→ C[∆n],

which we may view as a cosimplicial object of Cat∆.

Definition 1.1.5.5. Let C be a simplicial category. The simplicial nerve N(C) is the simplicial set determined
by the equation

HomSet∆(∆n,N(C)) = HomCat∆(C[∆n],C).

If C is a topological category, we define the topological nerve N(C) of C to be the simplicial nerve of Sing C.

Remark 1.1.5.6. If C is a simplicial (topological) category, we will often abuse terminology by referring to
the simplicial (topological) nerve of C simply as the nerve of C.

Warning 1.1.5.7. Let C be a simplicial category. Then C can be regarded as an ordinary category, by
ignoring all simplices of positive dimension in the mapping spaces of C. The simplicial nerve of C does not
agree with the nerve of this underlying ordinary category. Our notation is therefore potentially ambiguous.
We will adopt the following convention: whenever C is a simplicial category, N(C) will denote the simplicial
nerve of C, unless we specify otherwise. Similarly, if C is a topological category, then the topological nerve
of C does not generally coincide with the nerve of the underlying category; the notation N(C) will be used
to indicate the topological nerve, unless otherwise specified.

Example 1.1.5.8. Any ordinary category C may be considered as a simplicial category, by taking each of
the simplicial sets HomC(X,Y ) to be constant. In this case, the set of simplicial functors C[∆n] → C may
be identified with the set of functors from [n] into C. Consequently, the simplicial nerve of C agrees with
the ordinary nerve of C, as defined in §1.1.2. Similarly, the ordinary nerve of C can be identified with the
topological nerve of C, where C is regarded as a topological category with discrete morphism spaces.

In order to get a feel for what the nerve of a topological category C looks like, let us explicitly describe
its low-dimensional simplices:

• The 0-simplices of N(C) may be identified with the objects of C.

• The 1-simplices of N(C) may be identified with the morphisms of C.

• To give a map from the boundary of a 2-simplex into N(C) is to give a diagram (not necessarily
commutative)

Y
fY Z

  A
AA

AA
AA

X

fXY

>>~~~~~~~ fXZ // Z.

To give a 2-simplex of N(C) having this specified boundary is equivalent to giving a path from fY Z ◦fXY
to fXZ in MapC(X,Z).
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The category Cat∆ of simplicial categories admits (small) colimits. Consequently, by formal nonsense,
the functor C : ∆ → Cat∆ extends uniquely (up to unique isomorphism) to a colimit-preserving functor
Set∆ → Cat∆, which we will denote also by C. By construction, the functor C is left adjoint to the simplicial
nerve functor N. For each simplicial set S, we can view C[S] as the simplicial category “freely generated” by
S: every n-simplex σ : ∆n → S determines a functor C[∆n] → C[S], which we can think of as a homotopy
coherent diagram [n]→ C[S].

Proposition 1.1.5.9. Let C be a simplicial category having the property that, for every pair of objects
X,Y ∈ C, the simplicial set MapC(X,Y ) is a Kan complex. Then the simplicial nerve N(C) is an ∞-
category.

Proof. We must show that if 0 < i < n, then N(C) has the right extension property with respect to the
inclusion Λni ⊆ ∆n. Rephrasing this in the language of simplicial categories, we must show that C has the
right extension property with respect to the simplicial functor

C[Λni ]→ C[∆n].

To prove this, we make use of the following observations concerning C[Λni ], which we view as a simplicial
subcategory of C[∆n]:

• The objects of C[Λni ] are the objects of C[∆n]: that is, elements of the set [n].

• For 0 ≤ j ≤ k ≤ n, the simplicial set MapC[Λn
i ](j, k) coincides with MapC[∆n](j, k) unless j = 0 and

k = n.

Consequently, every extension problem

Λni� _

��

F // N(C)

∆n

<<y
y

y
y

is equivalent to
MapC[Λn

i ](0, n)

��

// MapC(F (0), F (n))

MapC[∆n](0, n)

66lllllll

Since the simplicial set on the right is a Kan complex by assumption, it suffices to verify that the left vertical
map is anodyne. This follows by inspection: the simplicial set MapC[∆n](0, n) can be identified with the
cube (∆1){1,...,n−1}, and MapC[Λn

i ](0, n) can be identified with the simplicial subset obtained by removing
the interior of the cube together with one of its faces.

Remark 1.1.5.10. The proof of Proposition 1.1.5.9 yields a slightly stronger result: if F : C → D is a
functor between simplicial categories which induces Kan fibrations MapC(C,C ′)→ MapD(F (C), F (C ′)) for
every pair of objects C,C ′ ∈ C, then the associated map N(C)→ N(D) is an inner fibration of simplicial sets
(see Definition 2.0.0.3).

Corollary 1.1.5.11. Let C be a topological category. Then the topological nerve N(C) is an ∞-category.

Proof. This follows immediately from Proposition 1.1.5.9, since the singular complex of any topological space
is a Kan complex.

We now cite the following theorem, which will be proven in §1.3.3 and refined in §1.3.4:
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Theorem 1.1.5.12. Let C be a topological category, and let X,Y ∈ C be objects. Then the counit map

|MapC[N(C)](X,Y )| → MapC(X,Y )

is a weak homotopy equivalence of topological spaces.

Assuming Theorem 1.1.5.12, we can now explain why the theory of ∞-categories is equivalent to the
theory of topological categories (or, equivalently, simplicial categories). The adjoint functors N and |C[•]|
are not mutually inverse equivalences of categories. However, they are homotopy inverse to one another. To
make this precise, we need to introduce a definition.

Definition 1.1.5.13. Let S be a simplicial set. The homotopy category hS is defined to be the homotopy
category hC[S ] of the simplicial category C[S].

A map f : S → T of simplicial sets is a categorical equivalence if the induced map hS → hT is an
equivalence of H-enriched categories.

Remark 1.1.5.14. In [31], Joyal uses the term “weak categorical equivalence” for what we have called a
“categorical equivalence,” and reserves the term “categorical equivalence” for a stronger notion of equivalence.

Remark 1.1.5.15. We have introduced the term “categorical equivalence”, rather than simply “equivalence”
or “weak equivalence”, in order to avoid confusing the notion of categorical equivalence of simplicial sets
with the (more classical) notion of weak homotopy equivalence of simplicial sets.

Remark 1.1.5.16. It is immediate from the definition that f : S → T is a categorical equivalence if and
only if C[S]→ C[T ] is an equivalence (of simplicial categories), if and only if |C[S]| → |C[T ]| is an equivalence
(of topological categories).

We now observe that the adjoint functors (|C[•]|,N) determine an equivalence between the theory of
simplicial sets (up to categorical equivalence) and that of topological categories (up to equivalence). In other
words, for any topological category C the counit functor

|C[N(C)]| → C

is an equivalence of topological categories, and for any simplicial set S the unit map

S → N |C[S]|

is a categorical equivalence of simplicial sets. In view of Remark 1.1.5.16, the second assertion is a formal
consequence of the first. Moreover, the first assertion is merely a reformulation of Theorem 1.1.5.12.

The reader may at this point object that we have achieved a comparison between the theory of topological
categories with the theory of simplicial sets, but that not every simplicial set is an ∞-category. However,
every simplicial set is categorically equivalent to an ∞-category. In fact, Theorem 1.1.5.12 implies that
every simplicial set S is categorically equivalent to the nerve of the topological category |C[S]|, which is an
∞-category (Corollary 1.1.5.11).
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1.2 The Language of Higher Category Theory

One of the main goals of this book is to demonstrate that many ideas from classical category theory can be
adapted to the setting of higher categories. In this section, we will survey some of the simplest examples.

1.2.1 The Opposite of an ∞-Category

If C is an ordinary category, then the opposite category Cop is defined in the following way:

• The objects of Cop are the objects of C.

• For X,Y ∈ C, we have HomCop(X,Y ) = HomC(Y,X). Identity morphisms and composition are defined
in the obvious way.

This definition generalizes without change to the setting of topological or simplicial categories. Adapting
this definition to the setting of ∞-categories requires a few additional words. We may define more generally
the opposite of a simplicial set S as follows: For any finite, nonempty, linearly ordered set J , we set Sop(J) =
S(Jop), where Jop denotes the same set J endowed with the opposite ordering. More concretely, we have
Sopn = Sn, but the face and degeneracy maps on Sop are given by the formulas

(di : Sopn → Sopn−1) = (dn−i : Sn → Sn−1)

(si : Sopn → Sopn+1) = (sn−i : Sn → Sn+1).

The formation of opposite categories is fully compatible with all of the constructions we have introduced
for passing back and forth between different models of higher category theory.

It is clear from the definition that a simplicial set S is an ∞-category if and only if its opposite Sop is an
∞-category: for 0 < i < n, S has the extension property with respect to the horn inclusion Λni ⊆ ∆n if and
only if Sop has the extension property with respect to the horn inclusion Λnn−i ⊆ ∆n.

1.2.2 Mapping Spaces in Higher Category Theory

If X and Y are objects of an ordinary category C, then one has a well-defined set HomC(X,Y ) of morphisms
from X to Y . In higher category theory, one has instead a morphism space MapC(X,Y ). In the setting of
topological or simplicial categories, this morphism space (either a topological space or a simplicial set) is
an inherent feature of the formalism. In the setting of ∞-categories, it is not so obvious how MapC(X,Y )
should be defined. However, it is at least clear what to do on the level of the homotopy category.

Definition 1.2.2.1. Let S be a simplicial set containing vertices x and y, and let H denote the homotopy
category of spaces. We define MapS(x, y) = MaphS (x, y) ∈ H to be the object of H representing the space
of maps from x to y in S. Here hS denotes the homotopy category of S, regarded as a H-enriched category
(Definition 1.1.5.13).

Warning 1.2.2.2. Let S be a simplicial set. The notation MapS(X,Y ) has two very different meanings.
When X and Y are vertices of S, then our notation should be interpreted in the sense of Definition 1.2.2.1,
so that MapS(X,Y ) is an object of H. If X and Y are objects of (Set∆)/S , then we instead let MapS(X,Y )
denote the simplicial mapping object

Y X ×SX {φ} ∈ Set∆,

where φ denotes the structural morphism X → S. We trust that it will be clear in context which of these
two definitions applies in a given situation.
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We now consider the following question: given a simplicial set S containing a pair of vertices x and y, how
can we compute MapS(x, y)? We have defined MapS(x, y) as an object of the homotopy category H, but for
many purposes it is important to choose a simplicial set M which represents MapS(x, y). The most obvious
candidate for M is the simplicial set MapC[S](x, y). The advantages of this definition are that it works in all
cases (that is, S does not need to be an∞-category), and comes equipped with an associative composition law.
However, the construction of the simplicial set MapC[S](x, y) is quite complicated. Furthermore, MapC[S](x, y)
is usually not a Kan complex, so it can be difficult to extract algebraic invariants like homotopy groups, even
when a concrete description of its simplices is known.

In order to address these shortcomings, we will introduce another simplicial set which represents the
homotopy type MapS(x, y) ∈ H, at least when S is an∞-category. We define a new simplicial set HomR

S (x, y),
the space of right morphisms from x to y, by letting HomSet∆(∆n,HomR

S (x, y)) denote the set of all z :
∆n+1 → S such that z|∆{n+1} = y and z|∆{0,...,n} is a constant simplex at the vertex x. The face and
degeneracy operations on HomR

S (x, y)n are defined to coincide with corresponding operations on Sn+1.
We first observe that when S is an ∞-category, HomR

S (x, y) really is a “space”:

Proposition 1.2.2.3. Let C be an ∞-category containing a pair of objects x and y. The simplicial set
HomR

C(x, y) is a Kan complex.

Proof. It is immediate from the definition that if C is a ∞-category, then M = HomR
C(x, y) satisfies the Kan

extension condition for every horn inclusion Λni ⊆ ∆n where 0 < i ≤ n. This implies that M is a Kan
complex (Proposition 1.2.5.1).

Remark 1.2.2.4. If S is a simplicial set and x, y, z ∈ S0, then there is no obvious composition law

HomR
S (x, y)×HomR

S (y, z)→ HomR
S (x, z).

We will later see that if S is an ∞-category, then there is a composition law which is well-defined up to a
contractible space of choices. The absence of a canonical choice for a composition law is the main drawback
of HomR

S (x, y), in comparison with
MapC[S](x, y).

The main goal of §1.3 is to show that, if S is an∞-category, then there is a (canonical) isomorphism between
HomR

S (x, y) and MapC[S](x, y) in the homotopy category H. In particular, we will conclude that HomR
S (x, y)

represents MapS(x, y), whenever S is an ∞-category.

Remark 1.2.2.5. The definition of HomR
S (x, y) is not self-dual: that is, HomR

Sop(x, y) 6= HomR
S (y, x) in

general. Instead we define HomL
S(x, y) = HomR

Sop(y, x)op, so that HomL
S(x, y)n is the set of all z ∈ Sn+1 such

that z|∆{0} = x and z|∆{1,...,n+1} is the constant simplex at the vertex y.

Although the simplicial sets HomL
S(x, y) and HomR

S (x, y) are generally not isomorphic to one another,
they are homotopy equivalent whenever S is an ∞-category. To prove this, it is convenient to define a third,
self-dual, space of morphisms: let HomS(x, y) = {x}×S S∆1 ×S {y}. In other words, to give an n-simplex of
HomS(x, y), one must give a map f : ∆n ×∆1 → S, such that f |∆n × {0} is constant at x and f |∆n × {1}
is constant at y. We observe that there exist natural inclusions

HomR
S (x, y) ↪→ HomS(x, y)←↩ HomL

S(x, y),

which are induced by retracting the cylinder ∆n × ∆1 onto certain maximal dimensional simplices. We
will later show (Corollary 4.2.1.8) that these inclusions are homotopy equivalences, provided that S is an
∞-category.

1.2.3 The Homotopy Category

For every ordinary category C, the nerve N(C) is an∞-category. Informally, we can describe the situation as
follows: the nerve functor is a fully faithful inclusion from the bicategory of categories to the ∞-bicategory
of ∞-categories. Moreover, this inclusion has a left adjoint:
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Proposition 1.2.3.1. The nerve functor Cat → Set∆ is right adjoint to the functor h: Set∆ → Cat, which
associates to every simplicial set S its homotopy category hS (here we ignore the H-enrichment of hS).

Proof. Let us temporarily distinguish between the nerve functor N : Cat → Set∆ and the simplicial nerve
functor N′ : Cat∆ → Set∆. These two functors are related by the fact that N can be written as a composition

Cat
i
⊆ Cat∆

N′→ Set∆ .

The functor π0 : Set∆ → Set is a left adjoint to the inclusion functor Set→ Set∆. It follows that the functor

Cat∆ → Cat

C 7→ hC

is left adjoint to i. It follows that N = i ◦N′ has a left adjoint, given by the composition

Set∆
C[•]→ Cat∆

h→ Cat,

which coincides with the homotopy category functor h : Set∆ → Cat by definition.

Remark 1.2.3.2. The formation of the homotopy category is literally left adjoint to the inclusion Cat ⊆
Cat∆. The analogous assertion is not quite true in the setting of topological categories, since the functor
π0 : CG→ Set is a left adjoint only when restricted to locally path connected spaces.

Warning 1.2.3.3. If C is a simplicial category, then we do not necessarily expect that hC ' hN(C). However,
this is always the case when C is fibrant, in the sense that every simplicial set MapC(X,Y ) is a Kan complex.

Remark 1.2.3.4. If S is a simplicial set, Joyal ([31]) refers to the category hS as the fundamental category
of S. This is motivated by the observation that if S is a Kan complex, then hS is the fundamental groupoid
of S in the usual sense.

Our objective, for the remainder of this section, is to obtain a more explicit understanding of the homotopy
category hS of a simplicial set S. Proposition 1.2.3.1 implies that hS admits the following presentation by
generators and relations:

• The objects of hS are the vertices of S.

• For every edge φ : ∆1 → S, there is a morphism φ from φ(0) to φ(1).

• For each σ : ∆2 → S, we have d0(σ) ◦ d2(σ) = d1(σ).

• For each vertex x of S, the morphism s0x is the identity idx.

If S is an ∞-category, there is a much more satisfying construction of the category hS . We will describe
this construction in detail, since it nicely illustrates the utility of the weak Kan condition of Definition 1.1.2.4.

Let C be an∞-category. We will construct a category π(C) (which we will eventually show to be equivalent
to the homotopy category hC). The objects of π(C) are the vertices of C. Given an edge φ : ∆1 → C, we
shall say that φ has source C = φ(0) and target C ′ = φ(1), and write φ : C → C ′. For each object C of C,
we let idC denote the degenerate edge s0(C) : C → C.

Let φ : C → C ′ and φ′ : C → C ′ be a pair of edges of C having the same source and target. We will say
that φ and φ′ are homotopic if there is a 2-simplex σ : ∆2 → C, which we depict as follows:

C ′

idC′

!!B
BB

BB
BB

B

C

φ
>>~~~~~~~~ φ′ // C ′.

In this case, we say that σ is a homotopy between φ and φ′.
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Proposition 1.2.3.5. Let C be an ∞-category, and let C and C ′ be objects of π(C). Then the relation of
homotopy is an equivalence relation on the edges joining C to C ′.

Proof. Let φ : ∆1 → C be an edge. Then s1(φ) is a homotopy from φ to itself. Thus homotopy is a reflexive
relation.

Suppose next that φ, φ′, φ′′ : C → C ′ are edges with the same source and target. Let σ be a homotopy
from φ to φ′ and σ′ a homotopy from φ to φ′′. Let σ′′ : ∆2 → C denote the constant map at the vertex C ′.
We have a commutative diagram

Λ3
1� _

��

(σ′′,•,σ′,σ) // C

∆3.

τ

88qqqqqqq

Since C is an ∞-category, there exists a 3-simplex τ : ∆3 → C as indicated by the dotted arrow in the
diagram. It is easy to see that d1(τ) is a homotopy from φ′ to φ′′.

As a special case, we may take φ = φ′′; we then deduce that the relation of homotopy is symmetric. It
then follows immediately from the above that the relation of homotopy is also transitive.

Remark 1.2.3.6. The definition of homotopy that we have given is not evidently self-dual; in other words,
it is not immediately obvious a homotopic pair of edges φ, φ′ : C → C ′ of an∞-category C remain homotopic
when regarded as edges in the opposite ∞-category Cop. To prove this, let σ be a homotopy from φ to φ′,
and consider the commutative diagram

Λ3
2� _

��

(σ,s1φ,•,s0φ) // C

∆3.

τ

88qqqqqqq

The assumption that C is an∞-category guarantees a 3-simplex τ rendering the diagram commutative. The
face d2τ may be regarded as a homotopy from φ′ to φ in Cop.

We can now define the morphism sets of the category π(C): given vertices X and Y of C, we let
Homπ(C)(X,Y ) denote the set of homotopy classes of edges φ : X → Y in C. For each edge φ : ∆1 → C, we
let [φ] denote the corresponding morphism in π(C).

We define a composition law on π(C) as follows. Suppose that X, Y , and Z are vertices of C, and that
we are given edges φ : X → Y , ψ : Y → Z. The pair (φ, ψ) determines a map Λ2

1 → C. Since C is an
∞-category, this map extends to a 2-simplex σ : ∆2 → C. We now define [ψ] ◦ [φ] = [d1σ].

Proposition 1.2.3.7. Let C be an∞-category. The composition law on π(C) is well-defined. In other words,
the homotopy class [ψ] ◦ [φ] does not depend on the choice of ψ representing [ψ], the choice of φ representing
[φ], or the choice of the the 2-simplex σ.

Proof. We begin by verifying the independence of the choice of σ. Suppose that we are given two 2-simplices
σ, σ′ : ∆2 → C, satisfying

d0σ = d0σ
′ = ψ

d2σ = d2σ
′ = φ.

Consider the diagram

Λ3
1� _

��

(s1ψ,•,σ′,σ) // C

∆3.

τ

88qqqqqqq
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Since C is an ∞-category, there exists a 3-simplex τ as indicated by the dotted arrow. It follows that d1τ is
a homotopy from d1σ to d1σ

′.
We now show that [ψ]◦ [φ] depends only on ψ and φ only up to homotopy. In view of Remark 1.2.3.6, the

assertion is symmetric with respect to ψ and φ; it will therefore suffice to show that [ψ]◦ [φ] does not change
if we replace φ by a morphism φ′ which is homotopic to φ. Let σ be a 2-simplex with d0σ = ψ, d2σ = φ,
and let σ′ be a homotopy from φ to φ′. Consider the diagram

Λ3
1� _

��

(s0ψ,•,σ,σ′) // C

∆3.

τ

88qqqqqqq

Again, the hypothesis that C is an ∞-category guarantees the existence of a 3-simplex τ as indicated in the
diagram. Let σ′′ = d1τ . Then [ψ] ◦ [φ′] = [d1σ

′]. But d1σ = d1σ
′ by construction, so that [ψ] ◦ [φ] = [ψ] ◦ [φ′]

as desired.

Proposition 1.2.3.8. If C is an ∞-category, then π(C) is a category.

Proof. Let C be a vertex of C. We first verify that [idC ] is an identity with respect to the composition law
on π(C). For every edge φ : C ′ → C in C, the 2-simplex s1(φ) verifies the equation

[idC ] ◦ [φ] = [φ].

This proves that idC is a left identity; the dual argument (Remark 1.2.3.6) shows that [idC ] is a right identity.
The only other thing we need to check is the associative law for composition in π(C). Suppose given a

composable sequence of edges

C
φ→ C ′

φ′→ C ′′
φ′′→ C ′′′.

Choose a 2-simplices σ, σ′, σ′′ : ∆2 → C, corresponding to diagrams

C ′

φ′

!!B
BB

BB
BB

B

C

φ
>>~~~~~~~~ ψ // C ′′

C ′′

φ′′

!!D
DD

DD
DD

D

C

ψ
>>}}}}}}}} θ // C ′′′

C ′′

φ′′

!!D
DD

DD
DD

D

C ′

φ′
>>|||||||| ψ′ // C ′′′,

respectively. Then [φ′] ◦ [φ] = [ψ], [φ′′] ◦ [ψ] = [θ], and [φ′′] ◦ [φ′] = [ψ′]. Consider the diagram

Λ3
2

(σ′′,σ′,•,σ) //
� _

��

C

∆3.

τ

88qqqqqqq
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Since C is an∞-category, there exists a 3-simplex τ rendering the diagram commutative. Then d2(τ) verifies
the equation [ψ′] ◦ [φ] = [θ], so that

([φ′′] ◦ [φ′]) ◦ [φ] = [θ] = [φ′′] ◦ [ψ] = [φ′′] ◦ ([φ′] ◦ [φ])

as desired.

We now show that if C is an ∞-category, then π(C) is naturally equivalent (in fact isomorphic) to hC.

Proposition 1.2.3.9. Let C be an ∞-category. There exists a unique functor F : hC → π(C) with the
following properties:

(1) On objects, F is the identity map.

(2) For every edge φ of C, F (φ) = [φ].

Moreover, F is an isomorphism of categories.

Proof. The existence and uniqueness of F follows immediately from our presentation of hC by generators
and relations. It is obvious that F is bijective on objects and surjective on morphisms. To complete the
proof, it will suffice to show that F is faithful.

We first show that every morphism f : x → y in hC may be written as φ for some φ ∈ C. Since the
morphisms in hC are generated by morphisms having the form φ under composition, it suffices to show
that the set of such morphisms contains all identity morphisms and is stable under composition. The first
assertion is clear, since s0x = idx. For the second, we note that if φ : x→ y and φ′ : y → z are composable
edges, then there exists a 2-simplex σ : ∆2 → C, which we may depict as follows:

y
φ′

  @
@@

@@
@@

@

x

φ
??������� ψ // z.

Thus φ′ ◦ φ = ψ.
Now suppose that φ, φ′ : x → y are such that [φ] = [φ′]; we wish to show that φ = φ′. By definition,

there exists a homotopy σ : ∆2 → C joining φ and φ′. The existence of σ entails the relation

idy ◦φ = φ′

in the homotopy category hS , so that φ = φ′ as desired.

1.2.4 Objects, Morphisms and Equivalences

As in ordinary category theory, we may speak of objects and morphisms in a higher category C. If C is a
topological (or simplicial) category, these should be understood literally as the objects and morphisms in
the underlying category of C. We may also apply this terminology to ∞-categories (or even more general
simplicial sets): if S is a simplicial set, then the objects of S are the vertices ∆0 → S, and the morphisms of
S are edges ∆1 → S. A morphism φ : ∆1 → S is said to have source X = φ(0) and target Y = φ(1); we will
often denote this by writing φ : X → Y . If X : ∆0 → S is an object of S, we will write idX = s0(X) : X → X
and refer to this as the identity morphism of X.

If f, g : X → Y are two morphisms in a higher category C, then f and g are homotopic if they determine
the same morphism in the homotopy category hC. In the setting of ∞-categories, this coincides with the
notion of homotopy introduced in the previous section. In the setting of topological categories, this simply
means that f and g lie in the same path component of MapC(X,Y ). In either case, we will sometimes
indicate this relationship between f and g by writing f ' g.
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A morphism f : X → Y in an ∞-category C is said to be an equivalence if it determines an isomorphism
in the homotopy category hC. We say that X and Y are equivalent if there is an equivalence between them
(in other words, if they are isomorphic as objects of hC).

If C is a topological category, then the requirement that a morphism f : X → Y be an equivalence is
quite a bit weaker than the requirement that f be an isomorphism. In fact, we have the following:

Proposition 1.2.4.1. Let f : X → Y be a morphism in a topological category. The following conditions
are equivalent:

(1) The morphism f is an equivalence.

(2) The morphism f has a homotopy inverse g : Y → X; that is, a morphism g such that f ◦ g ' idY and
g ◦ f ' idX .

(3) For every object Z ∈ C, the induced map MapC(Z,X)→ MapC(Z, Y ) is a homotopy equivalence.

(4) For every object Z ∈ C, the induced map MapC(Z,X)→ MapC(Z, Y ) is a weak homotopy equivalence.

(5) For every object Z ∈ C, the induced map MapC(Y, Z)→ MapC(X,Z) is a homotopy equivalence.

(6) For every object Z ∈ C, the induced map MapC(Y, Z)→ MapC(X,Z) is a weak homotopy equivalence.

Proof. It is clear that (2) is merely a reformulation of (1). We will show that (2) ⇒ (3) ⇒ (4) ⇒ (1); the
implications (2)⇒ (5)⇒ (6)⇒ (1) follow using the same argument.

To see that (2) implies (3), we note that if g is a homotopy inverse to f , then composition with g gives
a map MapC(Z, Y ) → MapC(Z,X) which is homotopy inverse to composition with f . It is clear that (3)
implies (4). Finally, if (4) holds, then we note that X and Y represent the same functor on hC so that f
induces an isomorphism between f and g in hC.

Example 1.2.4.2. Let C be the category of CW-complexes, considered as a topological category by endowing
each of the sets HomC(X,Y ) with the (compactly generated) compact open topology. A pair of objects
X,Y ∈ C are equivalent (in the sense defined above) if and only if they are homotopy equivalent (in the
sense of classical topology).

If C is an ∞-category (topological category, simplicial category), then we shall write X ∈ C to mean that
X is an object of C. We will generally understand that all meaningful properties of objects are invariant
under equivalence. Similarly, all meaningful properties of morphisms are invariant under homotopy and
under composition with equivalences.

In the setting of ∞-categories, there is a very useful characterization of equivalences which is due to
Joyal.

Proposition 1.2.4.3 (Joyal [31]). Let C be an ∞-category, and φ : ∆1 → C a morphism of C. Then φ is an
equivalence if and only if, for every n ≥ 2 and every map f0 : Λn0 → C such that f0|∆{0,1} = φ, there exists
an extension of f0 to ∆n.

The proof requires some ideas which we have not yet introduced, and will be given in §2.1.2.

1.2.5 ∞-Groupoids and Classical Homotopy Theory

Let C be an ∞-category. We will say that C is an ∞-groupoid if the homotopy category hC is a groupoid: in
other words, if every morphism in C is an equivalence. In §1.1.1, we asserted that the theory of∞-groupoids
is equivalent to classical homotopy theory. We can now formulate this idea in a very precise way:

Proposition 1.2.5.1 (Joyal [30]). Let C be a simplicial set. The following conditions are equivalent:

(1) The simplicial set C is an ∞-category and its homotopy category hC is a groupoid.
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(2) The simplicial set C satisfies the extension condition for all horn inclusions Λni ⊆ ∆n for 0 ≤ i < n.

(3) The simplicial set C satisfies the extension condition for all horn inclusions Λni ⊆ ∆n for 0 < i ≤ n.

(4) The simplicial set C is a Kan complex; in other words, it satisfies the extension condition for all horn
inclusions Λni ⊆ ∆n for 0 ≤ i ≤ n.

Proof. The equivalence (1) ⇔ (2) follows immediately from Proposition 1.2.4.3. Similarly, the equivalence
(1)⇔ (3) follows by applying Proposition 1.2.4.3 to Cop. We conclude by observing that (4)⇔ (2)∧ (3).

Remark 1.2.5.2. The assertion that we can identify ∞-groupoids with spaces is less obvious in other for-
mulations of higher category theory. For example, suppose that C is a topological category whose homotopy
category C is a groupoid. For simplicity, we will assume furthermore that C has a single object X. We may
then identify C with the topological monoid M = HomC(X,X). The assumption that hC is an groupoid
is equivalent to the assumption that the discrete monoid π0M is a group. In this case, one can show that
the unit map M → ΩBM is a weak homotopy equivalence, where BM denotes the classifying space of
the topological monoid M . In other words, up to equivalence, specifying C (together with the object X) is
equivalent to specifying the space BM (together with its base point).

Informally, we might say that the inclusion functor i from Kan complexes to ∞-categories exhibits
the ∞-category of (small) ∞-groupoids as a full subcategory of the ∞-bicategory of (small) ∞-categories.
Conversely, every ∞-category C has an “underlying” ∞-groupoid, which is obtained by discarding the non-
invertible morphisms of C:

Proposition 1.2.5.3 ([31]). Let C be an ∞-category. Let C′ ⊆ C be the largest simplicial subset of C having
the property that every edge of C′ is an equivalence in C. Then C′ is a Kan complex. It may be characterized by
the following universal property: for any Kan complex K, the induced map HomSet∆(K,C′)→ HomSet∆(K,C)
is a bijection.

Proof. It is straightforward to check that C′ is an ∞-category. Moreover, if f is a morphism in C′, then f
has a homotopy inverse g ∈ C. Since g is itself an equivalence in C, we conclude that g belongs to C′ and is
therefore a homotopy inverse to f in C′. In other words, every morphism in C′ is an equivalence, so that C′

is a Kan complex by Proposition 1.2.5.1. To prove the last assertion, we observe that if K is an ∞-category,
then any map of simplicial sets φ : K → C carries equivalences in K to equivalences in C. In particular, if K
is a Kan complex, then φ factors (uniquely) through C′.

It follows from Proposition 1.2.5.3 that the functor

C 7→ C′

is right adjoint to the inclusion functor from Kan complexes to∞-categories. It is easy to see that this right
adjoint is an invariant notion: that is, a categorical equivalence of ∞-categories C→ D induces a homotopy
equivalence C′ → D′ of Kan complexes.

Remark 1.2.5.4. It is easy to give analogous constructions in the case of topological or simplicial categories.
For example, if C is a topological category, then we can define C′ to be another topological category with
the same objects as C, where MapC′(X,Y ) ⊆ MapC(X,Y ) is the subspace consisting of equivalences in
MapC(X,Y ), equipped with the subspace topology.

Remark 1.2.5.5. We will later introduce a relative version of the construction described in Proposition
1.2.5.3, which applies to certain families of ∞-categories (Corollary 2.3.2.8).

Although the inclusion functor from Kan complexes to∞-categories does not literally have a left adjoint,
it does have a left adjoint in a higher-categorical sense. This left adjoint is computed by any “fibrant

33



replacement” functor (for the usual model structure) from Set∆ to itself, for example the functor S 7→ Sing |S|.
The unit map

u : S → Sing |S|

is always a weak homotopy equivalence, but generally not a categorical equivalence. For example, if S is an
∞-category, then u is a categorical equivalence if and only if S is a Kan complex. In general, Sing |S| may
be regarded as the ∞-groupoid obtained from S by freely adjoining inverses to all the morphisms in S.

Remark 1.2.5.6. The inclusion functor i and its homotopy-theoretic left-adjoint may be also be understood
using the formalism of localizations of model categories. In addition to its usual model category structure,
the category Set∆ of simplicial sets may be endowed with the Joyal model structure which we will define
in §1.3.4. These model structures have the same cofibrations (in both cases, the cofibrations are simply
the monomorphisms of simplicial sets). However, the Joyal model structure has fewer weak equivalences
(categorical equivalences, rather than weak homotopy equivalences) and consequently more fibrant objects
(all ∞-categories, rather than only Kan complexes). It follows that the usual homotopy theory of simplicial
sets is a localization of the homotopy theory of ∞-categories. The identity functor from Set∆ to itself
determines a Quillen adjunction between these two homotopy theories, which plays the role of i and its left
adjoint.

1.2.6 Homotopy Commutativity versus Homotopy Coherence

Let C be an∞-category (topological category, simplicial category). To a first approximation, working in C is
like working in its homotopy category hC: up to equivalence, C and hC have the same objects and morphisms.
The main difference between hC and C is that in C, one must not ask whether or not morphisms are equal;
instead one should ask whether or not they are homotopic. If so, the homotopy itself is an additional datum
which we will need to consider. Consequently, the notion of a commutative diagram in hC, which corresponds
to a homotopy commutative diagram in C, is quite unnatural and usually needs to be replaced by the more
refined notion of a homotopy coherent diagram in C.

To understand the problem, let us suppose that F : I→ H is a functor from an ordinary category I into
the homotopy category of spaces H. In other words, F assigns to each object X ∈ I a space (say, a CW
complex) F (X), and to each morphism φ : X → Y in I a continuous map of spaces F (φ) : F (X) → F (Y )
(well-defined up to homotopy), such that F (φ ◦ ψ) is homotopic to F (φ) ◦ F (ψ) for any pair of composable
morphisms φ, ψ in I. In this situation, it may or may not be possible to lift F to an actual functor F̃ from
I to the ordinary category of topological spaces, such that F̃ induces a functor I → H which is naturally
isomorphic to F . In general there are obstructions to both the existence and the uniqueness of the lifting F̃ ,
even up to homotopy. To see this, let us suppose for a moment that F̃ exists, so that there exist homotopies
kφ : F̃ (φ) ' F (φ). These homotopies determine additional data on F : namely, one obtains a canonical
homotopy hφ,ψ from F (φ ◦ ψ) to F (φ) ◦ F (ψ) by composing

F (φ ◦ ψ) ' F̃ (φ ◦ ψ) = F̃ (φ) ◦ F̃ (ψ) ' F (φ) ◦ F (ψ).

The functor F to the homotopy category H should be viewed as a first approximation to F̃ ; we obtain a
second approximation when we take into account the homotopies hφ,ψ. These homotopies are not arbitrary:
the associativity of composition gives a relationship between hφ,ψ, hψ,θ, hφ,ψ◦θ and hφ◦ψ,θ, for a composable
triple of morphisms (φ, ψ, θ) in I. This relationship may be formulated in terms of the existence of a certain
higher homotopy, which is once again canonically determined by F̃ (and the homotopies kφ). To obtain
the next approximation to F̃ , we should take these higher homotopies into account, and formulate the
associativity properties that they enjoy, and so on. Roughly speaking, a homotopy coherent diagram in C is
a functor F : I→ hC, together with all of the extra data that would be available if we were able to lift F to
a functor F̃ : I→ C.

The distinction between homotopy commutativity and homotopy coherence is arguably the main difficulty
in working with higher categories. The idea of homotopy coherence is simple enough, and can be made precise
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in the setting of a general topological category. However, the amount of data required to specify a homotopy
coherent diagram is considerable, so the concept is quite difficult to employ in practical situations.

Remark 1.2.6.1. Let I be an ordinary category and C a topological category. Any functor F : I → C

determines a homotopy coherent diagram in C (with all of the homotopies involved being constant). For
many topological categories C, the converse fails: not every homotopy-coherent diagram in C can be obtained
in this way, even up to equivalence. In these cases, it is the notion of homotopy coherent diagram which is
fundamental; a homotopy coherent diagram should be regarded as “just as good” as a strictly commutative
diagram, for ∞-categorical purposes. As evidence for this, we remark that given an equivalence C′ → C, a
strictly commutative diagram F : I → C cannot always be lifted to a strictly commutative diagram in C′;
however it can always be lifted (up to equivalence) to a homotopy coherent diagram in C′.

One of the advantages of working with∞-categories is that the definition of a homotopy coherent diagram
is easy to formulate. We simply define a homotopy coherent diagram in an ∞-category C to be a map of
simplicial sets f : N(I) → C. The restriction of f to simplices of low dimension encodes the induced map
on homotopy categories. Specifying f on higher-dimensional simplices gives precisely the “coherence data”
that the above discussion calls for.

Remark 1.2.6.2. Another possible approach to the problem of homotopy coherence is to restrict our
attention to topological categories C in which every homotopy coherent diagram is equivalent to a strictly
commutative diagram. For example, this is always true when C is a sufficiently nice model category: see
§A.3.6. Consequently, in the framework of model categories it is possible to ingore the theory of homotopy
coherent diagrams, and work with strictly commutative diagrams instead. This approach is quite powerful,
but lacks flexibility (since we often wish to study∞-categories which are not associated to model categories).

1.2.7 Functors between Higher Categories

The notion of a homotopy coherent diagram in an higher category C is a special case of the more general
notion of a functor F : I → C between higher categories (specifically, it is the special case in which I is
assumed to be an ordinary category). Just as the collection of all ordinary categories forms a bicategory
(with functors as morphisms and natural transformations as 2-morphisms), the collection of all∞-categories
can be organized into an ∞-bicategory. In particular, for any ∞-categories C and C′, we expect to be able
to construct an ∞-category Fun(C,C′) of functors from C to C′.

In the setting of topological categories, the construction of an appropriate mapping object Fun(C,C′) is
quite difficult. The naive guess is that Fun(C,C′) should be a category of topological functors from C to C′:
that is, functors which induce continuous maps between morphism spaces. However, we saw in §1.2.6 that
this notion is generally too rigid, even in the special case where C is an ordinary category.

Remark 1.2.7.1. Using the language of model categories, one might say that the problem is that not every
topological category is cofibrant. If C is a “cofibrant” topological category (for example, if C = |C[S]| where
S is a simplicial set), then the collection of topological functors from C to C′ is large enough to contain
representatives for every ∞-categorical functor from C to C′. Most ordinary categories are not cofibrant
when viewed as topological categories. More importantly, the property of being cofibrant is not stable under
products, so that naive attempts to construct a mapping object Fun(C,C′) need not give the correct answer
even when C itself is assumed cofibrant. This is arguably the most important technical disadvantage of the
theory of topological (or simplicial) categories as an approach to higher category theory.

The construction of functor categories is much easier to describe in the framework of ∞-categories. If
C and D are ∞-categories, then we can simply define a functor from C to D to be a map p : C → D of
simplicial sets.

Notation 1.2.7.2. Let C and D be simplicial sets. We let Fun(C,D) denote the simplicial set MapSet∆(C,D)
parametrizing maps from C to D. We will use this notation only when D is an ∞-category (the simplicial
set C will often, but not always, be an ∞-category as well). We will refer to Fun(C,D) as the ∞-category
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of functors from C to D (see Proposition 1.2.7.3 below). We will refer to morphisms in Fun(C,D) as natural
transformations of functors, and equivalences in Fun(C,D) as natural equivalences.

Proposition 1.2.7.3. Let K be an arbitrary simplicial set.

(1) For every ∞-category C, the simplicial set Fun(K,C) is an ∞-category.

(2) Let C→ D be a categorical equivalence of∞-categories. Then the induced map Fun(K,C)→ Fun(K,D)
is a categorical equivalence.

(3) Let C be an ∞-category, and K → K ′ a categorical equivalence of simplicial sets. Then the induced
map Fun(K ′,C)→ Fun(K,C) is a categorical equivalence.

The proof makes use of the Joyal model structure on Set∆, and will be given in §1.3.4.

1.2.8 Joins of ∞-Categories

Let C and C′ be ordinary categories. We will define a new category C ?C′, called the join of C and C′. An
object of C ?C′ is either an object of C or an object of C′. The morphism sets are given as follows:

HomC ?C′(X,Y ) =


HomC(X,Y ) if X,Y ∈ C

HomC′(X,Y ) if X,Y ∈ C′

∅ if X ∈ C′, Y ∈ C

∗ if X ∈ C, Y ∈ C′ .

Composition of morphisms in C ?C′ is defined in the obvious way.
The join construction described above is often useful when discussing diagram categories, limits, and

colimits. In this section, we will introduce a generalization of this construction to the ∞-categorical setting.

Definition 1.2.8.1. If S and S′ are simplicial sets, then the simplicial set S ? S′ is defined as follows: for
each nonempty finite linearly ordered set J , we set

(S ? S′)(J) =
∐

J=I∪I′
S(I)× S′(I ′),

where the union is taken over all decompositions of J into disjoint subsets I and I ′, satisfying i < i′ for
all i ∈ I, i′ ∈ I ′. Here we allow the possibility that either I or I ′ is empty, in which case we agree to the
convention that S(∅) = S′(∅) = ∗.

More concretely, we have
(S ? S′)n = Sn ∪ S′n ∪

⋃
i+j=n−1

Si × S′j .

The join operation endows Set∆ with the structure of a monoidal category (see §A.1.3). The identity
for the join operation is the empty simplicial set ∅ = ∆−1. More generally, we have natural isomorphisms
φij : ∆i−1 ?∆j−1 ' ∆(i+j)−1, for all i, j ≥ 0.

Remark 1.2.8.2. The operation ? is essentially determined by the isomorphisms φij , together with its
behavior under the formation of colimits: for any fixed simplicial set S, the functors

T 7→ T ? S

T 7→ S ? T

commute with colimits, when regarded as functors from Set∆ to the undercategory (Set∆)S/ of simplicial
sets under S.
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Passage to the nerve carries joins of categories into joins of simplicial sets. More precisely, for every pair
of categories C and C′, there is a canonical isomorphism

N(C ?C′) ' N(C) ?N(C′).

(The existence of this isomorphism persists when we allow C and C′ to be a simplicial or topological categories
and apply the appropriate generalization of the nerve functor.) This suggests that the join operation on
simplicial sets is the appropriate ∞-categorical analogue of the join operation on categories.

We remark that the formation of joins does not commute with the functor C[•]. However, the simplicial
category C[S ? S′] contains C[S] and C[S′] as full (topological) subcategories, and contains no morphisms
from objects of C[S′] to objects of C[S]. Consequently, there is unique map φ : C[S ?S′]→ C[S] ?C[S′] which
reduces to the identity on C[S] and C[S′]. We will later show that φ is an equivalence of simplicial categories
(Corollary 4.2.1.4).

We conclude by recording a pleasant property of the join operation:

Proposition 1.2.8.3 (Joyal [31]). If S and S′ are ∞-categories, then S ? S′ is an ∞-category.

Proof. Let p : Λni → S ? S′ be a map, with 0 < i < n. If p carries Λni entirely into S ⊆ S ? S′ or into
S′ ⊆ S ?S′, then we deduce the existence an extension of p to ∆n by invoking the assumption that S and S′

are ∞-categories. Otherwise, we may suppose that p carries the vertices {0, . . . , j} into S, and the vertices
{j + 1, . . . , n} into S′. We may now restrict p to obtain maps

∆{0,...,j} → S

∆{j+1,...,n} → S′,

which together determine a map ∆n → S ? S′ extending p.

Notation 1.2.8.4. Let K be a simplicial set. The left cone K/ is defined to be the join ∆0 ? K. Dually,
the right cone K. is defined to be the join K ?∆0. Either cone contains a distinguished vertex (belonging
to ∆0), which we will refer to as the cone point.

1.2.9 Overcategories and Undercategories

Let C be an ordinary category, and X ∈ C an object. The overcategory C/X is defined as follows: the objects
of C/X are morphisms Y → X in C having target X. Morphisms are given by commutative triangles

Y

  @
@@

@@
@@

// Z

~~~~
~~

~~
~

X

and composition is defined in the obvious way.
One can rephrase the definition of the overcategory as follows. Let [0] denote the category with a single

object, possessing only an identity morphism. Then specifying an object X ∈ C is equivalent to specifying
a functor x : [0]→ C. The overcategory C/X may then be described by the following universal property: for
any category C′, we have a bijection

Hom(C′,C/X) ' Homx(C′ ?[0],C),

where the subscript on the right hand side indicates that we consider only those functors C′ ?[0]→ C whose
restriction to [0] coincides with x.

We would like to generalize the construction of overcategories to the ∞-categorical setting. Let us begin
by working in the framework of topological categories. In this case, there is a natural candidate for the
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relevant overcategory. Namely, if C is a topological category containing an object X, then the overcategory
C/X (defined as above) has the structure of a topological category, where each morphism space MapC/X

(Y, Z)
is topologized as a subspace of MapC(Y,Z) (here we are identifying an object of C/X with its image in C).
This topological category is usually not a model for the correct∞-categorical slice construction. The problem
is that a morphism in C/X consists of a commutative triangle

Y

  @
@@

@@
@@

// Z

~~~~
~~

~~
~

X

of objects over X. To obtain the correct notion, we should allow also triangles which commute only up to
homotopy.

Remark 1.2.9.1. In some cases, the naive overcategory C/X is a good approximation to the correct con-
struction: see Lemma 6.1.3.13.

In the setting of ∞-categories, Joyal has given a much simpler description of the desired construction
(see [30]). This description will play a vitally important role throughout this book. We begin by noting the
following:

Proposition 1.2.9.2 ([30]). Let S and K be simplicial sets, and p : K → S an arbitrary map. There exists
a simplicial set S/p with the following universal property:

HomSet∆(Y, S/p) = Homp(Y ? K, S),

where the subscripts on the right hand side indicates that we consider only those morphisms f : Y ? K → S
such that f |K = p.

Proof. One defines (S/p)n to be Homp(∆n ? K, S). The universal property holds by definition when Y is a
simplex. It holds in general because both sides are compatible with the formation of colimits in Y .

Let p : K → S be as in Proposition 1.2.9.2. If S is an ∞-category, we will refer to S/p as an overcategory
of S, or as the ∞-category of objects of S over p. The following result guarantees that the operation of
passing to overcategories is well-behaved:

Proposition 1.2.9.3. Let p : K → C be a map of simplicial sets, and suppose that C is an ∞-category.
Then C/p is an ∞-category. Moreover, if q : C → C′ is a categorical equivalence of ∞-categories, then the
induced map C/p → C′/qp is a categorical equivalence as well.

The proof requires a number of ideas which have not yet introduced, and will be postponed (see Propo-
sition 2.1.2.3 for the first assertion and §2.3.5 for the second).

Remark 1.2.9.4. Let C be an ∞-category. In the particular case where p : ∆n → C classifies an n-simplex
σ ∈ Cn, we will often write C/σ in place of of C/p. In particular, if X is an object of C, we let C/X denote
the overcategory C/p, where p : ∆0 → C has image X.

Remark 1.2.9.5. Let p : K → C be a map of simplicial sets. The preceding discussion can be dualized,
replacing Y ? K by K ? Y ; in this case we denote the corresponding simplicial set by Cp/ which (if C is an
∞-category) we will refer to as an undercategory of C. In the special case where K = ∆n and p classifies a
simplex σ ∈ Cn, we will also write Cσ/ for Cp/; in particular, we will write CX/ when X is an object of C.

Remark 1.2.9.6. If C is an ordinary category and X ∈ C, then there is a canonical isomorphism N(C)/X '
N(C/X). In other words, the overcategory construction for ∞-categories can be regarded as a generalization
of the relevant construction from classical category theory.
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1.2.10 Fully Faithful and Essentially Surjective Functors

Definition 1.2.10.1. Let F : C → D be a functor between topological categories (simplicial categories,
simplicial sets). We will say that F is essentially surjective if the induced functor hF : hC → hD is
essentially surjective (that is, if every object of D is equivalent to F (X) for some X ∈ C).

We will say that F is fully faithful if hF is a fully faithful functor of H-enriched categories. In other
words, F is fully faithful if and only if, for every pair of objects X,Y ∈ C, the induced map MaphC(X,Y )→
MaphD(F (X), F (Y )) is an isomorphism in the homotopy category H.

Remark 1.2.10.2. Because Definition 1.2.10.1 makes reference only to the homotopy categories of C and
D, it is invariant under equivalence and under operations which pass between the various models for higher
category theory that we have introduced.

Just as in ordinary category theory, a functor F is an equivalence if and only if it is fully faithful and
essentially surjective.

1.2.11 Subcategories of ∞-Categories

Let C be an ∞-category, and let (hC)′ ⊆ hC be a subcategory of its homotopy category. We can then form
a pullback diagram of simplicial sets

C′ //

��

C

��
N(hC)′ // N(hC).

We will refer to C′ as the subcategory of C spanned by (hC)′. In general, we will say that a simplicial subset
C′ ⊆ C is a subcategory of C if it arises via this construction.

Remark 1.2.11.1. We say “subcategory”, rather than “sub-∞-category”, in order to avoid awkward lan-
guage. The terminology is not meant to suggest that C′ is itself a category, or isomorphic to the nerve of a
category.

In the case where (hC)′ is a full subcategory of hC, we will say that C′ is a full subcategory of C. In this
case, C′ is determined by the set C′0 of those objects X ∈ C which belong to C′. We will then say that C′ is
the full subcategory of C spanned by C′0.

It follows from Remark 1.2.2.4 that the inclusion C′ ⊆ C is fully faithful. In general, any fully faithful
functor f : C′′ → C factors as a composition

C′′
f ′→ C′

f ′′→ C,

where f ′ is an equivalence of ∞-categories and f ′′ is the inclusion of the full subcategory C′ ⊆ C spanned by
the set of objects f(C′′0) ⊆ C0.

1.2.12 Initial and Final Objects

If C is an ordinary category, then an object X ∈ C is said to be final if HomC(Y,X) consists of a single
element, for every Y ∈ C. Dually, an object X ∈ C is initial if it is final when viewed as an object of Cop.
The goal of this section is to generalize these definitions to the ∞-categorical setting.

If C is a topological category, then a candidate definition immediately presents itself: we could ignore
the topology on the morphism spaces, and consider those objects of C which are final when C is regarded as
an ordinary category. This requirement is unnaturally strong. For example, the category CG of compactly
generated Hausdorff spaces has a final object: the topological space ∗, consisting of a single point. However,
there are objects of CG which are equivalent to ∗ (any contractible space) but not isomorphic to ∗ (and
therefore not final objects of CG, at least in the classical sense). Since any reasonable ∞-categorical notion
is stable under equivalence, we need to find a weaker condition.
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Definition 1.2.12.1. Let C be a topological category (simplicial category, simplicial set). An object X ∈ C

is final if it is final in the homotopy category hC, regarded as a category enriched over H. In other words,
X is final if and only if for each Y ∈ C, the mapping space MaphC(Y,X) is weakly contractible (that is, a
final object of H).

Remark 1.2.12.2. Since the Definition 1.2.12.1 makes reference only to the homotopy category hC, it is
invariant under equivalence and under passing between the various models for higher category theory.

In the setting of ∞-categories, it is convenient to employ a slightly more sophisticated definition, which
we borrow from [30].

Definition 1.2.12.3. Let C be a simplicial set. A vertex X of C is strongly final if the projection C/X → C

is a trivial fibration of simplicial sets.

In other words, a vertex X of C is strongly final if and only if any map f0 : ∂∆n → C such that f0(n) = X
can be extended to a map f : ∆n → S.

Proposition 1.2.12.4. Let C be an ∞-category containing an object Y . The object Y is strongly final if
and only if, for every object X ∈ C, the Kan complex HomR

C(X,Y ) is contractible.

Proof. The “only if” direction is clear: the space HomR
C(X,Y ) is the fiber of the projection p : C/Y → C

over the vertex X. If p is a trivial fibration, then the fiber is a contractible Kan complex. Since p is a right
fibration (Proposition 2.1.2.2), the converse holds as well (Lemma 2.1.3.3).

Corollary 1.2.12.5. Let C be a simplicial set. Every strongly final object of C is a final object of C; the
converse holds if C is an ∞-category.

Proof. Let [0] denote the category with a single object and a single morphism. Suppose that Y is a strongly
final vertex of C. Then there exists a retraction of C. onto C, carrying the cone point to Y . Consequently,
we obtain a retraction of (H-enriched) homotopy categories from (hC)? [0 ] to hC, carrying the unique object
of [0] to Y . This implies that Y is final in hC, so that Y is a final object of C.

To prove the converse, we note that if C is an ∞-category then HomR
C(X,Y ) represents the homotopy

type MapC(X,Y ) ∈ H; by Proposition 1.2.12.4 this space is contractible for all X if and only if Y is strongly
final.

Remark 1.2.12.6. The above discussion dualizes in an evident way, so that we have a notion of initial
objects of an ∞-category C.

Example 1.2.12.7. Let C be an ordinary category containing an object X. Then X is a final (initial) object
of the ∞-category N(C) if and only if it is a final (initial) object of C, in the usual sense.

Remark 1.2.12.8. Definition 1.2.12.3 is only natural in the case where C is an∞-category. For example, if
C is not an∞-category, then the collection of strongly final vertices of C need not be stable under equivalence.

An ordinary category C may have more than one final object, but any two final objects are uniquely
isomorphic to one another. In the setting of ∞-categories, an analogous statement holds, but is slightly
more complicated because the word “unique” needs to be interpreted in a homotopy theoretic sense:

Proposition 1.2.12.9 (Joyal). Let C be a ∞-category, and let C′ be the full subcategory of C spanned by the
final vertices of C. Then C′ is either empty or a contractible Kan complex.

Proof. We wish to prove that every map p : ∂∆n → C′ can be extended to an n-simplex of C′. If n = 0,
this is possible unless C′ is empty. For n > 0, the desired extension exists because p carries the nth vertex
of ∂∆n to a final object of C.
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1.2.13 Limits and Colimits

An important consequence of the distinction between homotopy commutativity and homotopy coherence is
that the appropriate notions of limit and colimit in a higher category C do not coincide with the notion of
limit and colimit in the homotopy category hC (where limits and colimits often do not exist). Limits and
colimits in C are often referred to as homotopy limits and homotopy colimits, to avoid confusing them with
ordinary limits and colimits.

Like the notion of homotopy coherence, homotopy limits and colimits can be defined in a topological
category, but the definition is rather complicated. We will review a few special cases here, and discuss the
general definition in the appendix (§A.3.5).

Example 1.2.13.1. Let {Xα} be a family of objects in a topological category C. A homotopy product
X =

∏
αXα is an object of C equipped with morphisms fα : X → Xα which induce a weak homotopy

equivalence
MapC(Y,X)→

∏
α

MapC(Y,Xα)

for every object Y ∈ C.
Passing to path components and using the fact that π0 commutes with products, we deduce that

HomhC(Y,X) '
∏
α

HomhC(Y,Xα),

so that any product in C is also a product in hC. In particular, the object X is determined up to canonical
isomorphism in hC.

In the special case where the index set is empty, we recover the notion of a final object of C: an object
X for which each of the mapping spaces MapC(Y,X) is weakly contractible.

Example 1.2.13.2. Given two morphisms π : X → Z and ψ : Y → Z in a topological category C, let us
define MapC(W,X ×hZ Y ) to be the space consisting of points p ∈ MapC(W,X), q ∈ MapC(W,Y ), together
with a path r : [0, 1] → MapC(W,Z) joining π ◦ p to ψ ◦ q. We endow MapC(W,X ×hZ Y ) with the obvious
topology, so that X×hZ Y can be viewed presheaf of topological spaces on C. A homotopy fiber product for X
and Y over Z is an object of C which represents this presheaf, up to weak homotopy equivalence. In other
words, it is an object P ∈ C equipped with a point p ∈ MapC(P,X ×hZ Y ) which induces weak homotopy
equivalences MapC(W,P )→ MapC(W,X ×hZ Y ) for every W ∈ C.

We note that, if there exists a fiber product (in the ordinary sense) X ×Z Y in the category C, then
this ordinary fiber product admits a (canonically determined) map to the homotopy fiber product (if the
homotopy fiber product exists). This map need not be an equivalence, but it is an equivalence in many
good cases. We also note that a homotopy fiber product P comes equipped with a map to the fiber product
X ×Z Y taken in the category hC (if this fiber product exists); this map is almost never an isomorphism.

Remark 1.2.13.3. Homotopy limits and colimits in general may be described in relation to homotopy limits
of topological spaces. The homotopy limitX of a diagram of objects {Xα} in an arbitrary topological category
C is determined, up to equivalence, by the property that there is a natural weak homotopy equivalence

MapC(Y,X) ' holim{MapC(Y,Xα)}.

Similarly, the homotopy colimit of the diagram is characterized by the existence of a natural weak homotopy
equivalence

MapC(X,Y ) ' holim{MapC(Xα, Y )}.

For a more precise discussion, we refer the reader to §A.3.5.

In the setting of ∞-categories, limits and colimits are quite easy to define:
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Definition 1.2.13.4 (Joyal [30]). Let C be an ∞-category and let p : K → C be an arbitrary map of
simplicial sets. A colimit for p is an initial object of Cp/ and a limit for p is a final object of C/p.

Remark 1.2.13.5. According to Definition 1.2.13.4, a colimit of a diagram p : K → C is an object of
Cp/. We may identify this object with a map p : K. → C extending p. In general, we will say that a map
p : K. → C is a colimit diagram if it is a colimit of p = p|K. In this case, we will also abuse terminology by
referring to p(∞) ∈ C as a colimit of p, where ∞ denotes the cone point of K..

If p : K → C is a diagram, we will sometimes write lim−→(p) to denote a colimit of p (considered either
as an object of Cp/ or of C), and lim←−(p) to denote a limit of p (as either an object of C/p or an object
of C). This notation is slightly abusive, since lim−→(p) is not uniquely determined by p. This phenomenon is
familiar in classical category theory: the colimit of a diagram is not unique, but is determined up to canonical
isomorphism. In the ∞-categorical setting, we have a similar uniqueness result: Proposition 1.2.12.9 implies
that the collection of candidates for lim−→(p), if nonempty, is parametrized by a contractible Kan complex.

Remark 1.2.13.6. In §4.2.4, we will show that Definition 1.2.13.4 agrees with the classical theory of
homotopy (co)limits, when we specialize to the case where C is the nerve of a topological category.

Remark 1.2.13.7. Let C be an ∞-category, C′ ⊆ C a full subcategory, and p : K → C′ a diagram. Then
C′p/ = C′×C Cp/. In particular, if p has a colimit in C, and that colimit belongs to C′, then the same object
may be regarded as a colimit for p in C′.

Let f : C → C′ be a map between ∞-categories. Let p : K → C be a diagram in C, having a colimit
x ∈ Cp/. The image f(x) ∈ C′fp/ may or may not be a colimit for the composite map f ◦ p. If it is, we will
say that f preserves the colimit of the diagram p. Often we will apply this terminology not to a particular
diagram p but some class of diagrams: for example, we may speak of maps f which preserve coproducts,
pushouts, or filtered colimits (see §4.4 for a discussion of special classes of colimits). Similarly, we may ask
whether or not a map f preserves the limit of a particular diagram, or various families of diagrams.

We conclude this section by giving a simple example of a colimit-preserving functor.

Proposition 1.2.13.8. Let C be an ∞-category, q : T → C and p : K → C/q two diagrams. Let p0 denote
the composition of p with the projection C/q → C. Suppose that p0 has a colimit in C. Then:

(1) The diagram p has a colimit in C/q, and that colimit is preserved by the projection C/q → C.

(2) An extension p̃ : K. → C/q is a colimit of p if and only if the composition

K. → C/q → C

is a colimit of p0.

Proof. We first prove the “if” direction of (2). Let p̃ : K. → C/q be such that the composite map p̃0 : K. → C

is a colimit of p0. We wish to show that p̃ is a colimit of p. We may identify p̃ with a map K ?∆0 ? T → C.
For this, it suffices to show that for any inclusion A ⊆ B of simplicial sets, it is possible to solve the lifting
problem depicted in the following diagram:

(K ? B ? T )
∐
K?A?T (K ?∆0 ? A ? T )� _

��

// C

K ?∆0 ? B ? T.

55jjjjjjjjjj

Because p̃0 is a colimit of p0, the projection

Cfp0/ → Cp0/
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is a trivial fibration of simplicial sets and therefore has the right lifting property with respect to the inclusion
A ? T ⊆ B ? T .

We now prove (1). Let p̃0 : K. → C be a colimit of p0. Since the projection Cfp0/ → Cp0/ is a trivial
fibration, it has the right lifting property with respect to T : this guarantees the existence of an extension
p̃ : K. → C lifting p̃0. The preceding analysis proves that p̃ is a colimit of p.

Finally, the “only if” direction of (2) follows from (1), since any two colimits of p are equivalent.

1.2.14 Presentations of ∞-Categories

Like many types of mathematical structures, ∞-categories can be described by generators and relations.
In particular, it makes sense to speak of a finitely presented ∞-category C. Roughly speaking, C is finitely
presented if it has finitely many objects and its morphism spaces are determined by specifying a finite number
of generating morphisms, a finite number of relations among these generating morphisms, a finite number
of relations among the relations, and so forth (a finite number of relations in all).

Example 1.2.14.1. Let C be the free higher category generated by a single object X and a single morphism
f : X → X. Then C is a finitely presented∞-category with a single object, and HomC(X,X) = {1, f, f2, . . .}
is infinite and discrete. In particular, we note that the finite presentation of C does not guarantee finiteness
properties of the morphism spaces.

Example 1.2.14.2. If we identify ∞-groupoids with spaces, then giving a presentation for an ∞-groupoid
corresponds to giving a cell decomposition of the associated space. Consequently, the finitely presented
∞-groupoids correspond precisely to the finite cell complexes.

Example 1.2.14.3. Suppose that C is a higher category with only two objects X and Y , and that X and
Y have contractible endomorphism spaces and that HomC(X,Y ) is empty. Then C is completely determined
by the morphism space HomC(Y,X), which may be arbitrary. In this case, C is finitely presented if and only
if HomC(Y,X) is a finite cell complex (up to homotopy equivalence).

The idea of giving a presentation for an∞-category is very naturally encoded in theory of simplicial sets;
more specifically, in Joyal’s model structure on Set∆, which we will discuss in §1.3.3. This model structure
can be described as follows:

• The fibrant objects of Set∆ are precisely the ∞-categories.

• The weak equivalences in Set∆ are precisely those maps p : S → S′ which induce equivalences C[S]→
C[S′] of simplicial categories.

If S is an arbitrary simplicial set, we can choose a “fibrant replacement” for S; that is, a categorical
equivalence S → C where C is an ∞-category. For example, we can take C to be the nerve of the topological
category |C[S]|. The∞-category C is well-defined up to equivalence, and we may regard it as an∞-category
which is “generated by” S. The simplicial set S itself can be thought of as a “blueprint” for building C. We
may view S as generated from the empty (simplicial) set by adjoining nondegenerate simplices. Adjoining
a 0-simplex to S has the effect of adding an object to the ∞-category C, and adjoining a 1-simplex to S
has the effect of adjoining a morphism to C. Higher dimensional simplices can be thought of as encoding
relations among the morphisms.

1.2.15 Set-Theoretic Technicalities

In ordinary category theory, one frequently encounters categories in which the collection of objects is too large
to form a set. Generally speaking, this does not create any difficulties so long as we avoid doing anything
which is obviously illegal (such as considering the “category of all categories” as an object of itself).

The same issues arise in the setting of higher category theory, and are in some sense even more of a
nuisance. In ordinary category theory, one generally allows a category C to have a proper class of objects,
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but still requires HomC(X,Y ) to be a set for fixed objects X,Y ∈ C. The formalism of ∞-categories treats
objects and morphisms on the same footing (they are both simplices of a simplicial set), and it is somewhat
unnatural (though certainly possible) to directly impose the analogous condition; see §5.4.1 for a discussion.

There are several means of handling the technical difficulties inherent in working with large objects (in
either classical or higher category theory):

(1) One can employ some set-theoretic device which enables one to distinguish between “large” and “small”.
Examples include:

– Assuming the existence of a sufficient supply of (Grothendieck) universes.

– Working in an axiomatic framework which allows both sets and classes (collections of sets which
are possibly too large to themselves be considered sets).

– Working in a standard set-theoretic framework (such as Zermelo-Frankel), but incorporating a
theory of classes through some ad-hoc device. For example, one can define a class to be a collection
of sets which is defined by some formula in the language of set theory.

(2) One can work exclusively with “small” categories, and mirror the distinction between “large” and
“small” by keeping careful track of relative sizes.

(3) One can simply ignore the set-theoretic difficulties inherent in discussing “large” categories.

Needless to say, approach (2) yields the most refined information. However, it has the disadvantage of
burdening our exposition with an additional layer of technicalities. On the other hand, approach (3) will
sometimes be inadequate, since we will need to make arguments which play off the distinction between a
“large” category and a “small” subcategory which determines it. Consequently, we shall officially adopt
approach (1) for the remainder of this paper. More specifically, we assume the existence of a strongly
inaccessible cardinal number κ, and we let U(κ) denote the collection of all sets having rank < κ. We
will refer to a mathematical object as small if it belongs to U(κ) (or is isomorphic to such an object), and
essentially small if it is equivalent (in whatever relevant sense) to a small object. For example, an∞-category
C is essentially small if and only if it satisfies the following conditions:

• The set of isomorphism classes of objects in the homotopy category hC has cardinality < κ.

• For every morphism f : X → Y in C and every i ≥ 0, the homotopy set πi(HomR
C(X,Y ), f) has

cardinality < κ.

For a proof and further discussion, we refer the reader to §5.4.1.

Remark 1.2.15.1. The existence of the strongly inaccessible cardinal κ cannot be proven from the standard
axioms of set theory, or proven consistent with the standard axioms for set theory. However, it should be
clear that assuming the existence of κ is merely the most convenient of the devices mentioned above; none
of the results proven in this paper will depend on this assumption in an essential way.

1.2.16 The ∞-Category of Spaces

The category of sets plays a central role in classical category theory. The main reason is that every category
C is enriched over sets: given a pair of objects X,Y ∈ C, we may regard HomC(X,Y ) as an object of Set. In
the higher categorical setting, the proper analogue of Set is the ∞-category S of spaces, which we will now
introduce.

Definition 1.2.16.1. Let Kan denote the full subcategory of Set∆ spanned by the collection of Kan com-
plexes. We will regard Kan as a simplicial category. Let S = N(Kan) denote the (simplicial) nerve of Kan.
We will refer to S as the ∞-category of spaces.

44



Remark 1.2.16.2. For every pair of objects X,Y ∈ Kan, the simplicial set MapKan(X,Y ) = Y X is a Kan
complex. It follows that S is an ∞-category (Proposition 1.1.5.9).

Remark 1.2.16.3. There are many other ways to obtain a suitable “∞-category of spaces”. For example,
we could instead define S to be the (topological) nerve of the category of CW-complexes and continuous
maps. All that really matters is that we have a∞-category which is equivalent to S = N(Kan) defined above.
We have selected Definition 1.2.16.1 for definiteness and to simplify our discussion of the Yoneda embedding
in §5.1.3.

Remark 1.2.16.4. We will occasionally need to distinguish between “large” spaces and “small” spaces. In
such contexts, we will let S denote the ∞-category of small spaces (defined by taking the simplicial nerve of
the category of small Kan complexes), and Ŝ the∞-category of large spaces (defined by taking the simplicial
nerve of the category of all Kan complexes). We observe that S is a large ∞-category, and that Ŝ is even
bigger.

1.2.17 n-Categories

The theory of∞-categories can be regarded as a generalization of classical category theory: if C is an ordinary
category, then its nerve N(C) is an ∞-category which determines C up to canonical isomorphism. Moreover,
Proposition 1.1.2.2 provides a precise characterization of those ∞-categories which can be obtained from
ordinary categories. In this section, we will explain how to specialize the theory of ∞-categories to obtain a
theory of n-categories, for every nonnegative integer n. (However, the ideas described here are appropriate
for describing only those n-categories which have only invertible k-morphisms, for every k ≥ 2.)

Before we can give the appropriate definition, we need to introduce a bit of terminology. Let f, f ′ :
K → C be two diagrams in an ∞-category C, and suppose that K ′ ⊆ K is a simplicial subset such that
f |K ′ = f ′|K ′ = f0. We will say that f and f ′ are homotopic relative to K ′ if they are equivalent when
viewed as objects of the∞-category Fun(K,C)×Fun(K′,C){f0}. Equivalently, f and f ′ are homotopic relative
to K ′ if there exists a homotopy

h : K ×∆1 → C

with the following properties:

(i) The restriction h|K ′ ×∆1 coincides with the composition

K ′ ×∆1 → K ′ f0→ C .

(ii) The restriction h|K × {0} coincides with f .

(iii) The restriction h|K × {1} coincides with f ′.

(iv) For every vertex x of K, the restriction h|{x} ×∆1 is an equivalence in C.

We observe that if K ′ contains every vertex of K, then condition (iv) follows from condition (i).

Definition 1.2.17.1. Let C be a simplicial set and n ≥ −1 an integer. We will say that C is an n-category
if it is an ∞-category and the following additional conditions are satisfied:

(1) Given a pair of maps f, f ′ : ∆n → C, if f and f ′ are homotopic relative to ∂∆n, then f = f ′.

(2) Given m > n and a pair of maps f, f ′ : ∆m → C, if f | ∂∆m = f ′| ∂∆m, then f = f ′.

It is sometimes convenient to extend Definition 1.2.17.1 to the case where n = −2: we will say that a
simplicial set C is a (−2)-category if it is a final object of Set∆: in other words, if it is isomorphic to ∆0.
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Example 1.2.17.2. Let C be a (−1)-category. Using condition (2) of Definition 1.2.17.1, one shows by
induction on m that C has at most one m-simplex. Consequently, we see that up to isomorphism there are
precisely two (−1)-categories: ∆−1 ' ∅ and ∆0.

Example 1.2.17.3. Let C be a 0-category, and let X = C0 denote the set of objects of C. Let us write x ≤ y
if there is a morphism φ from x to y in C. Since C is an ∞-category, this relation is reflexive and transitive.
Moreover, condition (2) of Definition 1.2.17.1 guarantees that the morphism φ is unique if it exists. If x ≤ y
and y ≤ x, it follows that the morphisms relating x and y are mutually inverse equivalences. Condition
(1) then implies that x = y. We deduce that (X,≤) is a partially ordered set. It follows from Proposition
1.2.17.5 below that the map C→ N(X) is an isomorphism.

Conversely, it is easy to see that the nerve of any partially ordered set (X,≤) is a 0-category in the sense
of Definition 1.2.17.1. Consequently, the full subcategory of Set∆ spanned by the 0-categories is equivalent
to the category of partially ordered sets.

Remark 1.2.17.4. Let C be an n-category, and let m > n+ 1. Then the restriction map

θ : HomSet∆(∆m,C)→ HomSet∆(∂∆m,C)

is bijective. If n = −1, this is clear from Example 1.2.17.2; let us therefore suppose that n ≥ 0, so that m ≥ 2.
The injectivity of θ follows immediately from part (2) of Definition 1.2.17.1. To prove the surjectivity, we
consider an arbitrary map f0 : ∂∆m → C. Let f : ∆m → C be an extension of f0|Λm1 (which exists since C

is an ∞-category, and 0 < 1 < m). Using condition (2) again, we deduce that θ(f) = f0.

The following result shows that, in the case where n = 1, Definition 1.2.17.1 recovers the usual definition
of a category:

Proposition 1.2.17.5. Let S be a simplicial set. The following conditions are equivalent:

(1) The unit map u : S → N(hS ) is an isomorphism of simplicial sets.

(2) There exists a (small) category C and an isomorphism S ' N(C) of simplicial sets.

(3) The simplicial set S is a 1-category.

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear. Let us therefore assume that (3) holds, and show that
f : S → N(hS ) is an isomorphism. We will prove, by induction on n, that the map u is bijective on
n-simplices.

For n = 0, this is clear. If n = 1, the surjectivity of u obvious. To prove the injectivity, we note that if
f(φ) = f(ψ), then the edges φ and ψ are homotopic in S. A simple application of condition (2) of Definition
1.2.17.1 then shows that φ = ψ.

Now suppose n > 1. The injectivity of u on n-simplices follows from condition (3) of Definition 1.2.17.1,
and the injectivity of u on (n− 1)-simplices. To prove the surjectivity, let us suppose given a map s : ∆n →
N(hS ). Choose 0 < i < n. Since u is bijective on lower-dimensional simplices, the map s|Λni factors uniquely
through S. Since S is an ∞-category, this factorization extends to a map s̃ : ∆n → S. Since N(hS ) is the
nerve of a category, a pair of maps from ∆n into N(hS ) which agree on Λni must be the same. We deduce
that u ◦ s̃ = s, and the proof is complete.

Remark 1.2.17.6. The condition that an∞-category C be an n-category is not invariant under categorical
equivalence. For example, if D is a category with several objects, all of which are uniquely isomorphic
to one another, then N(D) is categorically equivalent to ∆0, but is not a (−1)-category. Consequently,
there can be no intrinsic characterization of the class of n-categories itself. Nevertheless, there does exist a
convenient description for the class of ∞-categories which are equivalent to n-categories. We will establish
this characterization in §2.2.4.
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Our next goal is to establish that the class of n-categories is stable under the formation of functor
categories. In order to do so, we need to reformulate Definition 1.2.17.1 in a more invariant manner. Recall
that for any simplicial set X, the n-skeleton sknX is defined to be the simplicial subset of X generated by
all the simplices of X having dimension ≤ n.

Proposition 1.2.17.7. Let C be an ∞-category and n ≥ −1. The following are equivalent:

(1) The ∞-category C is an n-category.

(2) For every simplicial set K and every pair of maps f, f ′ : K → C such that f | sknK and f ′| sknK are
homotopic relative to skn−1K, we have f = f ′.

Proof. The implication (2) ⇒ (1) is obvious. Suppose that (1) is satisfied and let f, f ′ : K → C be as in
the statement of (2). To prove that f = f ′ it suffices to show that f and f ′ agree on every nondegenerate
simplex of K. We may therefore reduce to the case where K = ∆m. We now work by induction on m. If
m < n, there is nothing to prove. In the case m = n, the assumption that C is an n-category immediately
implies that f = f ′. If m > n, the inductive hypothesis implies that f | ∂∆m = f ′| ∂∆m, so that (1) implies
that f = f ′.

Corollary 1.2.17.8. Let C be an n-category and X a simplicial set. Then Fun(X,C) is an n-category.

Proof. Proposition 1.2.7.3 asserts that Fun(X,C) is an ∞-category. We will show that Fun(X,C) satisfies
condition (2) of Proposition 1.2.17.7. Suppose given a pair of maps f, f ′ : K → Fun(X,C) such that f | sknK
and f ′| sknK are homotopic relative to f | skn−1K. We wish to show that f = f ′. We may identify f and
f ′ with maps F, F ′ : K × X → C. Since C is an n-category, to prove that F = F ′ it suffices to show that
F | skn(K × X) and F ′| skn(K × X) are homotopic relative to skn−1(K × X). This follows at once, since
skp(K ×X) ⊆ (skpK)×X for every integer p.

When n = 1, Proposition 1.1.2.2 asserts that the class of n-categories can be characterized by the
uniqueness of certain horn fillers. We now prove a generalization of this result.

Proposition 1.2.17.9. Let n ≥ 1, and let C be an ∞-category. Then C is an n-category if and only if it
satisfies the following condition:

• For every m > n and every diagram

Λmi
f0 //

� _

��

C

∆m,

f

>>}
}

}
}

where 0 < i < m, there exists a unique dotted arrow f as indicated, which renders the diagram
commutative.

Proof. Suppose first that C is an n-category. Let f, f ′ : ∆m → C be two maps with f |Λmi = f ′|Λmi , where
0 < i < m and m > n. We wish to prove that f = f ′. Since Λmi contains the (n − 1)-skeleton of Λmi ,
it will suffice (by Proposition 1.2.17.7) to show that f and f ′ are homotopic relative to Λmi . This follows
immediately from the fact that the inclusion Λmi ⊆ ∆m is a categorical equivalence.

Now suppose that every map f0 : Λmi → C, where 0 < i < m and n < m, extends uniquely to an
m-simplex of C. We will show that C satisfies conditions (1) and (2) of Definition 1.2.17.1. Condition (2) is
obvious: if f, f ′ : ∆m → C are two maps which coincide on ∂∆m, then they coincide on Λm1 and are therefore
equal to one another (here we use the fact that m > 1 because of our assumption that n ≥ 1). Condition (1)
is a bit more subtle. Suppose that f, f ′ : ∆n → C are homotopic via a homotopy h : ∆n ×∆1 → C which is
constant on ∂∆n ×∆1. For 0 ≤ i ≤ n, let σi denote the (n+ 1)-simplex of C obtained by composing h with
the map

[n+ 1]→ [n]× [1]
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j 7→

{
(j, 0) if j ≤ i
(j − 1, 1) if j > i.

If i < n, then we observe that σi|Λn+1
i+1 is equivalent to the restriction (sidiσi)|Λn+1

i+1 . Applying our hypothesis,
we conclude that σi = sidiσi, so that diσi = di+1σi. A dual argument establishes the same equality for
0 < i. Since n > 0, we conclude that diσi = di+1σi for all i. Consequently, we have a chain of equalities

f ′ = d0σ0 = d1σ0 = d1σ1 = d2σ1 = . . . = dnσn = dn+1σn = f

so that f ′ = f , as desired.

Corollary 1.2.17.10. Let C be an n-category and let p : K → C be a diagram. Then C/p is an n-category.

Proof. If n ≤ 0, this follows easily from Examples 1.2.17.2 and 1.2.17.3. We may therefore suppose that
n ≥ 1. Proposition 1.2.9.3 implies that C/p is an ∞-category. According to Proposition 1.2.17.9, it suffices
to show that for every m > n, 0 < i < m, and every map f0 : Λmi → C/p, there exists a unique map
f : ∆m → C/p extending f . Equivalently, we must show that there is a unique map g rendering the diagram

Λmi ? K� _

��

g0 // C

∆m ? K

g

;;w
w

w
w

w

commutative. The existence of g follows from the fact that C/p is an∞-category. Suppose that g′ : ∆m?K →
C is another map which extends g0. Proposition 1.1.2.2 implies that g′|∆m = g|∆m. We conclude that g
and g′ coincide on the n-skeleton of ∆m ?K. Since C is an n-category, we deduce that g = g′ as desired.

We conclude this section by introducing a construction which allows us to pass from an arbitrary ∞-
category C to its “underlying” n-category, by discarding information about morphisms of order > n. In
the case where n = 1, we have already introduced the relevant construction: we simply replace C by its
homotopy category (or, more precisely, the nerve of its homotopy category).

Notation 1.2.17.11. Let C be an ∞-category and let n ≥ 1. For every simplicial set K, let [K,C]n ⊆
Fun(sknK,C) be the subset consisting of those diagrams sknK → C which extend to the (n + 1)-skeleton
of K (in other words, the image of the restriction map Fun(skn+1K,C) → Fun(sknK,C)). We define an
equivalence relation ∼ on [K,C]n as follows: given two maps f, g : sknK → C, we write f ∼ g if f and g are
homotopic relative to skn−1K.

Proposition 1.2.17.12. Let C be an ∞-category and n ≥ 1.

(1) There exists a simplicial set hnC with the following universal mapping property: Fun(K,hnC) =
[K,C]n/ ∼.

(2) The simplicial set hnC is an n-category.

(3) If C is an n-category, then the natural map θ : C→ hnC is an isomorphism.

(4) For every n-category D, composition with θ induces an isomorphism of simplicial sets

ψ : Fun(hnC,D)→ Fun(C,D).

Proof. To prove (1), we begin by defining hnC([m]) = [∆m ,C]n/ ∼, so that the desired universal property
holds by definition whenever K is a simplex. Unwinding the definitions, to check the universal property for
a general simplicial set K we must verify the following fact:
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(∗) Given two maps f, g : ∂∆n+1 → C which are homotopic relative to skn−1 ∆n+1, if f extends to an
(n+ 1)-simplex of C, then g extends to an (n+ 1)-simplex of C.

This follows easily from Proposition A.2.4.1.
We next show that hnC is an ∞-category. Let η0 : Λmi → hnC be a morphism, where 0 < i < m. We

wish to show that η0 extends to an m-simplex η : ∆m → C. If m ≤ n+ 2, then Λmi = skn+1 Λmi , so that η0
can be written as a composition

Λmi → C
θ→ hnC .

The existence of η now follows from our assumption that C is an ∞-category. If m > n + 2, then
HomSet∆(Λmi ,hnC) ' HomSet∆(∆m,hnC) by construction, so there is nothing to prove.

We next prove that hnC is an n-category. It is clear from the construction that for m > n, any two
m-simplices of hnC with the same boundary must coincide. Suppose next that we are given two maps
f, f ′ : ∆n → hnC which are homotopic relative to ∂∆n. Let F : ∆n ×∆1 → hnC be a homotopy from f to
f ′. Using (∗), we deduce that F is the image under θ of a map F̃ : ∆n ×∆1 → hnC, where F̃ | ∂∆n ×∆1

factors through the projection ∂∆n × ∆1 → ∂∆n. Since n > 0, we conclude that F̃ is a homotopy from
F̃ |∆n × {0} to F̃ |∆n × {1}, so that f = f ′. This completes the proof of (2).

To prove (3), let us suppose that C is an n-category; we prove by induction on m that the map C→ hnC

is bijective on m-simplices. For m < n, this is clear. When m = n it follows from part (1) of Definition
1.2.17.1. When m = n + 1, surjectivity follows from the construction of hn C, and injectivity from part (2)
of Definition 1.2.17.1. For m > n+ 1, we have a commutative diagram

HomSet∆(∆m,C) //

��

HomSet∆(∆m,hnC)

��
HomSet∆(∂∆m,C) // HomSet∆(∂∆m,hnC)

where the bottom horizontal map is an isomorphism by the inductive hypothesis, the left vertical map is an
isomorphism by construction, and the right vertical map is an isomorphism by Remark 1.2.17.4; it follows
that the upper horizontal map is an isomorphism as well.

To prove (4), we observe that if D is an n-category, then the composition

Fun(C,D)→ Fun(hnC,hnD) ' Fun(hnC,D)

is an inverse to φ, where the second isomorphism is given by (3).

Remark 1.2.17.13. The construction of Proposition 1.2.17.12 does not quite work if n ≤ 0, since there
may exist equivalences in hn C which do not arise from equivalences in C. However, it is a simple matter
to give an alternative construction in these cases which satisfies conditions (2), (3), and (4); we leave the
details to the reader.

Remark 1.2.17.14. In the case n = 1, the ∞-category h1C constructed in Proposition 1.2.17.12 is isomor-
phic to the nerve of the homotopy category hC.
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1.3 The Equivalence of Topological Categories with ∞-Categories

Theorem 1.1.5.12 asserts that for every topological category C and every pair of objects X,Y ∈ C, the counit
map

u : |MapC[N(C)](X,Y )| → MapC(X,Y )

is a weak homotopy equivalence of topological spaces. This result is the main ingredient needed to establish
the equivalence between the theory of topological categories and the theory of ∞-categories. The goal of
this section is to give a proof of Theorem 1.1.5.12 and to develop some of its consequences.

We first replace Theorem 1.1.5.12 by a statement about simplicial categories. Consider the composition

MapC[N(C)](X,Y ) v→ Sing Map|C[N(C)]|(X,Y )
Sing(u)→ Sing MapC(X,Y ).

Classical homotopy theory ensures that v is a weak homotopy equivalence. Moreover, u is a weak homotopy
equivalence of topological spaces if and only if Sing(u) is a weak homotopy equivalence of simplicial sets.
Consequently, u is a weak homotopy equivalence of topological spaces if and only if Sing(u) ◦ v is a weak
homotopy equivalence of simplicial sets. It will therefore suffice to prove the following simplicial analogue of
Theorem 1.1.5.12:

Theorem 1.3.0.1. Let C be a fibrant simplicial category (that is, a simplicial category in which each mapping
space MapC(C,D) is a Kan complex), and let X,Y ∈ C be a pair of objects. The counit map

u : MapC[N(C)](X,Y )→ MapC(X,Y )

is a weak homotopy equivalence of simplicial sets.

The strategy of our proof is as follows. In §1.3.2, we will define the twisted geometric realization functor
||Q• and its right adjoint SingQ• . Let D be an arbitrary ∞-category containing a pair of objects X,Y , and
let M = HomR

D(X,Y ) be simplicial set constructed in §1.2.2. In §1.3.3, we will construct a weak homotopy
equivalence f : |HomR

D(X,Y )|Q• → MapC[D](X,Y ). In the special case where D is the (simplicial) nerve of
a fibrant simplicial category C, we can identify HomR

D(X,Y ) with SingQ• MapC(X,Y ) in such a way that
the composition u ◦ f coincides with the counit map

θ : |SingQ• MapC(X,Y )|Q• → MapC(X,Y ).

We will see in §1.3.2 that θ is a weak homotopy equivalence for formal reasons, so that Theorem 1.3.0.1 will
follow using the two-out-of-three property.

We will conclude this section with §1.3.4, where we apply Theorem 1.3.0.1 to construct the Joyal model
structure on Set∆ and to establish a more refined version of the equivalence between ∞-categories and
simplicial categories.

1.3.1 Composition Laws on ∞-Categories

In an ordinary category, if f : X → Y and g : Y → Z are two morphisms, then one has a specified composition
g◦f . In an∞-category, this is not quite true: in general there exist many candidates for the composition g◦f
(though all of these candidates are homotopic to one another). To prove Theorem 1.3.0.1 for a ∞-category
C, it will be convenient for us to choose a composition for every composable pair of morphisms. In fact, we
will need something slightly more general: a chosen composition for every “composable” pair of simplices,
of arbitrary dimension.

Definition 1.3.1.1. Let C be a simplicial set. A composition law on C consists of specifying, for every pair
of simplices σ ∈ Cm, τ ∈ Cn with σ|∆{m} = τ |∆{0}, a composite τ ◦ σ ∈ Cn+m. This composition law is
required to satisfy the following conditions:
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(1) The diagram

∆{0,...,m}

σ

%%LLLLLLLLLLL
� � // ∆n+m

τ◦σ
��

∆{m,...,m+n}? _oo

τ

xxpppppppppppp

C

commutes.

(2) If 0 ≤ i ≤ m, then (τ ◦ siσ) = si(τ ◦ σ). If 0 ≤ i ≤ n, then (siτ ◦ σ) = sm+i(τ ◦ σ).

(3) If 0 ≤ i < m, then (τ ◦ diσ) = di(τ ◦ σ). If 0 < i ≤ n, then (diτ ◦ σ) = dn+i(τ ◦ σ).

The existence of a composition law on an ∞-category C is guaranteed by the following result:

Proposition 1.3.1.2. Suppose that C is an ∞-category. Then C admits a composition law.

Proof. Let σ ∈ Cm; we will define the composition law τ 7→ τ ◦σ by induction on m. If m = 0, we simply set
τ ◦σ = τ . If σ = siσ

′ is a degenerate simplex, then we set τ ◦σ = si(τ ◦σ′). If m > 0 and σ is nondegenerate,
then we define τ ◦ σ for τ ∈ Cn by induction on n. If n = 0, then we set τ ◦ σ = σ. If τ = siτ

′ is degenerate,
then we set τ ◦ σ = si+m(τ ′ ◦ σ). Finally, in the case where n > 0 and τ is also nondegenerate, we note that
the definition of a composition law prescribes the face di(τ ◦σ) for i 6= m. These faces assemble to determine
a map Λn+m

m → C. Since C is an ∞-category and 0 < m < n+m, this map extends to an (n+m)-simplex
τ ◦ σ ∈ Cn+m. One readily checks that this construction has the desired properties.

There is generally no canonical choice of composition law on an∞-category C. Moreover, we cannot gen-
erally ensure that the composition law given by Proposition 1.3.1.2 is associative. However, the compatibility
of composition with degeneracy maps can be interpreted as asserting that composition is unital.

1.3.2 Twisted Geometric Realization

Let C be a fibrant simplicial category containing a pair of objects X and Y . We wish to understand the
relationship between the mapping space MapC(X,Y ) in C and the mapping space HomR

N(C)(X,Y ) in the
∞-category N(C). As one might expect, these two simplicial sets are almost the same; in particular, they are
homotopy equivalent to one another. In order to prove this, we will need to introduce a bit of terminology.

Let ∆ denote the category of combinatorial simplices and Set∆ the category of simplicial sets, so that
Set∆ may be identified with the category of presheaves of sets on ∆. If C is any category which admits small
colimits, then any functor f : ∆→ C extends to a colimit-preserving functor F : Set∆ → C (which is unique
up to unique isomorphism). We may regard f as a cosimplicial object C• of C. In this case, we shall denote
the functor F by

S 7→ |S|C• .

Remark 1.3.2.1. Concretely, one constructs |S|C• by taking the disjoint union of Sn × Cn and making
the appropriate identifications along the “boundaries”. In the language of category theory, the geometric
realization is given by the coend ∫

[n]∈∆

Sn × Cn.

The functor S 7→ |S|C• has a right adjoint which we shall denote by SingC• . It may be described by the
formula

SingC•(X)n = HomC(Cn, X).
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Example 1.3.2.2. Let C be the category CG of compactly generated Hausdorff spaces, and let C• be the
cosimplicial space defined by

Cn = {(x0, . . . , xn) ∈ [0, 1]n+1 : x0 + . . .+ xn = 1}.

Then |S|C• is the usual geometric realization |S| of the simplicial set S and SingC• = Sing is the functor
which assigns to each topological space X its its singular complex.

Example 1.3.2.3. Let C be the category Set∆, and let C• be the standard simplex (the cosimplicial object
of Set∆ given by the Yoneda embedding):

Cn = ∆n.

Then ||C• and SingC• are both (isomorphic to) the identity functor on Set∆.

Example 1.3.2.4. Let C = Cat, and let f : ∆→ Cat be the functor which associates to each finite nonempty
linearly ordered set J the corresponding category. Then SingC• = N is the functor which associates to each
category its nerve, and ||C• associates, to each simplicial set S, the homotopy category hS as defined in
§1.2.3.

Example 1.3.2.5. Let C = Cat∆, and let C• be the cosimplicial object of C given in Definitions 1.1.5.1 and
1.1.5.3. Then SingC• is the simplicial nerve functor, and ||C• is its left adjoint

S 7→ C[S].

Let us now turn to the problem of interest: the computation of HomR
N(C)(X,Y ), where C is a simplicial

category containing objects X and Y . We begin with a description of HomR
S (X,Y ) which is valid for any

simplicial set S. Let Jn be the simplicial set obtained from ∆n+1 by collapsing the face ∆{0,...,n} to a point.
Then J• is a cosimplicial object of Set∆ equipped with two base points. The simplicial set HomR

S (x, y)• is
the fiber of

HomSet∆(J•, S)→ S × S

over the vertex (X,Y ).
In the special case where S is the nerve of a simplicial category C, the simplicial set Hom(J•, S) may be

rewritten as HomCat∆(C[J•],C). A straightforward computation shows that C[Jn] may be identified with a
simplicial category having two objects (which we will again denote by X and Y ), with morphisms given by

HomC[Jn](S, T ) =


∗ if S = T = X

∗ if S = T = Y

∅ if S = Y, T = X

Qn if S = X,T = Y.

Here Q• is a cosimplicial object of Set∆ which we will describe more explicitly in a moment. We have proved:

Proposition 1.3.2.6. Let C be a simplicial category, and let X,Y ∈ C be two objects. There is a natural
isomorphism of simplicial sets HomR

N(C)(X,Y ) ' SingQ• MapC(X,Y ).

In order to proceed with our analysis, we need to better understand the cosimplicial object Q• of Set∆.
It admits the following description:

• For each n ≥ 0, let P[n] denote the partially ordered set of nonempty subsets of [n], and K[n] the
simplicial set N(P ) (which may be identified with a simplicial subset of the (n + 1)-cube (∆1)n+1).
The simplicial set Qn is obtained by collapsing, for each 0 ≤ i ≤ n, the subset

(∆1){j:0≤j<i} × {1} × (∆1){j:i<j≤n} ⊆ K[n]

to its quotient (∆1){j:i<j≤n}.
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• A map f : [n]→ [m] determines a map Pf : P[n] → P[m], by setting Pf (I) = f(I). The map Pf in turn
induces a map of simplicial sets K[n] → K[m], which determines a map of quotients Qn → Qm when f
is order-preserving.

Remark 1.3.2.7. Let Q• = |Q•| denote the cosimplicial space obtained by applying the (usual) geometric
realization functor to Q•. The space Qn may be described as a quotient of the cube of all functions p : [n]→
[0, 1] satisfying p(0) = 1. This cube is to be divided by the following equivalence relation: p ' p′ if there
exists a nonnegative integer i ≤ n such that p|{i, . . . n} = p′|{i, . . . , n} and p(i) = p′(i) = 1.

Each Qn is homeomorphic to an n-simplex, and these homeomorphisms may be chosen to be compatible
with the face maps of the cosimplicial space Q•. However, Q• is not isomorphic to the standard simplex
because it has very different degeneracies. For example, the product of the degeneracy mappings Qn → (Q1)n

is not injective for n ≥ 2.

Our goal for the remainder of this section is to study the functors SingQ• and ||Q• and to prove that
they are “close” to the identity functor. More precisely, there is a map π : Q• → ∆• of cosimplicial objects
of Set∆. It is induced by a map K[n] → ∆n, which the nerve of the map of partially ordered sets P[n] → [n]
which carries each nonempty subset of [n] to its largest element.

Proposition 1.3.2.8. Let S be a simplicial set. Then the map pS : |S|Q• → S induced by π is a weak
homotopy equivalence.

Proof. Consider the collection A of simplicial sets S for which the assertion of Proposition 1.3.2.8 holds.
Since A is stable under filtered colimits, it will suffice to prove that every simplicial set S having only finitely
many nondegenerate simplices belongs to A. We prove this by induction on the dimension n of S, and the
number of nondegenerate simplices of S of dimension n. If S = ∅, there is nothing to prove; otherwise we
may write

S ' S′
∐
∂∆n

∆n

|S|Q• ' |S′|Q•
∐

| ∂∆n|Q•

|∆n|Q• .

Since both of these pushouts are homotopy pushouts, it suffices to show that pS′ , p∂∆n , and p∆n are weak
homotopy equivalences. For pS′ and p∂∆n , this follows from the inductive hypothesis; for p∆n , we need only
observe that both ∆n and |∆n|Q• = Qn are weakly contractible.

Remark 1.3.2.9. The strategy used to prove Proposition 1.3.2.8 will reappear frequently throughout this
book: it allows us to prove theorems about arbitrary simplicial sets by reducing to the case of simplices.

Proposition 1.3.2.10. Let X be a Kan complex. Then the counit map

v : |SingQ• X|Q• → X

is a weak homotopy equivalence.

Proof. Our proof will use the language of model categories. We first note the pair (||Q• ,SingQ•) determines
a Quillen adjunction from Set∆ to itself. For this, it suffices to prove that the functor

S 7→ |S|Q•

preserves cofibrations and weak equivalences. The case of cofibrations is easy, and the second case follows
from Proposition 1.3.2.8.

It follows that the derived functors of SingQ• and ||Q• induce adjoint functors from the homotopy category
H to itself. Proposition 1.3.2.8 implies that the left derived functor of SingQ• is an equivalence of categories.
It follows that the counit of the adjunction is an isomorphism of functors. In other words, for any fibrant
simplicial set X and any weak homotopy equivalence i : Y → SingQ• X where Y is cofibrant, the induced
map |Y |Q• → X is a weak homotopy equivalence. Choosing i to be the identity map, we conclude that v is
a weak homotopy equivalence as desired.

53



1.3.3 A Comparison Theorem

Let D be an ∞-category containing a pair of objects X and Y , and let Q• denote the cosimplicial object of
Set∆ described in §1.3.2. By construction, there is a canonical map of simplicial sets

f : |HomR
D(X,Y )|Q• → MapC[D](X,Y ).

Moreover, in the special case where D is the nerve of a fibrant simplicial category C, the composition

|HomR
D(X,Y )|Q•

f→ MapC[D](X,Y )→ MapC(X,Y )

can be identified with the counit map

|SingQ• MapC(X,Y )|Q• → MapC(X,Y ),

and is therefore a weak equivalence (Proposition 1.3.2.10). Consequently, we may reformulate Theorem
1.3.0.1 in the following way:

Proposition 1.3.3.1. Let D be an ∞-category containing a pair of objects X and Y . Then the natural map

f : |HomR
D(X,Y )|Q• → MapC[D](X,Y )

is a weak homotopy equivalence of simplicial sets.

The proof of Proposition 1.3.3.1 will occupy the remainder of this section. Our argument is quite technical
and can be safely omitted by the reader who does not want to become bogged down in details.

To show that f is a weak homotopy equivalence, it will be convenient for us to return to the topological
setting and show instead that |f | : |HomR

D(X,Y )|Q• → |MapC[D](X,Y )| is a homotopy equivalence of
topological spaces. To prove this, we will need an explicit description of the topological category |C[D]|. The
objects of |C[D]| may be identified with the vertices of D. If σ : ∆k → D is a simplex of D, and p : [k]→ [0, 1]
is a function satisfying p(0) = p(k) = 1, then there is a corresponding morphism σ[p] : σ(0)→ σ(k) in |C[D]|.
Moreover, σ[p] ∈ |MapC[D](σ(0), σ(k))| depends continuously on p (which ranges over a cube of dimension
k − 1).

Every morphism in |C[D]| can be written as a composition σ0[p0] ◦ . . . ◦ σn[pn]. These morphisms are
subject only to the following relations:

(P1) Let X : ∆0 → D be a vertex of D, and let p : {0} → [0, 1] be such that p(0) = 1. Then X[p] = idX ∈
|MapC[D](X,X)|.

(P2) If σ : ∆k → D is a k-simplex of D, 0 < i < k, and p : [k] → [0, 1] satisfies p(0) = p(k) = 1, p(i) = 0,
then

σ[p] = (diσ)[q] ∈ |MapC[D](σ(0), σ(k))|,

where

q(j) =

{
p(j) if j < i

p(j + 1) if j ≥ i
.

(P3) If σ : ∆k → D is a k-simplex of D, 0 ≤ i ≤ k, and p : [k+ 1]→ [0, 1] satisfies p(0) = p(k+ 1) = 1, then
(siσ)[p] = σ[q], where

q(j) =


p(j) if j < i

sup{p(j), p(j + 1)} if j = i

p(j + 1) if j > i

.
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(P4) If σ : ∆k → D is a k-simplex of D, 0 < i < k, and p : [d]→ [0, 1] satisfies p(0) = p(d) = p(i) = 1, then

σ[p] = σ′′[p′′] ◦ σ′[p′].

Here σ′ = σ|∆{0,...,i}, σ′′ = σ|∆{i,...,k}, p′(j) = p(j) for 0 ≤ j ≤ i, and p′′(j) = p(j+i) for 0 ≤ j ≤ k−i.

Using these properties, we deduce that every morphism in the topological category |C[D]| admits a
unique representation as a composition σ0[p0] ◦ . . . ◦ σn[pn] having the property that each of the simplices
σi is nondegenerate of some positive dimension ki, and the functions pi|{1, . . . , ki − 1} do not assume the
value 0 or 1. In this representation, composition is simply given by concatenation. For our purposes, this
presentation is too unwieldy, since it requires us to consider compositions of arbitrarily long strings of the
generating morphisms σ[p]. In the case where D is an ∞-category, a much simpler description is available.

Lemma 1.3.3.2. Let D be an ∞-category containing objects X and Y . Every morphism φ : X → Y in
the topological category |C[D]| has the form σ[p], where σ : ∆k → D is a simplex of positive dimension and
p : [k]→ [0, 1] satisfies p(0) = p(k) = 1.

Proof. Using relation (P1), we may assume that φ = σ0[p0] ◦ . . . ◦ σn[pn] for n ≥ 0. Choose a composition
law on D (Proposition 1.3.1.2). Using relation (P4), we deduce that σ′′[p′′] ◦ σ′[p′] = (σ′′ ◦ σ′)[p], where p
is obtained by concatenating p′ and p′′. Applying this relation repeatedly, we deduce that φ = σ[p], where
σ : ∆k → D and p : [k] → [0, 1] is appropriately chosen. Replacing σ by s0σ if necessary (and applying
relation (P3)), we may ensure that k > 0.

Let us now fix an ∞-category D and a pair of objects X,Y ∈ D. Our goal is to analyze the topological
space M = |MapC[D](X,Y )|. Lemma 1.3.3.2 implies that every point of this space admits a particularly
simple representative. However, this representation is not unique. For each positive dimensional simplex
σ : ∆k → D with σ(0) = X, σ(n) = Y , the collection of functions p : [k] → [0, 1] with p(0) = p(k) = 1 is
homeomorphic to an (n− 1)-dimensional cube [0, 1]k−1. We have a continuous map

[0, 1]k−1 →M

p 7→ σ[p].

Lemma 1.3.3.2 implies that M is spanned by the images of these cubes, as σ is allowed to vary. We may
therefore view M as a quotient of the disjoint union∐

σ

[0, 1]k−1

where the following relations have been imposed:

(R1) Let σ : ∆k → D satisfy σ(0) = X, σ(k) = Y , let 0 < i < k, and let p : [k] → [0, 1] satisfy
p(0) = p(k) = 1, p(i) = 0. Then σ[p] = (diσ)[q], where

q(j) =

{
p(j) if j < i

p(j + 1) if j ≥ i
.

(R2) Let σ, σ′ : ∆k → D be simplices with σ(0) = σ′(0) = X, σ(k) = σ′(k) = Y , let 0 = i0 < i1 < . . . <
in = k, and let p : [k]→ [0, 1] satisfy p(i0) = . . . = p(in) = 1. If

σ|∆{ij ,...,ij+1} = σ′|∆{ij ,...,ij+1}

for 0 ≤ j < n, then σ[p] = σ′[p].
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(R3) Let σ : ∆k → D satisfy σ(0) = X and σ(k) = Y , let 0 ≤ i ≤ k, and let p : [k + 1] → [0, 1] satisfy
p(0) = p(k + 1) = 1. Then (siσ)[p] = σ[q], where q : [d]→ [0, 1] is given by

q(j) =


p(j) if j < i

sup{p(j), p(j + 1)} if j = i

p(j + 1) if j > i

.

Using relation (R3), we see that M is actually spanned by the images of the maps p 7→ σ[p], where σ
is a nondegenerate simplex of D (or, in the case X = Y , σ = s0(X) ∈ D1). However, relation (R3) will
be very inconvenient for us in the arguments which follow. We therefore define M̃ to be the quotient of
the topological space

∐
σ[0, 1]k−1 where the coproduct is taken over simplices σ of positive dimension, and

only the relations (R1) and (R2) have been imposed. If σ : ∆k → D satisfies σ(0) = X, σ(k) = Y , and
p : [k] → [0, 1] satisfies p(0) = p(k) = 1, then we let σ̃[p] denote the corresponding point of M̃ . There is an
obvious quotient map π : M̃ →M , having the property that π(σ̃[p]) = σ[p].

Lemma 1.3.3.3. The map π : M̃ →M is a homotopy equivalence.

Proof. We first observe that the map π may be obtained as the geometric realization of a map of simplicial
sets. Consequently, it will suffice to show that the fibers of π are contractible. Choose a point σ[p] ∈ M .
We will assume that σ : ∆k → D is nondegenerate simplex of positive dimension, and that p : [k] → [0, 1]
is strictly positive. Such a representation always exists, unless X = Y and σ[p] = idX ; the proof in this
exceptional case can be given using a slightly easier version of the argument below, and is left to the reader.

Every point of M̃ which lies in π−1{σ[p]} can be written in the form σ̃′[p′], where σ′ : ∆m → D is the
pullback of σ under a surjective map f : [m] → [k], and p(i) = supf(j)=i p

′(j). It follows that π−1{σ[p]} is
homomorphic to the product

F ′1 ×
∏

0<i<n

Fp(i) × F ′′1 ,

where:

(1) For t ∈ (0, 1], the space Ft is described as follows: points of Ft may be represented by finite sequences
of real numbers (r1, . . . , rn) lying in the interval [0, t], which assume the value t at least once. Two
such sequences are identified if they differ from one another by inserting or deleting zeroes.

(2) The space F ′t is defined in the same way as Ft, except that we consider only sequences which begin
with r1 = t.

(3) The space F ′′t is defined in the same way as Ft, except that we consider only sequences which end with
rn = t.

We now observe that each of the spaces F ′t is contractible: in fact, we have a homotopy

h′ : [0, 1]× F ′t → F ′t

from a constant map to the identity, given by

h′s(r1, . . . , rn) = (r1, sr2, . . . , srn).

A similar argument shows that each F ′′t is contractible. Finally, we show that Ft is contractible by showing
that the identity map Ft → Ft is homotopic to a map which factors through the contractible subspace
F ′t ⊆ Ft. To see this, we consider the homotopy

h : [0, 1]× Ft → Ft

given by
hs(r1, . . . , rn) = (st, r1, . . . , rn).
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Our next step is to perform a similar analysis of the topological space N = |HomR
D(X,Y )|Q• . For

each σ : ∆k+1 → D such that σ(k + 1) = Y and σ|∆k is the constant map with value X, and for each
p : [k + 1] → [0, 1] satisfies p(0) = p(k + 1) = 1, there is a corresponding point σ[[p]] ∈ N . Moreover, N is
obtained by gluing together these cubes using the following relations:

(R1′) Let σ : ∆k+1 → D be such that σ(k + 1) = Y and σ|∆k is constant at X, let 1 ≤ i ≤ k, and let
p : [k + 1]→ [0, 1] be such that p(0) = p(k + 1) = 1, p(i) = 0. Then σ[[p]] = (diσ)[[q]] ∈ N , where

q(j) =

{
p(j) if j < i

p(j + 1) if j ≥ i
.

(R2′) Let σ : ∆k+1 → D be such that σ(k + 1) = Y and σ|∆k is constant at X, let 0 ≤ i ≤ k, and let
p, p′ : [k + 1] → [0, 1] be such that p(0) = p(i) = p(k + 1) = 1, p′(0) = p′(i) = p′(k + 1) = 1. If
p(j) = p′(j) for all i ≤ j ≤ k + 1, then σ[[p]] = σ[[p′]].

(R3′) Let σ : ∆k+1 → D be such that σ(k + 1) = Y and σ|∆k is constant at X, let 0 ≤ i ≤ k, and let
p : [k + 2]→ [0, 1] be such that p(0) = p(k + 2) = 1. Then (siσ)[[p]] = σ[[q]], where

q(j) =


p(j) if j < i

sup{p(i), p(i+ 1)} if j = i

p(j + 1) if j > i

.

Our objective is to prove that the map |f | : N →M is a homotopy equivalence of topological spaces. In
terms of the above presentations, the map |f | is given by

σ[[p]] 7→ σ[p].

Once again, the relation (R3′) is actually somewhat inconvenient for us. We therefore define a Ñ to be
the topological space obtained using the above presentation, but omitting the relations of the form (R3′).
By definition, there is a canonical projection map Ñ → N . Repeating the argument of Lemma 1.3.3.3, we
deduce the following:

Lemma 1.3.3.4. The projection Ñ → N is a homotopy equivalence of topological spaces.

We also observe that Ñ can be identified with a closed subspace of M̃ (even when X = Y ). We now have
a commutative diagram

Ñ
� � //

��

M̃

��
N

|f | // M

of topological spaces, in which the vertical arrows are weak homotopy equivalences. In view of Lemmas
1.3.3.3 and 1.3.3.4, we are reduced to proving the following assertion:

Proposition 1.3.3.5. Let D be an ∞-category containing a pair of objects X and Y , and let Ñ ⊆ M̃ be
defined as above. Then Ñ is a deformation retract of M̃ .

Proof. Choose a composition law on D (Proposition 1.3.1.2). Let 0 < i ≤ n, and let σ : ∆n → D be a
simplex such that σ(n) = Y , and σ|∆{0,...,i−1} is constant at the vertex X. We will define a new simplex
Ai(σ) ∈ Dn+1. Our construction will possess the following properties:

(i) If i = 1, then d0Ai(σ) = σ|∆{1,...,n} ◦ σ|∆{0,1}.
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(ii) If i = n, then Ai(σ) = sn−1σ.

(iii) If σ|∆{0,...,i} is constant at the vertex x, then Ai(σ) = siσ.

(iv) If i > 1 and j < i, then djAi(σ) = Ai−1(djσ).

(v) If j = i, then djAi(σ) = σ.

(vi) If i+ 1 < j ≤ n+ 1, djAi(σ) = Ai(dj−1σ).

The construction proceeds by induction on i ≥ 1. For a fixed value of i, we work by induction on n ≥ i.
When n = i, we set Ai(σ) = sn−1σ in accordance with condition (ii). For n > i, we note that the desired
properties uniquely prescribe the restriction of Ai(σ) to the horn Λn+1

i+1 . Since D is an ∞-category, this horn
may be filled to an (n + 1)-simplex which permits us to define Ai(σ). Finally, we note that if σ|∆{0,...,i} is
constant at the vertex X, then we may choose this filler to be siσ and thereby satisfy condition (iii).

Now choose an arbitrary σ : ∆n → D with σ(0) = X, σ(n) = Y . We will define a sequence of
simplices (σ0, . . . , σn−1) in Dn and another sequence (τ1, . . . , τn−1) ∈ Dn+1. Let σ0 = σ. For i > 0, we set
τi = Ai(σi−1) and σi = di+1τi. Let p : [n] → [0, 1] satisfy p(0) = p(n) = 1. We will constructing a path
in M̃ of length

∑
0<i<n 2p(i) which begins at the point σ̃[p] and ends at the point σ̃n−1[p]. This path is

obtained by concatenating a sequence of paths hi : [0, 2p(i)] which join σ̃i−1[p] to σ̃i[p]. More specifically, we
set hi(t) = τ̃i[qt], where

qt(j) =



p(j) if j < i or j > i+ 1
t if j = i and 0 ≤ t ≤ p(i)
p(i) if j = i and p(i) ≤ t ≤ 2p(i)
p(i) if j = i+ 1 and 0 ≤ t ≤ p(i)
2p(i)− t if j = i+ 1 and p(i) ≤ t ≤ 2p(i)

.

One readily checks that this path depends continuously on p and is independent of the representation of
the point σ̃[p] ∈ M̃ . Consequently, we obtain a homotopy from the identity map of M̃ to itself to a map
M̃ → Ñ . Moreover, condition (iii) ensures that this homotopy leaves Ñ setwise fixed. It follows that Ñ is
a deformation retract of M̃ , as desired.

1.3.4 The Joyal Model Structure

The category of simplicial sets can be endowed with a model structure for which the fibrant objects are
precisely the ∞-categories. The original construction of this model structure is due to Joyal, who uses
purely combinatorial arguments ([31]). In this section, we will exploit the relationship between simplicial
categories and ∞-categories to give an alternative description of this model structure. Our discussion will
make use of a model structure on the category Cat∆ of simplicial categories, which we review in §A.3.1.

Theorem 1.3.4.1. There exists a perfect model structure on the category of simplicial sets with the following
properties:

(C) A map p : S → S′ of simplicial sets is a cofibration if and only if it is a monomorphism.

(W ) A map p : S → S′ is a categorical equivalence if and only if the induced simplicial functor C[S]→ C[S′]
is an equivalence of simplicial categories.

Moreover, the adjoint functors (C,N) determine a Quillen equivalence between Set∆ (with the model
structure defined above) and Cat∆.

Our proof will make use of the theory of inner anodyne maps of simplicial sets, which we will study in
§2. We first establish a simple Lemma.
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Lemma 1.3.4.2. Every inner anodyne map f : A→ B of simplicial sets is a categorical equivalence.

Proof. It will suffice to prove that if f is inner anodyne, then the associated map C[f ] is a trivial cofibration of
simplicial categories. The collection of all morphisms f for which this statement holds is saturated (Definition
A.1.2.2). Consequently, we may assume that f is an inner horn inclusion Λni ⊆ ∆n, 0 < i < n. We now
explicitly describe the map C[f ]:

• The objects of C[∂ Λni ] are the objects of C[∆n]: namely, elements of the linearly ordered set [n] =
{0, . . . , n}.

• For 0 ≤ j ≤ k ≤ n, the simplicial set MapC[Λn
i ](j, k) is equal to MapC[∆n](j, k) unless j = 0 and k = n.

In the latter case,
MapC[Λn

i ](j, k) = K ⊆ (∆1)n−1 ' MapC[∆n](j, k),

where K is the simplicial subset of the cube (∆1)n−1 obtained by removing the interior and a single
face.

We observe that C[f ] is a pushout of the inclusion EK ⊆ E(∆1)n−1 (see §A.3.1 for an explanation of this
notation). It now suffices to observe that the inclusion K ⊆ (∆1)n−1 is trivial fibration of simplicial sets
(with respect to the usual model structure on Set∆).

Proof of Theorem 1.3.4.1. We first show that C carries cofibrations of simplicial sets to cofibrations of simpli-
cial categories. Since the class of all cofibrations of simplicial sets is generated by the inclusions ∂∆n ⊆ ∆n,
it suffices to show that each map C[∂∆n]→ C[∆n] is a cofibration of simplicial categories. If n = 0, then the
inclusion C[∂∆n] ⊆ C[∆n] is isomorphic to the inclusion ∅ ⊆ ∗ of simplicial categories, which is a cofibration.
In the case where n > 0, we make use of the following explicit description of C[∂∆n] as a subcategory of
C[∆n]:

• The objects of C[∂∆n] are the objects of C[∆n]: namely, elements of the linearly ordered set [n] =
{0, . . . , n}.

• For 0 ≤ j ≤ k ≤ n, the simplicial set HomC[∂∆n](j, k) is equal to HomC[∆n](j, k) unless j = 0 and
k = n. In the latter case, HomC[∂∆n](j, k) consists of the boundary of the cube

(∆1)n−1 ' HomC[∆n](j, k).

In particular, the inclusion C[∂∆n] ⊆ C[∆n] is a pushout of the inclusion E∂(∆1)n−1 ⊆ E(∆1)n−1 , which is
a cofibration of simplicial categories (see §A.3.1 for an explanation of our notation).

We now declare that a map p : S → S′ of simplicial sets is a categorical fibration if it has the right lifting
property with respect to all maps which are cofibrations and categorical equivalences. We now claim that
the cofibrations, categorical equivalences, and categorical fibrations determine a perfect model structure on
Set∆. To prove this, it will suffice to show that the hypotheses of Proposition A.2.9.5 are satisfied:

(1) The class of categorical equivalences in Set∆ is perfect. This follows from Corollary A.2.9.4, since
the functor C preserves filtered colimits, and the class of equivalences between simplicial categories is
perfect.

(2) The class of categorical equivalences is stable under pushouts by cofibrations. Since C preserves cofi-
brations, this follows immediately from the left-properness of Cat∆.

(3) A map of simplicial sets which has the right lifting property with respect to all cofibrations is a
categorical equivalence. In other words, we must show that if p : S → S′ is a trivial fibration of
simplicial sets, then the induced functor C[p] : C[S]→ C[S′] is an equivalence of simplicial categories.
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Since p is a trivial fibration, it admits a section s : S′ → S. It is clear that C[p] ◦ C[s] is the identity; it
therefore suffices to show that

C[s] ◦ C[p] : C[S]→ C[S]

is homotopic to the identity.

Let K denote the simplicial set MapS′(S, S). Then K is a contractible Kan complex, containing points
x and y which classify s◦p and idS . We note the existence of a natural “evaluation map” e : K×S → S,
such that s ◦ p = e ◦ ({x} × idS), idS = e ◦ ({y} × idS). It therefore suffices to show that the functor
C carries {x} × idS and {y} × idS into homotopic morphisms. Since both of these maps section the
projection K × S → S, it suffices to show that the projection C[K × S] → C[S] is an equivalence of
simplicial categories. Replacing S by S × K and S′ by S, we are reduced to the special case where
S = S′ ×K and K is a contractible Kan complex.

By the small object argument, we can find an inner anodyne map S′ → V , where V is an ∞-category.
The corresponding map S′ × K → V × K is also inner anodyne (Proposition 2.2.2.1), so the maps
C[S′] → C[V ] and C[S′ × K] → C[V × K] are both trivial cofibrations (Lemma 1.3.4.2). It follows
that we are free to replace S′ by V and S by V × K. In other words, we may suppose that S′ is
an ∞-category (and now we will have no further need of the assumption that S is isomorphic to the
product S′ ×K).

Since p is surjective on vertices, it is clear that C[p] is essentially surjective. It therefore suffices to
show that for every pair of vertices x, y ∈ S0, the induced map of simplicial sets MapC[S](x, y) →
MapC[S′](p(x), p(y)) is a weak homotopy equivalence. Using Propositions 1.3.3.1 and 1.3.2.8, it suffices
to show that the map HomR

S (x, y) → HomR
S′(px, py) is a weak homotopy equivalence. This map is

obviously a trivial fibration if p is a trivial fibration.

By construction, the functor C preserves weak equivalences. We verified above that C preserves cofibra-
tions as well. It follows that the adjoint functors (C,N) determine a Quillen adjunction

Set∆
C // Cat∆
N
oo .

To complete the proof, we wish to show that this Quillen adjunction is a Quillen equivalence. According to
Proposition A.2.5.1, we must show that for every simplicial set S and every fibrant simplicial category C, a
map

u : S → N(C)

is a categorical equivalence if and only if the adjoint map

v : C[S]→ C

is an equivalence of simplicial categories. We observe that v factors as a composition

C[S]
C[u]→ C[N(C)] w→ C .

By definition, u is a categorical equivalence if and only if C[u] is an equivalence of simplicial categories.
We now conclude by observing that the counit map w is an equivalence of simplicial categories (Theorem
1.3.0.1).

We now establish a few pleasant properties enjoyed by the Joyal model structure on Set∆. We first note
that every object of Set∆ is cofibrant; in particular, the Joyal model structure is left proper (Proposition
A.2.3.2).

Remark 1.3.4.3. The Joyal model structure is not right proper. To see this, we note that the inclusion
Λ2

1 ⊆ ∆2 is a categorical equivalence, but it does not remain so after pulling back via the fibration ∆{0,2} ⊆
∆2.
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For the next few results, we will need the notion of an inner anodyne map of simplicial sets. We refer
the reader to §2 for a definition and the basic properties of this notion.

Corollary 1.3.4.4. Let f : A → B be a categorical equivalence of simplicial sets, and K an arbitrary
simplicial set. Then the induced map A×K → B ×K is a categorical equivalence.

Proof. Choose an inner anodyne map B → Q, where Q is an∞-category. Then B×K → Q×K is also inner
anodyne, hence a categorical equivalence (Lemma 1.3.4.2). It therefore suffices to prove that A×K → Q×K
is a categorical equivalence. In other words, we may suppose to begin with that B is an ∞-category.

Now choose a factorization A
f ′→ R

f ′′→ B where f ′ is an inner anodyne map and f ′′ is an inner fibration.
Since B is an ∞-category, R is an ∞-category. The map A×K → R×K is inner anodyne (since f ′ is), and
therefore a categorical equivalence; consequently, it suffices to show that R ×K → B ×K is a categorical
equivalence. In other words, we may reduce to the case where A is also an ∞-category.

Choose an inner anodyne mapK → S, where S is an∞-category. Then A×K → A×S and B×K → B×S
are both inner anodyne, and therefore categorical equivalences. Thus, to prove that A ×K → B ×K is a
categorical equivalence, it suffices to show that A× S → B × S is a categorical equivalence. In other words,
we may suppose that K is an ∞-category.

Since A and K are ∞-categories, h(A×K ) ' hA× hK ; similarly h(B ×K ) ' hB × hK . It follows that
A×K → B×K is essentially surjective, provided that f is essentially surjective. Furthermore, for any pair
of vertices (a, k), (a′, k′) ∈ (A×K)0, we have

HomR
A×K((a, k), (a′, k′)) ' HomR

A(a, a′)×HomR
K(k, k′)

HomR
B×K((f(a), k), (f(a′), k′)) ' HomR

B(f(a), f(a′))×HomR
K(k, k′).

It follows that A × K → B × K is fully faithful, provided that f is fully faithful, which completes the
proof.

Remark 1.3.4.5. Since every inner anodyne map is a categorical equivalence, it follows that every categor-
ical fibration p : X → S is a inner fibration (see Definition 2.0.0.3). The converse is false in general; however,
it is true when S is a point. In other words, the fibrant objects for the Joyal model structure on Set∆ are
precisely the ∞-categories. The proof will be given in §2.3.6, as Theorem 2.3.6.4. We will assume this result
for the remainder of the section. No circularity will result from this, since the proof of Theorem 2.3.6.4 will
not use any of the results proven below.

The functor C[•] does not generally commute with products. However, Corollary 1.3.4.4 implies that C
commutes with products in the following weak sense:

Corollary 1.3.4.6. Let S and S′ be simplicial sets. The natural map

C[S × S′]→ C[S]× C[S′]

is an equivalence of simplicial categories.

Proof. Suppose first that there are fibrant simplicial categories C, C′ with S = N(C), S′ = N(C′). In this
case, we have a diagram

C[S × S′] f→ C[S]× C[S′]
g→ C×C′ .

By the two-out-of-three property, it suffices to show that g and g◦f are equivalences. Both of these assertions
follow immediately from the fact that the counit map C[N(D)]→ D is an equivalence for any fibrant simplicial
category D (Theorem 1.3.4.1).

In the general case, we may choose categorical equivalences S → T , S′ → T ′, where T and T ′ are nerves
of fibrant simplicial categories. Since S × S′ → T × T ′ is a categorical equivalence, we reduce to the case
treated above.
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Let K be a fixed simplicial set, and let C be a simplicial set which is fibrant with respect to the Joyal
model structure. Then C has the extension property with respect to all inner anodyne maps, and is therefore
a∞-category. It follows that the Fun(K,C) is also an∞-category. We might call two morphisms f, g : K → C

homotopic if they are equivalent when viewed as objects of Fun(K,C). On the other hand, the general theory
of model categories furnishes another notion of homotopy: f and g are left homotopic if the map

f
∐

g : K
∐

K → C

can be extended over a mapping cylinder I for K.

Proposition 1.3.4.7. Let C be a ∞-category and K an arbitrary simplicial set. A pair of morphisms
f, g : K → C are homotopic if and only if they are left-homotopic.

Proof. Choose a contractible Kan complex S containing a pair of distinct vertices, x and y. We note that
the inclusion

K
∐

K ' K × {x, y} ⊆ K × S

exhibits K × S as a mapping cylinder for K. It follows that f and g are left homotopic if and only if the
map f

∐
g : K

∐
K → C admits an extension to K × S. In other words, f and g are left homotopic if and

only if there exists a map h : S → CK such that h(x) = f and h(y) = g. We note that any such map factors
through Z, where Z ⊆ Fun(K,C) is the largest Kan complex contained in CK . Now, by classical homotopy
theory, the map h exists if and only if f and g belong to the same path component of Z. It is clear that this
holds if and only if f and g are equivalent when viewed as objects of the ∞-category Fun(K,C).

We are now in a position to prove Proposition 1.2.7.3, which was asserted without proof in §1.2.7. We
first recall the statement.

Proposition. Let K be an arbitrary simplicial set.

(1) For every ∞-category C, the simplicial set Fun(K,C) is an ∞-category.

(2) Let C→ D be a categorical equivalence of∞-categories. Then the induced map Fun(K,C)→ Fun(K,D)
is a categorical equivalence.

(3) Let C be an ∞-category, and K → K ′ a categorical equivalence of simplicial sets. Then the induced
map Fun(K ′,C)→ Fun(K,C) is a categorical equivalence.

Proof. We first prove (1). To show that Fun(K,C) is an ∞-category, it suffices to show that it has the
extension property with respect to every inner anodyne inclusion A ⊆ B. This is equivalent to the assertion
that C has the right lifting property with respect to the inclusion A×K ⊆ B ×K. But C is an ∞-category
and A×K ⊆ B ×K is inner anodyne (Corollary 2.2.2.4).

Let hSet∆ denote the homotopy category of Set∆, taken with respect to the Joyal model structure. For
each simplicial set X, we let [X] denote the same simplicial set, considered as an object of hSet∆. For every
pair of objects X,Y ∈ Set∆, [X × Y ] is a product for [X] and [Y ] in hSet∆. This is a general fact when X
and Y are fibrant; in the general case, we choose fibrant replacements X → X ′, Y → Y ′, and apply the fact
that the canonical map X × Y → X ′ × Y ′ is a categorical equivalence (Proposition 1.3.4.7).

If C is an ∞-category, then C is a fibrant object of Set∆ (Theorem 2.3.6.4). Proposition 1.3.4.7 allows us
to identify HomhSet∆([X], [C]) with the set of equivalence classes of objects in the ∞-category Fun(X,C). In
particular, we have a canonical bijections

HomhSet∆([X]× [K], [C]) ' HomhSet∆([X ×K], [C]) ' HomhSet∆([X], [Fun(K,C)]).

It follows that [Fun(K,C)] is determined up to canonical isomorphism by [K] and [C] (more precisely, it is
an exponential [C][K] in the homotopy category hSet∆), which proves (2) and (3).
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Our description of the Joyal model structure on Set∆ is different from the definition given in [31]. Namely,
Joyal defines a map f : A→ B to be a weak categorical equivalence if, for every ∞-category C, the induced
map

hFun(B ,C)→ hFun(A,C)

is an equivalence (of ordinary categories). To prove that our definition agrees with his, it will suffice to prove
the following.

Proposition 1.3.4.8. Let f : A→ B be a map of simplicial sets. Then f is a categorical equivalence if and
only if it is a weak categorical equivalence.

Proof. Suppose first that f is a categorical equivalence. If C is an arbitrary ∞-category, Proposition 1.2.7.3
implies that the induced map Fun(B,C) → Fun(A,C) is a categorical equivalence, so that hFun(B ,C) →
hFun(A,C) is an equivalence of categories. This proves that f is a weak categorical equivalence.

Conversely, suppose that f is a weak categorical equivalence. We wish to show that f induces an
isomorphism in the homotopy category of Set∆ with respect to the Joyal model structure. It will suffice
to show that for any fibrant object C, f induces a bijection [B,C] → [A,C], where [X,C] denotes the set
of homotopy classes of maps from X to C. By Proposition 1.3.4.7, [X,C] may be identified with the set
of isomorphism classes of objects in the category hFun(X ,C). By assumption, f induces an equivalence of
categories hFun(B ,C)→ hFun(A,C), and therefore a bijection on isomorphism classes of objects.

Remark 1.3.4.9. The proof of Proposition 1.2.7.3 makes use of Theorem 2.3.6.4, which asserts that the
(categorically) fibrant objects of Set∆ are precisely the ∞-categories. Joyal proves the analogous assertion
for his model structure in [31]. We remark that one cannot formally deduce Theorem 2.3.6.4 from Joyal’s
result, since we need Theorem 2.3.6.4 to prove that Joyal’s model structure coincides with the one we have
defined above. On the other hand, our approach does give a new proof of Joyal’s theorem.

Remark 1.3.4.10. Proposition 1.3.4.8 permits us to define the Joyal model structure without reference to
the theory of simplicial categories (this is Joyal’s original point of view [31]). Our approach is less elegant,
but allows us to easily compare the theory of∞-categories with other models of higher category theory, such
as simplicial categories. There is another approach to obtaining comparison results, due to Toën. In [50], he
shows that if C is a model category equipped with a cosimplicial object C• satisfying certain conditions, then
C is (canonically) Quillen equivalent to Rezk’s category of complete Segal spaces. Toën’s theorem applies in
particular when C is the category of simplicial sets, and C• is the “standard simplex” Cn = ∆n. In fact,
Set∆ is in some sense universal with respect to this property, since it is generated by C• under colimits and
the class of categorical equivalences is dictated by Toën’s axioms. We refer the reader to [50] for details.
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Chapter 2

Fibrations of Simplicial Sets

Many classes of morphisms which play an important role in the homotopy theory of simplicial sets can be
characterized by lifting properties (see §A.1.2).

Example 2.0.0.1. A morphism p : X → S of simplicial sets which has the right lifting property with respect
to every horn inclusion Λni ⊆ ∆n is called a Kan fibration. A morphism i : A→ B which has the left lifting
property with respect to every Kan fibration is said to be anodyne.

Example 2.0.0.2. A morphism p : X → S of simplicial sets which has the right lifting property with
respect to every inclusion ∂∆n ⊆ ∆n is called a trivial fibration. A morphism i : A→ B has the left lifting
property with respect to every trivial Kan fibration if and only if it is a cofibration; that is, if and only if i
is a monomorphism of simplicial sets.

By definition, a simplicial set S is a ∞-category if it has the extension property with respect to all horn
inclusions Λni ⊆ ∆n with 0 < i < n. As in classical homotopy theory, it is convenient to introduce a relative
version of this condition.

Definition 2.0.0.3 (Joyal). A morphism f : X → S of simplicial sets is

• a left fibration if f has the right lifting property with respect to all horn inclusions Λni ⊆ ∆n, 0 ≤ i < n.

• a right fibration if f has the right lifting property with respect to all horn inclusions Λni ⊆ ∆n, 0 < i ≤ n.

• an inner fibration if f has the right lifting property with respect to all horn inclusions Λni ⊆ ∆n,
0 < i < n.

A morphism of simplicial sets i : A→ B is

• left anodyne if i has the left lifting property with respect to all left fibrations.

• right anodyne if i has the left lifting property with respect to all right fibrations.

• inner anodyne if i has the left lifting property with respect to all inner fibrations.

Remark 2.0.0.4. Joyal uses the terms mid-fibration and mid-anodyne morphism for what we have called
inner fibrations and inner anodyne morphisms.

The purpose of this chapter is to study the notions of fibration defined above, which are basic tools in the
theory of∞-categories. In §2.1, we study the theory of right (left) fibrations p : X → S, which can be viewed
as the ∞-categorical analogue of categories (co)fibered in groupoids over S. There is also an analogue of the
more general theory of (co)fibered categories (not necessarily in groupoids): the theory of (co)Cartesian
fibrations, which we will introduce in §2.3. Cartesian and coCartesian fibrations are both examples of inner
fibrations, which we will study in §2.2.
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Remark 2.0.0.5. To help orient the reader, we summarize the relationship between many of the classes
of fibrations which we will study in this book. If f : X → S is a map of simplicial sets, then we have the
following implications:

f is a trivial fibration

��
f is a Kan fibration

'/WWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWW

ow ggggggggggggggggggg

ggggggggggggggggggg

f is a left fibration

��

f is a right fibration

��
f is a coCartesian fibration

'/WWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWW
f is a Cartesian fibration

ow ggggggggggggggggggg

ggggggggggggggggggg

f is a categorical fibration

��
f is an inner fibration.

In general, none of these implications is reversible.

Remark 2.0.0.6. The small object argument (Proposition A.1.2.5) shows that every map X → Z of
simplicial sets admits a factorization

X
p→ Y

q→ Z,

where p is anodyne (left anodyne, right anodyne, inner anodyne, a cofibration) and q is a Kan fibration (left
fibration, right fibration, inner fibration, trivial fibration).

Remark 2.0.0.7. The theory of left fibrations (left anodyne maps) is dual to the theory of right fibrations
(right anodyne maps): a map S → T is a left fibration (left anodyne map) if and only if the induced map
Sop → T op is a right fibration (right anodyne map). Consequently, we will generally confine our remarks in
§2.1 to the case of left fibrations; the analogous statements for right fibrations will follow by duality.
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2.1 Left Fibrations

In this section, we will study the class of left fibrations between simplicial sets. We begin in §2.1.1 with a
review of some classical category theory: namely, the theory of categories cofibered in groupoids (over another
category). We will see that the theory of left fibrations is a natural∞-categorical generalization of this idea.
In §2.1.2 we will show that the class of left fibrations is stable under various important constructions, such
as the formation of slice ∞-categories.

It follows immediately from the definition that every Kan fibration of simplicial sets is a left fibration.
The converse is false in general. However, it is possible to give a relatively simple criterion for testing whether
or not a left fibration f : X → S is a Kan fibration. We will establish this criterion in §2.1.3 and deduce
some of its consequences.

The classical theory of Kan fibrations has a natural interpretation in the language of model categories:
a map p : X → S is a Kan fibration if and only if X is a fibrant object of (Set∆)/S , where the category
(Set∆)/S is equipped with its usual model structure. There is a similar characterization of left fibrations:
a map p : X → S is a left fibration if and only if X is a fibrant object of (Set∆)/S with respect to certain
model structure, which we will refer to as the covariant model structure. We will define the covariant model
structure in §2.1.4, and give an overview of its basic properties (postponing some of the proofs until §3).

2.1.1 Left Fibrations in Classical Category Theory

We commence our study of left fibrations by recalling the following definition from classical category theory:

Definition 2.1.1.1. Let F : C→ D be a functor between categories. We say that C is cofibered in groupoids
over D if the following conditions are satisfied:

(1) For every object C ∈ C and every morphism η : F (C)→ D in D, there exists a morphism η̃ : C → D̃
such that F (η̃) = η.

(2) For every morphism η : C → C ′ in C and every object C ′′ ∈ C, the map

HomC(C ′, C ′′)→ HomC(C,C ′′)×HomD(F (C),F (C′′)) HomD(F (C ′), F (C ′′))

is bijective.

The theory of left fibrations should be regarded as an ∞-categorical generalization of Definition 2.1.1.1.
As evidence for this assertion, we offer the following:

Proposition 2.1.1.2. Let F : C→ D be a functor between categories. Then C is cofibered in groupoids over
D if and only if the induced map N(F ) : N(C)→ N(D) is a left fibration of simplicial sets.

Proof. Proposition 1.1.2.2 implies that N(F ) is an inner fibration. It follows that N(F ) is a left fibration if
and only if it has the right lifting property with respect to Λn0 ⊆ ∆n for all n > 0. When n = 1, the relevant
lifting property is equivalent to (1) of Definition 2.1.1.1. When n = 2 (n = 3) the relevant lifting property
is equivalent to the surjectivity (injectivity) of the map described in (2). For n > 3, the relevant lifting
property is automatic (since a map Λn0 → S extends uniquely to ∆n when S is isomorphic to the nerve of a
category).

In classical category theory, there is an alternative way to understand a category C which is cofibered in
groupoids over another category D. Namely, for each object D ∈ D, the inverse image CD = C×D{D} is a
groupoid, which depends covariantly onD. Our next goal is to establish a similar picture in the∞-categorical
setting.

We begin our analysis of a general left fibration p : X → S by considering the situation where S is a
point. In this case, Proposition 1.2.5.1 asserts that p is a left fibration if and only if X is a Kan complex.
Since the class of left fibrations is stable under pullback, we deduce that for any left fibration p : X → S and
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any vertex s of S, the fiber Xs = X ×S {s} is a Kan complex. Moreover, these Kan complexes are related
to one another. More precisely, suppose that f : s → s′ is an edge of the simplicial set S and consider the
inclusion i : Xs ' Xs × {0} ⊆ Xs ×∆1. In §2.1.2, we will prove that i is left anodyne (Corollary 2.1.2.6). It
follows that we can solve the lifting problem

{0} ×Xs� _

��

� � // X

p

��
∆1 ×Xs

66llllllll
// ∆1

f // S.

Restricting the dotted arrow to {1} ×Xs, we obtain a map f! : Xs → Xs′ . Of course, f! is not unique, but
it is uniquely determined up to homotopy.

Lemma 2.1.1.3. Let q : X → S be a left fibration of simplicial sets. The assignment

s ∈ S0 7→ Xs

f ∈ S1 7→ f!

determines a (covariant) functor from the homotopy category hS into the homotopy category H of spaces.

Proof. Let f : s→ s′ be an edge of S. We note the following characterization of the morphism f! in H. Let K
be any simplicial set, and suppose given homotopy classes of maps η ∈ HomH(K,Xs), η′ ∈ HomH(K,Xs′).
Then η′ = f! ◦ η if and only if there exists a map p : K×∆1 → X such that q ◦ p is given by the composition

K ×∆1 → ∆1 f→ S,

η is the homotopy class of p|K × {0}, and η′ is the homotopy class of p|K × {1}.
Now consider any 2-simplex σ : ∆2 → S, which we will depict as

v
g

  B
BB

BB
BB

B

u

f
>>~~~~~~~ h // w.

We note that the inclusion Xu × {0} ⊆ Xu × ∆2 is left-anodyne (Corollary 2.1.2.6). Consequently there
exists a map p : Xu ×∆2 → X such that p|Xu × {0} is the inclusion Xu ⊆ X and q ◦ p is the composition
Xu × ∆2 → ∆2 σ→ S. Then f! ' p|Xu × {1}, h! = p|Xu × {2}, and the map p|Xu × ∆{1,2} verifies the
equation

h! = g! ◦ f!
in HomH(Xu, Xw).

We can summarize the situation informally as follows. Fix a simplicial set S. To give a left fibration
q : X → S, one must specify a Kan complex Xs for each “object” of S, a map f! : Xs → Xs′ for each
“morphism” f : s→ s′ of S, and “coherence data” for these morphisms for each higher-dimensional simplex
of S. In other words, giving a left fibration ought to be more or less the same thing as giving a functor from
S to the ∞-category S of spaces. In §2.1.4, we will formulate a precise assertion to this effect (Theorem
2.1.4.7).

We close this section by establishing two simple properties of left fibrations, which were already used in
the proof of Proposition 1.2.4.3:

Proposition 2.1.1.4. Let p : C→ D be a left fibration of ∞-categories, and let f : X → Y be a morphism
in C such that p(f) is an equivalence in D. Then f is an equivalence in C.
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Proof. Let g be a homotopy inverse to p(f) in D, so that there exists a 2-simplex of D depicted as follows:

p(Y )
g

##G
GGGGGGG

p(X)

p(f)
;;xxxxxxxx idp(X) // p(X).

Since p is a left fibration, we can lift this to a diagram

Y
g

  @
@@

@@
@@

X

f
>>~~~~~~~ idX // X

in C. It follows that g◦f ' idX , so that f admits a left homotopy inverse. Since p(g) = g is an equivalence in
D, the same argument proves that g has a left homotopy inverse. This left homotopy inverse must coincide
with f , since f is a right homotopy inverse to g. Thus f and g are homotopy inverse in the ∞-category C,
so that f is an equivalence as desired.

Proposition 2.1.1.5. Let p : C → D be a left fibration of ∞-categories, let Y be an object of C, and let
f : X → p(Y ) be an equivalence in D. Then there exists a morphism f : X → Y in C such that p(f) = f
(automatically an equivalence, in view of Proposition 2.1.1.4).

Proof. Let g : p(Y )→ X be a homotopy inverse to f in C. Since p is a left fibration, there exists a morphism
g : Y → X such that g = p(g). Since f and g are homotopy inverse to one another, there exists a 2-simplex
of D which we can depict as follows:

p(X)
f

##G
GGGGGGG

p(Y )

p(g)
;;xxxxxxxx idp(Y ) // p(Y ).

Applying the assumption that p is a left fibration once more, we can lift this to a diagram

X
f

  @
@@

@@
@@

Y

g
??~~~~~~~~ idY // Y,

which proves the existence of f .

2.1.2 Stability Properties of Left Fibrations

The purpose of this section is to show that left fibrations of simplicial sets exist in abundance. Our main
results are Proposition 2.1.2.2 (which is our basic source of examples for left fibrations) and Corollary 2.1.2.8
(which asserts that left fibrations are stable under the formation of functor categories).

Let C be an ∞-category, and let S denote the ∞-category of spaces. One can think of a functor from C

to S as a “cosheaf of spaces” on C. By analogy with ordinary category theory, one might expect that the
basic example of such a cosheaf would be the cosheaf corepresented by an object C of C; roughly speaking
this should be given by the functor

D 7→ MapC(C,D).
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As we saw in §2.1.1, it is natural to guess that such a functor can be encoded by a left fibration C̃ → C.
There is a natural candidate for C̃: the undercategory CC/. Note that the fiber of the map

f : CC/ → C

over the object D ∈ C is the Kan complex HomL
C(C,D). We will show in a moment that f is a left fibration.

First, we need a lemma.

Lemma 2.1.2.1 (Joyal [31]). Let f : A0 ⊆ A and g : B0 ⊆ B be inclusions of simplicial sets. Suppose either
that f is right anodyne, or that g is left anodyne. Then the induced inclusion

h : (A0 ? B)
∐

A0?B0

(A ? B0) ⊆ A ? B

is inner anodyne.

Proof. We will prove that h is inner anodyne whenever f is right anodyne; the other assertion follows by a
dual argument.

Consider the class of all morphisms f for which the conclusion of the lemma holds (for any inclusion g).
This class of morphisms is saturated; to prove that it contains all right-anodyne morphisms, it suffices to
show that it contains each of the inclusions f : Λnj ⊆ ∆n for 0 < j ≤ n. We may therefore assume that f is
of this form.

Now consider the collection of all inclusions g for which h is inner anodyne (where f is now fixed).
This class of morphisms is also saturated; to prove that it contains all inclusions, it suffices to show that
the lemma holds when g is of the form ∂∆m ⊆ ∆m. In this case, h can be identified with the inclusion
Λn+m+1
j ⊆ ∆n+m+1, which is inner anodyne because 0 < j ≤ n < n+m+ 1.

Proposition 2.1.2.2 (Joyal). Suppose given a diagram of simplicial sets

K0 ⊆ K
p→ X

q→ S

where q is an inner fibration. Let r = q ◦ p : K → S, p0 = p|K0, and r0 = r|K0. Then the induced map

φ : Xp/ → Xp0/ ×Sr0/
Sr/

is a left fibration.

Proof. After unwinding the definitions, this follows immediately from Lemma 2.1.2.1.

We are now in a position to deduce half of Proposition 1.2.9.3:

Corollary 2.1.2.3 (Joyal). Let C be an ∞-category and p : K → C an arbitrary diagram. Then the
projection Cp/ → C is a left fibration. In particular, Cp/ is itself an ∞-category.

Proof. Apply Proposition 2.1.2.2 in the case where X = C, S = ∗, A = ∅, B = K.

We can also give the proof of Proposition 1.2.4.3, which was stated without proof in §1.2.4.

Proposition. Let C be an ∞-category, and φ : ∆1 → C a morphism of C. Then φ is an equivalence if and
only if, for every n ≥ 2 and every map f0 : Λn0 → C such that f0|∆{0,1} = φ, there exists an extension of f0
to ∆n.

Proof. Suppose first that φ is an equivalence, and let f0 be as above. To find the desired extension of f0, we
must produce the dotted arrow in the associated diagram

{0}� _

��

// C/∆n−2

q

��
∆1

φ′ //

::u
u

u
u

u
C/ ∂∆n−2 .
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The projection map p : C/ ∂∆n−2 → C is a right fibration (Proposition 2.1.2.2). Since φ′ is a preimage of
φ under p, Proposition 2.1.1.4 implies that φ′ is an equivalence. Because q is a right fibration (Proposition
2.1.2.2 again), the existence of the dotted arrow follows from Proposition 2.1.1.5.

We now prove the converse. Let φ : X → Y be a morphism in C, and consider the map Λ2
0 → C indicated

in the following diagram:
Y

ψ

  A
A

A
A

X

φ
>>~~~~~~~ idX // X.

The assumed extension property ensures the existence of the dotted morphism ψ : Y → X and a 2-simplex
σ which verifies the identity ψ ◦ φ ' idX . We now consider the map

τ0 : Λ3
0

(•,s0φ,s1ψ,σ)−→ C .

Once again, our assumption allows us to extend τ0 to a 3-simplex τ : ∆3 → C, and the face d0τ verifies the
identity φ ◦ ψ = idY . It follows that ψ is a homotopy inverse to φ, so that φ is an equivalence in C.

For future reference, we record the following counterpart to Proposition 2.1.2.2:

Proposition 2.1.2.4 (Joyal). Let π : S → T be an inner fibration, p : B → S a map of simplicial sets,
A ⊆ B a right anodyne inclusion, p0 = p|A, p′ = π ◦ p, and p′0 = π ◦ p0 = p′|A. Then the induced map

φ : Sp/ → Sp0/ ×Tp′0/
Tp′/

is a trivial fibration.

Proof. Consider the class of all cofibrations i : A → B for which φ is a trivial fibration for every inner
fibration p : S → T . It is not difficult to see that this is a saturated class of morphisms; thus, it suffices to
consider the case where A = Λmi , B = ∆m, for 0 < i ≤ m.

Let q : ∂∆n → Sp/ be a map, and suppose given an extension of φ◦q to ∆n. We wish to find a compatible
extension of q. Unwinding the definitions, we are given a map

r : (∆m ? ∂∆n)
∐

Λm
i ?∂∆n

(Λmi ?∆n)→ S

which we wish to extend to ∆m ?∆n in a manner that is compatible with a given extension ∆m ?∆n → T
of the composite map π ◦ r. The existence of such an extension follows immediately from the assumption
that p has the right lifting property with respect to the horn inclusion Λn+m+1

i ⊆ ∆n+m+1.

The remainder of this section is devoted to the study of the behavior of left fibrations under exponenti-
ation. Our goal is to prove an assertion of the following form: if p : X → S is a left fibration of simplicial
sets, then so is the induced map XK → SK , for every simplicial set K (this is a special case of Corollary
2.1.2.8 below). This is an easy consequence of the following characterization of left anodyne maps, which is
due to Joyal:

Proposition 2.1.2.5 (Joyal [31]). The following collections of morphisms all generate the same saturated
class of morphisms of Set∆:

(1) The collection A1 of all horn inclusions Λni ⊆ ∆n, 0 ≤ i < n.

(2) The collection A2 of all inclusions

(∆m × {0})
∐

∂∆m×{0}

(∂∆m ×∆1) ⊆ ∆m ×∆1.
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(3) The collection A3 of all inclusions

(S′ × {0})
∐

S×{0}

(S ×∆1) ⊆ S′ ×∆1,

where S ⊆ S′.

Proof. Let S ⊆ S′ be as in (3). Working cell-by-cell on S′, we deduce that every morphism in A3 can be
obtained as an iterated pushout of morphisms belonging to A2. Conversely, A2 is contained in A3, which
proves that they generate the same saturated collection of morphisms.

To proceed with the proof, we must first introduce a bit of notation. The (n+ 1)-simplices of ∆n ×∆1

are indexed by order-preserving maps

[n+ 1]→ [0, . . . , n]× [0, 1].

We let σk denote the map

σk(m) =

{
(m, 0) if m ≤ k
(m− 1, 1) if m > k.

We will also denote by σk the corresponding (n + 1)-simplex of ∆n × ∆1. We note that {σk}0≤k≤n are
precisely the nondegenerate (n+ 1)-simplices of ∆n ×∆1.

We define a collection {X(k)}0≤k≤n+1 of simplicial subsets of ∆n × ∆1 by descending induction on k.
We begin by setting

X(n+ 1) = (∆n × {0})
∐

∂∆n×{0}

(∂∆n ×∆1).

Assuming that X(k+1) has been defined, we let X(k) ⊆ ∆n×∆1 be the union of X(k+1) and the simplex
σk (together with all the faces of σk). We note that this description exhibits X(k) as a pushout

X(k + 1)
∐

Λn+1
k

∆n+1,

and also that X(0) = ∆n ×∆1. It follows that each step in the chain of inclusions

X(n+ 1) ⊆ X(n) ⊆ . . . ⊆ X(1) ⊆ X(0)

is contained in the class of morphisms generated by A1, so that the inclusion X(n+ 1) ⊆ X(0) is generated
by A1.

To complete the proof, we show that each inclusion in A1 is a retract of an inclusion in A3. More
specifically, the inclusion Λni ⊆ ∆n is a retract of

(∆n × {0})
∐

Λn
i ×{0}

(Λni ×∆1) ⊆ ∆n ×∆1,

so long as 0 ≤ i < n. We will define the relevant maps

∆n j→ ∆n ×∆1 r→ ∆n

and leave it to the reader to verify that they are compatible with the relevant subobjects. The map j is
simply the inclusion ∆n ' ∆n × {1} ⊆ ∆n ×∆1. The map r is induced by a map of partially ordered sets,
which we will also denote by r. It may be described by the formulae

r(m, 0) =

{
m if m 6= i+ 1
i if m = i+ 1

r(m, 1) = m.
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Corollary 2.1.2.6. Let i : A → A′ be left-anodyne, and let j : B → B′ be a cofibration. Then the induced
map

(A×B′)
∐
A×B

(A′ ×B)→ A′ ×B′

is left-anodyne.

Proof. This follows immediately from Proposition 2.2.2.1, which characterizes the class of left-anodyne maps
as the class generated by A3 (which is stable under smash products with any cofibration).

Remark 2.1.2.7. A basic fact in the homotopy theory of simplicial sets is that the analogue of Corollary
2.1.2.6 holds also for the class of anodyne maps of simplicial sets. Since the class of anodyne maps is generated
(as a saturated class of morphisms) by the class of left anodyne maps and the class of right anodyne maps,
this classical fact follows from Corollary 2.1.2.6 (together with the dual assertion concerning right anodyne
maps).

Corollary 2.1.2.8. Let p : X → S be a left-fibration, and let i : A → B be any cofibration of simplicial
sets. Then the induced map q : XB → XA ×SA SB is a left fibration. If i is left anodyne, then q is a trivial
fibration.

Corollary 2.1.2.9 (Homotopy Extension Lifting Property). Let p : X → S be a map of simplicial sets.
Then p is a left fibration if and only if the induced map

X∆1
→ X{0} ×S{0} S∆1

is a trivial fibration of simplicial sets.

For future use, we record the following criterion for establishing that a morphism is left anodyne:

Proposition 2.1.2.10. Let p : X → S be a map of simplicial sets, let s : S → X be a section of p, and let
h ∈ HomS(X × ∆1, X) be a (fiberwise) simplicial homotopy from s ◦ p = h|X × {0} to idX = h|X × {1}.
Then s is left anodyne.

Proof. Consider a diagram

S

s

��

g // Y

q

��
X

g′ //

f
>>~

~
~

~
Z

where q is a left fibration. We must show that it is possible to find a map f rendering the diagram commu-
tative. Define F0 : (S ×∆1)

∐
S×{0}(X × {0}) to be the composition of g with the projection onto S. Now

consider the diagram

(S ×∆1)
∐
S×{0}(X × {0})

��

F0 // Y

q

��
X ×∆1

g′◦h //

F

33hhhhhhhhhhhhhh
Z.

Since q is a left fibration and the left vertical map is left anodyne, it is possible to supply the dotted arrow
F as indicated. Now we observe that f = F |X × {1} has the desired properties.
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2.1.3 A Characterization of Kan Fibrations

Let p : X → S be a left fibration of simplicial sets. As we saw in §2.1.1, p determines for each vertex s of S a
Kan complex Xs, and for each edge f : s→ s′ a map of Kan complexes f! : Xs → Xs′ (which is well-defined
up to homotopy). If p is a Kan fibration, then the same argument allows us to construct a map Xs′ → Xs,
which is a homotopy inverse to f!. The main goal of this section is to prove the converse: if every map f! is
a homotopy equivalence, then p is a Kan fibration (Proposition 2.1.3.4).

Lemma 2.1.3.1. Let p : S → T be a left fibration of simplicial sets. Suppose that S and T are Kan
complexes, and that p is a homotopy equivalence. Then p induces a surjection from S0 to T0.

Proof. Fix a vertex t ∈ T0. Since p is a homotopy equivalence, there exists a vertex s ∈ S0 and an edge e
joining p(s) to t. Since p is a left fibration, this edge lifts to an edge e′ : s→ s′ in S. Then p(s′) = t.

Lemma 2.1.3.2. Let p : S → T be a left fibration of simplicial sets. Suppose that T is a Kan complex.
Then p is a Kan fibration.

Proof. We note that the projection S → ∗, being a composition of left fibrations S → T and T → ∗, is a left
fibration, so that S is also a Kan complex. Let A ⊆ B be an anodyne inclusion of simplicial sets. We must
show that the map p : SB → SA ×TA TB is surjective on vertices. Since S and T are Kan complexes, the
maps TB → TA and SB → SA are trivial fibrations. It follows that p is a homotopy equivalence and a left
fibration. Now we simply apply Lemma 2.1.3.1.

Lemma 2.1.3.3. Let p : S → T be a left fibration of simplicial sets. Suppose that for every vertex t ∈ T ,
the fiber St is contractible. Then p is a trivial fibration.

Proof. It will suffice to prove the analogous result for right fibrations (we do this in order to keep the notation
we use below consistent with that employed in the proof of Proposition 2.1.2.5).

Since p has nonempty fibers, it has the right lifting property with respect to the inclusion ∅ = ∂∆0 ⊆ ∆0.
Let n > 0, f : ∂∆n → S any map, and g : ∆n → T an extension of p ◦ f . We must show that there exists
an extension f̃ : ∆n → S with g = p ◦ f̃ .

Pulling back via the map G, we may suppose that T = ∆n and g is the identity map, so that S is an
∞-category. Let t denote the initial vertex of T . There is a unique map g′ : ∆n × ∆1 → T such that
g′|∆n × {1} = g and g′|∆n × {0} is constant at the vertex t.

Since the inclusion ∂∆n × {1} ⊆ ∂∆n × ∆1 is right anodyne, there exists an extension f ′ of f to
∂∆n ×∆1 which covers g′| ∂∆n ×∆1. To complete the proof, it suffices to show that we can extend f ′ to
a map f̃ ′ : ∆n ×∆1 → S (such an extension is automatically compatible with g′ in view of our assumptions
that T = ∆n and n > 0). Assuming this has been done, we simply define f̃ = f̃ ′|∆n × {1}.

Recall the notation of the proof of Proposition 2.1.2.5, and filter the simplicial set ∆n × ∆1 by the
simplicial subsets

X(n+ 1) ⊆ . . . ⊆ X(0) = ∆n ×∆1.

We extend the definition of f ′ to X(m) by a descending induction on m. When m = n + 1, we note that
X(n+1) is obtained from ∂∆n×∆1 by adjoining the interior of the simplex ∂∆n×{0}. Since the boundary
of this simplex maps entirely into the contractible Kan complex St, it is possible to extend f ′ to X(n+ 1).

Now suppose the definition of f ′ has been extended to X(i + 1). We note that X(i) is obtained from
X(i + 1) by pushout along a horn inclusion Λn+1

i ⊆ ∆n+1. If i > 0, then the assumption that S is an
∞-category guarantees the existence of an extension of f ′ to X(i). When i = 0, we note that f ′ carries
the initial edge of σ0 into the fiber St. Since St is a Kan complex, f ′ carries the initial edge of σ0 to an
equivalence in S, and the desired extension of f ′ exists by Proposition 1.2.4.3.

Proposition 2.1.3.4. Let p : S → T be a left fibration of simplicial sets. The following conditions are
equivalent:

(1) The map p is a Kan fibration.
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(2) For every edge f : t → t′ in T , the map f! : St → St′ is an isomorphism in the homotopy category H

of spaces.

Proof. The implication (1)⇒ (2) is classical. Assume (2). A map is a Kan fibration if and only if it is both a
right fibration and a left fibration; consequently, it will suffice to prove that p is a right fibration. According
to Corollary 2.1.2.9, it will suffice to show that

q : S∆1
→ S{1} ×T{1} T∆1

is a trivial fibration. Corollary 2.1.2.8 implies that q is a left fibration. By Lemma 2.1.3.3, it suffices to show
that the fibers of q are contractible.

Fix an edge f : t→ t′ in T . Let X denote the simplicial set of sections of the projection S ×T ∆1 → ∆1,
where ∆1 maps into T via the edge f . Consider the fiber q′ : X → St′ of q over the edge f . Since the q and
q′ have the same fibers (over points of S{1} ×T{1} T∆1

whose second projection is the edge f), it will suffice
to show that q′ is a trivial fibration for every choice of f .

Consider the projection r : X → St. Since p is a left fibration, r is a trivial fibration. Because St is
a Kan complex, so is X. Lemma 2.1.3.2 implies that q′ is a Kan fibration. We note that f! is obtained
by choosing a section of r and then composing with q′. Consequently, assumption (2) implies that q′ is a
homotopy equivalence, and thus a trivial fibration, which completes the proof.

Remark 2.1.3.5. Lemma 2.1.3.3 is an immediate consequence of Proposition 2.1.3.4, since any map between
contractible Kan complexes is a homotopy equivalence. Lemma 2.1.3.2 also follows immediately, since if T
is a Kan complex, then its homotopy category is a groupoid, so that any functor hT → H carries edges of
T to invertible morphisms in H.

2.1.4 The Covariant Model Structure

In §2.1.2, we saw that a left fibration p : X → S determines a functor χ from hS to the homotopy category
H, carrying each vertex s to the fiber Xs = X ×S {s}. In this section, we will formulate a sharper version of
this result. Namely, we will show that p determines a (simplicial) functor C[S]→ Set∆, which reduces to χ
after passing to homotopy categories. Moreover, this construction is in some sense invertible. To make this
idea precise, it is convenient to use the language of model categories. Let X denote the category of simplicial
functors from C[S] to Set∆, which we will endow with the projective model structure defined in §A.3.3. We will
construct a model structure on the category (Set∆)/S and a left Quillen functor StS : (Set∆)/S → X. We will
refer to this model structure on (Set∆)/S as the covariant model structure and to StS as the straightening
functor. Our main results are that StS induces a Quillen equivalence, and that the (covariantly) fibrant
objects of (Set∆)/S are precisely the left fibrations X → S. However, we will defer the proofs of both of
these results until §3.

Definition 2.1.4.1. Let S be a simplicial set. We will say that a map f : X → Y in (Set∆)/S is a:

(C) covariant cofibration if it is a monomorphism of simplicial sets.

(W ) covariant equivalence if the induced map

X/
∐
X

S → Y /
∐
Y

S

is a categorical equivalence.

(F ) covariant fibration if it has the right lifting property with respect to every map which is both a covariant
cofibration and a covariant equivalence.

Proposition 2.1.4.2. Let S be a simplicial set. The covariant cofibrations, covariant equivalences, and
covariant fibrations determine a perfect model structure on (Set∆)/S.
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Proof. It suffices to show that conditions (1), (2), and (3) of Proposition A.2.9.5 are met. We consider each
in turn:

(1) The class (W ) of weak equivalences is perfect. This follows from Corollary A.2.9.4, since the functor
X 7→ X/

∐
X S commutes with filtered colimits,

(2) It is clear that the class (C) of cofibrations is generated by a set. We must show that weak equivalences
are stable under pushouts by cofibrations. In other words, suppose we are given a pushout diagram

X
j //

i

��

Y

��
X ′ j′ // Y ′

in (Set∆)S where i is a covariant cofibration and j is a covariant equivalence. We must show that j′ is
a covariant equivalence. We obtain a pushout diagram in Set∆

X/
∐
X S

//

��

Y /
∐
Y S

��
(X ′)/

∐
X′ S // (Y ′)/

∐
Y ′ S

which is homotopy coCartesian, since the Joyal model structure is left-proper. Since the upper hor-
izontal map is a categorical equivalence, so it the bottom horizontal map; thus j′ is a contravariant
equivalence.

(3) We must show that a map p : X → Y in Set∆, which has the right lifting property with respect to every
map in (C), belongs to (W ). We note in that case that p is a trivial Kan fibration, and in particular
a categorical equivalence. We now conclude by observing that the functor X 7→ S

∐
X X

. preserves
categorical equivalences.

We will refer to the model structure of Proposition 2.1.4.2 as the covariant model structure on (Set∆)/S .
We will prove later that the covariantly fibrant objects of (Set∆)/S are precisely the left fibrations X → S

(Proposition 3.3.1.2). For the time being, we will be content to make a much weaker observation:

Proposition 2.1.4.3. Let S be a simplicial set.

(1) Every left anodyne map in (Set∆)/S is a trivial cofibration (with respect to the covariant model struc-
ture).

(2) Every covariant fibration in (Set∆)/S is a left fibration of simplicial sets.

(3) Every fibrant object of (Set∆)/S corresponds to a left fibration X → S.

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear. Therefore it will suffice to prove (1). By general
nonsense, it suffices to prove the result for a generating left anodyne inclusion of the form Λni ⊆ ∆n, where
0 ≤ i < n. For this, it suffices to show that for any map ∆n → S, the associated inclusion Λni ⊆ ∆n is a
trivial cofibration in (Set∆)S . In other words, we must show that Λni ⊆ ∆n is a covariant equivalence, which
is equivalent to the assertion that

i : (Λni )
/
∐
Λn

i

S → (∆n)/
∐
∆n

S

is a categorical equivalence. We now observe that i is a pushout of the inner anodyne inclusion Λn+1
i+1 ⊆

∆n+1.
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Our next result expresses the idea that the covariant model structure on (Set∆)/S depends functorially
on S:

Proposition 2.1.4.4. Let j : S → S′ be a map of simplicial sets. Let j! : (Set∆)/S → (Set∆)/S′ be the
forgetful functor (given by composition with j), and let j∗ : (Set∆)/S′ → (Set∆)/S be its right adjoint, which
is given by the formula

j∗X ′ = X ′ ×S′ S.

Then we have a Quillen adjunction

(Set∆)/S
j! //(Set∆)/S′
j∗
oo

(with the covariant model structures). If j is a categorical equivalence, then (j!, j∗) is a Quillen equivalence.

Proof. It is clear that j! preserves cofibrations. For X ∈ (Set∆)S , the pushout diagram

S //

��

S′

��
X/

∐
X S

// X/
∐
X S

′

is a homotopy pushout (with respect to the Joyal model structure). Thus j! preserves covariant equivalences.
It follows that (j!, j∗) is a Quillen adjunction.

Now suppose that j is a categorical equivalence. We wish to show that (j!, j∗) is a Quillen equivalence. In
other words, we must show that for any X ∈ (Set∆)/S and any fibrant object Y ∈ (Set∆)/S′ , a map j!X → Y
is a covariant equivalence in (Set∆)/S if and only if the adjoint map X → j∗Y is a covariant equivalence in
(Set∆)/S′ . We have a commutative diagram of simplicial sets

X/
∐
X S

//

��

X/
∐
X S

′

��
(j∗Y )/

∐
j∗Y S

f // Y /
∐
Y S

′.

We wish to show that the left vertical map is a categorical equivalence if and only if the right vertical
map is a categorical equivalence. It therefore suffices to show that both horizontal maps are categorical
equivalences. For the upper horiztonal map, this follows immediately from the assumption that j is a
categorical equivalence (since the Joyal model structure is left proper). We can factor the map f as

(j∗Y )/
∐
j∗Y

S
f ′→ (j∗Y )/

∐
j∗Y

S′
f ′′→ Y /

∐
Y

S′.

The map f ′ is a homotopy pushout of j, and therefore a categorical equivalence. According to Proposition
2.1.4.3, Y → S′ is a left fibration. Proposition 3.3.2.3 implies that j∗Y → Y is a categorical equivalence,
which implies that f ′′ is a categorical equivalence.

Proposition 2.1.4.5. The category (Set∆)/S is a simplicial model category (with respect to the covariant
model structure and the natural simplicial structure).

Proof. We will deduce this from Proposition A.2.12.2. The only nontrivial point is to verify that for any
X ∈ (Set∆)/S , the projection X×∆n → X is a covariant equivalence. But this map has a section X×{0} →
X ×∆n, which is left anodyne and therefore a covariant equivalence (Proposition 2.1.4.3).
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Our next goal is to describe the relationship between left fibrations X → S and diagrams S → S. To
facilitate comparison with the results of §3, we will work instead with right fibrations. Note that all of the
definitions and results above have obvious dual versions obtained by passing to opposite ∞-categories; in
particular, for every simplicial set S we can also define the contravariant model structure on (Set∆)/S , whose
fibrant objects are right fibrations over S.

Fix a simplicial set S, a simplicial category C and a functor φ : C[S]op → C. Given an objectX ∈ (Set∆)/S ,
let v denote the cone point of X.. We may view simplicial category

C′ = C[X.]op
∐

C[X]op

C

as a correspondence from {v} to C, which we may identify with a simplicial functor

StφX : C→ Set∆ .

This functor may be described by the formula

(StφX)(C) = MapC′(v, C).

We may regard Stφ as a functor from (Set∆)/S to (Set∆)C. We refer to Stφ as the straightening functor
associated to φ. In the special case where C = C[S]op and φ is the identity map, we will write StS instead
of Stφ.

Example 2.1.4.6. Let S = ∆0. Then we may regard StS as a functor from the category of simplicial sets
to itself. Unwinding the definition, we see that StSX = |X|Q• , where Q• is the cosimplicial object of Set∆
defined in §1.3.2.

By the adjoint functor theorem (or by direct construction), the straightening functor Stφ associated to
φ : C[S]op → C has a right adjoint, which we will denote by Unφ and refer to as the unstraightening functor.

Theorem 2.1.4.7. Let S be a simplicial set, C a simplicial category, and φ : C[S]op → C a simplicial functor.
The straightening and unstraightening functors determine a Quillen adjunction

(Set∆)/S
Stφ //(Set∆)C

Unφ

oo ,

where (Set∆)/S is endowed with the contravariant model structure and (Set∆)C with the projective model
structure. If φ is an equivalence of simplicial categories, then (Stφ, Unφ) is a Quillen equivalence.

We will give a proof of Theorem 2.1.4.7 in §3, after establishing a more refined correspondence in the
setting of marked simplicial sets (see Theorem 3.3.1.1).
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2.2 Inner Fibrations

In this section, we will study the theory of inner fibrations between simplicial sets. The condition that a
map f : X → S be an inner fibration has no counterpart in classical category theory: Proposition 1.1.2.2
implies that every functor between ordinary categories C→ D induces an inner fibration N(C)→ N(D).

In the case where S is a point, a map p : X → S is an inner fibration if and only if X is an ∞-category.
Moreover, the class of inner fibrations is stable under base change: if

X ′

p′

��

// X

p

��
S′ // S

is a pullback diagram of simplicial sets and p is an inner fibration, then so is p′. It follows that if p : X → S
is an arbitrary inner fibration, then each fiber Xs = X ×S {s} is an ∞-category. We may therefore think of
p as encoding a family of ∞-categories parametrized by S. However, the fibers Xs depend functorially on s
only in a very weak sense.

Example 2.2.0.1. Let F : C→ C′ be a functor between ordinary categories. Then the map N(C)→ N(C′)
is an inner fibration. Yet the fibers N(C)C = N(F−1(C)) and N(C)D = N(F−1(D)) over objects C,D ∈ C′

can have wildly different properties, even if C and D are isomorphic objects of C′.

In order to describe how the different fibers of an inner fibration are related to one another, we will intro-
duce the notion of a correspondence between∞-categories. We review the classical theory of correspondences
in §2.2.1, and explain how to generalize this theory to the ∞-categorical setting.

In §2.2.2, we will prove that the class of inner anodyne maps is stable under smash products with arbitrary
cofibrations between simplicial sets. As a consequence, we will deduce that the class of inner fibrations (and
hence the class of ∞-categories) is stable under the formation of mapping spaces.

In §2.2.3, we will study the theory of minimal inner fibrations, a generalization of Quillen’s theory
of minimal Kan fibrations. In particular, we will define a class of minimal ∞-categories and show that
every ∞-category C is (categorically) equivalent to a minimal ∞-category C′, where C′ is well-defined up
to (noncanonical) isomorphism. We will apply this theory in §2.2.4, to obtain a description of the class of
∞-categories which are equivalent to n-categories (see §1.2.17).

2.2.1 Correspondences

Let C and C′ be categories. A correspondence from C to C′ is a functor

M : Cop×C′ → Set .

If M is a correspondence from C to C′, we can define a new category C ?M C′ as follows. An object of C ?M C′

is either an object of C or an object of C′. For morphisms, we take

HomC ?M C′(X,Y ) =


HomC(X,Y ) if X,Y ∈ C

HomC′(X,Y ) if X,Y ∈ C′

M(X,Y ) if X ∈ C, Y ∈ C′

∅ if X ∈ C′, Y ∈ C .

Composition of morphisms is defined in the obvious way, using the composition laws in C and C′, and the
functoriality of M(X,Y ) in X and Y .

Remark 2.2.1.1. In the special case where F : Cop×C′ → Set is the constant functor taking the value ∗,
the category C ?F C′ coincides with the ordinary join C ?C′.
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For any correspondence M : C → C′, there is an obvious functor F : C ?M C′ → [1] (here [1] denotes
the linearly ordered set {0, 1}, regarded as a category in the obvious way), uniquely determined by the
condition that F−1{0} = C and F−1{1} = C′. Conversely, given any category M equipped with a functor
F : M → [1], we can define C = F−1{0}, C′ = F−1{1}, and a correspondence M : C → C′ by the formula
M(X,Y ) = HomM(X,Y ). We may summarize the situation as follows:

Fact 2.2.1.2. Giving a pair of categories C, C′ and a correspondence between them is equivalent to giving a
category M equipped with a functor M→ [1].

Given this reformulation, it is clear how to generalize the notion of a correspondence to the∞-categorical
setting.

Definition 2.2.1.3. Let C and C′ be ∞-categories. A correspondence from C to C′ is a ∞-category M

equipped with a map F : M→ ∆1 and identifications C ' F−1{0}, C′ ' F−1{1}.

Remark 2.2.1.4. Let C and C′ be ∞-categories. Fact 2.2.1.2 generalizes to the ∞-categorical setting in
the following way: there is a canonical bijection between equivalence classes of correspondences from C to
C′ and equivalence classes of functors Cop×C′ → S, where S denotes the ∞-category of spaces. In fact, it is
possible to prove a more precise result (a Quillen equivalence between certain model categories), but we will
not need this.

To understand the relevance of Definition 2.2.1.3, we note the following:

Proposition 2.2.1.5. Let C be an ordinary category, and let p : X → N(C) be a map of simplicial sets.
Then p is an inner fibration if and only if X is an ∞-category.

Proof. This follows from the fact that any map Λni → N(C), 0 < i < n, admits a unique extension to ∆n.

It follows readily from the definition that an arbitrary map of simplicial sets p : X → S is an inner
fibration if and only if the fiber of p over any simplex of S is an∞-category. In particular, an inner fibration
p associates to each vertex s of S an ∞-category Xs, and to each edge f : s → s′ in S a correspondence
between the ∞-categories Xs and Xs′ . Higher dimensional simplices give rise to what may be thought of as
compatible “chains” of correspondences.

Roughly speaking, we might think of an inner fibration p : X → S as a functor from S into some
kind of ∞-category of ∞-categories, where the morphisms are given by correspondences. However, this
description is not quite accurate, since the correspondences are required to “compose” only in a weak sense.
To understand the issue, let us return to the setting of ordinary categories. If C and C′ are two categories,
then the correspondences from C to C′ themselves constitute a category, which we may denote by M(C,C′).
There is a natural “composition” defined on correspondences. If we view an object F ∈M(C,C′) as a functor
Cop×C′ → Set, and G ∈M(C′,C′′), then we can define (G ◦ F )(C,C ′′) to be the coend∫

C′∈C′
F (C,C ′)×G(C ′, C ′′).

If we view F as determining a category C ?F C′ and G as determining a category C′ ?G C′′, then C ?G◦F C′′

is obtained by forming the pushout
(C ?F C′)

∐
C′

(C′ ?G C′′)

and then discarding the objects of C′.
Now, giving a category equipped with a functor to [2] is equivalent to giving a triple of categories C, C′,

C′′, together with correspondences F ∈M(C,C′), G ∈M(C′,C′′), H ∈M(C,C′′) and a map α : G ◦ F → H.
But the map α need not be an isomorphism. Consequently, the above data cannot literally be interpreted
as a functor from [2] into a category (or even a higher category) in which the morphisms are given by
correspondences.
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If C and C′ are categories, then a correspondence from C to C′ can be regarded as a kind of generalized
functor from C to C′. More specifically, for any functor f : C → C′, we can define a correspondence Mf by
the formula

Mf (X,Y ) = HomC′(f(X), Y ).

This construction gives a fully faithful embedding MapCat(C,C
′) → M(C,C′). Similarly, any functor g :

C′ → C determines a correspondence Mg given by the formula Mg(X,Y ) = HomC(X, g(Y )); we observe that
Mf 'Mg if and only if the functors f and g are adjoint to one another.

If an inner fibration p : X → S corresponds to a “functor” from S to a higher category of ∞-categories
with morphisms given by correspondences, then some special class of inner fibrations should correspond to
functors from S into an∞-category of∞-categories with morphisms given by actual functors. This is indeed
the case, and the appropriate notion is that of a (co)Cartesian fibration which we will study in §2.3.

2.2.2 Stability Properties of Inner Fibrations

Let C be an ∞-category and K an arbitrary simplicial set. In §1.2.7, we asserted that Fun(K,C) is an
∞-category (Proposition 1.2.7.3). In the course of the proof, we invoked certain stability properties of the
class of inner anodyne maps. The goal of this section is to establish the required properties, and deduce
some of their consequences. Our main result is the following analogue of Proposition 2.1.2.5:

Proposition 2.2.2.1 (Joyal [31]). The following collections all generate the same class of morphisms of
Set∆:

(1) The collection A1 of all horn inclusions Λni ⊆ ∆n, 0 < i < n.

(2) The collection A2 of all inclusions

(∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∂∆m ×∆2) ⊆ ∆m ×∆2.

(3) The collection A3 of all inclusions

(S′ × Λ2
1)

∐
S×Λ2

1

(S ×∆2) ⊆ S′ ×∆2,

where S ⊆ S′.

Proof. We will employ the strategy that we used to prove Proposition 2.1.2.5, though the details are slightly
more complicated. Working cell-by-cell, we conclude that every morphism in A3 belongs to the saturated
class of morphisms generated by A2. We next show that every morphism in A1 is a retract of a morphism
belonging to A3. More precisely, we will show that for 0 < i < n, the inclusion Λni ⊆ ∆n is a retract of the
inclusion

(∆n × Λ2
1)

∐
Λn

i ×Λ2
1

(Λni ×∆2) ⊆ ∆n ×∆2.

To prove this, we embed ∆n into ∆n ×∆2 via the map of partially ordered sets s : [n]→ [n]× [2] given by

s(j) =


(j, 0) if j < i

(j, 1) if j = i

(j, 2) if j > i.

and consider the retraction ∆n ×∆2 → ∆n given by the map

r : [n]× [2]→ [n]
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r(j, k) =


j if j < i, k = 0
j if j > i, k = 2
i otherwise.

We now show that every morphism in A2 is inner anodyne (that is, it lies in the saturated class of
morphisms generated by A1). Choose m ≥ 0. For each 0 ≤ i ≤ j < m, we let σij denote the (m+1)-simplex
of ∆m ×∆2 corresponding to the map

fij : [m+ 1]→ [m]× [2]

fij(k) =


(k, 0) if 0 ≤ k ≤ i
(k − 1, 1) if i+ 1 ≤ k ≤ j + 1
(k − 1, 2) if j + 2 ≤ k ≤ m+ 1.

For each 0 ≤ i ≤ j ≤ m, we let τij denote the (m+ 2)-simplex of ∆m ×∆2 corresponding to the map

gij : [m+ 2]→ [m]× [2]

gij(k) =


(k, 0) if 0 ≤ k ≤ i
(k − 1, 1) if i+ 1 ≤ k ≤ j + 1
(k − 2, 2) if j + 2 ≤ k ≤ m+ 2.

Let X(0) = (∆m × Λ2
1)

∐
∂∆m×Λ2

1
(∂∆m ×∆2). For 0 ≤ j < m, we let

X(j + 1) = X(j) ∪ σ0j ∪ . . . ∪ σjj .

We have a chain of inclusions

X(j) ⊆ X(j) ∪ σ0j ⊆ . . . ⊂ X(j) ∪ σ0j ∪ . . . ∪ σjj = X(j + 1),

each of which is a pushout of a morphism in A1 and therefore inner anodyne. It follows that each inclusion
X(j) ⊆ X(j + 1). Set Y (0) = X(m), so that the inclusion X(0) ⊆ Y (0) is inner anodyne. We now set
Y (j + 1) = Y (j) ∪ τ0j ∪ . . . ∪ τjj for 0 ≤ j ≤ m. As before, we have a chain of inclusions

Y (j) ⊆ Y (j) ∪ τ0j ⊆ . . . ⊆ Yj ∪ τ0j ∪ . . . ∪ τjj = Y (j + 1)

each of which is a pushout of a morphism belonging to A1. It follows that each inclusion Y (j) ⊆ Y (j + 1)
is inner anodyne. By transitivity, we conclude that the inclusion X(0) ⊆ Y (m + 2) is inner anodyne. We
conclude the proof by observing that Y (m+ 2) = ∆m ×∆2.

Corollary 2.2.2.2 (Joyal [31]). A simplicial set C is an ∞-category if and only if the restriction map

Fun(∆2,C)→ Fun(Λ2
1,C)

is a trivial fibration.

Proof. By Proposition 2.2.2.1, C → ∗ is an inner fibration if and only if S has the extension property with
respect to each of the inclusions in the class A2.

Remark 2.2.2.3. In §1.1.2, we asserted that the main function of the weak Kan condition on a simplicial
set C is that it allows us to compose the edges of C. We can regard Corollary 2.2.2.2 as an affirmation of this
philosophy: the class of∞-categories C is characterized by the requirement that one can compose morphisms
in C, and the composition is well-defined up to a contractible space of choices.
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Corollary 2.2.2.4 (Joyal [31]). Let i : A→ A′ be an inner anodyne map of simplicial sets, and let j : B → B′

be a cofibration. Then the induced map

(A×B′)
∐
A×B

(A′ ×B)→ A′ ×B′

is inner anodyne.

Proof. This follows immediately from Proposition 2.2.2.1, which characterizes the class of inner anodyne
maps as the class generated by A3 (which is stable under smash products with any cofibration).

Corollary 2.2.2.5 (Joyal [31]). Let p : X → S be an inner fibration, and let i : A → B be any cofibration
of simplicial sets. Then the induced map q : XB → XA ×SA SB is an inner fibration. If i is inner anodyne,
then q is a trivial fibration. In particular, if X is a ∞-category, then so is XB for any simplicial set B.

2.2.3 Minimal Fibrations

One of the aims of homotopy theory is to understand the classification of spaces up to homotopy equivalence.
In the setting of simplicial sets, Quillen’s theory of minimal models provides an attractive reformulation of the
problem. More precisely, this theory introduces the notion of a minimal Kan complex. Every Kan complex
X is homotopy equivalent to a minimal Kan complex, and a map X → Y of minimal Kan complexes is a
homotopy equivalence if and only if it is an isomorphism. Consequently, the classification of Kan complexes
up to homotopy equivalence is equivalent to the classification of minimal Kan complexes up to isomorphism.
Of course, in practical terms, this is not of much use for solving the classification problem. Nevertheless,
the theory of minimal Kan complexes (and, more generally, minimal Kan fibrations) is a useful tool in the
homotopy theory of simplicial sets. The purpose of this section is to describe a generalization of the theory
of minimal models, in which Kan fibrations are replaced by inner fibrations. An exposition of this theory
can also be found in [31].

We begin by introducing a bit of terminology. Suppose given a commutative diagram

A

i

��

u // X

p

��
B

v //

>>~
~

~
~

S

of simplicial sets where p is an inner fibration, and suppose also that we have a pair f, f ′ : B → X of
candidates for the dotted arrow which render the diagram commutative. We will say that f and f ′ are
homotopic relative to A over S if they are equivalent when viewed as objects in the∞-category given by the
fiber of the map

XB → XA ×SA SB .

Equivalently, f and f ′ are homotopic relative to A over S if there exists a map F : B ×∆1 → X such that
F |B × {0} = f , F |B × {1} = f ′, p ◦ F = v ◦ πB , F ◦ (i× id∆1) = u ◦ πA, and F |{b} ×∆1 is an equivalence
in the ∞-category Xv(b) for every vertex b of B.

Definition 2.2.3.1. Let p : X → S be an inner fibration of simplicial sets. We will say that p is minimal if
f = f ′ for every pair of maps f, f ′ : ∆n → X which are homotopic relative to ∂∆n over S.

We will say that an ∞-category C is minimal if the associated inner fibration C→ ∗ is minimal.

Remark 2.2.3.2. In the case where p is a Kan fibration, Definition 2.2.3.1 recovers the usual notion of a
minimal Kan fibration. We refer the reader to [21] for a discussion of minimal fibrations in this more classical
setting.
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Remark 2.2.3.3. Let p : X → ∆n be an inner fibration. Then X is an ∞-category. Moreover, p is a
minimal inner fibration if and only if X is a minimal ∞-category. This follows from the observation that
for any pair of maps f, f ′ : ∆m → X, a homotopy between f and f ′ is automatically compatible with the
projection to ∆n.

Remark 2.2.3.4. If p : X → S is a minimal inner fibration and T → S is an arbitrary map of simplicial
sets, then the induced map XT = X ×S T → T is a minimal inner fibration. Conversely, if p : X → S is an
inner fibration and if X×S∆n → ∆n is minimal for every map σ : ∆n → S, then p is minimal. Consequently,
for many purposes the study of minimal inner fibrations reduces to the study of minimal ∞-categories.

Lemma 2.2.3.5. Let C be a minimal ∞-category, and let f : C→ C be a functor which is homotopic to the
identity. Then f is a monomorphism of simplicial sets.

Proof. Choose a homotopy h : ∆1 × C → C from idC to f . We prove by induction on n that the map f
induces an injection from the set of n-simplices of C to itself. Let σ, σ′ : ∆n → C be such that f ◦ σ = f ◦ σ′.
By the inductive hypothesis, we deduce that σ| ∂∆n = σ′| ∂∆n = σ0. Consider the diagram

(∆2 × ∂∆n)
∐

Λ2
2×∂∆n(Λ2

2 ×∆n) G0 //
� _

��

C

∆2 ×∆n

G

33ggggggggggggggg

where G0|Λ2
2 ×∆n is given by amalgamating h ◦ (id∆1 ×σ) with h ◦ (id∆1 ×σ′), and G0|∆2 × ∂∆n is given

by the composition
∆2 × ∂∆n → ∆1 × ∂∆n σ0→ ∆1 × C

h→ C .

Since h|∆1 × {X} is an equivalence for every object X ∈ C, Proposition 2.3.1.8 implies the existence of the
map G indicated in the diagram. The restriction G|∆1 × ∆n is a homotopy between σ and σ′ relative to
∂∆n. Since C is minimal, we deduce that σ = σ′.

Lemma 2.2.3.6. Let C be a minimal ∞-category, and let f : C→ C be a functor which is homotopic to the
identity. Then f is an isomorphism of simplicial sets.

Proof. Choose a homotopy h : ∆1 × C → C from idC to f . We prove by induction on n that the map f
induces a bijection from the set of n-simplices of C to itself. The injectivity follows from Lemma 2.2.3.5, so
it will suffice to prove the surjectivity. Choose an n-simplex σ : ∆n → C. By the inductive hypothesis, we
may suppose that σ| ∂∆n = f ◦ σ′0, for some map σ′0 : ∂∆n → C. Consider the diagram

(∆1 × ∂∆n)
∐
{1}×∂∆n({1} ×∆n) G0 //

� _

��

C

∆1 ×∆n,

G

33ggggggggggggggg

where G0|∆1 × ∂∆n = h ◦ (id∆1 ×σ′0) and G0|{1} ×∆n = σ. If n > 0, then the existence of the map G as
indicated in the diagram follows from Proposition 2.3.1.8; if n = 0 it is obvious. Now let σ′ = G|{0} ×∆n.
To complete the proof, it will suffice to show that f ◦ σ′ = σ.

Consider now the diagram

(Λ2
0 ×∆n)

∐
Λ2

0×∂∆n(∆2 × ∂∆n) H0 //

��

C

∆2

H

33gggggggggggggggg
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where H0|∆{0,1}×∆n = h ◦ (id∆1 ×σ′), H0|∆{1,2}×∆n = G, and H0|(∆2× ∂∆n) given by the composition

∆2 × ∂∆n → ∆1 × ∂∆n σ′0→ ∆1 × C
h→ C .

The existence of the dotted arrow H follows once again from Proposition 2.3.1.8. The restriction H|∆{1,2}×
∆n is a homotopy from f ◦ σ′ to σ relative to ∂∆n. Since C is minimal, we conclude that f ◦ σ′ = σ as
desired.

Proposition 2.2.3.7. Let f : C→ D be an equivalence of minimal∞-categories. Then f is an isomorphism.

Proof. Since f is a categorical equivalence, it admits a homotopy inverse g : D → C. Now apply Lemma
2.2.3.6 to the compositions f ◦ g and g ◦ f .

The following result guarantees a good supply of minimal ∞-categories:

Proposition 2.2.3.8. Let p : X → S be a inner fibration of simplicial sets. Then there exists a retraction
r : X → X onto a simplicial subset X ′ ⊆ X with the following properties:

(1) The restriction p|X ′ : X ′ → S is a minimal inner fibration.

(2) The retraction r is compatible with the projection p, in the sense that p ◦ r = p.

(3) The map r is homotopic over S to idX relative to X ′.

(4) For every map of simplicial sets T → S, the induced inclusion X ′ ×S T ⊆ X ×S T is a categorical
equivalence.

Proof. For every n ≥ 0, we define a relation on the set of n-simplices of X: given two simplices σ, σ′ :
∆n → X, we will write σ ∼ σ′ if σ is homotopic to σ′ relative to ∂∆n. We note that σ ∼ σ′ if and only if
σ| ∂∆n = σ′| ∂∆n and σ is equivalent to σ′ where both are viewed as objects in the ∞-category given by a
fiber of the map

X∆n

→ X∂∆n

×S∂ ∆n S∆n

.

Consequently, ∼ is an equivalence relation.
Suppose that σ and σ′ are both degenerate, and σ ∼ σ′. From the equality σ| ∂∆n = σ′| ∂∆n we deduce

that σ = σ′. Consequently, there is at most one degenerate n-simplex of X in each ∼-class. Let Y (n) ⊆ Xn

denote a set of representatives for the ∼-classes of n-simplices in X, which contains all degenerate simplices.
We now define the simplicial subset X ′ ⊆ X recursively as follows: an n-simplex σ : ∆n → X belongs to X ′

if σ ∈ Y (n) and σ| ∂∆n factors through X ′.
Let us now prove (1). To show that p|X ′ is an inner fibration, it suffices to prove that every lifting

problem of the form
Λni

s //
� _

��

X ′

��
∆n

σ

==|
|

|
|

// S

with 0 < i < n has a solution f in X ′. Since p is an inner fibration, this lifting problem has a solution
σ′ : ∆n → X in the original simplicial set X. Let σ′0 = diσ : ∆n−1 → X be the induced map. Then
σ′0| ∂∆n−1 factors through X ′. Consequently, σ′0 is homotopic over S, relative to ∂∆n−1 to some map
σ0 : ∆n−1 → X ′. Let g0 : ∆1 ×∆n−1 → X be a homotopy from σ′0 to σ0, and let g1 : ∆1 × ∂∆n → X be
the result of amalgamating g0 with the identity homotopy from s to itself. Let σ1 = g1|{1} × ∂∆n. Using
Proposition 2.3.1.8, we deduce that g1 extends to a homotopy from σ′ to some other map σ′′ : ∆n → X
with σ′′| ∂∆n = σ1. It follows that σ′′ is homotopic over S relative to ∂∆n to a map σ : ∆n → X with the
desired properties. This proves that p|X ′ is an inner fibration. It is immediate from the construction that
p|X ′ is minimal.
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We now verify (2) and (3) by constructing a map h : X ×∆1 → X such that h|X × {0} is the identity,
h|X ×{1} is a retraction r : X → X with image X ′, and h is a homotopy over S and relative to X ′. Choose
an exhaustion of X by a transfinite sequence of simplicial subsets

X ′ = X0 ⊆ X1 ⊆ . . .

where each Xα is obtained from
X<α =

⋃
β<α

Xβ

by adjoining a single nondegenerate simplex, if such a simplex exists. We construct hα = h|Xα × ∆1

by induction on α. By the inductive hypothesis, we may suppose that we have already defined h<α =
h|X<α ×∆1. If X = X<α, then we are done. Otherwise, we can write Xα = X<α

∐
∂∆n ∆n corresponding

to some nondegenerate simplex τ : ∆n → X, and it suffices to define hα|∆n ×∆1. If τ factors through X ′,
we define hα|∆n ×∆1 to be the composition

∆n ×∆1 → ∆n σ→ X.

Otherwise, we use Proposition 2.3.1.8 to deduce the existence of the dotted arrow h′ in the diagram

(∆n × {0})
∐
∂∆n×{0}(∂∆n ×∆1)

(τ,h<α) //
� _

��

X

p

��
∆n ×∆1

p◦σ //

h0

22ffffffffffffffffff
S.

Let τ ′ = h′|∆n × {1}. Then τ ′| ∂∆n factors through X ′. It follows that there is a homotopy h′′ : ∆n ×
∆{1,2} → X from τ ′ to τ ′′, which is over S and relative to ∂∆n, and such that τ ′′ factors through X ′. Now
consider the diagram

(∆n × Λ2
1)

∐
∂∆n×Λ2

1
(∂∆n ×∆2) H0 //

� _

��

X

p

��
∆n ×∆2 //

H

22ffffffffffffffffff
S

where H0|∆n ×∆{0,1} = h′, H0|∆n ×∆{1,2} = h′′, and H0| ∂∆n ×∆2 is given by the composition

∂∆n ×∆2 → ∂∆n ×∆1 h<α→ X.

Using the fact that p is an inner fibration, we deduce that there exists a dotted arrow H rendering the
diagram commutative. We may now define hα|∆n×∆1 = H|∆n×∆{0,2}; it is easy to see that this extension
has all the desired properties.

We now prove (4). Using Proposition 3.2.2.8, we can reduce to the case where T = ∆n. Without loss of
generality, we can replace S by T = ∆n, so that X and X ′ are ∞-categories. The above constructions show
that r : X → X ′ is a homotopy inverse of the inclusion i : X ′ → X, so that i is an equivalence as desired.

We conclude by recording a property of minimal ∞-categories which makes them very useful for certain
applications.

Proposition 2.2.3.9. Let C be a minimal ∞-category, and let σ : ∆n → C be an n-simplex of C such that
σ|∆{i,i+1} = idC : C → C is a degenerate edge. Then σ = siσ0 for some σ0 : ∆n−1 → C.
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Proof. We work by induction on n. Let σ0 = di+1σ and let σ′ = siσ0. We will prove that σ = σ′. Our first
goal is to prove that σ| ∂∆n = σ′| ∂∆n; in other words, that djσ = djσ

′ for 0 ≤ j ≤ n. If j = i + 1 this is
obvious; if j /∈ {i, i+1} then it follows from the inductive hypothesis. Let us consider the case i = j, and set
σ1 = diσ. We need to prove that σ0 = σ1. The argument above establishes that σ0| ∂∆n−1 = σ1| ∂∆n−1.
Since C is minimal, it will suffice to show that σ0 and σ1 are homotopic relative to ∂∆n−1. We now observe
that

(sn−1σ0, sn−2σ0, . . . , si+1σ0, σ, si−1σ1, . . . , s0σ1)

provides the desired homotopy ∆n−1 ×∆1 → C.
Since σ and σ′ coincide on ∂∆n, to prove that σ = σ′ it will suffice to prove that σ and σ′ are homotopic

relative to ∂∆n. We now observe that

(snσ′, . . . , si+2σ
′, siσ

′, siσ, si−1σ, . . . , s0σ)

is a homotopy ∆n ×∆1 → C with the desired properties.

We can interpret Proposition 2.2.3.9 as asserting that in a minimal∞-category C, composition is “strictly
unital”. For example, in the special case where n = 2 and i = 1, Proposition 2.2.3.9 asserts that if f : X → Y
is a morphism in an ∞-category C, then f is the unique composition idY ◦f .

2.2.4 A Characterization of n-Categories

In this section, we will combine the theory of n-categories ( §1.2.17) with the theory of minimal∞-categories
( §2.2.3) to obtain a characterization of the class of ∞-categories which are equivalent to n-categories. First,
we need a definition from classical homotopy theory.

Definition 2.2.4.1. Let k ≥ −1 be an integer. A Kan complex X is k-truncated if, for every i > k and
every point x ∈ X, we have

πi(X,x) ' ∗.
By convention, we will also say that X is (−2)-truncated if X is contractible.

Remark 2.2.4.2. If X and Y are homotopy equivalent Kan complexes, then X is k-truncated if and only
if Y is k-truncated. In other words, we may view k-truncatedness as a condition on objects in the homotopy
category H of spaces.

Example 2.2.4.3. A Kan complex X is (−1)-truncated if it is either empty or contractible. It is 0-truncated
if the natural map X → π0X is a homotopy equivalence (equivalently, X is 0-truncated if it is homotopy
equivalent to a discrete space).

Proposition 2.2.4.4. Let C be an ∞-category and n ≥ −1. The following conditions are equivalent:

(1) There exists a minimal model C′ ⊆ C such that C′ is an n-category.

(2) There exists a categorical equivalence D→ C, where D is an n-category.

(3) For every pair of objects X,Y ∈ C, the mapping space MapC(X,Y ) ∈ H is (n− 1)-truncated.

Proof. It is clear that (1) implies (2). Suppose next that (2) is satisfied; we will prove (3). Without loss of
generality, we may replace C by D and thereby assume that C is an n-category. If n = −1, the desired result
follows immediately from Example 1.2.17.2. Choose m ≥ n and an element η ∈ πm(MapC(X,Y ), f). We
can represent η by a commutative diagram of simplicial sets

∂∆m
� _

��

// {f}

��
∆m s // HomR

C(X,Y ).
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We can identify s with a map ∆m+1 → C whose restriction to ∂∆m+1 is specified. Since C is an n-category,
the inequality m+ 1 > n shows that s is uniquely determined. This proves that πm(MapC(X,Y ), f) ' ∗, so
that (3) is satisfied.

To prove that (3) implies (1), it suffices to show that if C is a minimal ∞-category which satisfies (3),
then C is an n-category. We must show that the conditions of Definition 1.2.17.1 are satisfied. The first
of these conditions follows immediately from the assumption that C is minimal. For the second, we must
show that if m > n and f, f ′ : ∂∆m → C are such that f | ∂∆m = f ′| ∂∆m, then f = f ′. Since C is
minimal, it suffices to show that f and f ′ are homotopic relative to ∂∆m. We will prove that there is a map
g : ∆m+1 → C such that dm+1g = f , dmg = f ′, and dig = dismf = dismf

′ for 0 ≤ i < m. Then the sequence
(s0f, s1f, . . . , sm−1f, g) determines a map ∆m ×∆1 → C which gives the desired homotopy between f and
f ′ (relative to ∂∆m).

To produce the map g, it suffices to solve the lifting problem depicted in the diagram

∂∆m+1
g //

� _

��

C

∆m+1

;;x
x

x
x

x

Choose a fibrant simplicial category D and an equivalence of ∞-categories C→ N(D). According to Propo-
sition A.2.4.1, it will suffice to prove that we can solve the associated lifting problem

C[∂∆m+1]
G0 //

� _

��

D

C[∆m+1].

G

::v
v

v
v

v

Let X denote the initial vertex of ∆m+1, considered as an object of C[∂∆m+1], and Y the final vertex. Note
that G0 determines a map

e0 : ∂(∆1)m ' MapC[∂∆m+1](X,Y )→ MapD(G0(X), G0(Y ))

and that giving the desired extension G is equivalent to extending e0 to a map

e : (∆1)m ' MapC[∆m+1](X,Y )→ MapD(G0(X), G0(Y )).

The obstruction to constructing e lies in πm−1(MapD(G0(X), G0(Y )), p) for an appropriately chosen base
point p. Since (m− 1) > (n− 1), condition (3) implies that this homotopy set is trivial, so that the desired
extension can be found.

Corollary 2.2.4.5. Let X be a Kan complex. Then X is (categorically) equivalent to an n-category if and
only if it is n-truncated.

Proof. For n = −2 this is obvious. If n ≥ −1, this follows from characterization (3) of Proposition 2.2.4.4
and the following observation: a Kan complex X is n-truncated if and only if, for every pair of vertices
x, y ∈ X0, the Kan complex

{x} ×X X∆1
×X {y}

of paths from x to y is (n− 1)-truncated.

Corollary 2.2.4.6. Let C be an ∞-category and K a simplicial set. Suppose that, for every pair of objects
C,D ∈ C, the space MapC(C,D) is n-truncated. Then the ∞-category Fun(K,C) has the same property.

Proof. This follows immediately from Proposition 2.2.4.4 and Corollary 1.2.17.8, since the functor

C 7→ Fun(K,C)

preserves categorical equivalences between ∞-categories.
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2.3 Cartesian Fibrations

Let p : X → S be an inner fibration of simplicial sets. Each fiber of p is an ∞-category, and each edge
f : s → s′ of S determines a correspondence between the fibers Xs and Xs′ . In this section, we would like
to study the case in which each of these correspondences is associated to a functor f∗ : Xs′ → Xs. Roughly
speaking, we can attempt to construct f∗ as follows: for each vertex y ∈ Xs′ , we choose an edge f̃ : x → y
lifting f , and set f∗y = x. However, this recipe does not uniquely determine x, even up to equivalence, since
there might be many different choices for f̃ . To get a good theory, we need to make a good choice of f̃ . More
precisely, we should require that f̃ be a p-Cartesian edge of X. In §2.3.1, we will introduce the definition of
p-Cartesian edges and study their basic properties. In particular, we will see that a p-Cartesian edge f̃ is
determined up to equivalence by its target y and its image in S. Consequently, if there is a sufficient supply
of p-Cartesian edges of X, then we can use the above prescription to define the functor f∗ : Xs′ → Xs. This
leads us to the notion of a Cartesian fibration, which we will study in §2.3.2.

In §2.3.3, we will establish a few basic stability properties of the class of Cartesian fibrations (more such
results will be established in §3, after we have developed the language of marked simplicial sets). In §2.3.4 we
will show that if p : C→ D is a Cartesian fibration of∞-categories, then we can reduce many questions about
C to similar questions about the base D and about the fibers of p. This technique has many applications,
which we will discuss in §2.3.5 and §2.3.6. Finally, in §2.3.7, we will study the theory of bifibrations, which
is useful for constructing examples of Cartesian fibrations.

2.3.1 Cartesian Morphisms

Let C and C′ be ordinary categories, and let M : Cop×C′ → Set be a correspondence between them. Suppose
that we wish to know whether or not M arises as the correspondence associated to some functor g : C′ → C.
This is the case if and only if, for each object C ′ ∈ C′, we can find an object C ∈ C and a point η ∈M(C,C ′)
having the property that the “composition with η” map

ψ : HomC(D,C)→M(D,C ′)

is bijective, for all D ∈ C. Note that η may be regarded as a morphism in the category C ?M C′. We will say
that η is a Cartesian morphism in C ?M C′ if φ is bijective for each D ∈ C. The purpose of this section is to
generalize this notion to the ∞-categorical setting and to establish its basic properties.

Definition 2.3.1.1. Let p : X → S be an inner fibration of simplicial sets. Let f : x→ y be an edge in X.
We shall say that f is p-Cartesian if the induced map

X/f → X/y ×S/p(y) S/p(f)

is a trivial Kan fibration.

Remark 2.3.1.2. Let M be an ordinary category, and let p : N(M) → ∆1 be a map (automatically an
inner fibration), and let f : x → y be a morphism in M which projects isomorphically onto ∆1. Then f is
p-Cartesian in the sense of Definition 2.3.1.1 if and only if it is Cartesian in the classical sense.

We now summarize a few of the formal properties of Definition 2.3.1.1:

Proposition 2.3.1.3. (1) Let p : X → S be an isomorphism of simplicial sets. Then every edge of X is
p-Cartesian.

(2) Suppose given a pullback diagram

X ′

p′

��

q // X

p

��
S′ // S
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of simplicial sets, where p (and therefore also p′) is an inner fibration. Let f be an edge of X ′. If q(f)
is p-Cartesian, then f is p′-Cartesian.

(3) Let p : X → Y and q : Y → Z be inner fibrations, and let f : x′ → x be an edge of X such that p(f) is
q-Cartesian. Then f is p-Cartesian if and only if f is (q ◦ p)-Cartesian.

Proof. Assertions (1) and (2) follow immediately from the definition. To prove (3), we consider the commu-
tative diagram

X/f
ψ //

ψ′

''NNNNNNNNNNNN X/x ×Z/(q◦p)(x) Z/(q◦p)(f)

X/x ×Y/p(x) Y/p(f).

ψ′′
44jjjjjjjjjjjjjjjj

The map ψ′′ is a pullback of
Y/p(f) → Y/p(x) ×Z/(q◦p)(x) Z/(q◦p)(f)

and therefore a trivial fibration, in view of our assumption that p(f) is q-Cartesian. If ψ′ is a trivial fibration,
it follows that ψ is a trivial fibration as well, which proves the “only if” direction of (3).

For the converse, suppose that ψ is a trivial fibration. Proposition 2.1.2.2 implies that ψ′ is a right
fibration. According to Lemma 2.1.3.3, it will suffice to prove that the fibers of ψ′ are contractible. Let t be
a vertex of X/x×Y/p(x) Y/p(f), and let K = (ψ′′)−1{ψ′′(t)}. Since ψ′′ is a trivial fibration, K is a contractible
Kan complex. Since ψ is a trivial fibration, the simplicial set (ψ′)−1K = ψ−1{ψ′′(t)} is also a contractible
Kan complex. It follows that the fiber of ψ′ over the point t is weakly contractible, as desired.

Remark 2.3.1.4. Let p : X → S be an inner fibration of simplicial sets. Unwinding the definition, we see
that an edge f : ∆1 → X is p-Cartesian if and only if for every n ≥ 2 and every commutative diagram

∆{n−1,n}

f

##H
HHHHHHHH� _

��
Λnn //

� _

��

X

p

��
∆n //

;;v
v

v
v

v
S,

there exists a dotted arrow as indicated, rendering the diagram commutative.

In particular, we note that Proposition 1.2.4.3 may be restated as follows:

(∗) Let C be a ∞-category, and let p : C→ ∆0 denote the projection from C to a point. A morphism φ of
C is p-Cartesian if and only if φ is an equivalence.

In fact, it is possible to strengthen assertion (∗) as follows:

Proposition 2.3.1.5. Let p : C → D be an inner fibration between ∞-categories, and let f : C → C ′ be a
morphism in C. The following conditions are equivalent:

(1) The morphism f is an equivalence in C.

(2) The morphism f is p-Cartesian and p(f) is an equivalence in D.

Proof. Let q denote the projection from D to a point. We note that both (1) and (2) imply that p(f) is an
equivalence in D, and therefore q-Cartesian by (∗). The equivalence of (1) and (2) now follows from (∗) and
the third part of Proposition 2.3.1.3.
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Corollary 2.3.1.6. Let p : C→ D be an inner fibration between ∞-categories. Every identity morphism of
C (in other words, every degenerate edge of C ) is p-Cartesian.

We now study the behavior of Cartesian edges under composition.

Proposition 2.3.1.7. Let p : C→ D be an inner fibration between simplicial sets, and let σ : ∆2 → C be a
2-simplex of C, which we will depict as a diagram

C1

g

!!C
CC

CC
CC

C

C0

f
>>||||||||
h // C2.

Suppose that g is p-Cartesian. Then f is p-Cartesian if and only if h is p-Cartesian.

Proof. We wish to show that the map

i0 : C/h → C/C2 ×D/p(C2) D/p(h)

is a trivial fibration if and only if
i1 : C/f → C/C1 ×D/p(C1) D/p(f)

is a trivial fibration. The dual of Proposition 2.1.2.2 implies that both maps are right fibrations. Conse-
quently, by (the dual of) Lemma 2.1.3.3, it suffices to show that the fibers of i0 are contractible if and only
if the fibers of i1 are contractible.

For any simplicial subset B ⊆ ∆2, let XB = C/σ|B ×Dσ|B D/σ. We note that XB is functorial in B, in
the sense that an inclusion A ⊆ B induces a map jA,B : XB → XA (which is a right fibration, again by
Proposition 2.1.2.2). We note that j∆{2},∆{0,2} is the base change of i0 by the map D/p(σ) → D/p(h), and
that j∆{1},∆{0,1} is the base change of i1 by the map D/σ → D/p(f). The maps

D/p(f) ← D/p(σ) → D/p(h)

are both surjective on objects (in fact, both maps have sections). Consequently, it suffices to prove that
j∆{1},∆{0,1} has contractible fibers if and only if j∆{2},∆{0,2} has contractible fibers. Now we observe that the
compositions

X∆2 → X∆{0,2} → X∆{2}

X∆2 → XΛ2
1
→ X∆{1,2} → X∆{2}

coincide. By Proposition 2.1.2.4, jA,B is a trivial fibration whenever the inclusion A ⊆ B is left anodyne.
we deduce that j∆{2},∆{0,2} is a trivial fibration if and only if j∆{1,2},Λ2

1
is a trivial fibration. Consequently,

it suffices to show that j∆{1,2},Λ2
1

is a trivial fibration if and only if j∆{1},∆{0,1} is a trivial fibration.
Since j∆{1,2},Λ2

1
is a pullback of j∆{1},∆{0,1} , the “if” direction is obvious. For the converse, it suffices to

show that the natural map
C/g ×D/p(g) D/p(σ) → C/C1 ×D/p(C1) D/p(σ)

is surjective on vertices. But this map is a trivial fibration, since the inclusion {1} ⊆ ∆{1,2} is left anodyne.

Our next goal is to reformulate the notion of a Cartesian morphism in a form which will be useful later.
For convenience of notation, we will prove this result in a dual form. If p : X → S is an inner fibration
and f an edge of X, we will say that f is p-coCartesian if is Cartesian with respect to the morphism
pop : Xop → Sop.
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Proposition 2.3.1.8. Let p : Y → S be an inner fibration of simplicial sets, and e : ∆1 → Y an edge. Then
e is p-coCartesian if and only if for each n ≥ 1 and each diagram

{0} ×∆1

e

**UUUUUUUUUUUUUUUUUUUUUUU� _

��
(∆n × {0})

∐
∂∆n×{0}(∂∆n ×∆1) f //

� _

��

Y

p

��
∆n ×∆1

h

44hhhhhhhhhhhh g // S

there exists a map h as indicated, rendering the diagram commutative.

Proof. Let us first prove the “only if” direction. We recall a bit of the notation used in the proof of
Proposition 2.1.2.5; in particular, the filtration

X(n+ 1) ⊆ . . . ⊆ X(0) = ∆n ×∆1

of ∆n ×∆1. We construct h|X(m) by descending induction on m. To begin, we set h|X(n+ 1) = f . Now,
for each m the space X(m) is obtained from X(m+ 1) by pushout along a horn inclusion Λn+1

m ⊆ ∆m+1. If
m > 0, the desired extension exists because p is an inner fibration. If m = 0, the desired extension exists
because of the hypothesis that e is a p-coCartesian edge.

We now prove the “if” direction. Suppose that e satisfies the condition in the statement of the Proposition.
We wish to show that e is p-coCartesian. In other words, we must show that for every n ≥ 2 and every
diagram

∆{0,1}

e

""E
EE

EE
EE

EE
� _

��
Λn0 //

� _

��

X

p

��
∆n //

<<x
x

x
x

x
S

there exists a dotted arrow as indicated, rendering the diagram commutative. Replacing S by ∆n and Y
by Y ×S ∆n, we may reduce to the case where S is a ∞-category. We again make use of the notation (and
argument) employed in the proof of Proposition 2.1.2.5. Namely, the inclusion Λn0 ⊆ ∆n is a retract of the
inclusion

(Λn0 ×∆1)
∐

Λn
0×{0}

(∆n × {0}) ⊆ ∆n ×∆1.

The retraction is implemented by maps

∆n j→ ∆n ×∆1 r→ ∆n

which were defined in the proof of Proposition 2.1.2.5. We now set F = f ◦ r, G = g ◦ r.
Let K = ∆{1,2,...,n} ⊆ ∆n. Then

F |(∂ K ×∆1)
∐

∂ K×{0}

(K ×∆1)

carries {1} ×∆1 into e. By assumption, there exists an extension of F to K ×∆1 which is compatible with
G. In other words, there exists a compatible extension F ′ of F to

∂∆n ×∆1
∐

∂∆n×{0}

∆n × {0}.
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Moreover, F ′ carries {0}×∆1 to a degenerate edge; such an edge is automatically coCartesian (by Corollary
2.3.1.6, since S is an ∞-category), and therefore there exists an extension of F ′ to all of ∆n × ∆1 by the
first part of the proof.

Remark 2.3.1.9. Let p : X → S be an inner fibration of simplicial sets, x a vertex ofX, and f : x′ → p(x) an
edge of S ending at p(x). There may exist many p-Cartesian edges f : x′ → x of X with p(f) = f . However,
there is a sense in which any two such edges having the same target x are equivalent to one another. Namely,
any p-Cartesian edge f : x′ → x lifting f can be regarded as a final object of the∞-category X/x×S/p(x) {f},
and is therefore determined up to equivalence by f and x.

We now spell out the meaning of Definition 2.3.1.1 in the setting of simplicial categories.

Proposition 2.3.1.10. Let F : C → D be a functor between simplicial categories. Suppose that C and D

are fibrant, and that for every pair of objects C,C ′ ∈ C, the associated map

MapC(C,C ′)→ MapD(F (C), F (C ′))

is a Kan fibration. Then:

(1) The associated map q : N(C)→ N(D) is an inner fibration between ∞-categories.

(2) A morphism f : C ′ → C ′′ in C is q-Cartesian if and only if, for every object C ∈ C, the diagram of
simplicial sets

MapC(C,C ′) //

��

MapC(C,C ′′)

��
MapD(F (C), F (C ′)) // MapD(F (C), F (C ′′))

is homotopy Cartesian.

Proof. Assertion (1) follows from Remark 1.1.5.10. Let f be a morphism in C. By definition, f : C ′ → C ′′

is q-Cartesian if and only if

θ : N(C)/f → N(C)/C′′ ×N(D)/F (C′′)
N(D)/F (f)

is a trivial fibration. Since θ is a right fibration between right fibrations over C, f is q-Cartesian if and only
if for every object C ∈ C, the induced map

θC : {C} ×N(C) N(C)/f → {C} ×N(C) N(C)/C′′ ×N(D)/F (C′′)
N(D)/F (f)

is a homotopy equivalence of Kan complexes. This is equivalent to the assertion that the diagram

N(C)/f ×C {C} //

��

N(C)/C′′ ×N(C) {C}

��
N(D)/F (f) ×N(D) {F (C)} // N(D)/F (C′′) ×N(D) {F (C)}

is homotopy Cartesian. In view of Theorem 1.1.5.12, this diagram is equivalent to the diagram of simplicial
sets

MapC(C,C ′) //

��

MapC(C,C ′′)

��
MapD(F (C), F (C ′)) // MapD(F (C), F (C ′′)).

This proves (2).
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We conclude with a somewhat technical result which will be needed in §3.1.1:

Proposition 2.3.1.11. Let p : X → S be an inner fibration of simplicial sets. Let f : x→ y be an edge of
X Suppose that there is a 3-simplex σ : ∆3 → X such that d1σ = s0f and d2σ = s1f . Suppose furthermore
that there exists a p-Cartesian edge f̃ : x̃→ y such that p(f̃) = p(f). Then f is p-Cartesian.

Proof. We have a diagram of simplicial sets

Λ2
2

( ef,f,•) //
� _

��

X

p

��
∆2

s0p(f) //

τ

88qqqqqqq
S.

Because f̃ is p-Cartesian, there exists a map τ rendering the diagram commutative. Let g = d2(τ), which
we regard as a morphism x → x̃ in the ∞-category Xp(x) = X ×S {p(x)}. We will show that g is an
equivalence in Xp(x). It will follow that g is p-Cartesian and that f , being a composition of p-Cartesian
edges, is p-Cartesian (Proposition 2.3.1.7).

Now consider the diagram

Λ2
1

(d0d3σ,•,g) //
� _

��

X

p

��
∆2

d3p(σ) //

τ ′

88qqqqqqq
S.

The map τ ′ exists since p is an inner fibration. Let g′ = d1τ
′. We will show that g′ : x̃ → x is a homotopy

inverse to g in the ∞-category Xp(x).
Using τ and τ ′, we construct a new diagram

Λ3
2

(τ ′,d3σ,•,τ) //
� _

��

X

p

��
∆3

s0d3p(σ) //

θ

88qqqqqqq
S.

Since p is an inner fibration, we deduce the existence of θ : ∆3 → X rendering the diagram commutative.
The simplex d2(θ) exhibits idx as a composition g′ ◦ g in the ∞-category Xp(s). It follows that g′ is a left
homotopy inverse to g.

We now have a diagram

Λ2
1

(g,•,g′) //
� _

��

Xp(x)

∆2.

τ ′′
77ooooooo

The indicated 2-simplex τ ′′ exists since Xp(x) is an ∞-category, and exhibits d1(τ ′′) as a composition g ◦ g′.
To complete the proof, it will suffice to show that d1(τ ′′) is an equivalence in Xp(x).

Consider the diagrams

Λ3
1

(d0σ,•,s1 ef,τ ′) //
� _

��

X

p

��

Λ3
1

(τ,•,d1θ′,τ ′′) //
� _

��

X

p

��
∆3

θ′

88qqqqqqq σ // S ∆3
s0s0p(f) //

θ′′

88qqqqqqq
S.
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Since p is an inner fibration, there exist 3-simplices θ′, θ′′ : ∆3 → X with the inducated properties. The
2-simplex d1(θ′′) identifies d1(τ ′′) as a map between two p-Cartesian lifts of p(f); it follows that d1(τ ′′) is an
equivalence, which completes the proof.

2.3.2 Cartesian Fibrations

In this section, we will introduce the study of Cartesian fibrations between simplicial sets. The theory of
Cartesian fibrations as a generalization of the theory of right fibrations, studied in §2.1: we still require the
CD to depend contravariantly in D, but no longer require that the fibers be Kan complexes (see Proposition
2.3.2.7 below).

Definition 2.3.2.1. We will say that a map p : X → S of simplicial sets is a Cartesian fibration if the
following conditions are satisfied:

(1) The map p is an inner fibration.

(2) For every edge f : x→ y of S and every vertex ỹ of X with p(ỹ) = y, there exists a p-Cartesian edge
f̃ : x̃→ ỹ with p(f̃) = f .

We say that p is a coCartesian fibration if the opposite map pop : Xop → Sop is a Cartesian fibration.

If a general inner fibration p : X → S associates to each vertex s ∈ S an ∞-category Xs and to each
edge s→ s′ a correspondence from Xs to Xs′ , then p is Cartesian if each of these correspondences arise from
an (canonically determined) functor Xs′ → Xs. In other words, a Cartesian fibration with base S ought to
be roughly the same thing as a contravariant functor from S into an ∞-category of ∞-categories, where the
morphisms are given by functors. We will prove a precise assertion to this effect in §3.

Remark 2.3.2.2. Let F : C→ C′ be a functor between (ordinary) categories. The induced map of simplicial
sets N(F ) : N(C)→ N(C′) of simplicial sets is automatically an inner fibration; it is Cartesian if and only if
F is a fibration of categories in the sense of Grothendieck.

The following formal properties follow immediately from the definition:

Proposition 2.3.2.3. (1) Any isomorphism of simplicial sets is a Cartesian fibration.

(2) The class of Cartesian fibrations between simplicial sets is stable under base change.

(3) A composition of Cartesian fibrations is a Cartesian fibration.

We now introduce a few technical results which will be useful for proving that certain maps are Cartesian
fibrations. Let p : X → S be an inner fibration of simplicial sets. We will say that an edge f : ∆1 → S is
locally p-Cartesian if it becomes p-Cartesian upon replacing S by ∆1 and X by X×S∆1, and that p : X → S
is locally Cartesian if it becomes a Cartesian fibration after pullback along any map ∆1 → S.

Proposition 2.3.2.4. An inner fibration p : X → S of simplicial sets is a Cartesian fibration if and only if
p is locally Cartesian and the class of locally p-Cartesian edges of X is stable under composition.

Remark 2.3.2.5. We say that a collection E of edges of a simplicial set X is stable under composition if it
contains every degenerate edge of X, and if for every 2-simplex

y
g

��?
??

??
??

x

f
??������� h // z

in X, where f and g belong to E, the edge h also belongs to E.

94



Proof. Suppose first that p is a Cartesian fibration. We note that, in view of the characterization of locally
p-Cartesian morphisms as initial objects (see Remark 2.3.1.9), locally p-Cartesian lifts are unique up to
equivalence when they exist. The assumption that p is Cartesian ensures that p-Cartesian lifts always
exist; it follows that the class of locally p-Cartesian morphisms of X coincides with the class of p-Cartesian
morphisms of X. Since the class of Cartesian fibrations is stable under pullback, it is clear that p is locally
Cartesian. Corollary 2.3.1.6 implies that every degenerate edge of X is locally p-Cartesian, and Proposition
2.3.1.7 implies that the class of p-Cartesian edges of X is stable under composition.

We now prove the converse assertion. Suppose that p is locally Cartesian, and that the class of locally
Cartesian morphisms in X is stable under composition. We wish to show that p is Cartesian. It will suffice
to show that every locally Cartesian morphism f : C ′ → C in X is actually Cartesian. In other words, we
must show that η : X/f → X/C ×S/p(C) S/p(f) is a trivial fibration. Since η is a right fibration, it will suffice
to show that the fiber of η over any vertex is contractible. Any such vertex determines a map σ : ∆2 → S
with σ|∆{1,2} = p(f). Pulling back via σ, we may suppose that S = ∆2.

It will be convenient to introduce a bit of notation: for every map q : K → X, let Y/q ⊆ X/q denote the
full simplicial subset spanned by those vertices of X/q which map to the initial vertex of S. We wish to show
that the natural map Y/f → Y/C is a trivial fibration. By assumption, there exists a locally p-Cartesian
morphism g : C ′′ → C ′ in X covering the edge ∆{0,1} ⊆ S. Since X is an∞-category, there exists a 2-simplex
τ : ∆2 → X with d2(τ) = g and d0(τ) = f . Then h = d1(τ) is a composite of f and g, and consequently
locally Cartesian. We have a commutative diagram

Y/h

((QQQQQQQQQQQQQQQQ

Y/τ

55llllllllllllllllll

""E
EE

EE
EE

E
Y/C

Y/τ |Λ2
1

// Y/f .

ζ
=={{{{{{{{

Moreover, all of these maps in this diagram are trivial fibrations except possibly ζ, which is known to be a
right fibration. It follows that ζ is a trivial fibration as well, which completes the proof.

Corollary 2.3.2.6. Let p : X → S be an inner fibration of simplicial sets. Then p is Cartesian if and only
if every pullback X ×S ∆n → ∆n is a Cartesian fibration, for n ≤ 2.

Recall that an ∞-category C is a Kan complex if and only if every morphism in C is an equivalence. We
now establish a relative version of this statement:

Proposition 2.3.2.7. Let p : X → S be an inner fibration of simplicial sets. The following conditions are
equivalent:

(1) The map p is a Cartesian fibration and every edge in X is p-Cartesian.

(2) The map p is a right fibration.

(3) The map p is a Cartesian fibration and every fiber of p is a Kan complex.

Proof. In view of Remark 2.3.1.4, the assertion that every edge of X is p-Cartesian is equivalent to the
assertion that p has the right lifting property with respect to Λnn ⊆ ∆n for all n ≥ 2. The requirement that
p be a Cartesian fibration further imposes the right lifting property with respect to Λ1

1 ⊆ ∆1. This proves
that (1)⇔ (2).

Suppose that (2) holds. Since we have established that (2) implies (1), we know that p is Cartesian.
Furthermore, we have already seen that the fibers of a right fibration are Kan complexes. Thus (2) implies
(3).
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We complete the proof by showing that (3) implies that every edge f : x→ y of X is p-Cartesian. Since p
is a Cartesian fibration, there exists a p-Cartesian edge f ′ : x′ → y with p(f ′) = p(f). Since f ′ is p-Cartesian,
there exists a 2-simplex σ : ∆2 → X which we may depict as a diagram

x′

f ′

  @
@@

@@
@@

x

g
??�������� f // y,

where p(σ) = s0p(f). Then g lies in the fiber Xp(x), and is therefore an equivalence (since Xp(x) is a Kan
complex). It follows that f is equivalent to f ′ as objects of X/y ×S/p(y) {p(f)}, so that f is p-Cartesian as
desired.

Corollary 2.3.2.8. Let p : X → S be a Cartesian fibration. Let X ′ ⊆ X consist of all those simplices σ of
X such that every edge of σ is p-Cartesian. Then p|X ′ is a right fibration.

Proof. We first show that p|X ′ is an inner fibration. It suffices to show that p|X ′ has the right lifting property
with respect to every horn inclusion Λni , 0 < i < n. If n > 2, then this follows immediately from the fact the
fact that p has the appropriate lifting property. If n = 2, then we must show that if f : ∆2 → X is such that
f |Λ2

1 factors through X ′, then f factors through X ′. This follows immediately from Proposition 2.3.1.7.
We now wish to complete the proof by showing that p is a right fibration. According to Proposition

2.3.2.7, it suffices to prove that every edge of X ′ is p|X ′-Cartesian. This follows immediately from the
characterization given in Remark 2.3.1.4, since every edge of X ′ is p-Cartesian when regarded as an edge of
X.

2.3.3 Stability Properties of Cartesian Fibrations

In this section, we will prove the class of Cartesian fibrations is stable under the formation of overcategories
and undercategories. Since the definition of a Cartesian fibration is not self-dual, we must treat these results
separately, using slightly different arguments (Propositions 2.3.3.2 and 2.3.3.3). We begin with the following
simple lemma.

Lemma 2.3.3.1. Let A ⊆ B be an inclusion of simplicial sets. Then the inclusion

({1} ? B)
∐
{1}?A

(∆1 ? A) ⊆ ∆1 ? B

is inner anodyne.

Proof. Working by transfinite induction, we may reduce to the case where B is obtained from A by adjoining
a single non-degenerate simplex, and therefore to the universal case B = ∆n, A = ∂∆n. Now the inclusion
in question is isomorphic to Λn+2

1 ⊆ ∆n+2.

Proposition 2.3.3.2. Let p : C → D be a Cartesian fibration of simplicial sets, and let q : K → C be a
diagram. Then:

(1) The induced map p′ : C/q → D/pq is a Cartesian fibration.

(2) An edge f of C/q is p′-Cartesian if and only if the image of f in C is p-Cartesian.

Proof. Proposition 2.1.2.4 implies that p′ is an inner fibration. Let us call an edge f of Cq/ special if its
image in C is pCartesian. To complete the proof, it will suffice to show that:

(i) Given a vertex q ∈ C/q and an edge f̃ : r′ → p′(q), there exists a special edge f : r → q with p′(f) = f̃ .

(ii) Every special edge of C/q is p′-Cartesian.
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To prove (i), let f̃ ′ denote the image of f̃ in D and c the image of q in C. Using the assumption that p
is a coCartesian fibration, we can choose a p-coCartesian edge f ′ : c → d lifting f̃ ′. To extend this data to
the desired edge f of C/q, it suffices to solve the lifting problem depicted in the diagram

({1} ? K)
∐
{1} ∆1 //

� _

i

��

C

p

��
∆1 ? K //

88qqqqqqq
D

This lifting problem has a solution, since p is an inner fibration and i is inner anodyne (Lemma 2.3.3.1).
To prove (ii), it will suffice to show that if n ≥ 2, then any lifting problem of the form

Λnn ? K
g //

� _

��

C

p

��
∆n ? K //

G

;;w
w

w
w

w
D

has a solution, provided that e = g(∆{n−1,n}) is a p-Cartesian edge of C. Consider the set P of pairs
(K ′, GK′), where K ′ ⊆ K and GK′ fits in a commutative diagram

(Λnn ? K)
∐

Λn
n?K

′(∆n ? K ′)
GK′ //

� _

��

C

p

��
∆n ? K // D .

Because e is p-Cartesian, there exists an element (∅, G∅) ∈ P . We regard P as partially ordered, where
(K ′, GK′) ≤ (K ′′, GK′′) if K ′ ⊆ K ′′ and GK′ is a restriction of GK′′ . Invoking Zorn’s lemma, we deduce
the existence of a maximal element (K ′, GK′) of P . If K ′ = K, then the proof is complete. Otherwise, it
is possible to enlarge K ′ by adjoining a single nondegenerate m-simplex of K. Since (K ′, GK′′) is maximal,
we conclude that the associated lifting problem

(Λnn ?∆m)
∐

Λn
n?∂∆m(∆n ? ∂∆m) //

� _

��

C

p

��
∆n ?∆m //

σ

55kkkkkkkkkk
D .

has no solution. The left vertical map is equivalent to the inclusion Λn+m+1
n+1 ⊆ ∆n+m+1, which is inner

anodyne. Since p is an inner fibration by assumption, we obtain a contradiction.

Proposition 2.3.3.3. Let p : C → D be a coCartesian fibration of simplicial sets, and let q : K → C be a
diagram. Then:

(1) The induced map p′ : C/q → D/pq is a coCartesian fibration.

(2) An edge f of C/q is p′-coCartesian if and only if the image of f in C is p-coCartesian.

Proof. Proposition 2.1.2.4 implies that p′ is an inner fibration. Let us call an edge f of C/q special if its
image in C is p-coCartesian. To complete the proof, it will suffice to show that:

(i) Given a vertex q ∈ C/q and an edge f̃ : p′(q)→ r′, there exists a special edge f : q → r with p′(f) = f̃ .

(ii) Every special edge of C/q is p′-coCartesian.
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To prove (i), we begin a commutative diagram

∆0 ? K
q //

� _

��

C

��
∆1 ? K

ef // D

.

Let C ∈ C denote the image under q of the cone point of ∆0 ? K, and choose a p-coCartesian morphism
u : C → C ′ lifting f̃ |∆1. We now consider the collection P of all pairs (L, fL), where L is a simplicial subset
of K and fL is a map fitting into a commutative diagram

(∆0 ? K)
∐

∆0?L(∆1 ? L)
fL //

� _

��

C

��
∆1 ? K

ef // D

where fL|∆1 = u and fL|∆0 ? K = q. We partially order the set P as follows: (L, fL) ≤ (L′, fL′) if L ⊆ L′

and fL is equal to the restriction of fL′ . The partially ordered set P satisfies the hypotheses of Zorn’s lemma,
and therefore contains a maximal element (L, fL). If L 6= K, then we can choose a simplex σ : ∆n → K of
minimal dimension which does not belong to L. By maximality, we obtain a diagram

Λn+2
0

//
� _

��

C

��
∆n+2 //

=={
{

{
{

{
D

in which the indicated dotted arrow cannot be supplied. This is a contradiction, since the upper horizontal
map carries the initial edge of Λn+2

0 to a p-coCartesian edge of C. It follows that L = K, and we may take
f = fL. This completes the proof of (i).

The proof of (ii) is similar. Suppose given n ≥ 2 and a diagram

Λn0 ? K
f0 //

� _

��

C

��
∆n ? K

g //

f

;;w
w

w
w

w
D

be a commutative diagram, where f0|K = q and f0|∆{0,1} is a p-coCartesian edge of C. We wish to prove
the existence of the dotted arrow f , indicated in the diagram. As above, we consider the collection P of all
pairs (L, fL), where L is a simplicial subset of K and fL extends f0 and fits into a commutative diagram

(Λn0 ? K)
∐

Λn
0 ?L

(∆n ? L) fL //
� _

��

C

��
∆n ? K

g // D .

We partially order P as follows: (L, fL) ≤ (L′, fL′) if L ⊆ L′ and fL is a restriction of fL′ . Using Zorn’s
lemma, we conclude that P contains a maximal element (L, fL). If L 6= K, then we can choose a simplex
σ : ∆m → K which does not belong to L, where m is as small as possible. Invoking the maximality of
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(L, fL), we obtain a diagram

Λn+m+1
0

h //
� _

��

C

��
∆n+m+1 //

;;w
w

w
w

w
D

where the indicated dotted arrow cannot be supplied. However, the map h carries the initial edge of ∆n+m+1

to a p-coCartesian edge of C, so we obtain a contradiction. It follows that L = K, so that we can take f = fL
to complete the proof.

2.3.4 Mapping Spaces and Cartesian Fibrations

Let p : C→ D be a functor between ∞-categories, and let X and Y be objects of C. Then p induces a map

φ : MapC(X,Y )→ MapD(p(X), p(Y )).

Our goal in this section is to understand the relationship between the fibers of p and the homotopy fibers of
φ.

Lemma 2.3.4.1. Let p : C→ D be an inner fibration of ∞-categories, and let X,Y ∈ C. The induced map
φ : HomR

C(X,Y )→ HomR
D(X,Y ) is a Kan fibration.

Proof. Since p is an inner fibration, the induced map φ̃ : C/X → D/p(X)×D C is a right fibration by
Proposition 2.1.2.2. We note that φ is obtained from φ̃ by restricting to the fiber over the vertex Y of C.
Thus φ is a right fibration; since the target of φ is a Kan complex, φ is a Kan fibration by Lemma 2.1.3.2.

Suppose the conditions of Lemma 2.3.4.1 are satisfied. Let us consider the problem of computing the fiber
of φ over a vertex e : p(X) → p(Y ) of HomR

D(X,Y ). Suppose that there is a p-Cartesian edge e : X ′ → Y
lifting e. By definition, we have a trivial fibration

ψ : C/e → C/Y ×D/p(Y ) D/e .

Consider the 2-simplex σ = s1(e), regarded as a vertex of D/e. Passing to the fiber, we obtain a trivial
fibration

F → φ−1(e),

where F denotes the fiber of C/e → D/e×D C over the point (σ,X).
On the other hand, we have a trivial fibration C/e → D/e×D/p(X) C/X′ by Proposition 2.1.2.4. Passing

to the fiber again, we obtain a trivial fibration F → HomR
Cp(X)

(X,X ′). We may summarize the situation as
follows:

Proposition 2.3.4.2. Let p : C → D be an inner fibration of ∞-categories. Let X,Y ∈ C, let e : p(X) →
p(Y ) be a morphism in D, and let e : X ′ → Y be a p-Cartesian morphism of C lifting e. Then in the
homotopy category H of spaces, there is a fiber sequence

MapCp(X)
(X,X ′)→ MapC(X,Y )→ MapD(p(X), p(Y )).

Here the fiber is taken over the point classified by e : p(X)→ p(Y ).

A similar assertion can be taken as a characterization of Cartesian morphisms:

Proposition 2.3.4.3. Let p : C→ D be an inner fibration of∞-categories, and let f : Y → Z be a morphism
in C. The following are equivalent:

(1) The morphism f is p-Cartesian.
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(2) For every object X of C, composition with f gives rise to a homotopy Cartesian diagram

MapC(X,Y ) //

��

MapC(X,Z)

��
MapD(p(X), p(Y )) // MapD(p(X), p(Z)).

Proof. Let φ : C/f → C/Z ×D/p(Z) D/p(f) be the canonical map; then (1) is equivalent to the assertion that
φ is a trivial fibration. According to Proposition 2.1.2.2, φ is a right fibration. Thus, φ is a trivial fibration
if and only if the fibers of φ are contractible Kan complexes. For each object X ∈ C, let

φX : C/f ×C{X} → C/Z ×D/p(Z) D/p(f)×C{X}

be the induced map. Then φX is a right fibration between Kan complexes, and therefore a Kan fibration;
it has contractible fibers if and only if it is a homotopy equivalence. Thus, (1) is equivalent to the assertion
that φX is a homotopy equivalence for every object X of C.

We remark that (2) is somewhat imprecise: although all the maps in the diagram are well defined in
the homotopy category H of spaces, we need to represent this by a commutative diagram in the category of
simplicial sets before we can ask whether or not the diagram is homotopy Cartesian. We therefore rephrase
(2) more precisely: it asserts that the diagram of Kan complexes

C/f ×C{X} //

��

C/Z ×C{X}

��
D/p(f)×D{p(X)} // D/p(Z)×D{p(X)}

is homotopy Cartesian. Lemma 2.3.4.1 implies that the right vertical map is a Kan fibration, so the homotopy
limit in question is given by the fiber product

C/Z ×D/p(Z) D/p(f)×C{X}.

Consequently, assertion (2) is also equivalent to the condition that φX be a homotopy equivalence for every
object X ∈ C.

Corollary 2.3.4.4. Suppose given maps C
p→ D

q→ E of∞-categories, such that both q and q◦p are Cartesian
fibrations. Suppose that p carries (q ◦ p)-Cartesian edges of C to q-Cartesian edges of D, and that for every
object Z ∈ E, the induced map CZ → DZ is a categorical equivalence. Then p is a categorical equivalence.

Proof. Proposition 2.3.4.2 implies that p is fully faithful. If Y is any object of D, then Y is equivalent in
the fiber Dq(Y ) to the image under p of some vertex of Cq(Y ). Thus p is essentially surjective and the proof
is complete.

Corollary 2.3.4.5. Let p : C→ D be a Cartesian fibration of ∞-categories. Let q : D′ → D be a categorical
equivalence of ∞-categories. Then the induced map q′ : C′ = D′×D C→ C is a categorical equivalence.

Proof. Proposition 2.3.4.2 immediately implies that q′ is fully faithful. We claim that q′ is essentially
surjective. Let X be any object of C. Since q is fully faithful, there exists an object y of T ′ and an
equivalence e : q(Y ) → p(X). Since p is Cartesian, we can choose a p-Cartesian edge e : Y ′ → X lifting e.
Since e is p-Cartesian and p(e) is an equivalence, e is an equivalence. By construction, the object Y ′ of S
lies in the image of q′.

Corollary 2.3.4.6. Let p : C → D be a Cartesian fibration of ∞-categories. Then p is a categorical
equivalence if and only if p is a trivial fibration.
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Proof. The “if” direction is clear. Suppose then that p is a categorical equivalence. We first claim that p
is surjective on objects. The essential surjectivity of p implies that for each Y ∈ D there is an equivalence
Y → p(X), for some object X of C. Since p is Cartesian, this equivalence lifts to a p-Cartesian edge Ỹ → X

of S, so that p(Ỹ ) = Y .
Since p is fully faithful, the map MapC(X,X ′)→ MapD(p(X), p(X ′)) is a homotopy equivalence for any

pair of objects X,X ′ ∈ C. Suppose that p(X) = p(X ′). Then, applying Proposition 2.3.4.2, we deduce
that MapCp(X)

(X,X ′) is contractible. It follows that the ∞-category Cp(X) is nonempty with contractible
morphism spaces; it is therefore a contractible Kan complex. Proposition 2.3.2.7 now implies that p is a
right fibration. Since p has contractible fibers, it is a trivial fibration by Lemma 2.1.3.3.

We have already seen that if a ∞-category S has an initial object, then that initial object is essentially
unique. We now establish a relative version of this result.

Lemma 2.3.4.7. Let p : C→ D be a Cartesian fibration of∞-categories, and let C be an object of C. Suppose
that D = p(C) is an initial object of D, and that C is an initial object of the ∞-category CD = C×D{D}.
Then C is an initial object of C.

Proof. Let C ′ be any object of C, and letD′ = p(C ′). SinceD is an initial object of D, the space MapD(D,D′)
is contractible. In particular, there exists a morphism f : D → D′ in D. Let f̃ : D̃ → C ′ be a p-Cartesian
lift of f . According to Proposition 2.3.4.2, there exists a fiber sequence in the homotopy category H:

MapCD
(C, D̃)→ MapC(C,C ′)→ MapD(D,D′).

Since the first and last space in the sequence are contractible, we deduce that MapC(C,C ′) is contractible
as well, so that C is an initial object of C.

Lemma 2.3.4.8. Suppose given a diagram of simplicial sets

∂∆n
f0 //

� _

��

X

p

��
∆n

f
<<y

y
y

y g // S

where p is a Cartesian fibration and n > 0. Suppose that f0(0) is an initial object of the ∞-category
Xg(0) = X ×S {g(0)}. Then there exists a map f : ∆n → S as indicated by the dotted arrow in the diagram,
which renders the diagram commutative.

Proof. Pulling back via g, we may replace S by ∆n and thereby reduce to the case where S is an∞-category
and g(0) is an initial object of S. It follows from Lemma 2.3.4.7 that f0(v) is an initial object of S, which
implies the existence of the desired extension f .

Proposition 2.3.4.9. Let p : X → S be a Cartesian fibration of simplicial sets. Assume that, for each
vertex s of S, the ∞-category Xs = X ×S {s} has an initial object.

(1) Let X ′ ⊆ X denote the full simplicial subset of X spanned by those vertices x which are initial objects
of Xp(x). Then p|X ′ is a trivial fibration of simplicial sets.

(2) Let C = MapS(S,X) be the ∞-category of sections of p. An arbitrary section q : S → X is an initial
object of C if and only if q factors through X ′.

Proof. Since every fiber Xs has an initial object, the map p|X ′ has the right lifting property with respect
to the inclusion ∅ ⊆ ∆0. If n > 0, then Lemma 2.3.4.8 shows that p|X ′ has the right lifting property with
respect to ∂∆n ⊆ ∆n. This proves (1). In particular, we deduce that there exists a map q : S → X ′ which
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is a section of p. In view of the uniqueness of initial objects, (2) will follow if we can show that q is an initial
object of C. Unwinding the definitions, we must show that for n > 0, any lifting problem

S × ∂∆n
f //� �// X

q

��
S ×∆n //

::u
u

u
u

u
S

can be solved, provided that f |S × {0} = q. The desired extension can be constructed simplex-by-simplex,
using Lemma 2.3.4.8.

2.3.5 Application: Invariance of Undercategories

Our goal in this section is to complete the proof of Proposition 1.2.9.3 by proving the following assertion:

(∗) Let p : C→ D be an equivalence of ∞-categories, and let j : K → C be a diagram. Then the induced
map

Cj/ → Dpj/

is a categorical equivalence.

We will need a lemma.

Lemma 2.3.5.1. Let p : C→ D be a fully faithful map of ∞-categories, and let j : K → C be any diagram
in C. Then, for any object x of C, the map of Kan complexes

Cj/×C{x} → Dpj/×D{p(x)}

is a homotopy equivalence.

Proof. For any map r : K ′ → K of simplicial sets, let Cr = Cjr/×C{x} and Dr = Dpjr/×D{p(x)}.
Choose a transfinite sequence of simplicial subsets Kα of K, such that Kα+1 is the result of adjoining a

single nondegenerate simplex to Kα, and Kλ =
⋃
α<λKα whenever λ is a limit ordinal (we include the case

where λ = 0, so that K0 = ∅). Let iα : Kα → K denote the inclusion. We claim the following:

(1) For every ordinal α, the map φα : Ciα → Diα is a homotopy equivalence of simplicial sets.

(2) For every pair of ordinals β ≤ α, the maps Ciα → Ciβ and Diα → Diβ are Kan fibrations of simplicial
sets.

We prove both of these claims by induction on α. When α = 0, (2) is obvious and (1) follows since both
sides are isomorphic to ∆0. If α is a limit ordinal, (2) is again obvious, while (1) follows from the fact that
both Ciα and Diα are obtained as the inverse limit of a transfinite sequence of fibrations, and the map φα
is an inverse limit of maps which are individually homotopy equivalences.

Assume that α = β + 1 is a successor ordinal, so that Kα ' Kβ

∐
∂∆n ∆n. Let f : ∆n → Kα be the

induced map, so that
Ciα = Ciβ ×Cf| ∂ ∆n Cf

Diα = Diβ ×Df| ∂ ∆n Df .

We note that the projections Cf → Df | ∂∆n and Cf → Df | ∂∆n are left fibrations by Proposition 2.1.2.2,
and therefore Kan fibrations by Lemma 2.1.3.2. This proves (2), since the class of Kan fibrations is stable
under pullback. We also note that the pullback diagrams defining Xiα and Yiα are also homotopy pullback
diagrams. Thus, to prove that φα is a homotopy equivalence, it suffices to show that φβ and the maps

Cf | ∂∆n → Df | ∂∆n
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Cf → Df

are homotopy equivalences. In other words, we may reduce to the case where K is a finite complex.
We now work by induction on the dimension of K. Suppose that the dimension of K is n, and that the

result is known for all simplicial sets having smaller dimension. Running through the above argument again,
we can reduce to the case where K = ∆n. Let v denote the final vertex of ∆n. By Proposition 2.1.2.4, the
maps

Cj → Cj|{v}

Dj → Dj|{v}

are trivial fibrations. Thus, it suffices to consider the case where K is a single point {v}. In this case, we have
Cj = HomL

C(j(v), x) and Yj = HomL
D(p(j(v)), p(x)). It follows that the map φ is a homotopy equivalence,

since p is assumed fully faithful.

Proof of (∗). Let p : C → D be a categorical equivalence of ∞-categories, and j : K → C any diagram. We
have a factorization

Cj/
f→ Dpj/×D C

g→ Dpj/ .

Lemma 2.3.5.1 implies that Cj/ and Dpj/×D C are fiberwise equivalent left-fibrations over C, so that f is a
categorical equivalence by Corollary 2.3.4.4 (we note that the map f automatically carries coCartesian edges
to coCartesian edges, since all edges of the target Dpj/×D C are coCartesian). The map g is a categorical
equivalence by Corollary 2.3.4.5. It follows that g ◦ f is a categorical equivalence, as desired.

2.3.6 Application: Categorical Fibrations over a Point

Our goal in this section is to prove Theorem 2.3.6.4, which asserts that the ∞-categories are precisely those
simplicial sets which are fibrant with respect to the Joyal model structure introduced in §1.3.4. The proof
will be given at the end of this section, after we have established a few technical lemmas.

Lemma 2.3.6.1. Let p : C→ D be a categorical equivalence of ∞-categories and m ≥ 2 an integer. Suppose
given maps f0 : ∂∆{1,...,m} → C and h0 : Λm0 → D with h0| ∂∆{1,...,m} = p ◦ f0. Suppose further that the
restriction of h to ∆{0,1} is an equivalence in D. Then there exist maps f : ∆{1,...,m} → C, h : ∆m → D,
with h|∆{1,...,n} = p ◦ f , f0 = f | ∂∆{1,...,m}, h0 = h|Λm0 .

Proof. We may regard h0 as a point of the simplicial set D/p◦f0 . Since p is a categorical equivalence,
Proposition 1.2.9.3 implies that p′ : C/f0 → D/p◦f0 is a categorical equivalence. It follows that h0 lies in
the essential image of p′. Consider the linearly ordered set {0 < 0′ < 1 < . . . < n} and the corresponding
simplex ∆{0,0′,...,n}. By hypothesis, we can extend f0 to a map f ′0 : Λ{0

′,...,m}
0′ → C and h0 to a map

h′0 : ∆{0,0′} ? ∂∆{1,...,m} → D such that h′0|∆{0,0′} is an equivalence and h′0|Λ
{0′,...,m}
0 = p ◦ f ′0.

Since h′0|∆{0,0′} and h′0|∆{0,1} are both equivalences in D, we deduce that h′0|∆{0′,1} is an equivalence
in D. Since p is a categorical equivalence, it follows that f ′0|∆{0′,1} is an equivalence in C. Proposition
1.2.4.3 implies that f ′0 extends to a map f ′ : ∆{0′,...,m} → C. The union of p ◦ f ′ and h′0 determines a map
Λ{0,0

′,...,m}
0′ → D; since D is an ∞-category, this extends to a map h′ : ∆{0,0′,...,m} → D. We may now take

f = f ′|∆{1,...,m} and h = h′|∆m.

Lemma 2.3.6.2. Let p : C → D be a categorical equivalence of ∞-categories and A ⊆ B any inclusion of
simplicial sets. Let f0 : A → C, g : B → D be any maps, and let h0 : A ×∆1 → D be an equivalence from
g|A to p ◦ f0. Then there exists a map f : B → C and an equivalence h : B ×∆1 → D from g to p ◦ f , such
that f0 = f |A and h0 = h|A×∆1.

Proof. Working cell-by-cell with the inclusion A ⊆ B, we may reduce to the case where B = ∆n, A = ∂∆n.
If n = 0, the existence of the desired extensions is a reformulation of the assumption that p is essentially
surjective. Let us assume therefore that n ≥ 1.
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We consider the task of constructing h : ∆n ×∆1 → D. Consider the filtration

X(n+ 1) ⊆ . . . ⊆ X(0) = ∆n ×∆1

described in the proof of Proposition 2.1.2.5. We note that the value of h on X(n+1) is uniquely prescribed
by h0 and g. We extend the definition of h to X(i) by descending induction on i. We note that X(i) '
X(i + 1)

∐
Λn+1

k
∆n+1. For i > 0, the existence of the required extension is guaranteed by the assumption

that D is an ∞-category. Since n ≥ 1, Lemma 2.3.6.1 allows us to extend h over the simplex σ0 and to
define f so that the desired conditions are satisfied.

Lemma 2.3.6.3. Let C ⊆ D be an inclusion of simplicial sets which is also a categorical equivalence. Suppose
further that C is an ∞-category. Then C is a retract of D.

Proof. Enlarging D by an inner anodyne extension if necessary, we may suppose that D is an ∞-category.
We now apply Lemma 2.3.6.2 in the case where A = C, B = D.

Theorem 2.3.6.4. Let C be a simplicial set. Then C is fibrant for the Joyal model structure if and only if
C is an ∞-category.

Proof. The “only if” direction has already been established (Remark 1.3.4.5). For the converse, we must
show that if C is an∞-category, then C has the extension property with respect to every inclusion of simplicial
sets A ⊆ B which is a categorical equivalence. Fix any map A → C. Since the Joyal model structure is
left-proper, the inclusion C ⊆ C

∐
AB is a categorical equivalence. We now apply Lemma 2.3.6.3 to conclude

that C is a retract of C
∐
AB.

Warning 2.3.6.5. We may restate Theorem 2.3.6.4 as follows: if T is a point, then p : S → T is a categorical
fibration (in other words, a fibration with respect to the Joyal model structure on S) if and only if it is an
inner fibration. However, the class of inner fibrations does not coincide with the class of categorical fibrations
in general.

2.3.7 Bifibrations

As we explained in §2.1.2, left fibrations p : X → S can be thought of as covariant functors from S into an
∞-category of spaces. Similarly, right fibrations q : Y → T can be thought of as contravariant functors from
T into an ∞-category of spaces. The purpose of this section is to introduce a convenient formalism which
encodes covariant and contravariant functoriality simultaneously.

Remark 2.3.7.1. The theory of bifibrations will not play an important role in the remainder of the book.
In fact, the only result from this section that we will actually use is Corollary 2.3.7.12, whose statement
makes no mention of bifibrations. A reader who is willing to take Corollary 2.3.7.12 on faith, or supply an
alternative proof, may safely omit the material covered in this section.

Definition 2.3.7.2. Let S, T , and X be simplicial sets, and p : X → S × T a map. We shall say that p is
a bifibration if it is an inner fibration having the following properties:

• For every n ≥ 1 and every diagram of solid arrows

Λn0� _

��

// X

��
∆n

;;x
x

x
x

x f // S × T

such that πT ◦f maps ∆{0,1} ⊆ ∆n to a degenerate edge of T , there exists a dotted arrow as indicated,
rendering the diagram commutative. Here πT denotes the projection S × T → T .
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• For every n ≥ 1 and every diagram of solid arrows

Λnn� _

��

// X

��
∆n

;;x
x

x
x

x f // S × T

such that πS ◦ f maps ∆{n−1,n} ⊆ ∆n to a degenerate edge of T , there exists a dotted arrow as
indicated, rendering the diagram commutative. Here πS denotes the projection S × T → S.

Remark 2.3.7.3. The condition that p be a bifibration is not a condition on p alone, but refers also to a
decomposition of the codomain of p as a product S × T . We note also that the definition is not symmetric
in S and T : instead, p : X → S × T is a bifibration if and only if pop : Xop → T op × Sop is a bifibration.

Remark 2.3.7.4. Let p : X → S × T be a map of simplicial sets. If T = ∗, then p is a bifibration if and
only if it is a left fibration. If S = ∗, then p is a bifibration if and only if it is a right fibration.

Roughly speaking, we can think of a bifibration p : X → S×T as a bifunctor from S×T to an∞-category
of spaces; the functoriality is covariant in S and contravariant in T .

Lemma 2.3.7.5. Let p : X → S × T be a bifibration of simplicial sets. Suppose that S is an ∞-category.
Then the composition q = πT ◦ p is a Cartesian fibration of simplicial sets. Furthermore, an edge e of X is
q-Cartesian if and only if πS(p(e)) is an equivalence.

Proof. The map q is an inner fibration, since it is a composition of inner fibrations. Let us say that an
edge e : x → y of X is quasi-Cartesian if πS(p(e)) is degenerate in S. Let y ∈ X0 be any vertex of X, and
e : x → q(y) an edge of S. The pair (e, s0q(y)) is an edge of S × T whose projection to T is degenerate;
consequently, it lifts to a (quasi-Cartesian) edge e : x→ y in X. It is immediate from Definition 2.3.7.2 that
any quasi-Cartesian edge of X is q-Cartesian. Thus, q is a Cartesian fibration.

Now suppose that e is a q-Cartesian edge of X. Then e is equivalent to a quasi-Cartesian edge of X;
it follows easily that πS(p(e)) is an equivalence. Conversely, suppose that e : x → y is an edge of X and
that πS(p(e)) is an equivalence. We wish to show that e is q-Cartesian. Choose a quasi-Cartesian edge
e′ : x′ → y with q(e′) = q(e). Since e′ is q-Cartesian, there exists a simplex σ ∈ X2 with d0σ = e′, d1σ = e,
and q(σ) = s0q(e). Let f = d2(σ), so that πS(p(e′)) ◦ πS(p(f)) ' πSp(e) in the ∞-category S. We note that
f lies in the fiber Xq(x), which is left-fibered over S; since f maps to an equivalence in S, it is an equivalence
in Xq(x). Consequently, f is q-Cartesian, so that e = e′ ◦ f is q-Cartesian as well.

Proposition 2.3.7.6. Let X
p→ Y

q→ S × T be a diagram of simplicial sets. Suppose that q and q ◦ p are
bifibrations, and that p induces a homotopy equivalence X(s,t) → Y(s,t) of fibers over each vertex (s, t) of
S × T . Then p is a categorical equivalence.

Proof. By means of a standard argument (see the proof of Proposition 1.3.2.8) we may reduce to the case
where S and T are simplices; in particular, we may suppose that S and T are ∞-categories. Fix t ∈ T0, and
consider the map of fibers pt : Xt → Yt. Both sides are left-fibered over S × {t}, so that pt is a categorical
equivalence by (the dual of) Corollary 2.3.4.4. We may then apply Corollary 2.3.4.4 again (along with the
characterization of Cartesian edges given in Lemma 2.3.7.5) to deduce that p is a categorical equivalence.

Proposition 2.3.7.7. Let p : X → S × T be a bifibration, let f : S′ → S, g : T ′ → T be categorical
equivalences between ∞-categories, and let X ′ = X ×S×T (S′ × T ′). Then the induced map X ′ → X is a
categorical equivalence.

Proof. We will prove the result assuming that f is an isomorphism. A dual argument will establish the result
when g is an isomorphism, and applying the result twice we will deduce the desired statement for arbitrary
f and g.
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Given a map i : A→ S, let us say that i is good if the induced map X×S×T (A×T ′)→ X×S×T (A×T ′)
is a categorical equivalence. We wish to show that the identity map S → S is good; it will suffice to show
that all maps A → S are good. Using the argument of Proposition 1.3.2.8, we can reduce to showing that
every map ∆n → S is good. In other words, we may assume that S = ∆n, and in particular that S is an
∞-category. By Lemma 2.3.7.5, the projection X → T is a Cartesian fibration. The desired result now
follows from Corollary 2.3.4.5.

We next prove an analogue of Lemma 2.3.6.2.

Lemma 2.3.7.8. Let X
p→ Y

q→ S × T satisfy the hypotheses of Proposition 2.3.7.6. Let A ⊆ B be a
cofibration of simplicial sets over S × T . Let f0 : A → X, g : B → Y be morphisms in (Set∆)/S×T and let
h0 : A×∆1 → Y be a homotopy (again over S × T ) from g|A to p ◦ f0.

Then there exists a map f : B → X (of simplicial sets over S × T ) and a homotopy h : B × ∆1 → T
(over S × T ) from g to p ◦ f , such that f0 = f |A and h0 = h|A×∆1.

Proof. Working cell-by-cell with the inclusion A ⊆ B, we may reduce to the case where B = ∆n, A = ∂∆n.
If n = 0, we may invoke the fact that p induces a surjection π0X(s,t) → π0Y(s,t) on each fiber. Let us assume
therefore that n ≥ 1. Without loss of generality, we may pull back along the maps B → S, B → T , and
reduce to the case where S and T are simplices.

We consider the task of constructing h : ∆n ×∆1 → T . We now employ the filtration

X(n+ 1) ⊆ . . . ⊆ X(0)

described in the proof of Proposition 2.1.2.5. We note that the value of h on X(n+1) is uniquely prescribed
by h0 and g. We extend the definition of h to X(i) by descending induction on i. We note that X(i) '
X(i + 1)

∐
Λn+1

k
∆n+1. For i > 0, the existence of the required extension is guaranteed by the assumption

that Y is inner-fibered over S × T .
We note that, in view of the assumption that S and T are simplices, any extension of of h over the

simplex σ0 is automatically a map over S × T . Since S and T are ∞-categories, Proposition 2.3.7.6 implies
that p is a categorical equivalence of ∞-categories; the existence of the desired extension of h (and the map
f now follows from Lemma 2.3.6.1.

Proposition 2.3.7.9. Let X
p→ Y

q→ S × T satisfy the hypotheses of Proposition 2.3.7.6. Suppose that p is
a cofibration. Then there exists a retraction r : Y → X (as a map of simplicial sets over S × T ) such that
r ◦ p = idX .

Proof. Apply Lemma 2.3.7.8 in the case A = X, B = Y .

Let q : M→ ∆1 be an inner fibration, which we view as a correspondence from C = q−1{0} to D = q−1{1}.
Evaluation at the endpoints of ∆1 induces maps Map∆1(∆1,M)→ C, Map∆1(∆1,M)→ D.

Proposition 2.3.7.10. For every inner fibration q : M→ ∆1 as above, the map p : Map∆1(∆1,M)→ C×D

is a bifibration.

Proof. We first show that p is an inner fibration. It suffices to prove that q has the right-lifting property
with respect to

(Λni ×∆1)
∐

Λn
i ×∂∆1

(∆n × ∂∆1) ⊆ ∆n ×∆1,

for any 0 < i < n. But this is a smash product of ∂∆1 ⊆ ∆1 with the inner anodyne inclusion Λni ⊆ ∆n.
To complete the proof that p is a bifibration, we verify that every n ≥ 1, f0 : Λ0

n → X and g : ∆n → S×T
with g|Λn0 = p◦f0, if (πS ◦g)|∆{0,1} is degenerate, then there exists f : ∆n → X with g = p◦f and f0 = f |Λn0 .
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(The dual assertion, regarding extensions of maps Λnn → X, is verified in the same way.) The pair (f0, g)
may be regarded as a map

h0 : (∆n × {0, 1})
∐

Λn
0×{0,1}

(Λn0 ×∆1)→M

and our goal is to prove that h0 extends to a map h : ∆n ×∆1 →M.
Let {σi}0≤i≤n be the maximal-dimensional simplices of ∆n ×∆1, as in the proof of Proposition 2.1.2.5.

We set
K(0) = (∆n × {0, 1})

∐
Λn

0×{0,1}

(Λn0 ×∆1)

and, for 0 ≤ i ≤ n, let K(i + 1) = K(i)
⋃
σi. We construct maps hi : Ki → M, with hi = hi+1|Ki,

by induction on i. We note that for i < n, K(i + 1) ' K(i)
∐

Λn+1
i+1

∆n+1, so that the desired extension
exists in virtue of the assumption that M is an ∞-category. If i = n, we have instead an isomorphism
∆n×∆1 = K(n+1) ' K(n)

∐
Λn+1

0
∆n+1. The desired extension of hn can be found by Proposition 1.2.4.3,

since h0|∆{0,1} × {0} is an equivalence in C ⊆M by assumption.

Corollary 2.3.7.11. Let C be an ∞-category. Evaluation at the endpoints gives a bifibration Fun(∆1,C)→
C×C.

Proof. Apply Proposition 2.3.7.10 to the correspondence C×∆1.

Corollary 2.3.7.12. Let f : C→ D be a functor between ∞-categories. The projection

Fun(∆1,D)×Fun({1},D) C→ Fun({0},D)

is a Cartesian fibration.

Proof. Combine Corollary 2.3.7.11 with Proposition 2.3.7.5.
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Chapter 3

The ∞-Category of ∞-Categories

The power of category theory lies in its role as a unifying language for mathematics: nearly every class of
mathematical structures (groups, manifolds, algebraic varieties, etcetera) can be organized into a category.
This language is somewhat inadequate in situations where the structures need to be classified up to some
notion of equivalence less rigid than isomorphism. For example, in algebraic topology one wishes to study
topological spaces up to homotopy equivalence; in homological algebra one wishes to study chain complexes
up to quasi-isomorphism. Both of these examples are most naturally described in terms of higher category
theory (for example, the theory of ∞-categories used in this book).

Another source of examples arises in category theory itself. In classical category theory, it is generally
regarded as unnatural to ask whether two categories are isomorphic; instead, one asks whether or not they
are equivalent. The same phenomenon arises in higher category theory. Throughout this book, we generally
regard two ∞-categories C and D as “the same” if they are categorically equivalent, even if they are not
isomorphic to one another as simplicial sets. In other words, we are not interested in the ordinary category
of ∞-categories (a full subcategory of Set∆), but in an underlying ∞-category which we now define.

Definition 3.0.0.1. The simplicial category Cat∆∞ is defined as follows:

(1) The objects of Cat∆∞ are (small) ∞-categories.

(2) Given ∞-categories C and D, we define MapCat∆∞
(C,D) to be the largest Kan complex contained in

the ∞-category Fun(C,D).

We let Cat∞ denote the simplicial nerve N(Cat∆∞). We will refer to Cat∞ as the ∞-category of (small)
∞-categories.

Remark 3.0.0.2. The mapping spaces in Cat∆∞ are Kan complexes, so that Cat∞ is an∞-category (Propo-
sition 1.1.5.9) as suggested by the terminology.

Remark 3.0.0.3. By construction, the objects of Cat∞ are∞-categories, morphisms are given by functors,
and 2-morphisms are given by homotopies between functors. In other words, Cat∞ discards all information
about noninvertible natural transformations between functors. If necessary, we could retain this information
by forming an ∞-bicategory of (small) ∞-categories. We do not wish to become involved in any systematic
study of ∞-bicategories, so we will be content to consider only Cat∞.

Our goal in this chapter is to study the∞-category Cat∞. For example, we would like to show that Cat∞
admits limits and colimits. There are two approaches to proving this assertion. We can attack the problem
directly, by giving an explicit construction of the limits and colimits in question: see §3.3.4 and §3.3.5.
Alternatively, we can try to realize Cat∞ as the∞-category underlying a (simplicial) model category A, and
deduce the existence of limits and colimits in Cat∞ from the existence of homotopy limits and homotopy
colimits in A (Corollary 4.2.4.6). The objects of Cat∞ can be identified with the fibrant-cofibrant objects
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of Set∆, with respect to the Joyal model structure. However, we cannot apply Corollary 4.2.4.6 directly,
because Set∆ is not a simplicial model category with respect to the Joyal model structure. We will remedy
this difficulty by introducing the category Set+∆ of marked simplicial sets. We will explain how to endow Set+∆
with the structure of a simplicial model category in such a way that there is an equivalence of simplicial
categories Cat∆∞ ' (Set+∆)◦. This will allow us to identify Cat∞ with the ∞-category underlying Set+∆, so
that Corollary 4.2.4.6 can be invoked.

We will introduce the formalism of marked simplicial sets in §3.1. In particular, we will explain the
construction of a model structure not only on Set+∆ itself, but also for the category (Set+∆)/S of marked
simplicial sets over a given simplicial set S. The fibrant objects of (Set+∆)/S can be identified with Cartesian
fibrations X → S, which we can think of as contravariant functors from S into Cat∞. In §3.2, we will justify
this intuition by introducing the straightening and unstraightening functors which will allow us to pass back
and forth between Cartesian fibrations over S and functors from Sop to Cat∞. This correspondence has
applications to both the study of Cartesian fibrations and to the study of the ∞-category Cat∞; we will
survey some of these applications in §3.3.

Remark 3.0.0.4. In the later chapters of this book, it will be necessary to undertake a systematic study
of ∞-categories which are not small. For this purpose, we introduce the following notational conventions:
Cat∞ will denote the simplicial nerve of the category of small ∞-categories, while Ĉat∞ denotes the the
simplicial nerve of the category of ∞-categories which are not necessarily small.

109



3.1 Marked Simplicial Sets

The Joyal model structure on Set∆ is a powerful tool in the study of ∞-categories. However, in relative
situations it is somewhat inconvenient. Roughly speaking, a categorical fibration p : X → S determines a
family of∞-categories Xs, parametrized by the vertices s of S. However, we are generally more interested in
those cases where Xs can be regarded as a functor of s. As we explained in §2.3.2, this naturally translates
into the assumption that p is a Cartesian fibration. According to Proposition 3.3.2.8, every Cartesian
fibration is a categorical fibration, but the converse is false. Consequently, it is natural to to try to endow
(Set∆)/S with some other model structure, in which the fibrant objects are precisely the Cartesian fibrations
over S.

Unfortunately, this turns out to be an unreasonable demand. In order to have a model category, we need
to be able to form fibrant replacements: in other words, we need the ability to enlarge an arbitrary map
p : X → S into a commutative diagram

X
p

��@
@@

@@
@@

φ // Y

q
����

��
��

�

S

where q is a Cartesian fibration generated by p. A question arises: for which edges f of X should φ(f) be
q-Cartesian edge of Y ? This sort of information is needed for the construction of Y ; consequently, we need
a formalism in which certain edges of X have been distinguished, or marked.

Definition 3.1.0.1. A marked simplicial set is a pair (X,E) where X is a simplicial set and E is a set of
edges of X which contains every degenerate edge.

An edge of X will be called marked, or special, if it belongs to E.
A morphism f : (X,E) → (X ′,E′) of marked simplicial sets is a map f : X → X ′ having the property

that f(E) ⊆ E′. The category of marked simplicial sets will be denoted by Set+∆.

Every simplicial set S may be regarded as a marked simplicial set, usually in many different ways. The
two extreme cases deserve special mention: if S is a simplicial set, we let S] = (S, S1) denote the marked
simplicial set in which every edge of S has been marked, and S[ = (S, s0(S0)) the marked simplicial set in
which only the degenerate edges of S have been marked.

Notation 3.1.0.2. Let S be a simplicial set. We let (Set+∆)/S denote the category of marked simplicial sets
equipped with a map to S (which might otherwise be denoted as (Set+∆)/S]).

Our goal in this section is to study the theory of marked simplicial sets, and in particular to endow each
(Set+∆)/S with the structure of a model category. We will begin in §3.1.1 by introducing the notion of a
marked anodyne morphism in Set∆. In §3.1.2, we will establish a basic stability property of the class of
marked anodyne maps, which implies the stability of Cartesian fibrations under exponentiation (Proposition
3.1.2.1). In §3.1.3 we will introduce the marked model structure on (Set+∆)/S , for every simplicial set S. In
§3.1.4, we will study these model categories; in particular, we will see that each (Set+∆)/S is a simplicial model
category, whose fibrant objects are precisely the Cartesian fibrations X → S (with Cartesian edges of X
marked). Finally, we will conclude with §3.1.5, where we compare the marked model structure on (Set+∆)/S
with other model structures considered in this book (such as the Joyal and contravariant model structures).

3.1.1 Marked Anodyne Morphisms

In this section, we will introduce the class of marked anodyne morphisms in Set+∆. Every marked anodyne
morphism is a trivial cofibration with respect to the marked model structure (to be defined in §3.1.3), but
not conversely. In this respect, the class of marked anodyne morphisms of Set+∆ is analogous to the class of
inner anodyne morphisms of Set∆.
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Definition 3.1.1.1. The class of marked anodyne morphisms in Set+∆ is the smallest saturated (see §A.1.2)
class of morphisms such that:

(1) For each 0 < i < n, the inclusion (Λni )
[ ⊆ (∆n)[ is marked anodyne.

(2) For every n > 0, the inclusion
(Λnn,E∩(Λnn)1) ⊆ (∆n,E)

is marked anodyne, where E denotes the set of all degenerate edges of ∆n, together with the final edge
∆{n−1,n}.

(3) The inclusion
(Λ2

1)
]

∐
(Λ2

1)
[

(∆2)[ → (∆2)]

is marked anodyne.

(4) For every Kan complex K, the map K[ → K] is marked anodyne.

Remark 3.1.1.2. The definition of a marked simplicial set is self-dual. However, Definition 3.1.1.1 is not
self-dual: if A→ B is marked anodyne, then the opposite morphism Aop → Bop need not be marked-anodyne.
This reflects the fact that the theory of Cartesian fibrations is not self-dual.

Remark 3.1.1.3. In part (4) of Definition 3.1.1.1, it suffices to allow K to range over a set of representatives
for all isomorphism classes of Kan complexes with only countably many simplices. Consequently, we deduce
that the class of marked anodyne morphisms in Set+∆ is of small generation, so that the small object argument
applies (see §A.1.2). We will refine this observation further: see Corollary 3.1.1.8, below.

Remark 3.1.1.4. In Definition 3.1.1.1, we are free to replace (1) by

(1′) For every inner anodyne map A→ B of simplicial sets, the induced map A[ → B[ is marked anodyne.

Proposition 3.1.1.5. Consider the following classes of morphisms in Set+∆:

(2) All inclusions
(Λnn,E∩(Λnn)1) ⊆ (∆n,E),

where n > 0 and E denotes the set of all degenerate edges of ∆n, together with the final edge ∆{n−1,n}.

(2′) All inclusions
((∂∆n)[ × (∆1)])

∐
(∂∆n)[×{1}]

((∆n)[ × {1}]) ⊆ (∆n)[ × (∆1)].

(2′′) All inclusions
(A[ × (∆1)])

∐
A[×{1}]

(B[ × {1}]) ⊆ B[ × (∆1)],

where A ⊆ B is an inclusion of simplicial sets.

The classes (2′) and (2′′) generate the same saturated class of morphisms of Set+∆, which contains the
saturated class generated by (2). Conversely, the saturated class of morphisms generated by (1) and (2) from
Definition 3.1.1.1 contains (2′) and (2′′).
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Proof. To see that each of the morphisms specified in (2′′) is contained in the saturated class generated by
(2′), it suffices to work cell-by-cell with the inclusion A ⊆ B. The converse is obvious, since the class of
morphisms of type (2′) is contained in the class of morphisms of type (2′′). To see that the saturated class
generated by (2′′) contains (2), it suffices to show every morphism in (2) is a retract of a morphism in (2′′).
For this, we consider maps

∆n j→ ∆n ×∆1 r→ ∆n.

Here j is the composition of the identification ∆n ' ∆n × {0} with the inclusion ∆n × {0} ⊆ ∆n ×∆1, and
r may be identified with the map of partially ordered sets

r(m, i) =

{
n if m = n− 1, i = 1
m otherwise.

Now we simply observe that j and r exhibit the inclusion

(Λnn,E∩(Λnn)0) ⊆ (∆n,E),

as a retract of
((Λnn)

[ × (∆1)])
∐

(Λn
n)[×{1}]

((∆n)[ × {1}]) ⊆ (∆n)[ × (∆1)].

To complete the proof, we must show that each of the inclusions

((∂∆n)[ × (∆1)])
∐

(∂∆n)[×{1}]

((∆n)[ × {1}]) ⊆ (∆n)[ × (∆1)]

of type (2′) belongs to the saturated class generated by (1) and (2). To see this, we consider the filtration

Yn+1 ⊆ . . . ⊆ Y0 = ∆n ×∆1

which is the opposite of the filtration defined in the proof of Proposition 2.1.2.5. We let Ei denote the
class of all edges of Yi which are marked in (∆n)[ × (∆1)]. It will suffice to show that each inclusion
fi : (Yi+1,Ei+1) ⊆ (Yi,Ei) lies in the saturated class generated by (1) and (2). For i 6= 0, the map fi is a
pushout of (Λn+1

n+1−i)
[ ⊆ (∆n+1)[. For i = 0, fi is a pushout of

(Λn+1
n+1,E∩(Λn+1

n+1)1) ⊆ (∆n+1,E),

where and E denotes the set of all degenerate edges of ∆n+1, together with ∆{n,n+1}.

We now characterize the class of marked-anodyne maps:

Proposition 3.1.1.6. A map p : X → S in Set+∆ has the right lifting property with respect to all marked
anodyne maps if and only if the following conditions are satisfied:

(A) The map p is an inner fibration of simplicial sets.

(B) An edge e of X is marked if and only if p(e) is marked and e is p-Cartesian.

(C) For every object y of X and every marked edge e : x→ p(y) in S, there exists a marked edge e : x→ y
of X with p(e) = e.

Proof. We first prove the “only if” direction. Suppose that p has the right lifting property with respect to
all marked anodyne maps. By considering maps of the form (1) from Definition 3.1.1.1, we deduce that (A)
holds. Considering (2) in the case n = 0, we deduce that (C) holds. Considering (2) for n > 0, we deduce
that every marked edge of X is p-Cartesian. For the converse, let us suppose that e : x→ y is a p-Cartesian
edge of X and that p(e) is marked in S. Invoking (C), we deduce that there exists a marked edge e′ : x′ → y
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with p(e) = p(e′). Since e′ is Cartesian, we can find a 2-simplex σ of X with d0(σ) = e′, d1(σ) = e, and
p(σ) = s1p(e). Then d2(σ) an equivalence between x and x′ in the ∞-category Xp(x). Let K denote the
largest Kan complex contained in Xp(x). Since p has the right lifting property with respect to K[ → K], we
deduce that every edge of K is marked; in particular, d2(σ) is marked. Since p has the right lifting property
with respect to the morphism described in (3) of Definition 3.1.1.1, we deduce that d1(σ) = e is marked.

Now suppose that p satisfied the hypotheses of the proposition. We must show that p has the right
lifting property with respect to the classes of morphisms (1), (2), (3), and (4) of Definition 3.1.1.1. For (1),
this follows from the assumption that p is an inner fibration. For (2), this follows from (C) and from the
assumption that every marked edge is p-Cartesian. For (3), we are free to replace S by (∆2)]; then p is a
Cartesian fibration over an ∞-category S and we may apply Proposition 2.3.1.7 to deduce that the class of
p-Cartesian edges is stable under composition.

Finally, for (4), we may replace S by K]; then S is a Kan complex and p is a Cartesian fibration, so the
p-Cartesian edges of X are precisely the equivalences in X. Since K is a Kan complex, any map K → X
carries the edges of K to equivalences in X.

By Quillen’s small object argument, we deduce that a map j : A→ B in Set+∆ is marked anodyne if and
only if it has the left lifting property with respect to all morphisms p : X → S satisfying the hypotheses of
Proposition 3.1.1.6. From this, we deduce:

Corollary 3.1.1.7. The inclusion
i : (Λ2

2)
]

∐
(Λ2

2)
[

(∆2)[ ↪→ (∆2)]

is marked anodyne.

Proof. It will suffice to show that i has the left lifting property with respect to any of the morphisms
p : X → S described in Proposition 3.1.1.6. Without loss of generality, we may replace S by (∆2)]; we now
apply Proposition 2.3.1.7.

The following somewhat technical corollary will be needed in §3.1.3:

Corollary 3.1.1.8. In Definition 3.1.1.1, we can replace the class of morphisms (4) by

(4′) the map j : A[ → (A, s0A0

⋃
{f}), where A is the quotient of ∆3 which co-represents the functor

HomSet∆(A,X) = {σ ∈ X3, e ∈ X1 : d1σ = s0e, d2σ = s1e}

and f ∈ A1 is the image of ∆{0,1} ⊆ ∆3 in A.

Proof. We first show that for every Kan complex K, the map i : K[ → K] lies in the saturated class of
morphisms generated by (4′). We note that i can be obtained as an iterated pushout of morphisms having
the form K[ → (K, s0K0

⋃
{e}), where e is an edge of K. It therefore suffices to show that there exists a

map p : A→ K such that p(f) = e. In other words, we must prove that there exists a 3-simplex σ : ∆3 → K
with d1σ = s0e and d2σ = s1e. This follows immediately from the Kan extension condition.

To complete the proof, it will suffice to show that the map j is marked anodyne. To do so, it suffices to
prove that for any diagram

A[� _

��

// X

p

��
(A, s0A0 ∪ {f}) //

88qqqqqq
S

for which p satisfies the conditions of Proposition 3.1.1.6, there exists a dotted arrow as indicated, rendering
the diagram commutative. This is simply a reformulation of Proposition 2.3.1.11.
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Definition 3.1.1.9. Let p : X → S be a Cartesian fibration of simplicial sets. We let X\ denote the marked
simplicial set (X,E), where E is the set of p-Cartesian edges of X.

Remark 3.1.1.10. Our notation is slightly abusive, since X\ depends not only on X but also on the map
X → S.

Remark 3.1.1.11. According to Proposition 3.1.1.6, a map (Y,E)→ S] has the right lifting property with
respect to all marked anodyne maps if and only if the underlying map Y → S is a Cartesian fibration and
(Y,E) = Y \.

We conclude this section with the following easy result, which will be needed later:

Proposition 3.1.1.12. Let p : X → S be an inner fibration of simplicial sets, and let f : A → B be a
marked anodyne morphism in Set+∆, let q : B → X be map of simplicial sets which carries each marked edge
of B to a p-Cartesian edge of X, and q0 = q ◦ f . Then the induced map

X/q → X/q0 ×S/pq0
S/pq

is a trivial fibration of simplicial sets.

Proof. It is easy to see that the class of all morphisms f of Set+∆ which satisfy the desired conclusion is
saturated. It therefore suffices to prove that this class contains collection of generators for the saturated
class of marked anodyne morphisms. If f induces a left anodyne map on the underlying simplicial sets, then
the desired result is automatic. It therefore suffices to consider the case where f is the inclusion

(Λnn,E∩(Λnn)1) ⊆ (∆n,E)

as described in (2) of Definition 3.1.1.1. In this case, a lifting problem

∂∆m //
� _

��

X/q

��
∆m //

77ppppppp
X/q0 ×S/pq0

S/pq

can be reformulated as an equivalent lifting problem

Λn+m+1
n+m+1

σ0 //
� _

��

X

p

��
∆n+m+1 //

;;w
w

w
w

w
S.

This lifting problem admits a solution, since the hypothsis on q guarantees that σ0 carries ∆{n+m,n+m+1}

to a p-Cartesian edge of X.

3.1.2 Stability Properties of Marked Anodyne Morphisms

Our main goal in this section is to prove the following stability result:

Proposition 3.1.2.1. Let p : X → S be a Cartesian fibration of simplicial sets, and let K be an arbitrary
simplicial set. Then:

(1) The induced map pK : XK → SK is a Cartesian fibration.

(2) An edge ∆1 → XK is pK-Cartesian if and only if, for every vertex k of K, the induced edge ∆1 → X
is p-Cartesian.
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We could easily have given an ad-hoc proof of this result in §2.3.3. However, we have opted instead to
give a proof using the language of marked simplicial sets.

Definition 3.1.2.2. A morphism (X,E)→ (X ′,E′) in Set+∆ is a cofibration if the underlying map X → X ′

of simplicial sets is a cofibration.

The main ingredient we will need to prove Proposition 3.1.2.1 is the following:

Proposition 3.1.2.3. The class of marked anodyne maps in Set+∆ is stable under smash products with
arbitrary cofibrations. In other words, if f : X → X ′ is marked anodyne, and g : Y → Y ′ is a cofibration,
then the induced map

(X × Y ′)
∐
X×Y

(X ′ × Y )→ X ′ × Y ′

is marked anodyne.

Proof. The argument is tedious, but straightforward. Without loss of generality, we may suppose that f
belongs either to the class (2′) of Proposition 3.1.1.5, or one of the classes specified in (1), (3), or (4) of
Definition 3.1.1.1. The class of cofibrations is generated by the inclusions (∂∆n)[ ⊆ (∆n)[ and (∆1)[ ⊆ (∆1)];
thus we may suppose that g : Y → Y ′ is one of these maps. There are eight cases to consider:

(A1) Let f be the inclusion (Λni )
[ ⊆ (∆n)[ and g the inclusion (∂∆n)[ → (∆n)[, where 0 < i < n. Since the

class of inner anodyne maps between simplicial sets is stable under smash products with inclusions,
the smash product of f and g is marked-anodyne (see Remark 3.1.1.4).

(A2) Let f denote the inclusion (Λni )
[ → (∆n)[, and g the map (∆1)[ → (∆1)], where 0 < i < n. Then the

smash product of f and g is an isomorphism (since Λni contains all vertices of ∆n).

(B1) Let f be the inclusion

({1}] × (∆n)[)
∐

{1}]×(∂∆n)[

((∆1)] × (∂∆n)[) ⊆ (∆1)] × (∆n)[,

and let g be the inclusion (∂∆n)[ → (∆n)[. Then the smash product of f and g belongs to the class
(2′′) of Proposition 3.1.1.5.

(B2) Let f be the inclusion

({1}] × (∆n)[)
∐

{1}]×(∂∆n)[

((∆1)] × (∂∆n)[) ⊆ (∆1)] × (∆n)[,

and let g denote the map (∆1)[ → (∆1)]. If n > 0, then the smash product of f and g is an isomorphism.
If n = 0, then the smash product may be identified with the map (∆1 ×∆1,E)→ (∆1 ×∆1)], where
E consists of all degenerate edges together with {0} ×∆1, {1} ×∆1, and ∆1 × {1}. This map may be
obtained as a composition of two marked anodyne maps: the first is of type (3) in Definition 3.1.1.1
(adjoining the “diagonal” edge to E) and the second is the map described in Corollary 3.1.1.7 (adjoining
the edge ∆1 × {0} to E).

(C1) Let f be the inclusion
(Λ2

1)
]

∐
(Λ2

1)
[

(∆2)[ → (∆2)],

and let g the inclusion (∂∆n)[ ⊆ (∆n)[. Then the smash product of f and g is an isomorphism for
n > 0, and isomorphic to f for n = 0.
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(C2) Let f be the inclusion
(Λ2

1)
]

∐
(Λ2

1)
[

(∆2)[ → (∆2)],

and let g be the canonical map (∆1)[ → (∆1)]. Then the smash product of f and g is a pushout of the
map f .

(D1) Let f be the map K[ → K], where K is a Kan complex, and let g the inclusion (∂∆n)[ ⊆ (∆n)[.
Then the smash product of f and g is an isomorphism for n > 0, and isomorphic to f for n = 0.

(D2) Let f be the map K[ → K], where K is a Kan complex, and let g be the map (∆1)[ → (∆1)]. The
smash product of f and g can be identified with the inclusion

(K ×∆1,E) ⊆ (K ×∆1)],

where E denotes the class of all edges e = (e′, e′′) of K × ∆1 for which either e′ : ∆1 → K or
e′′ : ∆1 → ∆1 is degenerate. This inclusion can be obtained as a transfinite composition of pushouts
of the map

(Λ2
1)
]

∐
(Λ2

1)
[

(∆2)[ → (∆2)].

We now return to our main objective:

Proof of Proposition 3.1.2.1. Since p is a Cartesian fibration, it induces a map X\ → S] which has the right
lifting property with respect to all marked anodyne maps. By Proposition 3.1.2.3, the induced map

(X\)K
[

→ (S])K
[

= (SK)]

has the right lifting property with respect to all marked anodyne morphisms. The desired result now follows
from Remark 3.1.1.10.

3.1.3 Marked Simplicial Sets as a Model Category

In this section, we will introduce a model structure on the category Set+∆ of marked simplicial sets, rendering
it Quillen equivalent with the Joyal model structure on Set∆. With an eye toward later applications, we will
actually set up a relative version of this theory, which applies to marked simplicial sets equipped with a map
to S, where S is some fixed simplicial set.

The category Set+∆ is Cartesian-closed; that is, for any two objects X,Y ∈ Set+∆, there exists an internal
mapping object Y X equipped with an “evaluation map” Y X ×X → Y which induces bijections

HomSet+∆
(Z, Y X)→ HomSet+∆

(Z ×X,Y )

for every Z ∈ Set∆. We let Map[(X,Y ) denote the underlying simplicial set of Y X , and Map](X,Y ) ⊆
Map[(X,Y ) the simplicial subset consisting of all simplices σ ⊆ Map[(X,Y ) such that every edge of σ is a
marked edge of Y X . Equivalently, we may describe these simplicial sets by the mapping properties

HomSet∆(K,Map[(X,Y )) ' HomSet+∆
(K[ ×X,Y )

HomSet∆(K,Map](X,Y )) ' HomSet+∆
(K] ×X,Y ).

If X and Y are objects of (Set+∆)/S , then we let Map]S(X,Y ) and Map[S(X,Y ) denote the simplicial
subsets of Map](X,Y ) and Map[(X,Y ) classifying those maps which are compatible with the projections to
S.
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Remark 3.1.3.1. If X ∈ (Set+∆)/S and p : Y → S is a Cartesian fibration, then Map[S(X,Y \) is an
∞-category, and Map]S(X,Y \) is the largest Kan complex contained in Map[S(X,Y \).

Lemma 3.1.3.2. Let f : C→ D be a functor between ∞-categories. The following are equivalent:

(1) The functor f is a categorical equivalence.

(2) For every simplicial set K, the induced map Fun(K,C)→ Fun(K,D) is a categorical equivalence.

(3) For every simplicial set K, the functor Fun(K,C)→ Fun(K,D) induces a homotopy equivalence between
the largest Kan complex contained in Fun(K,C) and the largest Kan complex contained in Fun(K,D).

Proof. The implications (1)⇒ (2)⇒ (3) are obvious. Suppose that (3) is satisfied. Let K = D. According
to (3), there exists an object x of Fun(K,C) whose image in Fun(K,D) is equivalent to the identity map
K → D. We may identify x with a functor g : D → C having the property that f ◦ g is homotopic to the
identity idD. It follows that g also has the property asserted by (3), so the same argument shows that there
is a functor f ′ : C → D such that g ◦ f ′ is homotopic to idC. It follows that f ◦ g ◦ f ′ is homotopic to
both f and f ′, so that f is homotopic to f ′. Thus g is a homotopy inverse to f , which proves that f is an
equivalence.

Proposition 3.1.3.3. Let S be a simplicial set, and let p : X → Y be a morphism in (Set+∆)/S. The
following are equivalent:

(1) For every Cartesian fibration Z → S, the induced map

Map[S(Y, Z\)→ Map[S(X,Z\)

is an equivalence of ∞-categories.

(2) For every Cartesian fibration Z → S, the induced map

Map]S(Y, Z\)→ Map]S(X,Z\)

is a homotopy equivalence of Kan complexes.

Proof. Since Map]S(M,Z\) is the largest Kan complex contained in Map[S(M,Z\), it is clear that (1) implies
(2). Suppose that (2) is satisfied, and let Z → S be a Cartesian fibration. We wish to show that

Map[S(Y,Z\)→ Map[S(X,Z\)

is an equivalence of ∞-categories. According to Lemma 3.1.3.2, it suffices to show that

Map[S(Y,Z\)K → Map[S(X,Z\)K

induces a homotopy equivalence on the maximal Kan complexes contained in each side. Let Z(K) =
ZK ×SK S. Proposition 3.1.2.1 implies that Z(K)→ S is a Cartesian fibration, and that there is a natural
identification

Map[S(M,Z(K)\) ' Map[S(M,Z(K)\).

The largest Kan complex contained in the right hand side is Map]S(M,Z(K)\). On the other hand, the
natural map

Map]S(Y, Z(K)\)→ Map]S(X,Z(K)\)

is homotopy equivalence by assumption (2).

We will say that a map X → Y in (Set+∆)/S is a marked equivalence if it satisfies the equivalent conditions
of Proposition 3.1.3.3.
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Remark 3.1.3.4. Let f : X → Y be a morphism in (Set+∆)/S which is marked anodyne when regarded
as a map of marked simplicial sets. Since the smash product of f with any inclusion A[ ⊆ B[ is also
marked-anodyne, we deduce that the map

φ : Map[S(Y,Z\)→ Map[S(X,Z\)

is a trivial fibration for every Cartesian fibration Z → S. Consequently, f is a marked equivalence.

Let S be a simplicial set and let X,Y ∈ (Set+∆)/S . We will say a pair of morphisms f, g : X → Y are
strongly homotopic if there exists a contractible Kan complex K and a map K → Map[S(X,Y ), whose image
contains both of the vertices f and g. If Y = Z\, where Z → S is a Cartesian fibration, then this simply
means that f and g are equivalent when viewed as objects of the ∞-category Map[S(X,Y ).

Proposition 3.1.3.5. Let X
p→ Y

q→ S be a diagram of simplicial sets, where both q and q ◦p are Cartesian
fibrations. The following assertions are equivalent:

(1) The map p induces a marked equivalence X\ → Y \ in (Set+∆)/S.

(2) There exists a map r : Y → X which is a strong homotopy inverse to p, in the sense that p ◦ r and
r ◦ p are both strongly homotopic to the identity.

(3) The map p induces a categorical equivalence Xs → Ys, for each vertex s of S.

Proof. The equivalence between (1) and (2) is easy, as is the assertion that (2) implies (3). It therefore
suffices to show that (3) implies (2). We will construct r and a homotopy from r ◦ p to the identity. It then
follows that the map r satisfies (3), so the same argument will show that r has a right homotopy inverse; by
general nonsense this right homotopy inverse is automatically homotopic to p and the proof will be complete.

Choose a transfinite sequence of simplicial subsets S(α) ⊆ S, where each S(α) is obtained from
⋃
β<α S(β)

by adjoining a single nondegenerate simplex (if such a simplex exists). We construct rα : Y ×S S(α) → X
and an equivalence hα : (X ×S S(α))×∆1 → X ×S S(α) from rα ◦ p to the identity, by induction on α. By
this device we may reduce to the case where S = ∆n, and the maps

r0 : Y ′ → X

h0 : X ′ ×∆1 → X

are already specified, where Y ′ = Y ×∆n ∂∆n ⊆ Y and X ′ = X ×∆n ∂∆n ⊆ X. We may regard r′ and h′

together as defining a map ψ0 : Z ′ → X, where

Z ′ = Y ′
∐

X′×{0}

(X ′ ×∆1)
∐

X′×{1}

X.

Let Z = Y
∐
X×{0}X ×∆1; then our goal is to solve the lifting problem depicted in the following diagram:

Z ′
ψ0 //

� _

��

X

��
Z //

ψ
=={

{
{

{
∆n

in such a way that ψ carries {x} ×∆1 to an equivalence in X, for every object x of X. We note that this
last condition is vacuous for n > 0.

If n = 0, the problem amounts to constructing a map Y → X which is homotopy inverse to p: this is
possible in view of the assumption that p is a categorical equivalence. For n > 0, we note that any map
φ : Z → X extending φ0 is automatically compatible with the projection to S (since S is a simplex and
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Z ′ contains all vertices of Z). Since the inclusion Z ′ ⊆ Z is a cofibration between cofibrant objects in the
model category Set∆ (with the Joyal model structure), and X is a ∞-category (since q is an inner fibration
and ∆n is a ∞-category), Proposition A.2.4.1 asserts that it is sufficient to show that the extension φ exists
up to homotopy. Since Corollary 2.3.4.4 implies that p is an equivalence, we are free to replace the inclusion
Z ′ ⊆ Z with the weakly equivalent inclusion

(X × {1})
∐

X×∆n∂∆n×∆1

(X ×∆n ∂∆n × {1}) ⊆ X ×∆1.

Since φ0 carries {x}×∆1 to a (q ◦ p)-Cartesian edge of X, for every vertex x of X, the existence of φ follows
from Proposition 3.1.1.5.

Lemma 3.1.3.6. Let S be a simplicial set, let i : X → Y be a cofibration in (Set+∆)/S, and let Z → S be a
Cartesian fibration. Then the associated map p : Map]S(Y, Z\)→ Map]S(X,Z\) is a Kan fibration.

Proof. Let A ⊆ B be an anodyne inclusion of simplicial sets. We must show that p has the right lifting
property with respect to p. Equivalently, we must show that Z\ → S has the right lifting property with
respect to the inclusion

(B] ×X)
∐
A]×X

(A] × Y ) ⊆ B] × Y.

This follows from Proposition 3.1.2.3, since the inclusion A] ⊆ B] is marked anodyne.

Proposition 3.1.3.7. Let S be a simplicial set. There exists a perfect model structure on (Set+∆)/S, which
may be described as follows:

(C) The cofibrations in (Set+∆)/S are those morphisms p : X → Y in (Set+∆)/S which are cofibrations when
regarded as morphisms of simplicial sets.

(W ) The weak equivalences in (Set+∆)S are the marked equivalences.

(F ) The fibrations in (Set+∆)S are those maps which have the right lifting property with respect to every
map which is simultaneously a cofibration and a marked equivalence.

Proof. It suffices to show that the hypotheses of Proposition A.2.9.5 are satisfied by the class (C) of cofibra-
tions and the class (W ).

(1) The class (W ) of marked equivalences is perfect, in the sense of Definition A.2.9.1. To prove this,
we first observe that the class of marked anodyne maps is generated by the classes (1), (2), (3) of
Definition 3.1.1.1 and (4′) of Corollary 3.1.1.8. By Proposition A.1.2.5, there exists a functor T from
(Set+∆)/S to itself and a (functorial) factorization

X
iX→ T (X)

jX→ S]

where iX is marked anodyne (and therefore a marked equivalence) and jX has the right lifting property
with respect to all marked anodyne maps, and therefore corresponds to a Cartesian fibration over S.
Moreover, the functor T commutes with filtered colimits. According to Proposition 3.1.3.5, a map
X → Y in (Set+∆)/S is a marked equivalence if and only if, for each vertex s ∈ S, the induced map
T (X)s → T (Y )s is a categorical equivalence. It follows from Corollary A.2.9.4 that (W ) is a perfect
class of morphisms.
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(2) The class of weak equivalences is stable under pushouts by cofibrations. Suppose given a pushout
diagram

X
p //

i

��

Y

��
X ′ p′ // Y ′

where i is a cofibration and p is a marked equivalence. We wish to show that p′ is also a marked
equivalence. In other words, we must show that for any Cartesian fibration Z → S, the associated
map Map]S(Y ′, Z\)→ Map]S(X ′, Z\) is a homotopy equivalence. Consider the pullback diagram

Map]S(Y ′, Z\) //

��

Map]S(X ′, Z\)

��
Map]S(Y,Z\) // Map]S(X,Z\).

Since p is a marked equivalence, the bottom horizontal arrow is a homotopy equivalence. According
to Lemma 3.1.3.6, the right vertical arrow is a Kan fibration; it follows that the diagram is homotopy
Cartesian and so the top horizontal arrow is an equivalence as well.

(3) A map p : X → Y in (Set+∆)/S which has the right lifting property with respect to every map in (C)
belongs to (W ). Unwinding the definition, we see that p is a trivial fibration of simplicial sets, and
that an edge e of X is marked if and only if p(e) is a marked edge of Y . It follows that p has a section
s, with s ◦ p fiberwise homotopic to idX . From this, we deduce easily that p is a marked equivalence.

3.1.4 Properties of the Marked Model Structure

In this section, we will establish some of the basic properties of marked model structures on (Set+∆)/S which
was introduced in §3.1.3. In particular, we will show that each (Set+∆)/S is a simplicial model category, and
characterize its fibrant objects.

Proposition 3.1.4.1. An object X ∈ (Set+∆)/S is fibrant (with respect to the marked model structure) if and
only if X ' Y \, where Y → S is a Cartesian fibration.

Proof. Suppose first that X is fibrant. The small object argument implies that there exists a marked anodyne
map j : X → Z\ for some Cartesian fibration Z → S. Since j is marked anodyne, it is a marked equivalence.
Since X is fibrant, it has the extension property with respect to the trivial cofibration j; thus X is a retract
of Z\. It follows that X is isomorphic to Y \, where Y is a retract of Z.

Now suppose that Y → S is a Cartesian fibration; we claim that Y \ has the right lifting property
with respect to any trivial cofibration j : A → B in (Set+∆)/S . Since j is a marked equivalence, the
map η : Map]S(B, Y \) → Map]S(A, Y \) is a homotopy equivalence of Kan complexes. Hence, for any map
f : A → Z\, there is a map g : B → Z\ such that g|A and f are joined by an edge e of Map]S(A,Z\). Let
M = (A × (∆1)])

∐
A×{1}](B × {1}]) ⊆ B × (∆1)]. We observe that e and g together determine a map

M → Z\. Consider the diagram
M //

��

Z\

��
B × (∆1)] //

F

::u
u

u
u

u
S].

The left vertical arrow is marked anodyne, by Proposition 3.1.2.3. Consequently, there exists a dotted arrow
F as indicated. We note that F |B × {0} is an extension of f to B, as desired.
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We now study the behavior of the marked model structures with respect to products.

Proposition 3.1.4.2. Let S and T simplicial sets, and let Z be an object of (Set+∆)T . Then the functor

(Set+∆)/S → (Set+∆)/S×T

X 7→ X × Z
preserves marked equivalences.

Proof. Let f : X → Y be a marked equivalence in (Set+∆)/S . We wish to show that f × idZ is a marked
equivalence in (Set+∆)/S×T . Let X → X ′ be a marked anodyne map where X ′ ∈ (Set+∆)/S is fibrant. Now
choose a marked-anodyne map X ′ ∐

X Y → Y ′, where Y ′ ∈ (Set+∆)/S is fibrant. Since the product maps
X ×Z → X ′×Z and Y ×Z → Y ′×Z are also marked anodyne (by Proposition 3.1.2.3), it suffices to show
that X ′ × Z → Y ′ × Z is a marked equivalence. In other words, we may reduce to the situation where X
and Y are fibrant. By Proposition 3.1.3.5, f has a homotopy inverse g; then g × idY is a homotopy inverse
to f × idY .

Corollary 3.1.4.3. Let f : A→ B be a cofibration in (Set+∆)/S and f ′ : A′ → B′ a cofibration in (Set+∆)/T .
Then the smash product map

(A×B′)
∐
A×B

(A′ ×B)→ A′ ×B′

is a cofibration in (Set+∆)/S×T , which is trivial if either f or g is trivial.

Corollary 3.1.4.4. Let S be a simplicial set, and regard (Set+∆)/S as a simplicial category with mapping
objects given by Map]S(X,Y ). Then (Set+∆)/S is a simplicial model category.

Proof. Unwinding the definitions, we are reduced to proving the following: given a cofibration i : X → X ′

in (Set+∆)/S and a cofibration j : Y → Y ′ in Set∆, the induced cofibration

(X ′ × Y ])
∐
X×Y ]

(X × Y ′]) ⊆ X ′ × Y ′]

in (Set+∆)/S is trivial if either i is a marked equivalence of j is a weak homotopy equivalence. If i is trivial,
this follows immediately from Corollary 3.1.4.3. If j is trivial, the same argument applies, provided that we
can verify that Y ] → Y ′

] is a marked equivalence in Set+∆. Unwinding the definitions, we must show that
for every ∞-category Z, the restriction map

θ : Map](Y ′], Z\)→ Map](Y ], Z\)

is a homotopy equivalence of Kan complexes. Let K be the largest Kan complex contained in Z, so that θ
can be identified with the restriction map

MapSet∆(Y ′,K)→ MapSet∆(Y,K).

Since j is a weak homotopy equivalence, this map is a trivial fibration.

Remark 3.1.4.5. There is a second simplicial structure on (Set+∆)/S , where the simplicial mapping spaces
are given by Map[S(X,Y ). This simplicial structure is not compatible with the marked model structure: for
fixed X ∈ (Set+∆)/S , the functor

A 7→ A[ ×X
does not carry weak homotopy equivalences (in the A-variable) to marked equivalences. It does, however,
carry categorical equivalences (in A) to marked equivalences, and consequently (Set+∆)/S is endowed with
the structure of a Set∆-enriched model category, where we regard Set∆ as equipped with the Joyal model
structure. This second simplicial structure reflects the fact that (Set+∆)/S is really a model for an ∞-
bicategory.
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Remark 3.1.4.6. Suppose S is a Kan complex. A map p : X → S is a Cartesian fibration if and only if it is
a coCartesian fibration (this follows in general from Proposition 3.3.2.9; if S = ∆0, the main case of interest
for us, it is obvious). Moreover, the class p-coCartesian edges of X coincides with the class of p-Cartesian
edges of X: both may be described as the class of equivalences in X. Consequently, if A ∈ (Set+∆)/S , then

Map[S(A,X\) ' Map[Sop(Aop, (Xop)\)op,

where Aop is regarded as a marked simplicial set in the obvious way. It follows that a map A→ B is a marked
equivalence in (Set+∆)/S if and only if Aop → Bop is a marked equivalence in (Set+∆)/Sop . In other words,
the marked model structure on (Set+∆)/S is self-dual when S is a Kan complex. In particular, if S = ∆0, we
deduce that the functor

A 7→ Aop

determines an autoequivalence of the model category Set+∆ ' (Set+∆)/∆0 .

3.1.5 Comparison of Model Categories

Let S be a simplicial set. We now have a plethora of model structures on categories of simplicial sets over S:

(0) Let C0 denote the category (Set∆)/S of simplicial sets over S endowed with the Joyal model structure
defined in §1.3.4: the cofibrations are monomorphisms of simplicial sets, and the weak equivalences are
categorical equivalences.

(1) Let C1 denote the category (Set+∆)/S of marked simplicial sets over S, endowed with the marked
model structure of Proposition 3.1.3.7: the cofibrations are maps (X,EX) → (Y,EY ) which induce
monomorphisms X → Y , and the weak equivalences are the marked equivalences.

(2) Let C2 denote the category (Set+∆)/S of marked simplicial sets over S, endowed with the following
localization of the marked model structure: a map f : (X,EX) → (Y,EY ) is a cofibration if the
underlying map X → Y is a monomorphism, and a weak equivalence if f : X] → Y ] is a marked
equivalence in (Set+∆)/S .

(3) Let C3 denote the category (Set∆)/S of simplicial sets over S, which is endowed with the contravariant
model structure described in §2.1.4: the cofibrations are the monomorphisms, and the weak equivalences
are the contravariant equivalences.

(4) Let C4 denote the category (Set∆)/S of simplicial sets over S, endowed with the usual homotopy-
theoretic model structure: the cofibrations are the monomorphisms of simplicial sets, and the weak
equivalences are the weak homotopy equivalences of simplicial sets.

The goal of this section is to study the relationship between these five model categories. We may
summarize the situation as follows:

Theorem 3.1.5.1. There exists a sequence of Quillen adjunctions

C0
F0→ C1

F1→ C2
F2→ C3

F3→ C4

C0
G0← C1

G1← C2
G2← C3

G3← C4

which may be described as follows:

(A0) The functor G0 is the forgetful functor from (Set+∆)/S to (Set∆)/S, which ignores the collection of
marked edges. The functor F0 is the left adjoint to G0, which is given by X 7→ X[. The Quillen
adjunction (F0, G0) is a Quillen equivalence if S is a Kan complex.
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(A1) The functors F1 and G1 are the identity functors on (Set+∆)/S.

(A2) The functor F2 is the forgetful functor from (Set+∆)/S to (Set∆)/S, which ignores the collection of
marked edges. The functor G2 is the right adjoint to F2, which is given by X 7→ X]. The Quillen
adjunction (F2, G2) is a Quillen equivalence for every simplicial set S.

(A3) The functors F3 and G3 are the identity functors on (Set+∆)/S. The Quillen adjunction (F3, G3) is a
Quillen equivalence whenever S is a Kan complex.

The rest of this section is devoted to giving a proof of Theorem 3.1.5.1. We will organize our efforts as
follows. First, we verify that the model category C2 is well-defined (the analogous results for the other model
structures have already been established). We then consider each of the adjunctions (Fi, Gi) in turn, and
show that it has the desired properties.

Proposition 3.1.5.2. Let S be a simplicial set. There exists a perfect model structure on the category
(Set+∆)/S which may be described as follows:

(C) A map f : (X,EX)→ (Y,EY ) is a cofibration if and only if the underlying map X → Y is a monomor-
phism of simplicial sets.

(W ) A map f : (X,EX) → (Y,EY ) is a weak equivalence if and only if the induced map X] → Y ] is a
marked equivalence in (Set+∆)/S.

(F ) A map f : (X,EX) → (Y,EY ) is a fibration if and only if it has the right lifting property with respect
to all trivial cofibrations.

Proof. It suffices to show that the conditions of Proposition A.2.9.5 are satisfied. We check them in turn:

(1) The class (W ) of marked equivalences is perfect, in the sense of Definition A.2.9.1. This follows from
Corollary A.2.9.4, since the class of marked equivalences is perfect, and the functor (X,EX) → X]

commutes with filtered colimits.

(2) The class of weak equivalences is stable under pushouts by cofibrations. This follows from the analogous
property of the marked model structure, since the functor (X,EX) 7→ X] preserves pushouts.

(3) A map p : (X,EX) → (Y,EY ) which has the right lifting property with respect to every cofibration
is a weak equivalence. In this case, the underlying map of simplicial sets is a trivial fibration, so the
induced map X] → Y ] has the right lifting property with respect to all trivial cofibrations, and is a
marked equivalence as observed in the proof of Proposition 3.1.3.7.

Proposition 3.1.5.3. Let S be simplicial set. Consider the adjoint functors

(Set∆)/S
F0 //(Set+∆)/S
G0

oo

described by the formulas
F0(X) = X[

G0(X,E) = X.

The adjoint functors (F0, G0) determine a Quillen adjunction between (Set∆)/S (with the Joyal model struc-
ture) and (Set+∆)/S (with the marked model structure). If S is a Kan complex, then (F0, G0) is a Quillen
equivalence.
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Proof. To prove that (F0, G0) is a Quillen adjunction, it will suffice to show that F1 preserves cofibrations
and trivial cofibrations. The first claim is obvious. For the second, we must show that if X ⊆ Y is a
categorical equivalence of simplicial sets over S, then the induced map X[ → Y [ is a marked equivalence in
(Set+∆)/S . For this, it suffices to show that for any Cartesian fibration p : Z → S, the restriction map

Map[S(Y [, Z\)→ Map[S(X[, Z\)

is a trivial fibration of simplicial sets. In other words, we must show that for every inclusion A ⊆ B of
simplicial sets, it is possible to solve any lifting problem of the form

A //
� _

��

Map[S(Y [, Z\)

��
B //

99ssssss
Map[S(X[, Z\).

Replacing Y by Y ×B andX by (X×B)
∐
X×A(Y ×A), we may suppose that A = ∅ and B = ∗. Moreover, we

may rephrase the lifting problem as the problem of constructing the dotted arrow indicated in the following
diagram:

X� _

��

// Z

p

��
Y //

>>~
~

~
~

// S

By Proposition 3.3.2.8, p is a categorical fibration, and the lifting problem has a solution in virtue of the
assumption that X ⊆ Y is a categorical equivalence.

Now suppose that S is a Kan complex. We want to prove that (F0, G0) is a Quillen equivalence. In
other words, we must show that for any fibrant object of (Set+∆)/S corresponding to a Cartesian fibration
Z → S, a map X → Z in (Set∆)/S is a categorical equivalence if and only if the associated map X[ → Z\ is
a marked equivalence.

Suppose first that X → Z is a categorical equivalence. Then the induced map X[ → Z[ is a marked
equivalence, by the argument given above. It therefore suffices to show that Z[ → Z\ is a marked equivalence.
Since S is a Kan complex, Z is an ∞-category; let K denote the largest Kan complex contained in Z. The
marked edges of Z\ are precisely the edges which belong to K, so we have a pushout diagram

K[ //

��

K]

��
Z[ // Z\.

It follows that Z[ → Z\ is marked anodyne, and therefore a marked equivalence.
Now suppose that X[ → Z\ is a marked equivalence. Choose a factorization X

f→ Y
g→ Z, where f is a

categorical equivalence and g is a categorical fibration. We wish to show that g is a categorical equivalence.
Proposition 3.3.2.9 implies that Z → S is a categorical fibration, so that X ′ → S is a categorical fibration.
Applying Proposition 3.3.2.9 again, we deduce that Y → S is a Cartesian fibration. Thus we have a
factorization

X[ → Y [ → Y \ → Z\

where the first two maps are marked equivalences by the arguments given above, and the composite map is
a marked equivalence. Thus Y \ → Z\ is an equivalence between fibrant objects of (Set+∆)/S , and therefore
admits a homotopy inverse. The existence of this homotopy inverse proves that g is a categorical equivalence,
as desired.
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Proposition 3.1.5.4. Let S be a simplicial set, and let F1 and G1 denote the identity functor from (Set+∆)/S
to itself. Then (F1, G1) determines a Quillen adjunction between C1 and C2.

Proof. We must show that F1 preserves cofibrations and trivial cofibrations. The first claim is obvious. For
the second, let B : (Set+∆)/S → (Set+∆)/S be the functor defined by

B(M,EM ) = M ].

We wish to show that if X → Y is a marked equivalence in (Set+∆)/S , then B(X) → B(Y ) is a marked
equivalence.

We first observe that if X → Y is marked anodyne, then the induced map B(X)→ B(Y ) is also marked
anodyne: by general nonsense, it suffices to check this for the generators described in Definition 3.1.1.1,
for which it is obvious. Now return to the case of a general marked equivalence p : X → Y , and choose a
diagram

X
i //

p

��

X ′

��

q

$$I
IIIIIIIII

Y // X ′ ∐
X Y

j // Y ′

in which X ′ and Y ′ are (marked) fibrant and i and j are marked anodyne. It follows that B(i) and B(j) are
marked anodyne, and therefore marked equivalences. Thus, to prove that B(p) is a marked equivalence, it
suffices to show that B(q) is a marked equivalence. But q is a marked equivalence between fibrant objects
of (Set+∆)/S , and therefore has a homotopy inverse. It follows that B(q) also has a homotopy inverse, and is
therefore a marked equivalence as desired.

Remark 3.1.5.5. In the language of model categories, we may summarize Proposition 3.1.5.4 by saying
that the model structure of Proposition 3.1.5.2 is a localization of the marked model structure on (Set+∆)/S .

In the next argument, we will need the following fact: an object p : Z → S of (Set∆)/S is contravariantly
fibrant if and only if p is a right fibration. The “only if” direction follows from Proposition 2.1.4.3. We will
establish the converse in §3.3.2 (Proposition 3.3.1.2).

Proposition 3.1.5.6. Let S be a simplicial set, and consider the adjunction

(Set+∆)/S
F2 //(Set∆)/S
G2

oo

determined by the formulas
F2(X,E) = X

G2(X) = X].

The adjoint functors (F2, G2) determines a Quillen equivalence between C2 and C3.

Proof. We first claim that F2 is conservative: that is, a map f : (X,EX)→ (Y,EY ) is a weak equivalence in
C2 if and only if the induced map X → Y is a weak equivalence in C3. Unwinding the definition, f is a weak
equivalence if and only if X] → Y ] is a marked equivalence. This holds if and only if, for every Cartesian
fibration Z → S, the induced map

φ : Map]S(Y ], Z\)→ Map]S(X], Z\)

is a homotopy equivalence. Let Z0 → S be the right fibration associated to Z → S (see Corollary 2.3.2.8).
There are natural identifications Map]S(Y ], Z\) ' MapS(Y, Z0), Map]S(X], Z\) ' MapS(X,Z0). Conse-
quently, f is a weak equivalence if and only if, for every right fibration Z0 → S, the associated map

MapS(Y,Z0)→ MapS(X,Z0)
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is a homotopy equivalence. Since C3 is a simplicial model category for which the fibrant objects are precisely
the right fibrations Z0 → S (Proposition 3.3.1.2), this is equivalent to the assertion that X → Y is a weak
equivalence in C3.

To prove that (F2, G2) is a Quillen adjunction, it suffices to show that F2 preserves cofibrations and trivial
cofibrations. The first claim is obvious, and the second follows because F2 preserves all weak equivalences,
by the above argument.

To show that (F2, G2) is a Quillen equivalence, we must show that the unit and counit

LF2 ◦RG2 → id

id→ RG2 ◦ LF2

are weak equivalences. In view of the fact that F2 = LF2 is conservative, the second assertion follows
from the first. As to the first, it suffices to show that if X is a fibrant object of C3, then the counit map
(F2 ◦G2)(X)→ X is a weak equivalence. But this map is an isomorphism.

Proposition 3.1.5.7. Let S be a simplicial set, and let F3 and G3 denote the identity functor from (Set∆)/S
to itself. Then (F3, G3) gives a Quillen adjunction between C3 and C4. If S is a Kan complex, then (F3, G3)
is a Quillen equivalence (in other words, the model structures on C3 and C4 coincide).

Proof. To prove that (F3, G3) is a Quillen adjunction, it suffices to prove that F3 preserves cofibrations and
weak equivalences. The first claim is obvious (the cofibrations in C3 and C4 are the same). For the second, we
note that both C3 and C4 are simplicial model categories in which every object is cofibrant. Consequently,
a map f : X → Y is a weak equivalence if and only if, for every fibrant object Z, the associated map
Map(Y, Z) → Map(X,Z) is a homotopy equivalence of Kan complexes. Thus, to show that F3 preserves
weak equivalences, it suffices to show that G3 preserves fibrant objects. A map p : Z → S is fibrant as an
object of C4 if and only if p is a Kan fibration, and fibrant as an object of C3 if and only if p is a right
fibration (Proposition 3.3.1.2). Since every Kan fibration is a right fibration, it follows that F3 preserves
weak equivalences. If S is a Kan complex, then the converse holds: according to Lemma 2.1.3.3, every right
fibration p : Z → S is a Kan fibration. It follows that G3 preserves weak equivalences as well, so that the
two model structures under consideration coincide.
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3.2 Straightening and Unstraightening

Let C be a category, and let f : Cop → Set be a functor. We can define a new category C̃ as follows: the
objects of C̃ are pairs (C, η), where C ∈ C and η ∈ f(C). Morphisms in C̃ are defined by

HomeC((C, η), (C ′, η′)) = {φ ∈ HomC(C,C ′) : η = φ∗η′}.

The category C̃ is fibered over C in sets (see Definition 2.1.1.1). The functor f is determined (up to canonical
isomorphism) by C̃, in view of the formula f(C) ' C̃ ×C {C}. Consequently, we obtain an equivalence of
categories between functors Cop → Set and categories fibered over C in sets.

The goal of this section is to establish an ∞-categorical version of the correspondence described above.
We will replace the category C by a simplicial set S, the category Set by the ∞-category Cat∞, and the
fibration in sets C̃ → C by a Cartesian fibration X → S. In this setting, we will obtain an equivalence
of ∞-categories, which arises from a Quillen equivalence of simplicial model categories. On one side, we
have the category (Set+∆)/S , equipped with the marked model structure (a simplicial model category whose
fibrant objects are precisely the Cartesian fibrations X → S; see §3.1.4). On the other, we have category of
simplicial functors

C[S]op → Set+∆,

equipped with the projective model structure (see §A.3.3), whose underlying ∞-category is equivalent to
Fun(Sop,Cat∞) (Proposition A.3.6.1). The situation may be summarized as follows:

Theorem 3.2.0.1. Let S be a simplicial set, C a simplicial category, and φ : C[S]→ Cop a functor between
simplicial categories. Then there exists a pair of adjoint functors

(Set+∆)/S
St+φ //(Set+∆)C

Un+
φ

oo

with the following properties:

(1) The functors (St+φ , Un
+
φ ) determine a Quillen adjunction between (Set+∆)/S (with the marked model

structure) and (Set+∆)C (with the projective model structure).

(2) If φ is an equivalence of simplicial categories, then (St+φ , Un
+
φ ) is a Quillen equivalence.

We will refer to St+φ and Un+
φ as the straightening and unstraightening functors, respectively. We will

give a construct these functors in §3.2.1, and establish part (1) of Theorem 3.2.0.1. Part (2) is more difficult
and requires some preliminary work; we will begin in §3.2.2 by analyzing the structure of Cartesian fibrations
X → ∆n. We will apply these analyses in §3.2.3 to complete the proof of Theorem 3.2.0.1 in the case where
S is a simplex. In §3.2.4, we will deduce the general result, using formal arguments to reduce to the special
case of a simplex.

3.2.1 The Straightening Functor

Let S be a simplicial set, and let φ : C[S]→ Cop be a functor between simplicial categories, which we regard as
fixed throughout this section. Our objective is to define the straightening functor St+φ : (Set+∆)/S → (Set+∆)C

and its right adjoint Un+
φ . The intuition is that an object X of (Set+∆)/S associates∞-categories to vertices of

S in a homotopy coherent fashion, and the functor St+φ “straightens” this diagram to obtain an ∞-category
valued functor on C. The right adjoint Un+

φ should be viewed as a forgetful functor, which takes a strictly
commutative diagram and retains the underlying homotopy coherent diagram.
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The functors St+φ and Un+
φ are more elaborate versions of the straightening and unstraightening functors

introduced in §2.1.4. We begin by recalling the unmarked version of the construction. For each object
X ∈ (Set∆)/S , form a pushout diagram of simplicial categories

C[X] //

φ

��

C[X.]

��
Cop // CopX

where the left vertical map is given by composing φ with the map C[X]→ C[S]. The functor StφX : C→ Set∆
is defined by the formula

(StφX)(C) = MapCop
X

(C, ∗)

where ∗ denotes the cone point of X..
We will define St+φ by designating certain marked edges on the simplicial sets (StφX)(C), which depend

in a natural way on the marked edges of X. In order to describe this dependence, we need to introduce a
bit of notation.

Notation 3.2.1.1. LetX be an object of (Set∆)/S . Given an n-simplex σ of the simplicial set MapCop(C,D),
we let σ∗ : (StφX)(D)n → (StφX)(C)n denote the associated map on n-simplices.

Let c be a vertex of X, and C = φ(c) ∈ C. We may identify c with a map c : ∆0 → X. Then
c ? id∆0 : ∆1 → X. is an edge of X., which determines a morphism C → ∗ in C

op
X , which we may identify

with a vertex c̃ ∈ (StφX)(C).
Similarly, suppose that f : c→ d is an edge of X, corresponding to a morphism

C
F→ D

in the simplicial category Cop. We may identify f with a map f : ∆1 → X. Then f ? id∆1 : ∆2 → X.

determines a map C[∆2]→ CX , which we may identify with a diagram (not strictly commutative)

C
F //

ec
��@

@@
@@

@@
D

ed��~~
~~

~~
~

∗

together with an edge
f̃ : c̃→ d̃ ◦ F = F ∗d̃

in the simplicial set MapCop
X

(C, ∗) = (StφX)(C).

Definition 3.2.1.2. Let S be a simplicial set, C a simplicial category, and φ : C[S] → Cop a simplicial
functor. Let (X,E) be an object of (Set+∆)/S . Then

St+φ (X,E) : C→ Set+∆

is defined by the formula
St+φ (X,E)(C) = ((StφX)(C),Eφ(C))

where Eφ(C) is the set of all edges of (StφX)(C) having the form

G∗f̃ ,

where f : d→ e is a marked edge of X, giving rise to an edge f̃ : d̃→ F ∗ẽ in (StφX)(D), and G belongs to
MapCop(C,D)1.
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Remark 3.2.1.3. The construction

(X,E) 7→ St+φ (X,E) = (StφX,Eφ)

is obviously functorial in X. Note that we may characterize the subsets {Eφ(C) ⊆ (StφX)(C)1} as the
smallest collection of sets which contain f̃ , for every f ∈ E, and depend functorially on C.

The following formal properties of the straightening functor follow immediately from the definition:

Proposition 3.2.1.4. (1) Let S be a simplicial set, C a simplicial category, and φ : C[S]→ Cop a simplicial
functor; then the associated straightening functor

St+φ : (Set+∆)/S → (Set+∆)C

preserves colimits.

(2) Let p : S′ → S be a map of simplicial sets, C a simplicial category, and φ : C[S] → Cop a simplicial
functor, and let φ′ : C[S′]→ Cop denote the composition φ ◦C[p]. Let p! : (Set+∆)/S′ → (Set+∆)/S denote
the forgetful functor, given by composition with p. There is a natural isomorphism of functors

St+φ ◦ p! ' St+φ′

from (Set+∆)/S′ to (Set+∆)C.

(3) Let S be a simplicial set, π : C→ C′ a simplicial functor between simplicial categories, and φ : C[S]→
Cop a simplicial functor. Then there is a natural isomorphism of functors

St+π◦φ ' π! ◦ St+φ

from (Set+∆)/S to (Set+∆)C′ . Here π! : (Set+∆)C → (Set+∆)C′ is the left adjoint to the functor π∗ :
(Set+∆)C′ → (Set+∆)C given by composition with π: see §A.3.3.

Corollary 3.2.1.5. Let S be a simplicial set, C a simplicial category, and φ : C[S] → Cop any simplicial
functor. The straightening functor St+φ has a right adjoint

Un+
φ : (Set+∆)C → (Set+∆)/S .

Proof. This follows from part (1) of Proposition 3.2.1.4 and the adjoint functor theorem. (Alternatively, one
can construct Un+

φ directly; we leave details to the reader.)

Notation 3.2.1.6. Let S be a simplicial set, let C = C[S]op, and let φ : C[S]→ Cop be the identity map. In
this case, we will denote St+φ by St+S and Un+

φ by Un+
S .

Our next goal is to show that the straightening and unstraightening functors (St+φ , Un
+
φ ) give a Quillen

adjunction between the model categories (Set+∆)/S and (Set+∆)C. The first step is to show that St+φ preserves
cofibrations.

Proposition 3.2.1.7. Let S be a simplicial set, C a simplicial category, and φ : C[S] → Cop a simplicial
functor. The functor St+φ carries cofibrations (with respect to the marked model structure on (Set+∆)/S ) to
cofibrations (with respect to the projective model structure on (Set+∆)C) ).

Proof. Let j : A→ B be a cofibration in (Set+∆)/S ; we wish to show that St+φ (j) is a cofibration. By general
nonsense, we may suppose that j is a generating cofibration, either having the form (∂∆n)[ ⊆ (∆n)[ or
(∆1)[ → (∆1)]. Using Proposition 3.2.1.4, we may reduce to the case where S = B, C = C[S], and φ is the
identity map. The result now follows from a straightforward computation.
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To complete the proof that (St+φ , Un
+
φ ) is a Quillen adjunction, it suffices to show that St+φ preserves

trivial cofibrations. Since every object of (Set+∆)/S is cofibrant, this is equivalent to the apparently stronger
claim that if f : X → Y is a marked equivalence in (Set+∆)/S , then St+φ (f) is a weak equivalence in (Set+∆)C.
The main step is to establish this in the case where f is marked anodyne. First, we need a few lemmas.

Lemma 3.2.1.8. Let E be the set of all degenerate edges of ∆n ×∆1, together with the edge {n} ×∆1. Let
B ⊆ ∆n ×∆1 be the coproduct

(∆n × {1})
∐

∂∆n×{1}

(∂∆n ×∆1).

Then the map
i : (B,E∩B1) ⊆ (∆n ×∆1,E)

is marked anodyne.

Proof. We must show that i has the left lifting property with respect to every map p : X → S satisfying the
hypotheses of Proposition 3.1.1.6. This is simply a reformulation of Proposition 2.3.1.8.

Lemma 3.2.1.9. Let K be a simplicial set, K ′ ⊆ K a simplicial subset, and A a set of vertices of K. Let
E denote the set of all degenerate edges of K × ∆1, together with the edges {a} × ∆1 where a ∈ A. Let
B = (K ′ ×∆1)

∐
K′×{1}(K ×{1}) ⊆ K ×∆1. Suppose that, for every nondegenerate simplex σ of K, either

σ belongs to K ′, or the final vertex of σ belongs to A. Then the inclusion

(B,E∩B1) ⊆ (K ×∆1,E)

is marked anodyne.

Proof. Working cell-by-cell, we reduce to Lemma 3.2.1.8.

Lemma 3.2.1.10. Let X be a simplicial set, and let E ⊆ E′ be sets of edges of X containing all degenerate
edges. The following conditions are equivalent:

(1) The inclusion (X,E) → (X,E′) is trivial cofibration in Set+∆ (with respect to the marked model struc-
ture).

(2) For every ∞-category C and every map f : X → C which carries each edge of E to an equivalence in
C, f also carries each edge of E′ to an equivalence in C.

Proof. By definition, (1) holds if and only if for every ∞-category C, the inclusion

j : Map[((X,E′),C\)→ Map[((X,E),C\)

is a categorical equivalence. Condition (2) is the assertion that j is an isomorphism. Thus (2) implies (1).
Suppose that (1) is satisfied, and let f : X → C be a vertex of Map[((X,E),C\). By hypothesis, there exists
an equivalence f ' f ′, where f ′ belongs to the image of j. Let e ∈ E′; then f ′(e) is an equivalence in C.
Since f and f ′ are equivalent, f(e) is also an equivalence in C. Consequently, f also belongs to the image of
j, and the proof is complete.

Proposition 3.2.1.11. Let S be a simplicial set, C a simplicial category, and φ : C[S] → Cop a simplicial
functor. The functor St+φ carries marked anodyne maps in (Set+∆)/S (with respect to the marked model
structure) to trivial cofibrations in (Set+∆)C.

Proof. Let f : A → B be a marked anodyne map in (Set+∆)/S . We wish to prove that St+φ (f) is a trivial
cofibration. It will suffice to prove this under the assumption that f is one of the generators for the class
of marked anodyne maps, as given in Definition 3.1.1.1. Using Proposition 3.2.1.4, we may reduce to the
case where S is the underyling simplicial set of B, C = C[S]op, and φ is the identity. There are four cases to
consider:
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(1) Suppose first that f is among the morphisms listed in (1) of Definition 3.1.1.1; that is, f is an inclusion
(Λni )

[ ⊆ (∆n)[, where 0 < i < n. Let vk denote the kth vertex of ∆n, which we may also think of
as an object of the simplicial category C. We note that St+φ (f) is an isomorphism when evaluated
at vk for k 6= 0. Let K denote the cube (∆1){j:0<j≤n,j 6=i}, let K ′ = ∂ K, let A denote the set of all
vertices of K corresponding to subsets of {j : 0 < j ≤ n, j 6= i} which contain an element > i, and
let E denote the set of all degenerate edges of K ×∆1 together with all edges of the form {a} ×∆1,
where a ∈ A. Finally, let B = (K × {1})

∐
K′×{1}(K

′ ×∆1). The morphism St+φ (f)(vn) is a pushout
of g : (B,E∩B1) ⊆ (K × ∆1,E). Since i > 0, we may apply Lemma 3.2.1.9 to deduce that g is
marked-anodyne, and therefore a trivial cofibration in Set+∆.

(2) Suppose that f is among the morphisms of part (2) in Definition 3.1.1.1; that is, f is an inclusion

(Λnn,E∩(Λnn)1) ⊆ (∆n,F),

where F denotes the set of all degenerate edges of ∆n, together with the final edge ∆{n−1,n}. If n > 1,
then one can repeat the argument given above in case (1), except that the set of vertices A needs to be
replaced by the set of all vertices of K which correspond to subsets of {j : 0 < j < n} which contain
n− 1. If n = 1, then we observe that St+φ (f)(vn) is isomorphic to the inclusion {1}] ⊆ (∆1)], which is
again a marked anodyne map and therefore a trivial cofibration in Set+∆.

(3) Suppose next that f is the morphism

(Λ2
1)
]

∐
(Λ2

1)
[

(∆2)[ → (∆2)]

specified in (3) of Definition 3.1.1.1. Simple computation shows that St+φ (f)(vn) is an isomorphism for
n 6= 0, and St+φ (f)(v0) is may be identified with the inclusion

(∆1 ×∆1,E) ⊆ (∆1 ×∆1)],

where E denotes the set of all degenerate edges of ∆1 × ∆1 together with ∆1 × {0}, ∆1 × {1}, and
{1} ×∆1. This inclusion may be obtained as a pushout of

(Λ2
1)
]

∐
(Λ2

1)
[

(∆2)[ → (∆2)]

followed by a pushout of
(Λ2

2)
]

∐
(Λ2

2)
[

(∆2)[ → (∆2)].

The first of these maps is marked-anodyne by definition; the second is marked anodyne by Corollary
3.1.1.7.

(4) Suppose that f is the morphism K[ → K], where K is a Kan complex, as in (4) of Definition 3.1.1.1.
For each vertex v of K, let St+φ (K[)(v) = (Xv,Ev), so that St+φ (K]) = X]

v. Given a morphism
g ∈ MapC[K](v, v′)n, we let g∗ : Xv ×∆n → Xv′ denote the induced map. We wish to show that the
natural map (Xv,Ev) → X]

v is an equivalence in Set+∆. By Lemma 3.2.1.10, it suffices to show that
for every ∞-category Z, if h : Xv → Z carries each edge belonging to Ev into an equivalence, then h
carries every edge of Xv to an equivalence.

We first show that h carries ẽ to an equivalence, for every edge e : v → v′ in K. Let me : ∆1 →
MapCop(v, v′) denote the degenerate edge at the vertex corresponding to e. Since K is a Kan complex,
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the edge e : ∆1 → K extends to a 2-simplex σ : ∆2 → K depicted as follows

v′

e′

  A
AA

AA
AA

A

v

e
??~~~~~~~ idv // v.

Let me′ : ∆1 → MapC(v′, v) denote the degenerate edge corresponding to e′. The map σ gives rise to
a diagram a diagram

ṽ
ee //

idev
��

e∗ṽ′

m∗
e ee′

��
ṽ // e∗(e′)∗ṽ

in the simplicial set Xv. Since h carries the left vertical arrow and the bottom horizontal arrow into
equivalences, it follows that h carries the composition (m∗

e ẽ
′) ◦ ẽ to an equivalence in Z; thus h(ẽ) has

a left homotopy inverse. A similar argument shows that h(ẽ) has a right homotopy inverse, so that
h(ẽ) is an equivalence.

We observe that every edge of Xv has the form g∗ẽ, where g is an edge of MapCop(v, v′) and e : v′ → v′′

is an edge of K. We wish to show that h(g∗ẽ) is an equivalence in Z. Above, we have shown that this
is true if v = v′ and g is the identity. We now consider the more general case where g is not necessarily
the identity, but is a degenerate edge corresponding to some map v′ → v in C. Let h′ denote the
composition

Xv′ → Xv
h→ Z.

Then h(g∗ẽ) = h′(ẽ) is an equivalence in Z by the argument given above.

Now consider the case where g : ∆1 → MapCop(v, v′) is nondegenerate. In this case, there is a simplicial
homotopy G : ∆1 ×∆1 → MapC(v, v′) with g = G|∆1 × {0} and g′ = G|∆1 × {1} a degenerate edge
of MapCop(v, v′) (for example, we can arrange that g′ is the constant edge at an endpoint of g). The
map G induces a simplicial homotopy G(e) from g∗ẽ to (g′)∗ẽ. Moreover, the edges G(e)|{0} × ∆1

and G(e)|{1}×∆1 belong to Ev, and are therefore carried by h into equivalences in Z. Since h carries
(g′)∗ẽ into an equivalence of Z, it carries g∗ẽ into an equivalence of Z, as desired.

We now study the behavior of straightening functors with respect to products.

Notation 3.2.1.12. Given two simplicial functors F : C → Set+∆, F′ : C′ → Set+∆, we let F �F′ : C×C′ →
Set+∆ denote the functor described by the formula

(F �F′)(C,C ′) = F(C)× F′(C ′).

Proposition 3.2.1.13. Let S and S′ be simplicial sets, C and C′ simplicial categories, and φ : C[S]→ Cop,
φ′ : C[S′] → (C′)op simplicial functors; let φ � φ′ denote the induced functor C[S × S′] → (C×C′)op. For
every M ∈ (Set+∆)/S, M ′ ∈ (Set+∆)/S′ , the natural map

sM,M ′ : St+φ�φ′(M ×M
′)→ St+φ (M) � St+φ′(M

′)

is a weak equivalence of functors C×C′ → Set+∆.

Proof. Since both sides are compatible with the formations of filtered colimits in M , we may suppose that
M has only finitely many nondegenerate simplices. We work by induction on the dimension n of M and
the number of n-dimensional simplices of M . If M = ∅ there is nothing to prove. If n 6= 1, we may choose
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a nondegenerate simplex of M having maximal dimension and thereby write M = N
∐

(∂∆n)[(∆n)[. By
the inductive hypothesis we may suppose that the result is known for N and (∂∆n)[. The map sM,M ′ is
a pushout of the maps sN,M ′ and s(∆n)[,M ′ over s(∂∆n)[,M ′ . Since Set+∆ is left-proper, this pushout is a
homotopy pushout; it therefore suffices to prove the result after replacing M by N , (∂∆n)[, or (∆n)[. In
the first two cases, the inductive hypothesis implies that sM,M ′ is an equivalence; we are therefore reduced
to the case M = (∆n)[. If n = 0, the result is obvious. If n > 2, we set

K = ∆{0,1}
∐
{1}

∆{1,2}
∐
{2}

. . .
∐

{n−1}

∆{n−1,n} ⊆ ∆n.

The inclusion K ⊆ ∆n is inner anodyne, so that K[ ⊆ M is marked-anodyne. By Proposition 3.2.1.11, we
deduce that sM,M ′ is an equivalence if and only if sK[,M ′ is an equivalence, which follows from the inductive
hypothesis since K is 1-dimensional.

We may therefore suppose that n = 1. Using the above argument, we may reduce to the case where M
consists of a single edge, either marked or unmarked. Repeating the above argument with the roles of M
and M ′ interchanged, we may suppose that M ′ also consists of a single edge. Applying Proposition 3.2.1.4,
we may reduce to the case where S = M , S′ = M ′, C = C[S]op, and C′ = C[S′]op.

Let us denote the vertices of M by x and y, and the unique edge joining them by e : x→ y. Similarly, we
let x′ and y′ denote the vertices of M ′, and e′ : x′ → y′ the edge which joins them. We note that the map
sM,M ′ induces an isomorphism when evaluated on any object of C×C′ except (x, x′). Moreover, the map

sM,M ′(x, x′) : St+φ�φ′(M ×M
′)(x, x′)→ St+φ (M)(x)× St+φ′(M

′)(x′)

obtained from s(∆1)[,(∆1)[ by successive pushouts along cofibrations of the form (∆1)[ ⊆ (∆1)]. Since Set+∆
is left proper, we may reduce to the case where M = M ′ = (∆1)[. The result now follows from a simple
explicit computation.

We now study the situation in which S = ∆0, C = C[S], and φ is the identity map. In this case, St+φ
may be regarded as a functor T : Set+∆ → Set+∆. As we saw in Example 2.1.4.6, the underlying functor of
simplicial sets is familiar: we have

T (X,E) = (|X|Q• ,E′),

where Q denotes the cosimplicial object of Set∆ considered in §1.3.2. In that section, we exhibited a natural
map |X|Q• → X which we proved to be a weak homotopy equivalence. We now prove a stronger version of
that result:

Proposition 3.2.1.14. For any marked simplicial set M = (X,E), the natural map |X|Q• → X induces a
marked equivalence

T (M)→M.

Proof. As in the proof of Proposition 3.2.1.13, we may reduce to the case where M consists of a simplex
of dimension ≤ 1 (either marked or unmarked). In these cases, the map T (M) → M is an isomorphism in
Set+∆.

Corollary 3.2.1.15. Let S be a simplicial set, C a simplicial category, φ : C[S]→ Cop a simplicial functor,
and X ∈ (Set+∆)/S an object. For every K ∈ Set+∆, there is a natural equivalence

St+φ (M ×K)→ St+φ (M) �K

of functors from C to Set+∆.

Proof. Combine the equivalences of Proposition 3.2.1.14 (in the case where S′ = ∆0, C′ = C[S′]op, and φ′ is
the identity ) and Proposition 3.2.1.15.
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We can now complete the proof that (St+φ , Un
+
φ ) is a Quillen adjunction:

Corollary 3.2.1.16. Let S be a simplicial set, C a simplicial category, and φ : C[S]op → C a simplicial
functor. The straightening functor St+φ carries marked equivalences in (Set+∆)/S to (objectwise) marked
equivalences in (Set+∆)C.

Proof. Let f : M → N be a marked equivalence in (Set+∆)/S . Choose a marked anodyne map M → M ′,
where M ′ is fibrant; then choose a marked anodyne map M ′ ∐

M N → N ′, with N ′ fibrant. Since St+φ
carries marked anodyne maps to equivalences by Proposition 3.2.1.11, it suffices to prove that the induced
map St+φ (M ′)→ St+φ (N ′) is an equivalence. In other words, we may replace M by M ′ and N by N ′, thereby
reducing to the case where M and N are fibrant.

Since f is an marked equivalence of fibrant objects, it has a homotopy inverse g. We claim that St+φ (g) is
an inverse to St+φ (f) in the homotopy category of (Set+∆)C. We will show that St+φ (f) ◦St+φ (g) is homotopic
to the identity; applying the same argument with the roles of f and g reversed will then establish the desired
result.

Since f ◦ g is homotopic to the identity, there is a map h : N ×K] → N , where K is a contractible Kan
complex containing vertices x and y, such that f ◦ g = h|N × {x} and idN = h|N × {y}. The map St+φ (h)
factors as

St+φ (N ×K])→ St+φ (N) �K] → St+φ (N)

where the left map is an equivalence by Corollary 3.2.1.15 and the right map because K is contractible. Since
St+φ (f ◦ g) and St+φ (idN ) are both sections of St+φ (h), they represent the same morphism in the homotopy
category of (Set+∆)C.

3.2.2 Cartesian Fibrations over a Simplex

A map of simplicial sets p : X → S is a Cartesian fibration if and only if the pullback map X ×S ∆n → ∆n

is a Cartesian fibration, for each simplex of S. Consequently, we might imagine that Cartesian fibrations
X → ∆n are the “primitive building blocks” out of which other Cartesian fibrations are built. The goal of this
section is to prove a structure theorem for these building blocks. This result has a number of consequences,
and will play a vital role in the proof of Theorem 3.2.0.1.

Note that ∆n is the nerve of the category associated to the linearly ordered set

[n] = {0 < 1 < . . . < n}.

Since a Cartesian fibration p : X → S can be thought of as giving a (contravariant) functor from S to ∞-
categories, it is natural to expect a close relationship between Cartesian fibrations X → ∆n and composable
sequences of maps between ∞-categories

A0 ← A1 ← . . .← An.

In order to establish this relationship, we need to introduce a few definitions.
Suppose given a composable sequence of maps

φ : A0 ← A1 ← . . .← An

of simplicial sets. The mapping simplex M(φ) of φ is defined as follows. If J is a nonempty finite linearly
ordered set with greatest element j, then to specify a map ∆J →M(φ) one must specify an order-preserving
map f : J → [n] together with a map σ : ∆J → Af(j). Given an order-preserving map p : J → J ′ of
partially ordered sets containing largest elements j and j′, there is natural map M(φ)(∆J′) → M(φ)(∆J)
which carries (f, σ) to (f ◦ p, e ◦ σ), where e : Af(j′) → Af(p(j)) is obtained from φ in the obvious way.

Remark 3.2.2.1. The mapping simplex M(φ) is equipped with a natural map p : M(φ)→ ∆n; the fiber of
p over the vertex j is isomorphic to the simplicial set Aj .

134



Remark 3.2.2.2. More generally, let f : [m]→ [n] be an order-preserving map, inducing a map ∆m → ∆n.
Then M(φ)×∆n ∆m is naturally isomorphic to M(φ′), where the sequence φ′ is given by

Af(0) ← . . .← Af(m).

Notation 3.2.2.3. Let φ : A0 ← . . . ← An be a composable sequence of maps of simplicial sets. To give
an edge e of M(φ), one must give a pair of integers 0 ≤ i ≤ j ≤ n and an edge e ∈ Aj . We will say that e
is marked if e is degenerate; let E denote the set of all marked edges of M(φ). Then the pair (M(φ),E) is a
marked simplicial set which we will denote by M \(φ).

Remark 3.2.2.4. There is a potential ambiguity between the terminology of Definition 3.1.1.9 and that of
Notation 3.2.2.3. Suppose that φ : A0 ← . . .← An is a composable sequence of maps and that p : M(φ)→ ∆n

is a Cartesian fibration. Then M(φ)\ (Definition 3.1.1.9) and M \(φ) (Notation 3.2.2.3) do not generally
coincide as marked simplicial sets. We feel that there is little danger of confusion, since it is very rare that
p is a Cartesian fibration.

Remark 3.2.2.5. The construction of the mapping simplex is functorial, in the sense that a commutative
ladder

φ : A0

f0

��

. . .oo

��

Anoo

fn

��
ψ : B0 . . .oo Bnoo

induces a mapM(f) : M(φ)→M(ψ). Moreover, if each fi is a categorical equivalence, then f is a categorical
equivalence (this follows by induction on n, using the fact that the Joyal model structure is left proper).

Definition 3.2.2.6. Let p : X → ∆n be a Cartesian fibration, and let

φ : A0 ← . . .← An

be a composable sequence of maps. A map q : M(φ) → X is a quasi-equivalence if it has the following
properties:

(1) The diagram

M(φ)
q //

##F
FFFFFFF X

p
~~}}

}}
}}

}}

∆n

is commutative.

(2) The map q carries marked edges of M(φ) to p-Cartesian edges of S; in other words, q induces a map
M \(φ)→ X\ of marked simplicial sets.

(3) For 0 ≤ i ≤ n, the induced map Ai → p−1{i} is a categorical equivalence.

The goal of this section is to prove the following:

Proposition 3.2.2.7. Let p : X → ∆n be a Cartesian fibration.

(1) There exists a composable sequence of maps

φ : A0 ← A1 ← . . .← An

and a quasi-equivalence q : M(φ)→ X.
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(2) Let
φ : A0 ← A1 ← . . .← An

be a composable sequence of maps and q : M(φ)→ X a quasi-equivalence. For any map T → ∆n, the
induced map

M(φ)×∆n T → X ×∆n T

is a categorical equivalence.

We first show that, to establish (2) of Proposition 3.2.2.7, it suffices to consider the case where T is a
simplex:

Proposition 3.2.2.8. Suppose given a diagram

X → Y → Z

of simplicial sets. For any map T → Z, we let XT denote X ×Z T and YT denote Y ×Z T . The following
statements are equivalent:

(1) For any map T → Z, the induced map XT → YT is a categorical equivalence.

(2) For any n ≥ 0 and any map ∆n → Z, the induced map X∆n → Y∆n is a categorical equivalence.

Proof. It is clear that (1) implies (2). Let us prove the converse. Since the class of categorical equivalences
is stable under filtered colimits, it suffices to consider the case where T has only finitely many nondegenerate
simplices. We now work by induction on the dimension of T , and the number of nondegenerate simplices
contained in T . If T is empty, there is nothing to prove. Otherwise, we may write T = T ′

∐
∂∆n ∆n. By the

inductive hypothesis, the maps
XT ′ → YT ′

X∂∆n → Y∂∆n

are categorical equivalences, and by assumption X∆n → Y∆n is a categorical equivalence as well. We note
that

XT = XT ′

∐
X∂ ∆n

X∆n

YT = YT ′
∐
Y∂ ∆n

Y∆n .

Since the Joyal model structure is left-proper, these pushouts are homotopy pushouts, and therefore cate-
gorically equivalent to one another.

Suppose p : X → ∆n is a Cartesian fibration, and q : M(φ)→ X is a quasi-equivalence. Let f : ∆m → ∆n

be any map. We note (see Remark 3.2.2.5) that M(φ) ×∆n ∆m may be identified with a mapping simplex
M(φ′), and that the induced map

M(φ′)→ X ×∆n ∆m

is again a quasi-equivalence. Consequently, to establish (2) of Proposition 3.2.2.7, it suffices to prove that
every quasi-equivalence is a categorical equivalence. First, we need the following lemma.

Lemma 3.2.2.9. Let
φ : A0 ← . . .← An

be a composable sequence of maps between simplicial sets, where n > 0. Let y be a vertex of An, and let the
edge e : y′ → y be the image of ∆{n−1,n} × {y} under the map ∆n × An → M(φ). Let x be any vertex of
M(φ) which does not belong to the fiber An. Then composition with e induces a weak homotopy equivalence
of simplicial sets

MapC[M(φ)](x, y
′)→ MapC[M(φ)](x, y).
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Proof. Replacing φ by an equivalent diagram if necessary (using Remark 3.2.2.5), we may suppose that the
map An → An−1 is a cofibration. Let φ′ denote the composable subsequence

A0 ← . . .← An−1.

Let C = C[M(φ)] and let C− = C[M(φ′)] ⊆ C. There is a pushout diagram in Cat∆

C[An ×∆n−1] //

��

C[An ×∆n]

��
C− // C .

This diagram is actually a homotopy pushout, since Cat∆ is a left proper model category and the top
horizontal map is a cofibration. Form now the pushout

C[An ×∆n−1]

��

// C[An × (∆n−1
∐
{n−1} ∆{n−1,n})]

��
C− // C0 .

This diagram is also a homotopy pushout. Since the diagram of simplicial sets

{n− 1} //

��

∆{n−1,n}

��
∆n−1 // ∆n

is homotopy coCartesian (with respect to the Joyal model structure), we deduce that the natural map C0 → C

is an equivalence of simplicial categories. It therefore suffices to prove that composition with e induces a
weak homotopy equivalence

MapC0
(x, y′)→ MapC(x, y).

Form a pushout square

C[An × {n− 1, n}] //

��

C[An]× C[∆{n−1,n}]

��
C0

F // C′ .

The left vertical map is a cofibration ( since An → An−1 is a cofibration of simplicial sets), and the upper
horizontal map is an equivalence of simplicial categories (Corollary 1.3.4.6). Invoking the left-properness of
Cat∆, we conclude that F is an equivalence of simplicial categories. Consequently, it will suffice to prove
that MapC′(F (x), F (y′)) → MapC′(F (x), F (y)) is a weak homotopy equivalence. We now observe that this
map is an isomorphism of simplicial sets.

Proposition 3.2.2.10. Let p : X → ∆n be a Cartesian fibration, let

φ : A0 ← . . .← An

be a composable sequence of maps of simplicial sets, and let q : M(φ) → X be a quasi-equivalence. Then q
is a categorical equivalence.
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Proof. We proceed by induction on n. The result is obvious if n = 0, so let us assume that n > 0. Let φ′

denote the composable sequence of maps

A0 ← A1 ← . . .← An−1

which is obtained from φ by omitting An. Let v denote the final vertex of ∆n, and let T = ∆{0,...,n−1}

denote the face of ∆n which is opposite v. Let Xv = X ×∆n {v} and XT = X ×∆n T .
We note that M(φ) = M(φ′)

∐
An×T (An ×∆n). We wish to show that the simplicial functor

F : C ' C[M(φ)] ' C[M(φ′)]
∐

C[An×T ]

C[An ×∆n]→ C[X]

is an equivalence of simplicial categories. We note that C decomposes naturally into full subcategories
C+ = C[An × {v}] and C− = C[M(φ′)], having the property that MapC(X,Y ) = ∅ if x ∈ C+, y ∈ C−.

Similarly, D = C[X] decomposes into full subcategories D+ = C[Xv] and D− = C[XT ], satisfying
MapD(x, y) = ∅ if x ∈ D+ and y ∈ D−. We observe that F restricts to give an equivalence between
C− and D− by assumption, and gives an equivalence between C+ and D+ by the inductive hypothesis. To
complete the proof, it will suffice to show that if x ∈ C− and y ∈ C+, then F induces a homotopy equivalence

MapC(x, y)→ MapD(F (x), F (y)).

We may identify the object y ∈ C+ with a vertex of An. Let e denote the edge of M(φ) which is the
image of {y} × ∆{n−1,n} under the map An × ∆n → M(φ). We let [e] : y′ → y denote the corresponding
morphism in C. We have a commutative diagram

MapC−(x, y′) //

��

MapC(x, y)

��
MapD−

(F (x), F (y′)) // MapD(F (x), F (y)).

Here the left vertical arrow is a weak homotopy equivalence by the inductive hypothesis, and the bottom
horizontal arrow (which is given by composition with [e]) is a weak homotopy equivalence because q(e) is
p-Cartesian. Consequently, to complete the proof, it suffices to show that the top horizontal arrow (given
by composition with e) is a weak homotopy equivalence. This follows immediately from Lemma 3.2.2.9.

To complete the proof of Proposition 3.2.2.7, it now suffices to show that for any Cartesian fibration
p : X → ∆n, there exists a quasi-equivalence M(φ)→ X. In fact, we will prove something slightly stronger
(in order to make our induction work):

Proposition 3.2.2.11. Let p : X → ∆n be a Cartesian fibration of simplicial sets and A another simplicial
set. Suppose given a commutative diagram of marked simplicial sets

A[ × (∆n)]

%%LLLLLLLLLL
s // X\

||yy
yy

yy
yy

y

(∆n)].

Then there exists a sequence of composable morphisms

φ : A0 ← . . .← An,
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a map A→ An, and an extension

A[ × (∆n)]

%%LLLLLLLLLL
// M \(φ)

f //

��

X\

||yy
yy

yy
yy

y

(∆n)].

of the previous diagram, such that f is a quasi-equivalence.

Proof. The proof goes by induction on n. We begin by considering the fiber s over the final vertex v of ∆n.
The map sv : A→ Xv = X ×∆n {v} admits a factorization

A
g→ An

h→ Sv

where g is a cofibration and h is a trivial Kan fibration. The smash product inclusion

({v}] × (An)[)
∐

{v}]×A[

((∆n)] ×A[) ⊆ (∆n)] × (An)[

is marked anodyne (Proposition 3.1.2.3). Consequently, we deduce the existence of a dotted arrow f0 as
indicated in the diagram

A[ × (∆n)]� _

��

// X\

��
(An)[ × (∆n)]

f0

88qqqqqq
// (∆n)]

of marked simplicial sets, where f0|(An × {n}) = h.
If n = 0, we are now done. If n > 0, then we apply the inductive hypothesis to the diagram

(An)[ × (∆n−1)]

''OOOOOOOOOOO

f0|An×∆n−1

// (X ×∆n ∆n−1)\

wwooooooooooo

(∆n−1)]

to deduce the existence of a composable sequence of maps

φ′ : A0 ← . . .← An−1,

a map An → An−1, and a commutative diagram

(An)[ × (∆n−1)]

''OOOOOOOOOOO
// M \(φ′)

f ′ // (X ×∆n ∆n−1)\

wwooooooooooo

(∆n−1)]

where f ′ is a quasi-equivalence. We now define φ to be the result of appending the map An → An−1 to the
beginning of φ′, and let f : M(φ)→ X be the map obtained by amalgamating f0 and f ′.

Corollary 3.2.2.12. Let p : X → S be a Cartesian fibration of simplicial sets, and let q : Y → S be a
coCartesian fibration. Define a new simplicial set Z equipped with a map Z → S by the formula

HomS(K,Z) ' HomS(X ×S K,Y ×S K).

Then:
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(1) The projection r : Z → S is a coCartesian fibration.

(2) An edge ∆1 → Z is r-coCartesian if and only if the induced map ∆1 ×S X → ∆1 ×S Y carries
p-Cartesian edges to q-coCartesian edges.

Proof. Let us say that an edge of Z is special if it satisfies the hypothesis of (2). Our first goal is to show
that there is a sufficient supply of special edges in Z. More precisely, we claim that given any edge e : s→ s′

in S and any vertex s̃ ∈ Z covering s, which we may identify with a functor s̃ : Xs → Ys, there exists a
special edge ẽ : s̃→ s̃′ of Z which covers e.

Using Proposition 3.2.2.7, we can choose a morphism φ : X ′
s ← X ′

s′ and a quasi-equivalence M(φ) →
X×S ∆1. Composing with s̃, we obtain a map X ′

s → Ys. Applying Propositions 3.3.2.8 and A.2.4.1, we may
reduce to the problem of providing a dotted arrow in the diagram

X ′
s� _

��

// Y

q

��
M(φ)

=={
{

{
{

// S

which carries the marked edges of M \(φ) to q-coCartesian edges of Y . This follows from the the fact that
qXs : Y Xs → SXs is a coCartesian fibration, and the description of the qXs -coCartesian edges (Proposition
3.1.2.1).

To complete the proofs of (1) and (2), it will suffice to show that r is an inner fibration and that every
special edge of Z is r-coCartesian. For this, it suffices to show that every lifting problem

Λni
σ0 //

� _

��

Z

��
∆n //

>>}
}

}
}

S

has a solution, provided that either 0 < i < n, or i = 0, n ≥ 2, and σ0|∆{0,1} is special. We can reformulate
this lifting problem using the diagram

X ×S Λni //
� _

��

Y

q

��
X ×S ∆n //

::v
v

v
v

v
S.

Using Proposition 3.2.2.7, we can choose a composable sequence of morphisms

ψ : X ′
0 ← . . .← X ′

n

and a quasi-equivalence M(ψ) → X ×S ∆n. Invoking Propositions 3.3.2.8 and A.2.4.1, we may reduce to
the associated mapping problem

M(ψ)×∆n Λni //

��

Y

��
M(ψ) //

99ssssss
S.

Since i < n, this is equivalent to the mapping problem

X ′
n × Λni //

� _

��

Y

��
X ′
n ×∆n // S,

which admits a solution in virtue of Proposition 3.1.2.1.
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We conclude by noting the following additional property of quasi-equivalences, using the terminology of
§3.1.3:

Proposition 3.2.2.13. Let S = ∆n, let p : X → S be a Cartesian fibration, let

φ : A0 ← . . .← An

be a composable sequence of maps, and let q : M(φ) → X be a quasi-equivalence (see §3.2.2). The induced
map M \(φ)→ X\ is a marked equivalence in (Set+∆)/S.

Proof. We must show that for any Cartesian fibration Y → S, the induced map of ∞-categories

Map[S(X\, Y \)→ Map[S(M \(φ), Y \)

is a categorical equivalence. Because S is a simplex, the left side may be identified with a full subcategory
of Y X and the right side with a full subcategory of YM(φ). Since q is a categorical equivalence, the natural
map Y X → YM(φ) is a categorical equivalence; thus, to complete the proof, it suffices to observe that a map
of simplicial sets f : X → Y is compatible with the projection to S and preserves marked edges if and only
if q ◦ f has the same properties.

3.2.3 Straightening over a Simplex

Let S be a simplicial set, C a simplicial category, and φ : C[S]op → C a simplicial functor. In §3.2.1, we
introduced the straightening and unstraightening functors

(Set+∆)/S
St+φ //(Set+∆)C

Un+
φ

oo .

In this section, we will prove that (St+φ , Un
+
φ ) is a Quillen equivalence provided that φ is a categorical

equivalence and S is a simplex (the case of a general simplicial set S will be treated in §3.2.4).
Our first step is to prove the result in the case where S is a point and φ is an isomorphism of sim-

plicial categories. We can identify the functor St+∆0 with the functor T : Set+∆ → Set+∆ studied in §3.2.1.
Consequently, Theorem 3.2.0.1 is an immediate consequence of Proposition 3.2.1.14:

Lemma 3.2.3.1. The functor T : Set+∆ → Set+∆ has a right adjoint U , and the pair (T,U) is a Quillen
equivalence from Set+∆ to itself.

Proof. We have already established the existence of the unstraightening functor U in §3.2.1, and proved that
(T,U) is a Quillen adjunction. To complete the proof, it suffices to show that the left derived functor of T
(which we may identify with T , since every object of Set+∆ is cofibrant) is an equivalence from the homotopy
category of Set+∆ to itself. But Proposition 3.2.1.14 asserts that T is isomorphic to the identity functor on
the homotopy category of Set+∆.

Let us now return to the case of a general equivalence φ : C[S] → Cop. Since we know that (St+φ , Un
+
φ )

give a Quillen adjunction between (Set+∆)/S and (Set+∆)C, it will suffice to prove that the unit and counit

u : id→ RUn+
φ ◦ LSt

+
φ

v : LSt+φ ◦RUn
+
φ → id

are weak equivalences. Our first step is to show that RUn+
φ detects weak equivalences: this reduces the

problem of proving that v is an equivalence to the problem of proving that u is an equivalence.
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Lemma 3.2.3.2. Let S be a simplicial set, C a simplicial category, and φ : C[S] → Cop an essentially
surjective functor. Let p : F → G be a map between (weakly) fibrant objects of (Set+∆)C. Suppose that
Un+

φ (p) : Un+
φ F → Un+

φ G is a marked equivalence. Then p is an equivalence.

Proof. Since φ is essentially surjective, it suffices to prove that F(C) → F(D) is a marked equivalence for
every object C ∈ C which lies in the image of φ. Let s be a vertex of S with ψ(s) = C. Let i : {s} → S
denote the inclusion, and i∗ : (Set+∆)/S → Set+∆ denote the functor of passing to the fiber over s:

i∗X = Xs = X ×S] {s}].

Let i! denote the left adjoint to i∗. Let {C} denote the trivial category with one object (and only the identity
morphism), and let j : {C} → C be the simplicial functor corresponding to the inclusion of C as an object
of C. According to Proposition 3.2.1.4, we have a natural identification of functors

St+φ ◦ i! ' j! ◦ T.

Passing to adjoints, we get another identification

i∗ ◦ Un+
φ ' U ◦ j

∗

from (Set+∆)C to Set+∆. Here U denotes the right adjoint of T .
According to Lemma 3.2.3.1, the functor U detects equivalences between fibrant objects of Set+∆. Thus,

it suffices to prove that U(j∗ F) → U(j∗ G) is a marked equivalence. Using the identification above, we are
reduced to proving that

Un+
φ (F)s → Un+

φ (G)s

is a marked equivalence. But Un+
φ (F) and Un+

φ (G) are fibrant objects of (Set+∆)/S , and therefore correspond
to Cartesian fibrations over S: the desired result now follows from Proposition 3.1.3.5.

We have now reduced the proof of Theorem 3.2.0.1 to the problem of showing that if φ : C[S] → Cop is
an equivalence of simplicial categories, then the unit transformation

u : id→ RUn+
φ ◦ St

+
φ

is an isomorphism of functors from the homotopy category h(Set+∆)/S to itself.
Our first step is to analyze the effect of the straightening functor St+φ on a mapping simplex. We will

need a bit of notation. For any X ∈ (Set+∆)/S and any vertex s of S, we let Xs denote the fiber X ×S] {s}],
and let is denote the composite functor

{s} ↪→ C[S]
φ→ Cop

of simplicial categories. According to Proposition 3.2.1.4, there is a natural identification

St+φ (Xs) ' is! T (Xs),

and consequently an induced map
ψXs : T (Xs)→ St+φ (X)(s).

Lemma 3.2.3.3. Let
θ : A0 ← . . .← An

be a composable sequence of maps of simplicial sets, and let M \(θ) ∈ (Set+∆)∆n be its mapping simplex. For
each 0 ≤ i ≤ n, the map

ψ
M\(θ)
i : T (Ai)[ → St+∆n(M \(θ))(i)

is a marked equivalence in Set+∆.
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Proof. The proof goes by induction on n. We first observe that ψM
\(θ)

n is an isomorphism; we may therefore
restrict our attention to i < n. Let θ′ be the composable sequence

A0 ← . . .← An−1,

and M \(θ′) its mapping simplex, which we may regard either as an object of (Set+∆)/∆n or (Set+∆)/∆n−1 .
For i < n, we have a commutative diagram

St+∆n(M \(θ′))(i)
fi

((RRRRRRRRRRRRR

T ((Ai)[)

ψ
M\(θ′)
i

77ooooooooooo
// St+∆n(M \(θ))(i).

By Proposition 3.2.1.4, St+∆nM \(θ′) ' j!St
+
∆n−1M

\(θ′), where j : C[∆n−1] → C[∆n] denotes the inclusion.
Consequently, the inductive hypothesis implies that the maps

T (Ai)[ → St+∆n−1(M \(θ′))(i)

are marked equivalences for i < n. It now suffices to prove that fi is a marked equivalence, for i < n.
We observe that there is a (homotopy) pushout diagram

(An)[ × (∆n−1)] //

��

(An)[ × (∆n)]

��
M \(θ′) // M \(θ)

.

Since St+∆n is a left Quillen functor, it induces a homotopy pushout diagram

St+∆n((An)[ × (∆n−1)])
g //

��

St+∆n((An)[ × (∆n)])

��
St+∆nM \(θ′) // St+∆nM \(θ).

in (Set+∆)C. We are therefore reduced to proving that g induces a marked equivalence after evaluation at any
i < n.

According to Proposition 3.2.1.13, the vertical maps of the diagram

St+∆n((An)[ × (∆n−1)]) //

��

St+∆n((An)[ × (∆n)])

��
T (An)[ � St+∆n(∆n−1)] // T (An)[ � St+∆n(∆n)]

are marked equivalences. To complete the proof we must show that

St+∆n(∆n−1)] → St+∆n(∆n)]

induces a marked equivalence when evaluated at any i < n. Consider the diagram

{n− 1}] //

��

(∆n−1)]

��
(∆{n−1,n})] // (∆n)].
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The horizontal arrows are marked anodyne. It therefore suffices to show that

St+∆n{n− 1}] → St+∆n(∆{n−1,n})]

induces marked equivalences when evaluated at any i < n. This follows from an easy computation.

Proposition 3.2.3.4. Let n ≥ 0. Then the Quillen adjunction

(Set+∆)/∆n

St+∆n //(Set+∆)C[∆n]

Un+
∆n

oo

is a Quillen equivalence.

Proof. As we have argued above, it suffices to show that the unit

id→ RUn+
φ ◦ St

+
∆n

is an isomorphism of functors from h(Set+∆)∆n to itself. In other words, we must show that given an object
X ∈ (Set+∆)/∆n and a weak equivalence

St+∆nX → F,

where F ∈ (Set+∆)C[∆n] is fibrant, the adjoint map

j : X → Un+
∆n F

is a marked equivalence in (Set+∆)/∆n .
Choose a fibrant replacement for X: that is, a marked equivalence X → Y \ where Y → ∆n is a Cartesian

fibration. According to Proposition 3.2.2.7, there exists a composable sequence of maps

θ : A0 ← . . .← An

and a quasi-equivalence M \(θ)→ Y \. Proposition 3.2.2.13 implies that M \(θ)→ Y \ is a marked equivalence.
Thus, X is equivalent to M \(θ) in the homotopy category of (Set+∆)/∆n and we are free to replace X by
M \(θ), thereby reducing to the case where X is a mapping simplex.

We wish to prove that j is a marked equivalence. Since Un+
∆n F is fibrant, Proposition 3.2.2.13 implies

that it suffices to show that j is a quasi-equivalence: in other words, we need to show that the induced map
of fibers js : Xs → (Un+

∆n F)s is a marked equivalence, for each vertex s of ∆n. As in the proof of Lemma
3.2.3.2, we may identify (Un+

∆n F)s with U(F(s)), where U is the right adjoint to T . By Lemma 3.2.3.1,
Xs → U(F(s)) is a marked equivalence if and only if the adjoint map T (Xs)→ F(s) is a marked equivalence.
This map factors as a composition

T (Xs)→ St+∆n(X)(s)→ F(s).

The map on the left is a marked equivalence by Lemma 3.2.3.3, and the map on the right in virtue of the
assumption that St+∆nX → F is a weak equivalence.

3.2.4 Straightening in the General Case

Let S be a simplicial set and φ : C[S]→ Cop an equivalence of simplicial categories. Our goal in this section
is to complete the proof of Theorem 3.2.0.1 by showing that (St+φ , Un

+
φ ) is a Quillen equivalence between

(Set+∆)/S and (Set+∆)C. In §3.2.3, we handled the case where S was a simplex (and φ an isomorphism),
by verifying that the unit map id → RUn+

φ ◦ St
+
φ is an isomorphism of functors from h(Set+∆)/S to itself.

Unfortunately, we do not know a direct proof of this statement in the general case. Our approach is instead to
prove the functor RUn+

φ is an equivalence from the homotopy category of (Set+∆)C to the homotopy category
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of (Set+∆)/S . It will then follow that the left adjoint LSt+φ is an inverse functor to RUn+
φ , so that the unit of

the adjunction is a weak equivalence.
Here is the idea of the proof. Without loss of generality, we may suppose that φ is an isomorphism (since

the pair (φ!, φ
∗) is a Quillen equivalence between (Set+∆)C[S]op

and (Set+∆)C, by Proposition A.3.3.5). We wish
to show that Un+

φ induces an equivalence from the homotopy category of (Set+∆)C to the homotopy category
of (Set+∆)/S . According to Proposition 3.2.3.4, this is true whenever S is a simplex. In the general case, we
would like to regard (Set+∆)C and (Set+∆)/S as somehow built out of pieces which are associated to simplices,
and deduce that Un+

φ is an equivalence because it is an equivalence on each piece. In order to make this
argument work, it is necessary to work not just with the homotopy categories of (Set+∆)C and (Set+∆)/S , but
with the simplicial categories which give rise to them.

We recall that both (Set+∆)C and (Set+∆)/S are simplicial model categories with respect to the simplicial
mapping spaces defined by

HomSet∆(K,Map(Set+∆)C(F,G)) = Hom(Set+∆)C(F �K],G)

HomSet∆(K,Map(Set+∆)S
(X,Y )) = HomSet∆(K,Map]S(X,Y )) = Hom(Set+∆)/S

(X ×K], Y ).

The functor St+φ is not a simplicial functor. However, it is weakly compatible with the simplicial structure
in the sense that there is a natural map

St+φ (X �K])→ (St+φX) �K]

for any X ∈ (Set+∆)/S , K ∈ Set∆. According to Corollary 3.2.1.15, this map is a weak equivalence in (Set+∆)C.
Passing to adjoints, we get natural maps

Map(Set+∆)C(F,G)→ Map]S(Un+
φ F, Un+

φ G).

In other words, Un+
φ does have the structure of a simplicial functor. We now invoke Proposition A.2.8.1 to

deduce the following:

Lemma 3.2.4.1. Let S be a simplicial set, C a simplicial category, and φ : C[S]→ Cop a simplicial functor.
The following are equivalent:

(1) The Quillen adjunction (St+φ , Un
+
φ ) is a Quillen equivalence.

(2) The functor Un+
φ induces an equivalence of simplicial categories

(Un+
φ )◦ : ((Set+∆)C)◦ → ((Set+∆)/S)◦,

where ((Set+∆)C)◦ denotes the full (simplicial) subcategory of ((Set+∆)C) consisting of fibrant-cofibrant
objects, and ((Set+∆)/S)◦ denotes the full (simplicial) subcategory of (Set+∆)/S consisting of fibrant-
cofibrant objects.

Consequently, to complete the proof of Theorem 3.2.0.1, it will suffice to show that if φ is an equivalence
of simplicial categories, then (Un+

φ )◦ is an equivalence of simplicial categories. The first step is to prove that
(Un+

φ )◦ is fully faithful.

Lemma 3.2.4.2. Let S′ ⊆ S be simplicial sets, and let p : X → S, q : Y → S be Cartesian fibrations. Let
X ′ = X ×S S′ and Y ′ = Y ×S S′. The restriction map

Map]S(X\, Y \)→ Map]S′(X
′\, Y ′

\)

is a Kan fibration.
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Proof. It suffices to show that the map Y \ → S has the right lifting property with respect to the inclusion

(X ′\ ×B])
∐

X′\×A]

(X\ ×A]) ⊆ X\ ×B],

for any anodyne inclusion of simplicial sets A ⊆ B.
But this is a smash product of a marked cofibration X ′\ → X\ (in (Set+∆)/S) and a trivial marked

cofibration A] → B] ( in Set+∆), and is therefore a trivial marked cofibration. We conclude by observing that
Y \ is a fibrant object of (Set+∆)/S (Proposition 3.1.4.1).

Proposition 3.2.4.3. For every simplicial set S, the functor

(Un+
S )◦ : (Set+∆)C[S]op

→ (Set+∆)/S

is fully faithful (as a functor between simplicial categories).

Proof. Let C = C[S]op, and choose fibrant-cofibrant objects F,G ∈ (Set+∆)C. We wish to show that the
natural map

Map(Set+∆)C(F,G)→ Map]S(Un+
S F, Un+

S G)

is a homotopy equivalence of Kan complexes.
According to Proposition A.3.6.1, there is an equivalence of ∞-categories

p : N((Set+∆)C)◦ → Fun(Sop,Cat∞).

Let F = p(F) and G = p(G). Let XS = HomR
Fun(Sop,Cat∞)(F,G), YS = |HomR

N((Set+∆)C)◦
(F,G)|Q• , and

ZS = Map(Set+∆)/S
(Un+

S F, Un+
S G). We have a chain of maps

XS
f0← |HomR

Fun(Sop,Cat∞)(F,G)|Q•
f1← YS

f2→ Map(Set+∆)C(F,G)
f3→ ZS .

Note that f0 and f1 are weak homotopy equivalences, so their composition iS = f0◦f1 : YS → XS is a weak
homotopy equivalence. Since f2 is weak homotopy equivalence, the map f3 is a weak homotopy equivalence
if and only if the composition jS = f3 ◦ f2 : YS → ZS is a weak homotopy equivalence. Consequently, our
goal is to prove that jS is a weak homotopy equivalence.

Let us first assume that S is finite-dimensional, and work by induction on the dimension n of S. Let
S′ denote the (n − 1)-skeleton of S, and let A denote the set of all nondegenerate n-simplices of S. Then
S ' S′

∐
∂∆n×A(∆n ×A). By Lemma 2.3.4.1, the square

XS

��

// XS′

��
X∆n×A // X∂∆n×A

is homotopy Cartesian. It follows that the equivalent square

YS

��

// YS′

��
Y∆n×A // Y∂∆n×A

is homotopy Cartesian. By Lemma 3.2.4.2, the square

ZS

��

// ZS′

��
Z∆n×A // Z∂∆n×A
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is homotopy Cartesian. Consequently, to prove that jS is a weak equivalence, it suffices to show that jS′ ,
j∂∆n×A, and j∆n×A are weak equivalences. The first two of these assertions follow from the inductive
hypothesis. The third follows from Lemma 3.2.4.1 and Proposition 3.2.3.4.

Now suppose that S is not finite dimensional. Let S(i) denote the i-skeleton of S. By Lemma 2.3.4.1,
each of the maps XS(i+1) → XS(i) is a Kan fibration. It follows that XS = limiXS(i) is also the homotopy
limit of the tower

. . .→ XS(2) → XS(1) → XS(0).

Since each of the maps iK is a homotopy equivalence, we deduce that YS is a homotopy limit of the tower

. . .→ YS(2) → YS(1) → YS(0).

(This is not obvious, since the maps in this tower are not fibrations of simplicial sets, and YS is not generally
the limit of the YS(i).)

By Lemma 3.2.4.2, the tower
. . .→ ZS(2) → ZS(1) → ZS(0)

is a tower of fibrations, so that ZS = lim←−ZS(i) is a homotopy limit. Since each jS(i) is an equivalence by the
arguments given above, we see that jS : YS → ZS is an equivalence, since it is a map between homotopy
limits of equivalent towers.

To complete the proof of Theorem 3.2.0.1, we need to show that the unstraightening functor Un+
φ is

essentially surjective (on homotopy categories).

Proposition 3.2.4.4. Let S be a simplicial set, and C = C[S]op. For every object X ∈ (Set+∆)/S, there exists
a (weakly) fibrant object F ∈ (Set+∆)C and a marked equivalence X → Un+

S (F).

Proof. Choose a marked equivalence X → Z\, where p : Z → S is a Cartesian fibration. Without loss of
generality, we may replace X by Z\. Choose simplicial subsets S(α) ⊆ S, where each S(α) is obtained by
adjoining a single nondegenerate simplex to

S(<α) =
⋃
β<α

S(β),

provided that such a simplex exists. Let Cα = C[S(α)]op and Z(α) = Z ×S S(α). The objects C<α, φ<α,
and Z(<α) are defined similarly.

We will construct, by induction on α, a compatible family of pairs Fα : Cop → Set+∆, fα : Z(α)\ →
Un+

φα
Fα, where fα is a marked equivalence in (Set+∆)/S(α). Let us suppose, then, that F<α and f<α have

already been constructed. Supposing that S(<α) 6= S, we may write

S(α) = S(<α)
∐
∂∆n

∆n.

Let C′ = C[∆n]op and C′0 = C[∂∆n]op ⊆ C′.
By Proposition 3.2.3.4, there exists a fibrant object G ∈ (Set+∆)C′ and an equivalence g : Z\ ×S ∆n →

Un+
∆n G. Let G0 = G |C′0 The objects Un+

∂∆n G0 and Un+
∂∆n(F<α |C′0) are equivalent in the homotopy

category of (Set+∆)/ ∂∆n (since they are both equivalent to Z\ ×S ∂∆n). Proposition 3.2.4.3 implies that G0

and F<α |C′0 are equivalent in the homotopy category of (Set+∆)C′0 .
We may identify F<α with a map F<α : S(<α)→ Catop∞, and G with a map G : ∆n → Catop∞. The above

argument shows that the maps F<α| ∂∆n and G| ∂∆n are homotopic. In other words, there exists a map

H0 : (∂∆n ×∆1)
∐

∂∆n×{1}

(∆n × {1})→ Catop∞
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such that H0| ∂∆n × {0} = F<α| ∂∆n, H0|∆n × {1} = G, and H0|{v} ×∆1 is an equivalence in Cat∞, for
every vertex v of ∆n. It follows that there exists an extension

H : ∆n ×∆1 → (Catop∞)\

of H0; moreover, if n = 0 we may furthermore choose H to be an equivalence (for example, a degenerate
edge at the vertex H0).

Now define Fα to be the result of amalgamating F<α with H|∆n × {0}, and let Fα : Cα → Set+∆ be the
associated presheaf. Finally, let Y = Un+

Sα
Fα. To complete the proof, it will suffice to show that the map

f<α : Z(<α)\ → Y can be extended to an equivalence fα : Z(α)\ → Y .
Let f ′<α denote the pullback of f<α to ∆n:

f ′<α : Z ×S ∂∆n → Y ×S ∆n.

By hypothesis, the map f ′<α is equivalent, in the homotopy category, to the restriction of g. It follows from
Proposition A.2.4.1 that f ′<α extends to a map

f ′α : Z ×S ∆n → Y ×S ∆n

which is isomorphic to g in the homotopy category (Set+∆)/∆n . Then f ′α is an equivalence, since g is an
equivalence. We now define fα to be the result of amalgamating f<α and f ′α. It is clear that fα has the
desired properties, so the proof is complete.

We are now ready to complete the proof of our main result.

Proof of Theorem 3.2.0.1. Let φ : C[S] → Cop be an equivalence of simplicial categories. We wish to prove
that (St+φ , Un

+
φ ) is a Quillen equivalence. Using Proposition A.3.3.5, we may reduce to the case where φ

is an isomorphism. According to Lemma 3.2.4.1, it will suffices to show that (Un+
φ )◦ is an equivalence of

simplicial categories. Proposition 3.2.4.3 guarantees that (Un+
φ )◦ is fully faithful, and Proposition 3.2.4.4

guarantees that Un◦φ is essentially surjective.
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3.3 Applications

The purpose of this section is to survey some applications of techniques developed in §3.1 and §3.2. We
begin in §3.3.1 by studying the unmarked straightening and unstraightening functors introduced in §2.1.4.
In §3.3.2, we give some applications to the theory of Cartesian fibrations. In §3.3.3, we will introduce the
language of classifying maps which will allow us to exploit the Quillen equivalence provided by Theorem
3.2.0.1. Finally, in §3.3.4 and §3.3.5, we will use Theorem 3.2.0.1 to give explicit constructions of limits and
colimits in the ∞-category Cat∞ (and also in the ∞-category of spaces).

3.3.1 Straightening and Unstraightening in the Unmarked Case

Let S be a simplicial set and φ : C[S] → Cop a simplicial functor. In §2.1.4, we defined straightening and
unstraightening functors

(Set∆)/S
Stφ //(Set∆)C

Unφ

oo .

In §3.2, we studied the corresponding constructions in the context of marked simplicial sets, and proved that
(St+φ , Un

+
φ ) is a Quillen equivalence provided that φ is an equivalence of simplicial categories. This result can

be regarded as a marked version of Theorem 2.1.4.7, which asserts that (Stφ, Unφ) is a Quillen equivalence
(under the same hypotheses). Our goal in this section is to use Theorem 3.2.0.1 to deduce Theorem 2.1.4.7.
The following statement summarizes both results, and the relationship between them:

Theorem 3.3.1.1. Let S be a simplicial set, C a simplicial category, and φ : C[S]op → C a simplicial functor.
We have a commutative diagram of model categories and left Quillen functors

(Set+∆)/S
St+φ //

��

(Set+∆)C

��
(Set∆)/S

Stφ // // (Set∆)C,

where the vertical arrows are given by forgetting the markings, and (Set∆)/S is endowed with the contravariant
model structure. Moreover, if φ is an equivalence of simplicial categories, then the horizontal arrows are
Quillen equivalences.

The proof of Theorem 3.3.1.1 uses Proposition 3.1.5.6, which in turn rests on the following characterization
of the contravariantly fibrant objects of (Set∆)/S :

Proposition 3.3.1.2. Let p : X → S be a map of simplicial sets. Then X is fibrant with respect to the
contravariant model structure on (Set∆)/S if and only if p is a right fibration.

Proof. The “only if” direction was established in Proposition 2.1.4.3. For the converse, suppose that p is a
right fibration. We wish to show that X has the extension property with respect to every contravariantly
trivial cofibration i : A → B in (Set∆)/S . Equivalently, we must show that Y ] has the extension property
with respect to A] → B] in (Set+∆)/S . Since p is a right fibration, Y ] = Y \ is a marked fibrant object of
(Set+∆)/S ; it therefore suffices to show that the cofibration A] → B] is a marked equivalence. By Theorem
3.2.0.1, it suffices to show that f : St+SA

] → St+SB
] is an equivalence. But St+SM

] ' (StSM)]; it therfore
suffices to prove that StSA → StSB is an equivalence. This is simply a reformulation of the assumption
that i is a contravariant equivalence.

Proof of Theorem 3.3.1.1. The commutativity of the diagram is an immediate consequence of the construc-
tion of St+φ . We have already shown that St+φ is a left Quillen functor, and it follows from Theorem 3.1.5.1
that the vertical arrows are left Quillen functors. The first nontrivial point to check is that Stφ is a left
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Quillen functor. Since Stφ clearly preserves cofibrations, it suffices to show that Stφ preserves weak equiva-
lences. Let X,X ′ ∈ (Set∆)/S , and let F = StφX, F′ = Stφ F′ be the associated functors C→ Set∆. Suppose
f : X → X ′ is a contravariant equivalence. By Proposition 3.1.5.6, the induced map f : X] → X ′] is a
marked equivalence in (Set+∆)/S . By Corollary 3.2.1.16, the induced map

F] = St+φX
] → St+φX

′] → (F′)]

is a weak equivalence of functors C → Set+∆. Applying Proposition 3.1.5.6 again, we deduce that F → F′ is
an equivalence of functors C→ Set∆.

To complete the proof, it suffices to show that if φ is a categorical equivalence, then (Stφ, Unφ) is a
Quillen equivalence. Let X be an object of Set∆/S and F a fibrant object of (Set∆)C. We need to show that
a map

u : X → Unφ F

is a contravariant equivalence in Set∆/S if and only if the adjoint map

v : St]φX → F

is an equivalence in (Set∆)C. By Proposition 3.1.5.6, u is an equivalence if and only if the associated map

u′ : X] → Un+
φ F]

is an equivalence in (Set+∆)/S , and v is an equivalence if and only if the associated map

v′ : St+φX
] → F]

is an equivalence in (Set+∆)C. Theorem 3.2.0.1 asserts that u′ is an equivalence if and only if v′ is an
equivalence, which completes the proof.

3.3.2 Structure Theory for Cartesian Fibrations

The purpose of this section is to prove that Cartesian fibrations between simplicial sets enjoy several pleasant
properties. For example, every Cartesian fibration is a categorical fibration (Proposition 3.3.2.8), and cate-
gorical equivalences are stable under pullbacks by Cartesian fibrations (Proposition 3.3.2.3). These results
are fairly easy to prove for Cartesian fibrations X → S in the case where S is an ∞-category. Theorem
3.2.0.1 provides a method for reducing to this special case:

Proposition 3.3.2.1. Let p : S → T be a categorical equivalence of simplicial sets. Then the forgetful
functor

p! : (Set+∆)/S → (Set+∆)/T

and its right adjoint p∗ induce a Quillen equivalence between (Set+∆)/S and (Set+∆)/T .

Proof. Let C = C[S]op and D = C[T ]op. Consider the diagram of model categories and left Quillen functors:

(Set+∆)/S
p! //

St+S

��

(Set+∆)/T

St+T

��
C

C[p]! // D

.

According to Proposition 3.2.1.4, this diagram commutes (up to natural isomorphism). Theorem 3.2.0.1
implies that the vertical arrows are Quillen equivalences. Since p is a categorical equivalence, C[p] is an
equivalence of simplicial categories, so that C[p]! gives a Quillen equivalence by Proposition A.3.3.5. It
follows that (p!, p

∗) is a Quillen equivalence as well.
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Corollary 3.3.2.2. Let p : X → S be a Cartesian fibration of simplicial sets, and let S → T be a categorical
equivalence. Then there exists a Cartesian fibration Y → T , and an equivalence of X with S ×T Y (as
Cartesian fibrations over X).

Proof. Proposition 3.3.2.1 implies that the right derived functor Rp∗ is essentially surjective.

As we explained in Remark 1.3.4.3, the Joyal model structure on Set∆ is not right proper. In other
words, it is possible to have a categorical fibration X → S and a categorical equivalence T → S such that
the induced map X ×S T → X is not a categorical equivalence. This poor behavior of categorical fibrations
is one of the reason that they do not play a prominent role in the theory of ∞-categories. Working with a
stronger notion of fibration corrects the problem:

Proposition 3.3.2.3. Let p : X → S be a Cartesian fibration, and let T → S be a categorical equivalence.
Then the induced map X ×S T → X is a categorical equivalence.

Proof. We first suppose that the map T → S is inner anodyne. By means of a simple argument, we may
reduce to the case where T → S is a middle horn inclusion Λni ⊆ ∆n, where 0 < i < n. According Proposition
3.2.2.7, there exists a sequence of maps

φ : A0 ← . . .← An

and a map M(φ) → X which is a categorical equivalence, such that M(φ) ×S T → X ×S T is also a
categorical equivalence. Consequently, it suffices to show that the inclusion M(φ) ×S T ⊆ M(φ) is a
categorical equivalence. But this map is a pushout of the inclusion An × Λni ⊆ An × ∆n, which is inner
anodyne.

We now treat the general case. Choose an inner anodyne map T → T ′ where T ′ is an ∞-category. Then
choose an inner anodyne map T ′

∐
T S → S′, where S′ is also an ∞-category. The map S → S′ is inner

anodyne; in particular it is a categorical equivalence, so by Corollary 3.3.2.2 there is a Cartesian fibration
X ′ → S′ and an equivalence X → X ′×S′ S of Cartesian fibrations over S. We have a commutative diagram

X ′ ×S′ T
u′ // X ′ ×S′ T ′

u′′

$$J
JJJJJJJJ

X ×S T

u

88qqqqqqqqqq

v

&&MMMMMMMMMMM X ′.

X
v′ // X ′ ×S′ S

v′′
::ttttttttt

Consequently, to prove that v is a categorical equivalence, it suffices to show that every other arrow in
the diagram is a categorical equivalence. The maps u and v′ are equivalences of Cartesian fibrations, and
therefore categorical equivalences. The other three maps are special cases of the assertion we are trying
to prove., For the map u′′, we are in the special case of the map S′ → T ′, which is an equivalence of ∞-
categories: in this case we simply apply Corollary 2.3.4.5. For the maps u′ and v′′, we need to know that the
assertion of the proposition is valid in the special case of the maps S → S′ and T → T ′. Since these maps
are inner anodyne, the proof is complete.

Corollary 3.3.2.4. Let
X //

��

X ′

p′

��
S // S′

be a pullback diagram of simplicial sets, where p′ is a Cartesian fibration. Then the diagram is homotopy
Cartesian (with respect to the Joyal model structure).
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Proof. Choose a categorical equivalence S′ → S′′, where S′′ is an ∞-category. Using Proposition 3.3.2.1, we
may assume without loss of generality that X ′ ' X ′′ ×S′′ S′, where X ′′ → S′′ is a Cartesian fibration. Now
choose a factorization

S
θ′→ T

θ′′→ S′′

where θ′ is a categorical equivalence and θ′′ is a categorical fibration. The diagram

T → S′′ ← X ′′

is fibrant. Consequently, the desired conclusion is equivalent to the assertion that the map X → T ×S′′ X ′′

is a categorical equivalence, which follows immediately from Proposition 3.3.2.3.

We now prove a stronger version of Corollary 2.3.4.4, which does not require that the base S is a ∞-
category.

Proposition 3.3.2.5. Suppose given a diagram of simplicial sets

X
p

��@
@@

@@
@@

f // Y

q
����

��
��

�

S

where p and q are Cartesian fibrations, and f carries p-Cartesian edges to q-Cartesian edges. The following
conditions are equivalent:

(1) The map f is a categorical equivalence.

(2) For each vertex s of S, f induces a categorical equivalence Xs → Ys.

(3) The map X\ → Y \ is a marked equivalence in (Set+∆)/S.

Proof. The equivalence of (2) and (3) follows from Proposition 3.1.3.5. We next show that (2) implies (1).
In virtue of Proposition 3.2.2.8, we may reduce to the case where S is a simplex. Then S is an ∞-category
and the desired result follows from Corollary 2.3.4.4. (Alternatively, we could observe that (2) implies that
f has a homotopy inverse.)

To prove that (1) implies (3), we choose an inner anodyne map j : S → S′, where S′ is an∞-category. Let
X\ denote the object of (Set+∆)/S associated to the Cartesian fibration p : X → S, and let j!X\ denote the
same marked simplicial set, regarded as an object of (Set+∆)/T . Choose a marked anodyne map j!X\ → X ′\,
whereX ′ → S′ is a Cartesian fibration. By Proposition 3.3.2.1, the mapX\ → j∗X ′\ is a marked equivalence,
so that X → X ′×S′ S is a categorical equivalence. According to Proposition 3.3.2.3, the map X ′×S′ S → X ′

is a categorical equivalence; thus the composite map X → X ′ is a categorical equivalence.
Similarly, we may choose a marked anodyne map

X ′\
∐
j!X\

j!Y
\ → Y ′

\

for some Cartesian fibration Y ′ → S′. Since the marked model structure is left-proper, the map j!Y \ → Y ′
\

is a marked equivalence, so we may argue as above to deduce that Y → Y ′ is a categorical equivalence. Now
consider the diagram

X
f //

��

Y

��
X ′ f ′ // // Y ′.
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We have argued that the vertical maps are categorical equivalences. The map f is a categorical equivalence
by assumption. It follows that f ′ is a categorical equivalence. Since S′ is an ∞-category, we may apply
Corollary 2.3.4.4 to deduce that X ′

s → Y ′s is a categorical equivalence for each object s of S′. It follows that
X ′\ → Y ′

\ is a marked equivalence in (Set+∆)/S , so that we have a commutative diagram

X\ //

��

Y \

��
j∗X ′\ // j∗Y ′\

where the vertical and bottom horizontal arrows are marked equivalences in (Set+∆)/S . It follows that the
top horizontal arrow is a marked equivalence as well, so that (3) is satisfied.

Corollary 3.3.2.6. Suppose given a diagram of simplicial sets

X
p

��@
@@

@@
@@

f // Y

q
����

��
��

�

S

where p and q are right fibrations. Then f is a contravariant equivalence in (Set∆)/S if and only if, for each
vertex s of S, the induced map fs : Xs → Ys of fibers is a homotopy equivalence of Kan complexes.

Corollary 3.3.2.7. Let
W //

��

X

��
Y // Z // S

be a diagram of simplicial sets. Suppose that every morphism in this diagram is a right fibration, and that
the square is a pullback. Then the diagram is homotopy Cartesian with respect to the contravariant model
structure on (Set∆)/S.

Proof. Let
X ′ → Y ′ ← Z ′

be a fibrant replacement for the diagram
X → Y ← Z

in (Set∆)/S , and let W ′ = X ′ ×Z′ Y ′. We wish to show that the induced map i : W → W ′ is a covariant
equivalence in (Set∆)/S . According to Corollary 3.3.2.6, it suffices to show that for each vertex s of S, the
map of fibers Ws → W ′

s is a homotopy equivalence of Kan complexes. To prove this, we observe that we
have a natural transformation of diagrams from

Ws
//

��

Xs

��
Ys // Zs

to
W ′
s

//

��

X ′
s

��
Y ′s // Z ′s
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which induces homotopy equivalences
Xs → X ′

s

Ys → Y ′s

Zs → Z ′s

(Corollary 3.3.2.6), where both diagrams are homotopy Cartesian (Proposition 2.1.3.4).

Proposition 3.3.2.8. Let p : X → S be a Cartesian fibration of simplicial sets. Then p is a categorical
fibration.

Proof. Consider a diagram
A //

� _

i

��

X

p

��
B //

f
>>~

~
~

~ g // S

of simplicial sets where i is an inclusion and a categorical equivalence. We must demonstrate the existence
of the indicated dotted arrow. Choose a categorical equivalence j : S → T , where T is an ∞-category. By
Corollary 3.3.2.2, there exists a Cartesian fibration q : Y → T such that Y ×T S is equivalent to X. Thus,
there exist maps

u : X → Y ×T S

v : Y ×T S → X

such that u ◦ v and v ◦ u are homotopic to the identity (over S).
Consider the induced diagram

A //
� _

i

��

Y

B.

f ′

>>}
}

}
}

Since Y is an ∞-category, there exists a dotted arrow f ′ making the diagram commutative. Let g′ = q ◦ f ′ :
B → T . We note that g′|A = (j ◦ g)|A. Since T is an ∞-category and i is a categorical equivalence, there
exists a homotopy B ×∆1 → T from g′ to j ◦ g which is fixed on A. Since q is a Cartesian fibration, this
homotopy lifts to a homotopy from f ′ to some map f ′′ : B → Y , so that we have a commutative diagram

A //
� _

i

��

Y

q

��
B //

f ′′

>>}
}

}
}

// T.

Consider the composite map

f ′′′ : B
(f ′′,g)→ Y ×T S

v→ X.

Since f ′ is homotopic to f ′′, and v ◦ u is homotopic to the identity, we conclude that f ′′′|A is homotopic to
f0 (via a homotopy which is fixed over S). Since p is a Cartesian fibration, we can extend h to a homotopy
from f ′′′ to the desired map f .

In general, the converse to Proposition 3.3.2.8 fails: a categorical fibration of simplicial sets X → S need
not be a Cartesian fibration. This is clear, since the property of being a categorical fibration is self-dual
while the condition of being a Cartesian fibration is not. However, in the case where S is a Kan complex,
the theory of Cartesian fibrations is self-dual, and we have the following result:

Proposition 3.3.2.9. Let p : X → S be a map of simplicial sets, where S is a Kan complex. The following
assertions are equivalent:

154



(1) The map p is a Cartesian fibration.

(2) The map p is a coCartesian fibration.

(3) The map p is a categorical fibration.

Proof. We will prove that (1) is equivalent to (3); the equivalence of (2) and (3) follows from a dual argument.
Proposition 3.3.2.8 shows that (1) implies (3) (for this implication, the assumption that S is a Kan complex
is not needed).

Now suppose that (3) holds. Then X is an ∞-category. Since every edge of S is an equivalence, the
p-Cartesian edges of X are precisely the equivalences in X. It therefore suffices to show that if if y is a
vertex of X and e : x→ p(y) is an edge of S, then e lifts to an equivalence e : x→ y in S. Since S is a Kan
complex, we can find a contractible Kan complex K and a map q : K → S such that e is the image of an
edge e′ : x′ → y′ in K. The inclusion {y′} ⊆ K is a categorical equivalence; since p is a categorical fibration,
we can lift q to a map q : K → X with q(y′) = y. Then e = q(e′) has the desired properties.

3.3.3 Universal Fibrations

In this section, we will apply Theorem 3.2.0.1 to construct a universal Cartesian fibration. Recall that
Cat∞ is defined to be the nerve of the simplicial category Cat∆∞ = (Set+∆)◦ of ∞-categories. In particular,
we may regard the inclusion Cat∆∞ ↪→ Set+∆ as a (weakly) fibrant object F ∈ (Set+∆)Cat∆∞ . Applying the
unstraightening functor Un+

Catop
∞

, we obtain a fibrant object of (Set+∆)/Catop
∞ , which we may identify with

Cartesian fibration q : Z → Catop∞. We will refer to q as the universal Cartesian fibration. We observe that
the objects of Cat∞ can be identified with∞-categories, and that the fiber of q over an∞-category C can be
identified with U(C), where U is the functor described in Lemma 3.2.3.1. In particular, there is a canonical
equivalence of ∞-categories

C→ U(C) = Z×Catop
∞{C}.

Thus we may think of q as a Cartesian fibration which associates to each object of Cat∞ the associated
∞-category.

Remark 3.3.3.1. The ∞-categories Cat∞ and Z are large. However, the universal Cartesian fibration q is
small in the sense that for any small simplicial set S and any map f : S → Catop∞, the fiber product S×Qop Z

is small. This is because the fiber product can be identified with Un+
φ (F |C[S]), where φ : C[S] → Set+∆ is

the composition of C[f ] with the inclusion.

Definition 3.3.3.2. Let p : X → S be a Cartesian fibration of simplicial sets. We will say that a functor
f : S → Catop∞ classifies p if there is an equivalence of Cartesian fibrations X → Z×Catop

∞S ' Un
+
S f .

Dually, if p : X → S is a coCartesian fibration, then we will say that a functor f : S → Cat∞ classifies p
if fop classifies the Cartesian fibration pop : Xop → Sop.

Remark 3.3.3.3. Using Proposition 3.2.4.4, we can deduce that every Cartesian fibration X → S admits
a classifying map φ : S → Catop∞, which is uniquely determined up to equivalence. This is one expression of
the idea that Z→ Catop∞ is a universal Cartesian fibration.

Warning 3.3.3.4. The terminology of Definition 3.3.3.2 has the potential to cause confusion in the case
where p : X → S is both a Cartesian fibration and a coCartesian fibration. In this case, p is classified both
by a functor S → Catop∞ (as a Cartesian fibration) and by a functor S → Cat∞ (as a coCartesian fibration).

The category Kan of Kan complexes can be identified with a full (simplicial) subcategory of Cat∆∞.
Consequently we may identify the ∞-category S of spaces with the full simplicial subset of Cat∞, spanned
by the vertices which represent ∞-groupoids. We let Z0 = Z×Catop

∞ Sop be the restriction of the universal
Cartesian fibration. The fibers of q0 : Z0 → Sop are Kan complexes (since they are equivalent to the ∞-
categories represented by the vertices of S). It follows from Proposition 2.3.2.7 that q0 is a right fibration.
We will refer to q0 as the universal right fibration.

Proposition 2.3.2.7 translates immediately into the following characterization of right fibrations:

155



Proposition 3.3.3.5. Let p : X → S be a Cartesian fibration of simplicial sets. The following conditions
are equivalent:

(1) The map p is a right fibration.

(2) Every functor f : S → Catop∞ which classifies p factors through Sop ⊆ Catop∞.

(3) There exists a functor f : S → Sop which classifies p.

Consequently, we may speak of right fibrations X → S being classified by functors S → Sop, and left
fibrations being classified by functors S → S.

The ∞-category ∆0 corresponds to a vertex of Cat∞ which we will denote by ∗. The fiber of q over this
point may be identified with U∆0 ' ∆0; consequently, there is a unique vertex ∗Z of Z lying over ∗. We
note that ∗ and ∗Z belong to the subcategories S and Z0. Moreover, we have the following:

Proposition 3.3.3.6. Let q0 : Z0 → Sop be the universal right fibration. The vertex ∗Z is a final object of
the ∞-category Z0.

Proof. Let n > 0, and let f0 : ∂∆n → Z0 have the property that f0 carries the final vertex of ∆n to ∗Z. We
wish to show that there exists an extension

∂∆n
f0 //

� _

��

Z

∆n

f

<<z
z

z
z

(in which case the map f automatically factors through Z0).
Let D denote the simplicial category containing S

op
∆ as a full subcategory, together with one additional

object X, with the morphisms given by
MapD(K,X) = K

MapD(X,X) = ∗

MapD(X,K) = ∅

for all K ∈ S
op
∆ . Let C = C[∆n ? ∆0], and let C0 denote the full subcategory C0 = C[∂∆n ? ∆0]. We will

denote the objects of C by {v0, . . . , vn+1}. Giving the map f0 is tantamount to giving a simplicial functor
F0 : C0 → D with F0(vn+1) = X, and constructing f amounts to giving a simplicial functor F : C → D

which extends F0.
We note that the inclusion MapC0

(vi, vj) → MapC(vi, vj) is an isomorphism, unless i = 0 and j ∈
{n, n+ 1}. Consequently, to define F , it suffices to find extensions

MapC0
(v0, vn) //
� _

��

MapD(F0(v0), F0(vn))

MapC(v0, vn)

j
55kkkkkkkk

MapC0
(v0, vn+1) //

� _

��

MapD(F0(v0), F0(vn+1))

MapC(v0, vn+1)

j′
44jjjjjjjj
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such that the following diagram commutes:

MapC(v0, vn)×MapC(vn, vn+1) //

��

MapD(F0(v0), F0(vn))×MapD(F0(vn), F0(vn+1))

��
MapC(v0, vn+1) // MapD(F0(v0), F0(vn+1)).

We note that MapC(vn, vn+1) is a point. In view of the assumption that f0 carries the final vertex of
∆n to ∗Z, we see that MapD(F (vn), F (vn+1)) is a point. It follows that, for any fixed choice of j′, there
is a unique choice of j for which the above diagram commutes. It therefore suffices to show that j′ exists.
Since MapD(F0(v0), X) is a Kan complex, it will suffice to show that the inclusion MapC0

(v0, vn+1) →
MapC(v0, vn+1) is an anodyne map of simplicial sets. In fact, it is isomorphic to the inclusion

({1} × (∆1)n−1)
∐

{1}×∂(∆1)n−1

(∆1 × ∂(∆1)n−1) ⊆ ∆1 ×∆n−1,

which is the smash product of the cofibration ∂(∆1)n−1 ⊆ (∆1)n−1 with the anodyne inclusion {1} ⊆ ∆1.

Corollary 3.3.3.7. The universal right fibration q0 : Z0 → Sop is representable by the final object of S.

Corollary 3.3.3.8. Let p : X → S be a left fibration of (small) simplicial sets. Then there exists a map
S → S and an equivalence of right fibrations X ' S ×S S∗/.

Proof. Combine Corollary 3.3.3.7 with Remark 3.3.3.3.

Remark 3.3.3.9. Nichols-Barrer has constructed a right fibration p : X → Y, equivalent to our universal
right fibration Z0 → Sop, but with a stronger universal property: every (small) right fibration X → S is
isomorphic to a pullback of p. We refer the reader to [41] for details.

3.3.4 Limits of ∞-Categories

The∞-category Cat∞ can be identified with the simplicial nerve of (Set+∆)◦. It follows from Corollary 4.2.4.6
that Cat∞ admits (small) limits and colimits, which can be computed in terms of homotopy (co)limits in
the model category Set+∆. For many applications, it is convenient to be able to construct limits and colimits
while working entirely in the setting of ∞-categories. We will describe the construction of limits in this
section; the case of colimits will be discussed in §3.3.5.

Let p : Sop → Cat∞ be a diagram in Cat∞. Then p classifies a Cartesian fibration q : X → S. We
will show (Corollary 3.3.4.2 below) that the limit lim←−(p) ∈ Cat∞ can be identified with the ∞-category of
Cartesian sections of q. We begin by proving a more precise assertion:

Proposition 3.3.4.1. Let K be a simplicial set, p : K. → Catop∞ a diagram in the ∞-category of spaces,
X → K. a Cartesian fibration classified by p, and X = X ×K. K. The following conditions are equivalent:

(1) The diagram p is a colimit of p = p|K.

(2) The restriction map
θ : Map[K.((K.)], X

\
)→ Map[K(K], X\)

is an equivalence of ∞-categories.

Proof. According to Proposition 4.2.3.14, there exists a small category C and a cofinal map f : N(C) → K;
let C = C ?[0] be the category obtained from C by adjoining a new final object, and let f : N(C) → K. be
the induced map (which is also cofinal). The maps f and f are contravariant equivalences in (Set∆)/K. , and
therefore induce marked equivalences

N(C)] → K]
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N(C)] → (K.)].

We have a commutative diagram

Map[K.((K.)], X
\
)

θ //

��

Map[K.(K], X
\
)

��

Map[K.(N(C)], X
\
)

θ′ // Map[K.(N(C)], X
\
).

The vertical arrows are categorical equivalences. Consequently, condition (2) holds for p : K. → Catop∞ if
and only if condition (2) holds for the composition N(C)→ K. → Catop∞. We may therefore assume without
loss of generality that K = N(C).

Using Corollary A.3.6.2, we may further suppose that p is obtained as the simplicial nerve of a functor
F : C

op → (Set+∆)◦. Changing F if necessary, we may suppose that it is a strongly fibrant diagram in Set+∆.
Let F = F|Cop. Let φ : C[K.]op → C

op
be the counit map, and φ : C[K]op → Cop the restriction of φ. We

may assume without loss of generality that X = St+φF. We have a (not strictly commutative) diagram of
categories and functors

Set+∆

St+∗
��

×K]

// (Set+∆)/K

St+φ
��

Set+∆
δ // (Set+∆)Cop

,

where δ denotes the diagonal functor. This diagram commutes up to a natural transformation

St+φ (K] × Z)→ St+φ (K]) � St+∗ (Z)→ δ(St+∗ Z).

Here the first map is a weak equivalence by Proposition 3.2.1.13, and the second map is a weak equivalence
because LSt+φ is an equivalence of categories (Theorem 3.2.0.1) and therefore carries the final object K] ∈
h(Set+∆)/K to a final object of h(Set+∆)Cop

. We therefore obtain a diagram of right derived functors

h Set+∆ h(Set+∆)/KΓ
oo

h Set+∆

RUn+
∗

OO

h(Set+∆)Cop

,oo

RUn+
φ

OO

which commutes up to natural isomorphism, where we regard (Set+∆)Cop

as equipped with the injective model
structure described in §A.3.3. Similarly, we have a commutative diagram

h Set+∆ h(Set+∆)/K.

Γ′
oo

h Set+∆

RUn+
∗

OO

h(Set+∆)C
op

.oo

RUn+
φ

OO

Condition (2) is equivalent to the assertion that the restriction map Γ′(X
\
) → Γ(X\) is an isomorphism in

h Set+∆. Since the vertical functors in both diagrams are equivalences of categories (Theorem 3.2.0.1), this is
equivalent to the assertion that the map

lim←−F → lim←−F

is a weak equivalence in Set+∆. Since C has an initial object v, (2) is equivalent to the assertion that F

exhibits F(v) as a homotopy limit of F in (Set+∆)◦. Using Theorem 4.2.4.1, we conclude that (1) ⇔ (2) as
desired.
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It follows from Proposition 3.3.4.1 that limits in Cat∞ are computed by forming∞-categories of Cartesian
sections:

Corollary 3.3.4.2. Let p : K → Catop∞ be a diagram in the ∞-category Cat∞ of spaces and let X → K be a
Cartesian fibration classified by p. There is a natural isomorphism

lim←−(p) ' Map[K(K], X\)

in the homotopy category hCat∞.

Proof. Let p : (K.)op → Catop∞ be a limit of p, and let X ′ → K. be a Cartesian fibration classified by p.
Without loss of generality we may suppose X ' X ′ ×K. K. We have maps

Map[K(K], X\)← Map[K.((K.)], X ′\)→ Map[K.({v}], X ′\),

where v denotes the cone point of K.. Proposition 3.3.4.1 implies that the left map is an equivalence
of ∞-categories. Since the inclusion {v}] ⊆ (K.)] is marked anodyne, the map on the right is a trivial
fibration. We now conclude by observing that the space Map[K.({v}], X ′\) ' X ′ ×K. {v} can be identified
with p(v) = lim←−(p).

Using Proposition 3.3.4.1, we can easily deduce an analogous characterization of limits in the∞-category
of spaces.

Corollary 3.3.4.3. Let K be a simplicial set, p : K/ → S a diagram in the ∞-category of spaces, and
X → K/ a left fibration classified by p. The following conditions are equivalent:

(1) The diagram p is a limit of p = p|K.

(2) The restriction map
MapK/(K/, X)→ MapK/(K,X)

is a homotopy equivalence of Kan complexes.

Proof. The usual model structure on Set∆ is a localization of the Joyal model structure. It follows that
the inclusion Kan ⊆ Cat∆∞ preserves homotopy limits (of diagrams indexed by categories). Using Theorem
4.2.4.1, Proposition 4.2.3.14, and Corollary A.3.6.2, we conclude that the inclusion S ⊆ Cat∞ preserves
(small) limits. The desired equivalence now follows immediately from Proposition 3.3.4.1.

Corollary 3.3.4.4. Let p : K → S be a diagram in the ∞-category S of spaces, and let X → K be a left
fibration classified by p. There is a natural isomorphism

lim←−(p) ' MapK(K,X)

in the homotopy category H of spaces.

Proof. Apply Corollary 3.3.4.2.

Remark 3.3.4.5. It is also possible to adapt the proof of Proposition 3.3.4.1 to give a direct proof of
Corollary 3.3.4.3. We leave the details to the reader.
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3.3.5 Colimits of ∞-Categories

In this section, we will address the problem of constructing colimits in the ∞-category Cat∞. Let p :
Sop → Cat∞ be diagram, classifying a Cartesian fibration f : X → S. In §3.3.4, we saw that lim←−(p) can be
identified with the∞-category of Cartesian sections of f . To construct the colimit lim−→(p), we need to find an
∞-category which admits a map from each fiber Xs. The natural candidate, of course, is X itself. However,
because X is generally not an ∞-category, we must take some care to formulate the correct statement.

Lemma 3.3.5.1. Let
X ′ //

��

X

p

��
S′

q // S

be a pullback diagram of simplicial sets, where p is a Cartesian fibration and qop is cofinal. The induced map
X ′\ → X\ is a marked equivalence (in Set+∆).

Proof. Choose a cofibration S′ → K, where K is a contractible Kan complex. The map q factors as a
composition

S′
q′→ S ×K q′′→ S.

It is obvious that the projection X\ ×K] → X\ is a marked equivalence. We may therefore replace S by
S ×K and q by q′, thereby reducing to the case where q is a cofibration. Proposition 4.1.1.3 now implies
that q is left-anodyne. It is easy to see that the collection of cofibrations q : S′ → S for which the desired
conclusion holds is saturated. We may therefore reduce to the case where q is a horn inclusion Λni ⊆ ∆n,
where 0 ≤ i < n.

We now apply Proposition 3.2.2.7 to choose a sequence of composable maps

φ : A0 ← . . .← An

and a quasi-equivalence M(φ)→ X. We have a commutative diagram of marked simplicial sets

M \(φ)×(∆n)] (Λni )
]

� _

i

��

// X ′\
� _

��
M \(φ) // X,

Using Proposition 3.2.2.13, we deduce that the horizontal maps are marked equivalences. To complete the
proof, it will suffice to show that i is a marked equivalence. We now observe that i is a pushout of the inclusion
i′′ : (Λni )

] × (An)[ ⊆ (∆n)] × (An)[. It will therefore suffice to prove that i′′ is a marked equivalence. Using
Proposition 3.1.4.2, we are reduced to proving that the inclusion (Λni )

] ⊆ (∆n)] is a marked equivalence.
According to Proposition 3.1.5.7, this is equivalent to the assertion that the horn inclusion Λni ⊆ ∆n is a
weak homotopy equivalence, which is obvious.

Proposition 3.3.5.2. Let K be a simplicial set, p : K/ → Catop∞ be a diagram in the ∞-category Cat∞,
X → K/ a Cartesian fibration classified by p, and X = X ×K/ K. The following conditions are equivalent:

(1) The diagram p is a limit of p = p|K.

(2) The inclusion X\ ⊆ X\
is a marked equivalence in (Set+∆)/K/ .

(3) The inclusion X\ ⊆ X\
is a marked equivalence in Set+∆.
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Proof. Using the small object argument, we can construct a factorization

X
i→ Y

j→ K/

where j is a Cartesian fibration, i induces a marked anodyne map X\ → Y \, and X ' Y ×K/ K. Since i is
marked anodyne, we can solve the lifting problem

X\
� _

i

��

//
X
\

��
Y \ //

q
<<y

y
y

y
y

(K/)].

Since i is a marked equivalence in (Set+∆)/K/ , condition (2) is equivalent to the assertion that q is an
equivalence of Cartesian fibrations over K/. Since q induces an isomorphism over each vertex of K, this is
equivalent to:

(2′) The map qv : Yv → Xv is an equivalence of ∞-categories, where v denotes the cone point of K/.

We have a commutative diagram

Y \v
qv //

� _

��

X
\

v� _

��
Y \

q //
X
\
.

Lemma 3.3.5.1 implies that the vertical maps are marked equivalences. It follows that (2′) ⇔ (3), so that
(2)⇔ (3).

To complete the proof, we will show that (1) ⇔ (2). According to Proposition 4.2.3.14, there exists a
small category C and a map p : N(C)→ K such that pop is cofinal. Let C = [0] ? C be the category obtained
by adjoining an initial object to C. Consider the diagram

(X ×K N(C))\ �
� //

��

(X ×K/ N(C))\

��
X\ �

� //
X
\
.

Lemma 3.3.5.1 implies that the vertical maps are marked equivalences (in Set+∆). It follows that the up-
per horizontal inclusion is a marked equivalence if and only if the lower horizontal inclusion is a marked
equivalence. Consequently, it will suffice to prove the equivalence (1)⇔ (2) after replacing K by N(C).

Using Corollary A.3.6.2, we may further suppose that p is the nerve of a functor F : C → (Set+∆)◦. Let
φ : C[K/]→ C be the counit map, and let φ : C[K]→ C be the restriction of φ. Without loss of generality, we
may suppose that X = Unφ F. We have a commutative diagram of homotopy categories and right derived
functors

h(Set+∆)C G //

RUn+
φ

��

h(Set+∆)C

RUn+
φ

��
h(Set+∆)/(K/)

G′ // h(Set+∆)/K

where G and G′ are restriction functors. Let F and F ′ be the left adjoints to G and G′, respectively.
According to Theorem 4.2.4.1, assumption (1) is equivalent to the assertion that F lies in the essential image
of F . Since each of the vertical functors is equivalence of categories (Theorem 3.2.0.1), this is equivalent
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to the assertion that X lies in the essential image of F ′. Since F ′ is fully faithful, this is equivalent to the
assertion that the counit map

F ′G′X → X

is an isomorphism in h(Set+∆)/K/), which is clearly a reformulation of (2).

Corollary 3.3.5.3. Let p : K → Catop∞ be a diagram, classifying a Cartesian fibration X → K. Then there
is a natural isomorphism

lim←−(p) ' X\

in h Set+∆.

Proof. Let p : K/ → Catop∞ be a limit of p, classifying a Cartesian fibration X → K/. Let v denote the cone
point of K/, so that lim←−(p) ' Xv. We now observe that the inclusions

X
\

v ↪→ X
\ ←↩ X\

are both marked equivalences (Lemma 3.3.5.1 and Proposition 3.3.5.2).

Warning 3.3.5.4. In the situation of Corollary 3.3.5.3, the marked simplicial set X\ is usually not a fibrant
object of Set+∆, even when K is an ∞-category.

Using exactly the same argument, we can establish a version of Proposition 3.3.5.2 which describes
colimits in the ∞-category of spaces:

Proposition 3.3.5.5. Let K be a simplicial set, p : K. → S be a diagram in the ∞-category of spaces,
X → K. a left fibration classified by p, and X = X ×K. K. The following conditions are equivalent:

(1) The diagram p is a colimit of p = p|K.

(2) The inclusion X ⊆ X is a covariant equivalence in (Set∆)/K. .

(3) The inclusion X ⊆ X is a weak homotopy equivalence of simplicial sets.

Proof. Using the small object argument, we can construct a factorization

X
i
↪→ Y

j→ K.

where i is left anodyne, j is a left fibration, and the inclusion X ⊆ Y ×K. K is an isomorphism. Choose a
dotted arrow q as indicated in the diagram

X� _

i

��

// X

��
Y //

q
=={

{
{

{
K..

Since i is a covariant equivalence in (Set∆)/K. , condition (2) is equivalent to the assertion that q is an
equivalence of left fibrations over K.. Since q induces an isomorphism over each vertex of K, this is
equivalent to the assertion that qv : Yv → Xv is an equivalence, where v denotes the cone point of K.. We
have a commutative diagram

Yv
qv //

��

Xv

��
Y

q // X.
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Proposition 4.1.2.14 implies that the vertical maps are right anodyne, and therefore weak homotopy equiv-
alences. Consequently, qv is a weak homotopy equivalence if and only if q is a weak homotopy equivalence.
Since the inclusion X ⊆ Y is a weak homotopy equivalence, this proves that (2)⇔ (3).

To complete the proof, we will show that (1) ⇔ (2). According to Proposition 4.2.3.14, there exists a
small category C and a cofinal map N(C)→ K. Let C = C ?[0] be the category obtained from C by adjoining
a new final object. Consider the diagram

X ×K N(C) � � //

��

X ×K. N(C)

��
X

� � // X.

Proposition 4.1.2.14 implies that X → K. is smooth, so that the vertical arrows in the above diagram are
cofinal. In particular, the vertical arrows are weak homotopy equivalences, so that the upper horizontal
inclusion is a weak homotopy equivalence if and only if the lower horizontal inclusion is a weak homotopy
equivalence. Consequently, it will suffice to prove the equivalence (1)⇔ (2) after replacing K by N(C).

Using Corollary A.3.6.2, we may further suppose that p is obtained as the nerve of a functor F : C→ Kan.
Let φ : C[K.] → C be the counit map, and let φ : C[K] → C be the restriction of φ. Without loss of
generality, we may suppose that X

op
= Unφ F. We have a commutative diagram of homotopy categories

and right derived functors

h(Set∆)C G //

RUnφ

��

h(Set∆)C

RUnφ

����
h(Set∆)/(K.)op

G′ // h(Set∆)/K

where G and G′ are restriction functors. Let F and F ′ be the left adjoints to G and G′, respectively.
According to Theorem 4.2.4.1, assumption (1) is equivalent to the assertion that F lies in the essential image
of F . Since each of the vertical functors is equivalence of categories (Theorem 3.3.1.1), this is equivalent to
the assertion that X

op
lies in the essential image of F ′. Since F ′ is fully faithful, this is equivalent to the

assertion that the counit map
F ′G′X

op → X
op

is an isomorphism in h(Set∆)/(K.)op , which is clearly equivalent to (2). This shows that (1) ⇔ (2) and
completes the proof.

Corollary 3.3.5.6. Let p : K → S be a diagram which classifies a left fibration K̃ → K, and let X ∈ S be a
colimit of p. Then there is a natural isomorphism

K̃ ' X

in the homotopy category H.

Proof. Let p : K. → S be a colimit diagram which extends p, and K̃ ′ → K. a left fibration classified by p.
Without loss of generality, we may suppose that K̃ = K̃ ′ ×K. K and X = K̃ ′ ×K. {v}, where v denotes the
cone point of K.. Since the inclusion {v} ⊆ K. is right anodyne and the map K̃ ′ → K. is a left fibration,
Proposition 4.1.2.14 implies that the inclusion X ⊆ K̃ ′ is right anodyne, and therefore a weak homotopy
equivalence. On the other hand, Proposition 3.3.5.5 implies that the inclusion K̃ ⊆ K̃ ′ is a weak homotopy
equivalence. The composition

X ' K̃ ′ ' K̃

is the desired isomorphism in H.
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Chapter 4

Limits and Colimits

This chapter is devoted to the study of limits and colimits in the∞-categorical setting. Our goal is to provide
tools for proving the existence of limits and colimits, for analyzing them, and for comparing them to the
(perhaps more familiar) notion of homotopy limits and colimits in simplicial categories. We will generally
confine our remarks to colimits; analogous results for limits can be obtained by passing to the opposite
∞-categories.

We begin in §4.1 by introducing the notion of a cofinal map between simplicial sets. If f : A → B is
a cofinal map of simplicial sets, then we can identify colimits of a diagram p : B → C with colimits of the
induced diagram p ◦ f : A→ C. This is a basic maneuver which will appear repeatedly in the later chapters
of this book. Consequently, it is important to have a good supply of cofinal maps. This is guaranteed by
Theorem 4.1.3.1, which can be regarded as an ∞-categorical generalization of Quillen’s “Theorem A”.

In §4.2, we introduce a battery of additional techniques for analyzing colimits. We will explain how to
analyze colimits of complicated diagrams in terms of colimits of simpler diagrams. Using these ideas, we can
often reduce questions about the behavior of arbitrary colimits to questions about a few basic constructions,
which we will analyze explicitly in §4.4. We will also explain the relationship between the ∞-categorical
theory of colimits and the more classical theory of homotopy colimits, which can be studied very effectively
using the language of model categories.

The other major topic of this chapter is the theory of Kan extensions, which can be viewed as relative
versions of limits and colimits. We will study the properties of Kan extensions in §4.3, and prove some
fundamental existence theorems which we will need throughout the later chapters of this book.
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4.1 Cofinality

Let C be an ∞-category, and let p : K → C be a diagram in C indexed by a simplicial set K. In §1.2.13 we
introduced the definition of a colimit lim−→(p) for the diagram p. In practice, it is often possible to replace p by
a simpler diagram without changing the colimit lim−→(p). In this section, we will introduce a general formalism
which will allow us to make replacements of this sort: the theory of cofinal maps between simplicial sets. We
begin in §4.1.1 with a definition of the class of cofinal maps, and show (Proposition 4.1.1.8) that if a map
q : K ′ → K is cofinal, then there is an equivalence lim−→(p) ' lim−→(p◦q) (provided that either colimit exists). In
§4.1.2 we will reformulate the definition of cofinality, using the formalism of contravariant model categories
(§2.1.4). We conclude in §4.1.3 by establishing an important recognition criterion for cofinal maps, in the
special case where K is an ∞-category. This result can be regarded as a refinement of Quillen’s “Theorem
A”.

4.1.1 Cofinal Maps

The goal of this section is to introduce the definition of a cofinal map p : S → T of simplicial sets, and study
the basic properties of this notion. Our main result is Proposition 4.1.1.8, which characterizes cofinality in
terms of the behavior of T -indexed colimits.

Definition 4.1.1.1 (Joyal [31]). Let p : S → T be a map of simplicial sets. We shall say that p is cofinal if,
for any right fibration X → T , the induced map of of simplicial sets

MapT (T,X)→ MapT (S,X)

is a homotopy equivalence.

Remark 4.1.1.2. The simplicial set MapT (S,X) parametrizes sections of the right fibration X → T . It
may be described as the fiber of the induced map XS → TS over the vertex of TS corresponding to the map
p. Since XS → TS is a right fibration, the fiber MapT (S,X) is a Kan complex. Similarly, MapT (T,X) is a
Kan complex.

We begin by recording a few simple observations about the class of cofinal maps:

Proposition 4.1.1.3. (1) Any isomorphism of simplicial sets is cofinal.

(2) Let f : K → K ′ and g : K ′ → K ′′ be maps of simplicial sets. Suppose that f is cofinal. Then g is
cofinal if and only if g ◦ f is cofinal.

(3) If f : K → K ′ is a cofinal map between simplicial sets, then f is a weak homotopy equivalence.

(4) An inclusion i : K ⊆ K ′ of simplicial sets is cofinal if and only if it is right anodyne.

Proof. Assertions (1) and (2) are obvious. We prove (3). Let S be a Kan complex. Since f is cofinal, the
composition

MapSet∆(K ′, S) = MapK(K ′, S ×K)→ MapK(K,S ×K) = MapSet∆(K,S)

is a homotopy equivalence. Passing to connected components, we deduce that K and K ′ co-represent the
same functor in the homotopy category H of spaces. It follows that f is a weak homotopy equivalence, as
desired.

We now prove (4). Suppose first that i is right-anodyne. Let X → K ′ be a right fibration. Then the
induced map HomK′(K ′, X)→ HomK′(K,X) is a trivial fibration, and in particular a homotopy equivalence.
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Conversely, suppose that i is a cofinal inclusion of simplicial sets. We wish to show that i has the left
lifting property with respect to any right fibration. In other words, we must show that given any diagram
of solid arrows

K� _

��

s // X

��
K ′

=={
{

{
{

K ′,

for which the right-vertical map is a right fibration, there exists a dotted arrow as indicated, rendering the
diagram commutative. Since i is cofinal, the map s is homotopic to a map which extends over K ′. In other
words, there exists a map

s′ : (K ×∆1)
∐

K×{1}

(K ′ × {1})→ X,

compatible with the projection to K ′, such that s′|K × {0} coincides with s. Since the inclusion

(K ×∆1)
∐

K×{1}

(K ′ × {1}) ⊆ K ′ ×∆1

is right-anodyne, there exists a map s′′ : K ′ × ∆1 → X which extends s′, and is compatible with the
projection to K ′. The map s′′|K × {0} has the desired properties.

Warning 4.1.1.4. The class of cofinal maps does not satisfy the “two-out-of-three” property. If f : K → K ′

and g : K ′ → K ′′ are such that g ◦ f and g are cofinal, then f need not be cofinal.

Our next goal is to establish an alternative characterization of cofinality, in terms of the behavior of
colimits (Proposition 4.1.1.8). First, we need a lemma.

Lemma 4.1.1.5. Let C be an ∞-category, and let p : K → C, q : K ′ → C be diagrams. Define simplicial
sets M and N by the formulas

Hom(X,M) = {f : (X ×K) ? K ′ → C : f |(X ×K) = p ◦ πK , f |K ′ = q}

Hom(X,N) = {g : K ? (X ×K ′)→ C : f |K = p, f |(X ×K ′) = q ◦ πK′}.

Here πK and πK′ denote the projection from a product to the factor indicated by the subscript.
Then M and N are Kan complexes, which are (naturally) homotopy equivalent to one another.

Proof. We define a simplicial set D as follows. For every finite, nonempty, linearly ordered set J , to give a
map ∆J → D is to supply the following data:

• A map ∆J → ∆1, corresponding to a decomposition of J as a disjoint union J−
∐
J+, where J− ⊆ J

is closed downwards and J+ ⊆ J is closed upwards.

• A map e : (K ×∆J−) ? (K ′ ×∆J+)→ C such that e|K ×∆J− = p ◦ πK and e|K ′ ×∆J+ = q ◦ πK′ .

We first claim that D is an ∞-category. Fix a finite linearly ordered set J as above, and let j ∈ J be
neither the largest nor the smallest element of J . Let f0 : ΛJj → D be any map; we wish to show that
there exists a map f : ∆J → D which extends f0. We first observe that the induced projection ΛJj → ∆1

extends uniquely to ∆J (since ∆1 is isomorphic to the nerve of a category). Let J = J−
∐
J+ be the induced

decomposition of J . Without loss of generality, we may suppose that j ∈ J−. In this case, we may identify
f0 with a map

((K × ΛJ−j ) ? (K ′ ×∆J+))
∐

(K×Λ
J−
j )?(K′×∂∆J+ )

((K ×∆J−) ? (K ′ × ∂∆J+))→ C
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and our goal is to find an extension

f : (K ×∆J−) ? (K ′ ×∆J+)→ C .

Since C is an ∞-category, it will suffice to show that the inclusion

((K × ΛJ−j ) ? (K ′ ×∆J+))
∐

(K×Λ
J−
j )?(K′×∂∆J+ )

((K ×∆J−) ? (K ′ × ∂∆J+)) ⊆ (K ×∆J−) ? (K ′ ×∆J+)

is inner anodyne. According to Lemma 2.1.2.1, it suffices to check that the inclusion K × ΛJ−j ⊆ K ×∆J−

is right anodyne. This follows from Corollary 2.1.2.6, since ΛJ−j ⊆ ∆J− is right anodyne.
The ∞-category D has just two objects, which we will denote by x and y. We observe that M =

HomR
D(x, y) and N = HomL

D(x, y). Proposition 1.2.2.3 implies that M and N are Kan complexes. Proposi-
tions 1.3.2.8 and 1.3.3.1 imply each these Kan complexes is weakly homotopy equivalent to MapC[D](x, y),
so that M and N are homotopy equivalent to one another as desired.

Remark 4.1.1.6. In the situation of Lemma 4.1.1.5, the homotopy equivalence between M and N is
furnished by the composition of a chain of weak homotopy equivalences

M ← |M |Q• → HomC[D](x, y)← |N |Q• → N,

which is functorial in the triple (C, p : K → C, q : K ′ → C).

Proposition 4.1.1.7. Let v : K ′ → K be a cofinal map and p : K → C a diagram in an ∞-category C. Then
the map φ : Cp/ → Cpv/ is an equivalence of left fibrations over S: in other words, it induces a homotopy
equivalence of Kan complexes after passing to the fiber over every object x of C.

Proof. We wish to prove that the map

Cp/×C{x} → Cpv/×C{x}

is a homotopy equivalence of Kan complexes. Lemma 4.1.1.5 implies that the left hand side is homotopy
equivalent MapC(K,C/x). Similarly, the right hand side can be identified with MapC(K ′,C/x). Using the
functoriality implicit in the proof of Lemma 4.1.1.5 (see Remark 4.1.1.6), it suffices to show that the restriction
map

MapC(K,C/x)→ MapC(K ′,C/x)

is a homotopy equivalence. Since v is cofinal, this follows immediately from the fact that the projection
C/x → C is a right fibration.

Proposition 4.1.1.8. Let v : K ′ → K be a map of (small) simplicial sets. The following conditions are
equivalent:

(1) The map v is cofinal.

(2) Given any ∞-category C and any diagram p : K → C, the induced map Cp/ → Cp′/ is an equivalence
of ∞-categories, where p′ = p ◦ v.

(3) For every ∞-category C and every diagram p : K. → C which is a colimit of p = p|K, the induced map
p′ : K ′. → C is a colimit of p′ = p′|K ′.

Proof. Suppose first that (1) is satisfied. Let p : K → C be as in (2). Proposition 4.1.1.7 implies that the
induced map Cp/ → Cp′/ induces a homotopy equivalence of Kan complexes, after passing to the fiber over
any object of C. Since both Cp/ and Cp′/ are left-fibered over C, Corollary 2.3.4.4 implies that Cp/ → Cp′/ is
a categorical equivalence. This proves that (1)⇒ (2).
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Now suppose that (2) is satisfied, and let p : K. → C be as in (3). Then we may identify p with an
initial object of the ∞-category Cp/. The induced map Cp/ → Cp′/ is an equivalence, and therefore carries
the initial object p to an initial object p′ of Cp′/; thus p′ is a colimit of p′. This proves that (2)⇒ (3).

It remains to prove that (3) ⇒ (1). For this, we make use of the theory of classifying right fibrations
(§3.3.3). Let X → K be a right fibration. We wish to show that composition with v induces a homotopy
equivalence MapK(K,X) → MapK(K ′, X). It will suffice to prove this result after replacing X by any
equivalent right fibration. Let S denote the ∞-category of spaces. According to Corollary 3.3.3.8, there is a
classifying map p : K → Sop and an equivalence of right fibrations between X and (S∗/)op ×Sop K, where ∗
denotes a final object of S.

The∞-category S admits small limits (Corollary 4.2.4.6). It follows that there exists a map p : K. → Sop

which is a colimit of p = p|K. Let x denote the image in S of the cone point of K.. Let p′ : K ′. → Sop be
the induced map. Then, by hypothesis, p′ is a colimit of p′ = p′|K ′. According to Lemma 4.1.1.5, there is a
(natural) chain of weak homotopy equivalences relating MapK(K,X) with (Sop)p/×Sop {y}. Similarly, there
is a chain of weak homotopy equivalences connecting MapK(K ′, X) with (Sop)p′/ ×Sop {y}. Consequently,
we are reduced to proving that the left vertical map in the diagram

(Sop)p/ ×Sop {y}

��

(Sop)p/ ×Sop {y}oo //

��

(Sop)x/ ×Sop {y}

��
(Sop)p′/ ×Sop {y} (Sop)p′/ ×Sop {y}oo // (Sop)x/ ×Sop {y}

is a homotopy equivalence. Since p and q are colimits of p and q, the left horizontal maps are trivial fibrations.
Since the inclusions of the cone points into K. and K ′. are right anodyne, the right horizontal maps are
also trivial fibrations. It therefore suffices to prove that the right vertical map is a homotopy equivalence.
But this map is an isomorphism of simplicial sets.

Corollary 4.1.1.9. Let p : K → K ′ be a map of simplicial sets, and q : K ′ → K ′′ a categorical equivalence.
Then p is cofinal if and only if q ◦ p is cofinal. In particular, (taking p = idS′) q itself is cofinal.

Proof. Let C be an∞-category, r′′ : K ′′ → C a diagram, and set r′ = r′′ ◦q, r = r′ ◦p. Since q is a categorical
equivalence, Cr′′/ → Cr′/ is a categorical equivalence. It follows that Cr/ → Cr′′/ is a categorical equivalence
if and only if Cr/ → Cr′/ is a categorical equivalence. We now apply the characterization (2) of Proposition
4.1.1.8.

Corollary 4.1.1.10. The property of cofinality is homotopy invariant. In other words, if two maps f, g :
K → K ′ have the same image in the homotopy category of Set∆ obtained by inverting all categorical equiv-
alences, then f is cofinal if and only if g is cofinal.

Proof. Choose a categorical equivalence K ′ → C, where C is an ∞-category. In view of Corollary 4.1.1.9, we
may replace K ′ by C and thereby assume that K ′ is itself an∞-category. Since f and g are homotopic, there
exists a cylinder object S equipped with a trivial fibration p : S → K, a map q : S → C, and two sections
s, s′ : K → S of p, such that f = q ◦ s, g = q ◦ s′. Since p is a categorical equivalence, so is every section of
p. Consequently, s and s′ are cofinal. We now apply Proposition 4.1.1.3 to deduce that f is cofinal if and
only if q is cofinal. Similarly, g is cofinal if and only if q is cofinal.

Corollary 4.1.1.11. Let p : X → S be a map of simplicial sets. The following are equivalent:

(1) The map p is a cofinal right fibration.

(2) The map p is a trivial fibration.

Proof. Clearly any trivial fibration is a right fibration. Furthermore, any trivial fibration is a categorical
equivalence, hence cofinal by Corollary 4.1.1.9. Thus (2) implies (1). Conversely, suppose that p is a cofinal
right fibration. Since p is cofinal, the natural map MapS(S,X)→ MapS(X,X) is a homotopy equivalence of
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Kan complexes. In particular, there exists a section f : S → X of p such that f ◦ p is (fiberwise) homotopic
to the identity map of X. Consequently, for each vertex s of S, the fiber Xs = X ×S {s} is a contractible
Kan complex (since the identity map Xs → Xs is homotopic to the constant map with value f(s)). The
dual of Lemma 2.1.3.3 now shows that p is a trivial fibration.

Corollary 4.1.1.12. A map X → Z of simplicial sets is cofinal if and only if it admits a factorization

X
f→ Y

g→ Z,

where X → Y is right-anodyne and Y → Z is a trivial fibration.

Proof. The “if” direction is clear: if such a factorization exists, then f is cofinal (since it is right anodyne),
g is cofinal (since it is a categorical equivalence), and consequently g ◦ f is cofinal (since it is a composition
of cofinal maps).

For the “only if” direction, let us suppose that X → Z is a cofinal map. By the small object argument
(Proposition A.1.2.5), there is a factorization

X
f→ Y

g→ Z

where f is right-anodyne and g is a right fibration. The map g is cofinal by Proposition 4.1.1.3, and therefore
a trivial fibration by Corollary 4.1.1.11.

Corollary 4.1.1.13. Let p : S → S′ be a cofinal map, and K any simplicial set. Then the induced map
K × S → K × S′ is cofinal.

Proof. Using Corollary 4.1.1.12, we may suppose that p is either right anodyne or a trivial fibration. Then
the induced map K × S → K × S′ has the same property.

4.1.2 Smoothness and Right Anodyne Maps

In this section, we explain how to characterize the classes of right anodyne and cofinal morphisms in terms
of the contravariant model structures studied in §2.1.4. We also introduce a third class of maps between
simplicial sets, which we call smooth.

We begin with the following characterization of right anodyne maps:

Proposition 4.1.2.1. Let i : A→ B be a map of simplicial sets. The following conditions are equivalent:

(1) The map i is right anodyne.

(2) For any map of simplicial sets j : B → C, the inclusion i is a trivial cofibration with respect to the
contravariant model structure on (Set∆)/C .

(3) The map i is a trivial cofibration with respect to the contravariant model structure on (Set∆)/B.

Proof. The implication (1)⇒ (2) follows immediately from Proposition 2.1.4.3, and the implication (2)⇒ (3)
is obvious. Suppose that (3) holds. To prove (1), it suffices to show that given any diagram

A� _

i

��

// X

p

��
B //

f
>>~

~
~

~
Y

such that p is a right fibration, one can supply the dotted arrow f as indicated. Replacing p : X → Y by
the pullback X ×Y B → B, we may reduce to the case where Y = B. Proposition 3.3.1.2 implies that X is
a fibrant object of (Set∆)/B (with respect to contravariant model structure) so that the desired map f can
be found.
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Corollary 4.1.2.2. Suppose given maps A i→ B
j→ C of simplicial sets. If i and j ◦ i are right anodyne,

and j is a cofibration, then j is right-anodyne.

Proof. By Proposition 4.1.2.1, i and j ◦ i are contravariant equivalences in (Set∆)/C . It follows that j is a
trivial cofibration in (Set∆)/C , so that j is right anodyne (by Proposition 4.1.2.1 again).

Corollary 4.1.2.3. Let
A′

f ′

��

A //
u
oo

f

��

A′′

f ′′

��
B′ B //

v
oo B′′

be a diagram of simplicial sets. Suppose that u and v are monomorphisms, and that f, f ′, and f ′′ are right
anodyne. Then the induced map

A′
∐
A

A′′ → B′
∐
B

B′′

is right anodyne.

Proof. According to Proposition 4.1.2.1, each of the maps f , f ′, and f ′′ is a contravariant equivalence in
(Set∆)/B′ ‘

B B′′ . The assumption on u and v guarantees that f ′
∐
f f

′′ is also a contravariant equivalence
in (Set∆)/B′ ‘

B B′′ , so that f ′
∐
f f

′′ is right anodyne by Proposition 4.1.2.1 again.

Corollary 4.1.2.4. The collection of right anodyne maps of simplicial sets is stable under filtered colimits.

Proof. Let f : A → B be a filtered colimit of right anodyne morphisms fα : Aα → Bα. According to
Proposition 4.1.2.1, each fα is a contravariant equivalence in (Set∆)/B . Since contravariant equivalences are
stable under filtered colimits, we conclude that f is a contravariant equivalence in (Set∆)/B so that f is right
anodyne by Proposition 4.1.2.1.

Proposition 4.1.2.1 has an analogue for cofinal maps:

Proposition 4.1.2.5. Let i : A→ B be a map of simplicial sets. The following conditions are equivalent:

(1) The map i cofinal.

(2) For any map j : B → C, the inclusion i is a contravariant equivalence in (Set∆)/C .

(3) The map i is a contravariant equivalence in (Set∆)/B.

Proof. Suppose (1) is satisfied. By Corollary 4.1.1.12, i admits a factorization as a right anodyne map
followed by a trivial fibration. Invoking Proposition 4.1.2.1, we conclude that (2) holds. The implication
(2)⇒ (3) is obvious. If (3) holds, then we can choose a factorization

A
i′→ A′

i′′→ B

of i, where i′ is right anodyne and i′′ is a right fibration. Then i′′ is a contravariant fibration (in Set∆/B)
and a contravariant weak equivalence, and is therefore a trivial fibration of simplicial sets. We now apply
Corollary 4.1.1.12 to conclude that i is cofinal.

Corollary 4.1.2.6. Let p : X → S be a map of simplicial sets, where S is a Kan complex. Then p is cofinal
if and only if it is a weak homotopy equivalence.

Proof. By Proposition 4.1.2.5, p is cofinal if and only if it is a contravariant equivalence in (Set∆)/S . If S is
a Kan complex, then Proposition 3.1.5.7 asserts that the contravariant equivalences are precisely the weak
homotopy equivalences.
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Let p : X → Y be an arbitrary map of simplicial sets. In §2.1.4 we showed that p induces a Quillen
adjunction (p!, p

∗) between the contravariant model categories (Set∆)/X and (Set∆)/Y . The functor p∗ itself
has a right adjoint, which we will denote by p∗; it is given by

p∗(M) = MapY (X,M).

The adjoint functors (p∗, p∗) are not Quillen adjoints in general. Instead we have:

Proposition 4.1.2.7. Let p : X → Y be a map of simplicial sets. The following conditions are equivalent:

(1) For any right-anodyne map i : A → B in (Set∆)/Y , the induced map A ×Y X → B ×Y X is right-
anodyne.

(2) For every Cartesian diagram
X ′ //

p′

��

X

p

��
Y ′ // Y,

,

the functor p′∗ : (Set∆)/Y ′ → (Set∆)/X′ preserves contravariant equivalences.

(3) For every Cartesian diagram
X ′ //

p′

��

X

p

��
Y ′ // Y,

,

the adjoint functors (p′∗, p′∗) give rise to a Quillen adjunction between the contravariant model categories
(Set∆)/Y ′ and (Set∆)/X′ .

Proof. Suppose that (1) is satisfied; let us prove (2). Since property (1) is clearly stable under base change,
we may suppose that p′ = p. Let u : M → N be a contravariant equivalence in (Set∆)/Y . If M and N are
fibrant, then u is a homotopy equivalence, so that p∗(u) : p∗M → p∗N is also a homotopy equivalence. In
the general case, we may select a diagram

M
i //

u

��

M ′

��

v

$$J
JJJJJJJJJ

N
i′ // N

∐
M M ′ j // N ′

where M ′ and N ′ are fibrant, and the maps i and j are right anodyne (and therefore i′ is also right anodyne).
Then p∗(v) is a contravariant equivalence, while the maps p∗(i), p∗(j), and p∗(i′) are all right anodyne; by
Proposition 4.1.2.1 they are contravariant equivalences as well. It follows that p∗(u) is a contravariant
equivalence.

To prove (3), it suffices to show that p′∗ preserves cofibrations and trivial cofibrations. The first statement
is obvious, and the second follows immediately from (2). Conversely the existence of a Quillen adjunction
(p′∗, p∗) implies that p′∗ preserves contravariant equivalences between cofibrant objects. Since every object
of (Set∆)/Y ′ is cofibrant, we deduce that (3) implies (2).

Now suppose that (2) is satisfied, and let i : A→ B be a right-anodyne map in (Set∆)/Y as in (1). Then
i is a contravariant equivalence in (Set∆)/B . Let p′ : X×Y B → B be base change of p; then (2) implies that
the induced map i′ : p′∗A → p′

∗
B is a contravariant equivalence in (Set∆)/B×Y X . By Proposition 4.1.2.1,

the map i′ is right anodyne. Now we simply note that i′ may be identified with the map A×Y X → B×Y X
in the statement of (1).
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Definition 4.1.2.8. We will say that a map p : X → Y of simplicial sets is smooth if it satisfies the
(equivalent) conditions of Proposition 4.1.2.7.

Remark 4.1.2.9. Let

X ′

��

f ′ // X

p

��
S′

f // S

be a pullback diagram of simplicial sets. Suppose that p is smooth and that f is cofinal. Then f ′ is
cofinal: this follows immediately from characterization (2) of Proposition 4.1.2.7 and characterization (3) of
Proposition 4.1.2.5.

We next give an alternative characterization of smoothness. Let

X ′

p′

��

q′ // X

p

��
Y ′

q // Y

be a Cartesian diagram of simplicial sets. Then we obtain an isomorphism Rp′
∗
Rq∗ ' Rq′

∗
Rp∗ of right-

derived functors, which induces a natural transformation

ψp,q : Lq′!Rp
′∗ → Rp∗Lq!.

Proposition 4.1.2.10. Let p : X → Y be a map of simplicial sets. The following conditions are equivalent:

(1) The map p is smooth.

(2) For every Cartesian rectangle

X ′′

p′′

��

q′ // X ′

p′

��

// X

p

��
Y ′′

q // Y ′ // Y,

the natural transformation ψp′,q is an isomorphism of functors from the homotopy category of (Set∆)/Y ′′
to the homotopy category of (Set∆)/X′ (here all categories are endowed with the contravariant model
structure).

Proof. Suppose that (1) is satisfied, and consider any Cartesian rectangle as in (2). Since p is smooth, p′ and
p′′ are also smooth. It follows that p′∗ and p′′

∗ preserve weak equivalences, so they may be identified with
their right derived functors. Similarly, q! and q′! preserve weak equivalences, so they may be identified with
their left derived functors. Consequently, the natural transformation ψp′,q is simply obtained by passage to
the homotopy category from the natural transformation

q′!p
′′∗ → p′

∗
q!.

But this is an isomorphism of functors before passage to the homotopy categories.
Now suppose that (2) is satisfied. Let q : Y ′′ → Y ′ be a right-anodyne map in (Set∆)/Y , and form the

Cartesian square as in (2). Let us compute the value of the functors Lq′!Rp
′′∗ and Rp′

∗
Lq! on the object

Y ′′ of (Set∆)/Y ′′ . The composite Lq′!Rp
′′∗ is easy: because Y ′′ is fibrant and X ′′ = p′′

∗
Y ′′ is cofibrant, the

result is X ′′, regarded as an object of (Set∆)/X′ . The other composition is slightly trickier: Y ′′ is cofibrant,
but q!Y ′′ is not fibrant when viewed as an object of (Set∆)/Y ′ . However, in view of the assumption that q
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is right anodyne, Proposition 4.1.2.1 ensures that Y ′ is a fibrant replacement for q!Y ′; thus we may identify
Rp′

∗
Lq! with the object p′∗Y ′ = X ′ of (Set∆)/X′ . Condition (2) now implies that the natural map X ′′ → X ′

is a contravariant equivalence in (Set∆)/X′ . Invoking Proposition 4.1.2.1, we deduce that q′ is right anodyne,
as desired.

Remark 4.1.2.11. The terminology “smooth” is suggested by the analogy of Proposition 4.1.2.10 with the
smooth base change theorem from algebraic geometry.

Proposition 4.1.2.12. Suppose given a commutative diagram

X
i //

p

!!C
CC

CC
CC

C

��

X ′

p′

��
X ′′ p′′ // S

of simplicial sets. Assume that i is a cofibration, and that p, p′, and p′′ are smooth. Then the induced map
X ′ ∐

X X
′′ → S is smooth.

Proof. This follows immediately from Corollary 4.1.2.3 and characterization (1) of Proposition 4.1.2.7.

Proposition 4.1.2.13. The collection of smooth maps p : X → S is stable under filtered colimits in (Set∆)/S.

Proof. Combine Corollary 4.1.2.4 with characterization (1) of Proposition 4.1.2.7.

Proposition 4.1.2.14. Let p : X → S be a coCartesian fibration of simplicial sets. Then p is smooth.

Proof. Let i : B′ → B be a right anodyne map in (Set∆)/S ; we wish to show that the induced map
B′ ×S X → B ×S X is right anodyne. By general nonsense, we may reduce ourselves to the case where i is
an inclusion Λni ⊆ ∆n where 0 < i ≤ n. Making a base change, we may suppose that S = B. By Proposition
3.2.2.7, there exists a composable sequence of maps

φ : A0 → . . .→ An

and a quasi-equivalence Mop(φ)→ X. Consider the diagram

Mop(φ)×∆n Λni� _

��

//

f

((PPPPPPPPPPPPPP
X ×∆n Λni� _

h

��
Mop(φ)

g // X

The left vertical map is right-anodyne, since it is a pushout of the inclusion A0 × Λni ⊆ A0 ×∆n. It follows
that f is cofinal, being a composition of a right-anodyne map and a categorical equivalence. Since g is
cofinal (being a categorical equivalence) we deduce from Proposition 4.1.1.3 that h is cofinal. Since h is a
monomorphism of simplicial sets, it is right-anodyne by Proposition 4.1.1.3.

Proposition 4.1.2.15. Let p : X → S × T be a bifibration. Then the composite map πS ◦ p : X → S is
smooth.

Proof. For every map T ′ → T , let XT ′ = X ×T T ′. We note that X is a filtered colimit of XT ′ , as T ′ ranges
over the finite simplicial subsets of T . Using Proposition 4.1.2.13, we can reduce to the case where T is finite.
Working by induction on the dimension and the number of nondegenerate simplices of T , we may suppose
that T = T ′

∐
∂∆n ∆n, where the result is known for T ′ and for ∂∆n. Applying Proposition 4.1.2.12, we

can reduce to the case T = ∆n. We now apply Lemma 2.3.7.5 to deduce that p is a coCartesian fibration,
and therefore smooth by Proposition 4.1.2.14.
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Lemma 4.1.2.16. Let C be an ∞-category containing an object C, and let f : X → Y be a covariant
equivalence in (Set∆)/C. The induced map

X ×C C/C → Y ×C C/C

is also a covariant equivalence in C/C .

Proof. It will suffice to prove that for every object Z → C of (Set∆)/C, the fiber product Z ×C C/C is a
homotopy product of Z with C/C in (Set∆)/C (with respect to the covariant model structure). Choose a
factorization

Z
i→ Z ′

j→ C,

where i is left anodyne and j is a left fibration. According to Proposition 3.3.1.2, we may regard Z ′ as a
fibrant replacement for Z in (Set∆)/C. It therefore suffices to prove that the map i′ : Z×C C/C → Z ′×C C/C

is a covariant equivalence. According to Proposition 4.1.2.5, it will suffice to prove that i′ is left anodyne.
The map i′ is a base change of i by the projection p : C/C → C; it therefore suffices to prove that pop is
smooth. This follows from Proposition 4.1.2.14, since p is a right fibration of simplicial sets.

Proposition 4.1.2.17. Let C be an ∞-category, and

X
f //

p

��@
@@

@@
@@

Y
q

����
��

��
�

C

be a commutative diagram of simplicial sets. Suppose that p and q are smooth. The following conditions are
equivalent:

(1) The map f is a covariant equivalence in (Set∆)/C.

(2) For each object C ∈ C, the induced map of fibers XC → YC is a weak homotopy equivalence.

Proof. Suppose that (1) is satisfied, and let C be an object of C. We have a commutative diagram of
simplicial sets

XC
//

��

YC

��
X ×C C/C // Y ×C C/C .

Lemma 4.1.2.16 implies that the bottom horizontal map is a covariant equivalence. The vertical maps are
both pullbacks of the right anodyne inclusion {C} ⊆ C/C along smooth maps, and are therefore right anodyne.
In particular, the vertical arrows and the bottom horizontal arrow are all weak homotopy equivalences; it
follows that the map XC → YC is a weak homotopy equivalence as well.

Now suppose that (2) is satisfied. Choose a commutative diagram

X
f //

��

Y

��
X ′ f ′ //

p′

  @
@@

@@
@@

@ Y ′

q′��~~
~~

~~
~~

C
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in (Set∆)/C, where the vertical arrows are left anodyne and the maps p′ and q′ are left fibrations. Using
Proposition 4.1.2.14, we conclude that p′ and q′ are smooth. Applying (1), we deduce that for each object
C ∈ C, the maps XC → X ′

C and YC → Y ′C are weak homotopy equivalences. It follows that each fiber
f ′C : X ′

C → Y ′C is a homotopy equivalence of Kan complexes, so that f ′ is an equivalence of left fibrations
and therefore a covariant equivalence. Inspecting the above diagram, we deduce that f is also a covariant
equivalence, as desired.

4.1.3 Quillen’s Theorem A for ∞-Categories

Suppose that f : C → D is a functor between ∞-categories, and that we wish to determine whether or not
f is cofinal. According to Proposition 4.1.1.8, the cofinality of f is equivalent to the assertion that for any
diagram p : D→ E, f induces an equivalence

lim−→(p) ' lim−→(p ◦ f).

One can always define a morphism
φ : lim−→(p ◦ f)→ lim−→(p)

(provided that both sides are defined); the question is whether or not we can define an inverse ψ = φ−1.
Roughly speaking, this involves defining a compatible family of maps ψD : p(D) → lim−→(p ◦ f), indexed by
D ∈ D. The only reasonable candidate for ψD is a composition

p(D)→ (p ◦ f)(C)→ lim−→(p ◦ f),

where the first map arises from a morphism D → f(C) in C. Of course, the existence of C is not automatic.
Moreover, even if C exists, it may is usually not unique. The collection of candidates for C is parametrized
by the∞-category CD/ = C×D DD/. In order to make the above construction work, we need the∞-category
CD/ to be weakly contractible. More precisely, we will prove the following result:

Theorem 4.1.3.1 (Joyal [31]). Let f : C→ D be a map of simplicial sets, where D is an ∞-category. The
following conditions are equivalent:

(1) The functor f is cofinal.

(2) For every object D ∈ D, the simplicial set C×D DD/ is weakly contractible.

We first need to establish the following lemma:

Lemma 4.1.3.2. Let p : U → S be a Cartesian fibration of simplicial sets. Suppose that for every vertex s
of S, the fiber Xs = p−1{s} is weakly contractible. Then p is cofinal.

Proof. Let q : N → S be a right fibration. For every map of simplicial sets T → S, let XT = MapS(T,N)
and YT = MapS(T ×S U,N). Our goal is to prove that the natural map XS → YS is a homotopy equivalence
of Kan complexes. We will prove, more generally, that for any map T → S, the map φT : YT → ZT is a
homotopy equivalence. The proof goes by induction on the (possibly infinite) dimension of T . Choose a
transfinite sequence of simplicial subsets T (α) ⊆ T , where each T (α) is obtained from T (< α) =

⋃
β<α T (β)

by adjoining a single nondegenerate simplex of T (if such a simplex exists). We prove that φT (α) is a
homotopy equivalence by induction on α. Assuming that φT (β) is a homotopy equivalence for every β < α,
we deduce that φT (<α) is the homotopy inverse limit of a tower of equivalences, and therefore a homotopy
equivalence. If T (α) = T (< α), we are done. Otherwise, we may write T (α) = T (< α)

∐
∂∆n ∆n. Then

φT (α) can be written as a homotopy pullback of φT (<α) with φ∆n over φ∂∆n . The third map is a homotopy
equivalence by the inductive hypothesis. Thus, it suffices to prove that φ∆n is an equivalence. In other
words, we may reduce to the case T = ∆n.

By Proposition 3.2.2.7, there exists a composable sequence of maps

θ : A0 ← . . .← An
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and a quasi-equivalence f : M(θ) → X ×S T , where M(θ) denotes the mapping simplex of the sequence θ.
Given a map T ′ → T , we let ZT ′ = MapS(M(θ)×T T ′, N). Proposition 3.3.2.8 implies that q is a categorical
fibration. It follows that, for any map T ′ → T , the categorical equivalence M(θ)×T T ′ → U ×S T ′ induces
another categorical equivalence ψT ′ = YT ′ → ZT ′ . Since YT ′ and ZT ′ are Kan complexes, the map ψT ′
is a homotopy equivalence. Consequently, to prove that φT is an equivalence, it suffices to show that the
composite map

XT → YT → ZT

is an equivalence.
Consider the composition

u : X∆n−1
u′→ Z∆n−1

u′′→ MapS(∆n−1 ×An, N) u
′′′

→ MapS({n− 1} ×An, N)

Using the fact that q is a right fibration and that An is weakly contractible, we deduce that u and u′′′ are
homotopy equivalences. The inductive hypothesis implies that u′ is a homotopy equivalence. Consequently,
u′′ is also a homotopy equivalence. The space ZT fits into a homotopy Cartesian diagram

ZT //

v′′

��

Z∆n−1

u′′

��
MapS(∆n ×An, N) // MapS(∆n−1 ×An, N).

It follows that v′′ is a homotopy equivalence. Now consider the composition

v : X∆n
v′→ Z∆n

v′′→ MapS(∆n ×An, N) v
′′′

→ MapS({n} ×An, N).

Again, because q is a right fibration and An is weakly contractible, the maps v and v′′′ are homotopy
equivalences. Since v′′ is a homotopy equivalence, we deduce that v′ is a homotopy equivalence, as desired.

Proof of Theorem 4.1.3.1. Using the small object argument, we can factor f as a composition

C
f ′→ C′

f ′′→ D

where f ′ is a categorical equivalence and f ′′ is an inner fibration. Then f ′′ is cofinal if and only if f is cofinal
(Corollary 4.1.1.10). For every D ∈ D, the map DD/ → D is a left fibration, so the induced map CD/ → C′D/
is a categorical equivalence (Proposition 3.3.2.3). Consequently, it will suffice to prove that (1) ⇔ (2) for
the morphism f ′′ : C′ → D. In other words, we may assume that the simplicial set C is an ∞-category.

Suppose first that (1) is satisfied, and choose D ∈ D. The projection DD/ → D is a left fibration,
and therefore smooth (Proposition 4.1.2.14). Applying Remark 4.1.2.9, we deduce that the projection
C×D DD/ → DD/ is cofinal, and therefore a weak homotopy equivalence (Proposition 4.1.1.3). Since DD/

has an initial object, it is weakly contractible. Therefore C×D DD/ is weakly contractible, as desired.
We now prove that (2) ⇒ (1). Let M = Fun(∆1,D) ×Fun({1},D) C. Then the map f factors as a

composition

C
f ′→M

f ′′→ D

where f ′ is the obvious map and f ′′ is given by evaluation at the vertex {0} ⊆ ∆1. Note that there is
a natural projection map π : M → C, that f ′ is a section of π, and that there is a simplicial homotopy
h : ∆1×M→M from idM to f ′ ◦π which is compatible with the projection to C. It follows from Proposition
2.1.2.10 that f ′ is right anodyne.

Corollary 2.3.7.12 implies that f ′′ is a Cartesian fibration. The fiber of f ′′ over an object D ∈ D is
isomorphic to C×D DD/, which is equivalent to C×D DD/ and therefore weakly contractible (Proposition
4.2.1.5). By assumption, the fibers of f ′′ are weakly contractible. Lemma 4.1.3.2 asserts that f ′′ is cofinal.
It follows that f , as a composition of cofinal maps, is also cofinal.
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Using Theorem 4.1.3.1 we can easily deduce the following classical result of Quillen:

Corollary 4.1.3.3 (Quillen’s Theorem A). Let f : C→ D be a functor between ordinary categories. Suppose
that, for every object D ∈ D, the fiber product category C×D DD/ has weakly contractible nerve. Then f
induces a weak homotopy equivalence of simplicial sets N(C)→ N(D).

Proof. The assumption implies that N(f) : N(C) → N(D) satisfies the hypotheses of Theorem 4.1.3.1. It
follows that N(f) is a cofinal map of simplicial sets, and therefore a weak homotopy equivalence (Proposition
4.1.1.3).
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4.2 Techniques for Computing Colimits

In this section, we will introduce various techniques for computing, analyzing, and manipulating colimits.
We begin in §4.2.1 by introducing a variant on the join construction of §1.2. The new join construction is
(categorically) equivalent to the version we are already familiar with, but has better formal behavior in some
contexts. For example, they permit us to define a parametrized version of overcategories and undercategories,
which we will analyze in §4.2.2.

In §4.2.3, we address the following question: given a diagram p : K → C and a decomposition of K into
“pieces”, how is the colimit lim−→(p) related to the colimits of those pieces? For example, if K = A ∪B, then
it seems reasonable expect an equation of the form

lim−→(p) = (lim−→ p|A)
∐

lim−→(p|A∩B)

(lim−→ p|B).

Of course there are many variations on this theme; we will lay out a general framework in §4.2.3, and apply
it to specific situations in §4.4.

Although the ∞-categorical theory of colimits is elegant and powerful, it can be be difficult to work
with because the colimit lim−→(p) of a diagram p is only well-defined up to equivalence. This problem can
sometimes be remedied by working in the more rigid theory of model categories, where the notion of ∞-
categorical colimit should be replaced by the notion of homotopy colimit (see §A.3.5). In order to pass
smoothly between these two settings, we need to know that the ∞-categorical theory of colimits agrees with
the more classical theory of homotopy colimits. A precise formulation of this result (Theorem 4.2.4.1) will
be formulated and proven in §4.2.4. The proof depends on a rather technical lemma, whose proof we will
give in §4.2.5.

4.2.1 Alternative Join and Slice Constructions

In §1.2.8, we introduced the join functor ? on simplicial sets. In [31], Joyal introduces a closely related
operation � on simplicial sets. This operation is equivalent to ? (Proposition 4.2.1.2) but is more technically
convenient in certain contexts. In this section we will review the definition of the operation � and to establish
some of its basic properties (see also [31] for a discussion).

Definition 4.2.1.1 ([31]). Let X and Y be simplicial sets. The simplicial set X �Y is defined to be pushout

X
∐

X×Y×{0}

(X × Y ×∆1)
∐

X×Y×{1}

Y.

We note that since X × Y × (∂∆1) → X × Y ×∆1 is a monomorphism, the pushout diagram defining
X �Y is a homotopy pushout in Set∆ (with respect to the Joyal model structure). Consequently, we deduce
that categorical equivalences X → X ′, Y → Y ′ induce a categorical equivalence X � Y → X ′ � Y ′.

The simplicial set X �Y admits a map p : X �Y → ∆1, with X ' p−1{0} and Y ' p−1{1}. Consequently,
there is a unique map X �Y → X ?Y which is compatible with the projection to ∆1 and induces the identity
maps on X and Y .

Proposition 4.2.1.2. For any simplicial sets X and Y , the natural map φ : X �Y → X ?Y is a categorical
equivalence.

Proof. Since both sides are compatible with the formation of filtered colimits in X, we may suppose that X
contains only finitely many nondegenerate simplices. If X is empty, then φ is an isomorphism and the result
is obvious. Working by induction on the dimension of X and the number of nondegenerate simplices in X,
we may write

X = X ′
∐
∂∆n

∆n,
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and we may assume that the statement is known for the pairs (X ′, Y ) and (∂∆n, Y ). Since the Joyal model
structure on Set∆ is left-proper, we have a map of homotopy pushouts

(X ′ � Y )
∐

∂∆n�Y

(∆n � Y )→ (X ′ ? Y )
∐

∂∆n?Y

(∆n ? Y ),

and we are therefore reduced to proving the assertion in the case where X = ∆n. The inclusion

∆{0,1}
∐
{1}

. . .
∐

{n−1}

∆{n−1,n} ⊆ ∆n

is inner anodyne. Thus, if n > 1, we can conclude by induction. Thus we may suppose that X = ∆0 or
X = ∆1. By a similar argument, we may reduce to the case where Y = ∆0 or Y = ∆1. The desired result
now follows from an explicit calculation.

Corollary 4.2.1.3. Let S → T and S′ → T ′ be categorical equivalences of simplicial sets. Then the induced
map

S ? S′ → T ? T ′

is a categorical equivalence.

Proof. This follows immediately from Proposition 4.2.1.2, since the operation � has the desired property.

Corollary 4.2.1.4. Let X and Y be simplicial sets. Then the natural map

C[X ? Y ]→ C[X] ? C[Y ]

is an equivalence of simplicial categories.

Proof. Using Corollary 4.2.1.3, we may reduce to the case where X and Y are ∞-categories. We note
that C[X ? Y ] is a correspondence from C[X] to C[Y ]. To complete the proof, it suffices to show that
MapC[X?Y ](x, y) is weakly contractible, for any pair of objects x ∈ X, y ∈ Y . Since X ?Y is an ∞-category,
we can apply Theorem 1.1.5.12 to deduce that the mapping space MapC[X?Y ](x, y) is weakly homotopy
equivalent to HomR

X?Y (x, y), which consists of a single point.

For fixed X, the functor
Y 7→ X � Y

Set∆ → (Set∆)X/
preserves all colimits. By the adjoint functor theorem (or by direct construction), this functor has a right
adjoint

(p : X → C) 7→ Cp/ .

Since the functor Y 7→ X �Y preserves cofibrations and categorical equivalences, we deduce that the passage
from C to Cp/ preserves categorical fibrations and categorical equivalences between ∞-categories. Moreover,
Proposition 4.2.1.2 has the following consequence:

Proposition 4.2.1.5. Let C be an ∞-category, and let p : X → C be a diagram. Then the natural map

Cp/ → Cp/

is an equivalence of ∞-categories.

According to Definition 1.2.13.4, a colimit for a diagram p : X → C is an initial object of the ∞-category
Cp/. In view of the above remarks, an object of Cp/ is a colimit for p if and only if its image in Cp/ is an
initial object; in other words, we canl replace Cp/ by Cp/ (and ? by �) in Definition 1.2.13.4.

By Proposition 2.1.2.2, for any ∞-category C and any map p : X → C, the induced map Cp/ → C is a
left fibration. We now show that Cp/ has the same property:
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Proposition 4.2.1.6. Suppose given a diagram of simplicial sets

K0 ⊆ K
p→ X

q→ S

where q is a categorical fibration. Let r = q ◦ p : K → S, p0 = p|K0, and r0 = r|K0. Then the induced map

φ : Xp/ → Xp0/ ×Sr0/ Sr/

is a left fibration.

Proof. We must show that q has the right lifting property with respect to every left-anodyne inclusion
A0 ⊆ A. Unwinding the definition, this amounts to proving that q has the right lifting property with respect
to the inclusion

i : (A0 �K)
∐

A0�K0

(A �K0) ⊆ A �K.

Since q is a categorical fibration, it suffices to show that i is a categorical equivalence. The above pushout is
a homotopy pushout, so it will suffice to prove the analogous statement for the weakly equivalent inclusion

(A0 ? K)
∐

A0?K0

(A ? K0) ⊆ A ? K.

But this map is inner anodyne (Lemma 2.1.2.1).

Corollary 4.2.1.7. Let C be an ∞-category, and let p : K → C be any diagram. For every vertex v of C,
the map Cp/×C{v} → Cp/×C{v} is a homotopy equivalence of Kan complexes.

Proof. The map Cp/ → Cp/ is a categorical equivalence of left fibrations over C; now apply Proposition
3.3.2.5.

Corollary 4.2.1.8. Let C be an ∞-category containing vertices x and y. The maps

HomR
C(x, y)→ HomC(x, y)← HomL

C(x, y)

are homotopy equivalences of Kan complexes (see §1.2.2 for an explanation of this notation).

Proof. Apply Corollary 4.2.1.7 (the dual of Corollary 4.2.1.7) to the case where p is the inclusion {x} ⊆ C

(the inclusion {y} ⊆ C).

Remark 4.2.1.9. The above ideas dualize in an evident way; given a map of simplicial sets p : K → X, we
can define a simplicial set X/p with the universal mapping property

HomSet∆(K ′, X/p) = Hom(Set∆)K/
(K ′ �K,X).

4.2.2 Parametrized Colimits

Let p : K → C be a diagram in an∞-category C. The goal of this section is to make precise the idea that the
colimit lim−→(p) depends functorially on p (provided that lim−→(p) exists). We will prove this in a very general
context, in which not only the diagram p but also the simplicial set K is allowed to vary. We begin by
introducing a relative version of the �-operation.

Definition 4.2.2.1. Let S be a simplicial set, and let X,Y ∈ (Set∆)/S . We define

X �S Y = X
∐

X×SY×{0}

(X ×S Y ×∆1)
∐

X×SY×{1}

Y ∈ (Set∆)/S .
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We observe that the operation �S is compatible with base change in the following sense: for any map
T → S of simplicial sets and any objects X,Y ∈ (Set∆)/S , there is a natural isomorphism

(XT �T YT ) ' (X �S Y )T ,

where we let ZT denote the fiber product Z ×S T . We also note that in the case where S is a point, the
operation �S coincides with the operation � introduced in §4.2.1.

Fix K ∈ (Set∆)/S . We note that functor (Set∆)/S → ((Set∆)/S)K/ defined by

X 7→ K �S S

has a right adjoint; this right adjoint associates to a diagram

K

��@
@@

@@
@@

pS // Y

����
��

��
�

S

the simplicial set Y pS/, defined by the property that HomS(X,Y pS/) classifies commutative diagrams

K
pS //

� _

��

Y

��
K �S X

;;vvvvvvvvv
// S.

The base-change properties of the operation �S imply similar base-change properties for the relative slice
construction: given a map pS : K → Y in (Set∆)/S and any map T → S, we have a natural isomorphism

Y pS/ ×S T ' (Y ×S T )pT /

where pT denotes the induced map KT → YT . In particular, the fiber of Y pS/ over a vertex s of S can be
identified with the absolute slice construction Y ps/

s studied in §4.2.1.

Remark 4.2.2.2. Our notation is somewhat abusive: the simplicial set Y pS/ depends not only on the map
pS : K → Y , but also on the simplicial set S. We will attempt to avoid confusion by always indicating the
simplicial set S by a subscript in the notation for the map in question; we will only omit this subscript in
the case S = ∆0, in which case the functor described above coincides with the definition given in §4.2.1.

Lemma 4.2.2.3. Let n > 0, and let

B = (Λnn ×∆1)
∐

Λn
n×∂∆1

(∆n × ∂∆1) ⊆ ∆n ×∆1.

Suppose given a diagram of simplicial sets

A×B
f0 //

� _

��

Y

q

��
A×∆n ×∆1 //

f

99rrrrrr
S

in which q is a Cartesian fibration, and that f0 carries {a}×∆{n−1,n}×{1} to a q-Cartesian edge of Y , for
each vertex a of A. Then there exists a morphism f rendering the diagram commutative.
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Proof. Invoking Proposition 3.1.2.1, we may replace q : Y → S by the induced map Y A → SA, and thereby
reduce to the case where A = ∆0. We now recall the notation introduced in the proof of Proposition 2.1.2.5:
more specifically, the family {σi}0≤i≤n of nondegenerate simplices of ∆n × ∆1. Let B(0) = B, and more
generally set B(n) = B ∪ σn ∪ . . . ∪ σn+1−i so that we we have a filtration

B(0) ⊆ . . . ⊆ B(n+ 1) = ∆n ×∆1.

A map f0 : B(0)→ Y has been prescribed for us already; we construct extensions fi : B(i)→ Y by induction
on i. For i < n, there is a pushout diagram

Λn+1
n−i

//
� _

��

B(i)� _

��
∆n+1 // B(i+ 1)

.

Thus, the extension fi+1 can be found in virtue of the assumption that q is an inner fibration. For i = n,
we obtain instead a pushout diagram

Λn+1
n+1

//
� _

��

B(n)� _

��
∆n+1 // B(n+ 1)

,

and the desired extension can be found in virtue of the assumption that f0 carries the edge ∆{n−1,n} × {1}
to a q-Cartesian edge of Y .

Proposition 4.2.2.4. Suppose given a diagram of simplicial sets

K
t

''PPPPPPPPPPPPPP
pS // X

q //

  A
AA

AA
AA

Y

��
S.

Let p′S = q ◦ pS. Suppose further that:

(1) The map q is a Cartesian fibration.

(2) The map s is a coCartesian fibration.

Then the induced map r : XpS/ → Y p
′
S/ is a Cartesian fibration; moreover an edge of XpS/ is r-Cartesian

if and only if its image in X is q-Cartesian.

Proof. We first show that r is an inner fibration. Suppose given 0 < i < n and a diagram

Λni //
� _

��

XpS/

��
∆n //

<<y
y

y
y

y
Y p

′
S/,

we must show that it is possible to provide the dotted arrow. Unwinding the definitions, we see that it
suffices to produce the indicated arrow in the diagram

K �S Λni //
� _

��

X

q

��
K �S ∆n //

;;v
v

v
v

v
Y.
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Since q is a Cartesian fibration, it is a categorical fibration by Proposition 3.3.2.8. Consequently, it suffices
to show that the inclusion

K �S Λni ⊆ K �S ∆n

is a categorical equivalence. In view of the definition of K �S M as a (homotopy) pushout

K
∐

K×SM×{0}

(K ×S M ×∆1)
∐

K×SM×{1}

M,

it suffices to verify that the inclusions
Λni ⊆ ∆n

K ×S Λni ⊆ K ×S ∆n

are categorical equivalences. The first statement is obvious; the second follows from (the dual of) Proposition
3.3.2.3.

Let us say that an edge of XpS/ is special if its image in X is q-Cartesian. To complete the proof, it will
suffice to show that every special edge of XpS/ is r-Cartesian, and that there are sufficiently many special
edges of XpS/. More precisely, consider any n ≥ 1 and any diagram

Λnn
h //

� _

��

XpS/

��
∆n //

<<y
y

y
y

y
Y p

′
S/.

We must show that:

• If n = 1, then there exists a dotted arrow rendering the diagram commutative, classifying a special
edge of XpS/.

• If n > 1 and h|∆{n−1,n} classifies a special edge of XpS/, then there exists a dotted arrow rendering
the diagram commutative.

Unwinding the definitions, we have a diagram

K �S Λnn
f0 //

� _

��

X

q

��
K �S ∆n //

f

;;v
v

v
v

v
Y

and we wish to prove the existence of the indicated arrow f . As a first step, we consider the restricted
diagram

Λnn
f0|Λn

n //
� _

��

X

q

��
∆n //

f1

>>|
|

|
|

Y

.

By assumption, f0|Λnn carries ∆{n−1,n} to a q-Cartesian edge of X (if n > 1), so there exists a map f1
rendering the diagram commutative (and classifying a q-Cartesian edge of X if n = 1). It now suffices to
produce the dotted arrow in the diagram

(K �S Λnn)
∐

Λn
n

∆n //
� _

i

��

X

q

��
K �S ∆n //

f

88ppppppp
Y,
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where the top horizontal arrow is the result of amalgamating f0 and f1.
Without loss of generality, we may replace S by ∆n. By (the dual of) Proposition 3.2.2.7, there exists a

composable sequence of maps
φ : A0 → . . .→ An

and a quasi-equivalence Mop(φ)→ K. We have a commutative diagram

(Mop(φ) �S Λnn)
∐

Λn
n

∆n

� _

i′

��

// (K �S Λnn)
∐

Λn
n

∆n

i

��
Mop(φ) �S ∆n // K �S ∆n

.

Since q is a categorical fibration, Proposition A.2.4.1 shows that it suffices to produce a dotted arrow f ′ in
the induced diagram

(Mop(φ) �S Λnn)
∐

Λn
n

∆n //
� _

i

��

X

q

��
Mop(φ) �S ∆n //

f ′

77nnnnnnn
Y

.

Let B be as the statement of Lemma 4.2.2.3; then we have a pushout diagram

A0 ×B //
� _

i′′

��

(Mop(φ) �S Λnn)
∐

Λn
n

∆n

��
A0 ×∆n ×∆1 // Mop(φ) �S ∆n.

Consequently, it suffices to prove the existence of the map f ′′ in the diagram

A0 ×B
g //

� _

i′′

��

X

q

��
A0 ×∆n ×∆1 //

f ′′
88rrrrrr
Y

.

Here the map g carries {a} × ∆{n−1,n} × {1} to a q-Cartesian edge of Y , for each vertex a of A0. The
existence of f ′′ now follows from Lemma 4.2.2.3.

Remark 4.2.2.5. In most applications of Proposition 4.2.2.4, we will have Y = S. In that case, Y p
′
S/ can

be identified with S, and the conclusion is that the projection XpS/ → S is a Cartesian fibration.

Remark 4.2.2.6. The hypothesis on s in Proposition 4.2.2.4 can be weakened: all we need in the proof is
existence of mapsMop(φ)→ K×S∆n which are universal categorical equivalences (that is, induce categorical
equivalences Mop(φ) ×∆n T → K ×S T for any T → ∆n). Consequently, Proposition 4.2.2.4 remains valid
when K ' S×K0, for any simplicial set K0 (not necessarily an∞-category). It seems likely that Proposition
4.2.2.4 remains valid whenever s is a smooth map of simplicial sets, but we have not been able to prove this.

We can now express the idea that the colimit a diagram should depend functorially on the diagram (at
least for “smoothly parametrized” families of diagrams):

Proposition 4.2.2.7. Let q : Y → S be a Cartesian fibration, let pS : K → Y be a diagram. Suppose that:

(1) For each vertex s of S, the restricted diagram ps : Ks → Ys has a colimit in the ∞-category Ys.

(2) The composition q ◦ pS is a coCartesian fibration.
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There exists a map p′S rending the diagram

K� _

��

pS // Y

q

��
K �S S

p′S

;;wwwwwwwww
// S

commutative, and having the property that for each vertex s of S, the restriction p′s : Ks � {s} → Ys is a
colimit of ps. Moreover, the collection of all such maps is parametrized by a contractible Kan complex.

Proof. Apply Proposition 2.3.4.9 to the Cartesian fibration Y pS/, and observe that the collection of sections
of a trivial fibration constitutes a contractible Kan complex.

4.2.3 Decomposition of Diagrams

Let C be an ∞-category, and p : K → C a diagram indexed by a simplicial set K. In this section, we will try
to analyze the colimit lim−→(p) (if it exists) in terms of the colimits {lim−→(p|KI)}, where {KI} is some family
of simplicial subsets of K. In fact, it will be useful to work in slightly more generality: we will allow each
KI to be an arbitrary simplicial set mapping to K (not necessarily via a monomorphism).

Throughout this section, we will fix a simplicial set K, an ordinary category I, and a functor F : I →
(Set∆)/K . It may be helpful to imagine that I is a partially ordered set and that F is an order-preserving map
from I to the collection of simplicial subsets of K; this will suffice for many but not all of our applications.
We will denote F (I) by KI , and the tautological map KI → K by πI .

Our goal is to show that, under appropriate hypotheses, we can recover the colimit of a diagram p : K → C

in terms of the colimits of diagrams p ◦ πI : KI → C. Our first goal is to show that the construction of these
colimits is suitably functorial in I. For this, we need an auxiliary construction.

Notation 4.2.3.1. We define a simplicial set KF as follows. A map ∆n → KF is determined by the
following data:

(i) A map ∆n → ∆1, corresponding to a decomposition [n] = {0, . . . , i} ∪ {i+ 1, . . . , n}.

(ii) A map e− : ∆{0,...,i} → K.

(iii) A map e+ : ∆{i+1,...,n} → N(I), which we may view as a chain of composable morphisms

I(i+ 1)→ . . .→ I(n)

in the category I.

(iv) For each j ∈ {i+ 1, . . . , n}, a map ej which fits into a commutative diagram

KI(j)

πI(j)

��
∆{0,...,i}

e− //

ej

::ttttttttt
K.

Moreover, for j ≤ k we require that ek is given by the composition

∆{0,...,i} ej→ KI(j) → KI(k).

Remark 4.2.3.2. In the case where i < n, the maps e− and {ej}j>i are completely determined by ei+1,
which can be arbitrary.
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The simplicial set KF is equipped with a map KF → ∆1. Under this map, the preimage of the vertex {0}
is K ⊆ KF , and the preimage of the vertex {1} is N(I) ⊆ KF . For I ∈ I, we will denote the corresponding
vertex of N(I) ⊆ KF by XI . We note that, for each I ∈ I, there is a commutative diagram

KI
πI //

� _

��

K� _

��
K.
I

π′I // KF

where π′I carries the cone point of K.
I to the vertex XI of KF .

Let us now suppose that p : K → C is a diagram in an ∞-category C. Our next goal is to prove
Proposition 4.2.3.4, which will allow us to extend p to a larger diagram KF → C which carries each vertex
XI to a colimit of p ◦ πI : KI → C. First, we need a lemma.

Lemma 4.2.3.3. Let C be an ∞-category, and let σ : ∆n → C be a simplex having the property that σ(0) is
an initial object of C. Let ∂ σ = σ| ∂∆n. The natural map Cσ/ → C∂ σ/ is a trivial fibration.

Proof. Unwinding the definition, we are reduced to solving the extension problem depicted in the diagram

(∂∆n ?∆m)
∐
∂∆n?∂∆m(∆n ? ∂∆m)

f0 //
� _

��

C

∆n ?∆m.

f

44jjjjjjjjjj

We can identify the domain of f0 with ∂∆n+m+1. Our hypothesis guarantees that f0(0) is an initial object
of C, which in turn guarantees the existence of f .

Proposition 4.2.3.4. Let p : K → C be a diagram in an ∞-category C, let I be an ordinary category, and
let F : I → (Set∆)/K be a functor. Suppose that, for each I ∈ I, the induced diagram pI = p ◦ πI : KI → C

has a colimit qI : K.
I → C.

There exists a map q : KF → C such that q ◦ π′I = qI and q|K = p. Furthermore, for any such q, the
induced map Cq/ → Cp/ is a trivial fibration.

Proof. For each X ⊆ N(I), we let KX denote the simplicial subset of KF consisting of all simplices σ ∈ KF

such that σ ∩N(I) ⊆ X. We note that K∅ = K and that KN(I) = KF .
Define a transfinite sequence Yα of simplicial subsets of N(I) as follows. Let Y0 = ∅, and let Yλ =

⋃
γ<λ Yγ

when λ is a limit ordinal. Finally, let Yα+1 be obtained from Yα by adjoining a single nondegenerate simplex,
provided that such a simplex exists. We note that for α sufficiently large, such a simplex will not exist and
we set Yβ = Yα for all β > α.

We define a sequence of maps qβ : KYβ
→ C so that the following conditions are satisfied:

(1) We have q0 = p : K∅ = K → C.

(2) If α < β, then qα = qβ |KYα
.

(3) If {XI} ⊆ Yα, then qα ◦ π′I = qI : K.
I → C.

Provided that such a sequence can be constructed, we may conclude the proof by setting q = qα for α
sufficiently large.

The construction of qα goes by induction on α. If α = 0, then qα is determined by condition (1); if α is a
(nonzero) limit ordinal, then qα is determined by condition (2). Suppose that qα has been constructed; we
give a construction of qα+1.
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There are two cases to consider. Suppose first that Yα+1 is obtained from Yα by adjoining a vertex XI .
In this case, qα+1 is uniquely determined by conditions (2) and (3).

Now suppose that Xα+1 is obtained from Xα by adjoining a nondegenerate simplex σ of positive dimen-
sion, corresponding to a sequence of composable maps

I0 → . . .→ In

in the category I. We note that the inclusion KYα ⊆ KYα+1 is a pushout of the inclusion

KI0 ? ∂ σ ⊆ KI0 ? σ.

Consequently, constructing the map qα+1 is tantamount to finding an extension of a certain map s0 : ∂ σ →
CpI/ to the whole of the simplex σ. By assumption, s0 carries the initial vertex of σ to an initial object
of CpI/, so that the desired extension s can be found. For use below, we record a further property of our
construction: the projection Cqα+1/ → Cqα/ is a pullback of the map (CpI/)s/ → (CpI/)s0/, which is a trivial
fibration.

We now wish to prove that for any extension q with the above properties, the induced map Cq/ → Cp/ is a
trivial fibration. We first observe that the map q can be obtained by the inductive construction given above:
namely, we take qα to be the restriction of q to KYα . It will therefore suffice to show that, for every pair of
ordinals α ≤ β, the induced map Cqβ/ → Cqα/ is a trivial fibration. The proof of this goes by induction on
β: the case β = 0 is clear, and if β is a limit ordinal we observe that the inverse limit of transfinite tower of
trivial fibrations is itself a trivial fibration. We may therefore suppose that β = γ + 1 is a successor ordinal.
Using the factorization

Cqβ/ → Cqγ/ → Cqα/

and the inductive hypothesis, we are reduced to proving this in the case where β is the successor of α, which
was treated above.

Let us now suppose that we are given diagrams p : K → C, F : I → (Set∆)/K as in the statement of
Proposition 4.2.3.4, and let q : KF → C be a map which satisfies the conclusions of the Proposition. Since
Cq/ → Cp/ is a trivial fibration, we may identify colimits of the diagram q with colimits of the diagram p (up
to equivalence). Of course, this is not useful in itself, since the diagram q is more complicated than p. Our
objective now is to show that, under the appropriate hypotheses, we may identify the colimits of q with the
colimits of q|N(I). First, we need a few lemmas.

Lemma 4.2.3.5 (Joyal [31]). Let f : A0 ⊆ A and g : B0 ⊆ B be inclusions of simplicial sets, and suppose
that g is a weak homotopy equivalence. Then the induced map

h : (A0 ? B)
∐

A0?B0

(A ? B0) ⊆ A ? B

is right anodyne.

Proof. Our proof follows the pattern of Lemma 2.1.2.1. The collection of all maps f which satisfy the
conclusion (for any choice of g) forms a saturated class of morphisms. It will therefore suffice to prove that
the h is right anodyne when f is the inclusion ∂∆n ⊆ ∂∆n. Similarly, the collection of all maps g which
satisfy the conclusion (for fixed f) forms a saturated class. We may therefore reduce to the case where g is
a horn inclusion Λmi ⊆ ∆m. In this case, we may identify h with the horn inclusion Λm+n+1

i+n+1 ⊆ ∆m+n+1,
which is clearly right-anodyne.

Lemma 4.2.3.6. Let A0 ⊆ A be an inclusion of simplicial sets, and let B be weakly contractible. Then the
inclusion A0 ? B ⊆ A ? B is right anodyne.
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Proof. As above, we may suppose that the inclusion A0 ⊆ A is identified with ∂∆n ⊆ ∆n. If K is a point,
then the inclusion A0 ×B ⊆ A×B is isomorphic to Λn+1

n+1 ⊆ ∆n+1, which is clearly right-anodyne.
In the general case, B is nonempty, so we may choose a vertex b of B. Since B is weakly contractible,

the inclusion {b} ⊆ B is a weak homotopy equivalence. We have already shown that A0 ? {b} ⊆ A ? {b} is
right anodyne. It follows that the pushout inclusion

A0 ? B ⊆ (A ? {b})
∐

A0?{b}

(A0 ? B)

is right anodyne. To complete the proof, we apply Lemma 4.2.3.5 to deduce that the inclusion

(A ? {b})
∐

A0?{b}

(A0 ? B) ⊆ A ? B

is right anodyne.

Notation 4.2.3.7. Let σ ∈ Kn be a simplex of K. We define a category Iσ as follows. The objects of
Iz are pairs (I, σ′), where I ∈ I, σ′ ∈ (KI)n, and πI(σ′) = σ. A morphism from (I ′, σ′) to (I ′′, σ′′) in Iσ
consists of a morphism α : I ′ → I ′′ in I with the property that F (α)(σ′) = σ′′. We let I′σ ⊆ Iσ denote
the full subcategory consisting of pairs (I, σ′) where σ′ is a degenerate simplex in KI . Note that if σ is
nondegenerate, I′σ is empty.

Proposition 4.2.3.8. Let K be a simplicial set, I an ordinary category, and F : I → (Set∆)/K a functor.
Suppose further that:

(1) For each nondegenerate simplex σ of K, the category Iσ is acyclic (that is, the simplicial set N(Iσ) is
weakly contractible).

(2) For each degenerate simplex σ of K, the inclusion N(I′σ) ⊆ N(Iσ) is a weak homotopy equivalence.

Then the inclusion N(I) ⊆ KF is right anodyne.

Proof. Consider any family of subsets {Ln ⊆ Kn} which is stable under the “face maps” di on K (but not
necessarily the degeneracy maps si, so that the family {Ln} does not necessarily have the structure of a
simplicial set). We define a simplicial subset LF ⊆ KF as follows: a nondegenerate simplex ∆n → KF

belongs to LF if and only if the corresponding (possibly degenerate) simplex ∆{0,...,i} → K belongs to
Li ⊆ Ki (see Notation 4.2.3.1).

We note that if L = ∅, then LF = N(I). If L = K, then LF = KF (so that our notation is unambiguous).
Consequently, it will suffice to prove that for any L ⊆ L′, the inclusion LF ⊆ L′F is right-anodyne. By
general nonsense, we may reduce to the case where L′ is obtained from L by adding a single simplex σ ∈ Kn.

We now have two cases to consider. Suppose first that the simplex σ is nondegenerate. In this case, it is
not difficult to see that the inclusion LF ⊆ L′F is a pushout of ∂ σ ?N(Iσ) ⊆ σ ?N(Iσ). By hypothesis, N Iz
is weakly contractible, so that the inclusion LF ⊆ L′F is right anodyne by Lemma 4.2.3.6.

In the case where σ is degenerate, we observe that LF ⊆ L′F is a pushout of the inclusion

(∂ σ ?N(Iσ))
∐

∂ σ?N(I′σ)

(σ ?N(I′σ)) ⊆ σ ?N(Iσ),

which is right anodyne by Lemma 4.2.3.5.

Remark 4.2.3.9. Suppose that I is a partially ordered set, and that F is an order-preserving map from I

to the collection of simplicial subsets of K. In this case, we observe that I′σ = Iσ whenever σ is a degenerate
simplex of K, and that Iσ = {I ∈ I : σ ∈ KI} for any σ. Consequently, the conditions of Proposition
4.2.3.8 hold if and only if each of the partially ordered subsets Iσ ⊆ I has a contractible nerve. This holds
automatically if I is directed and K =

⋃
I∈IKI .
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Corollary 4.2.3.10. Let K be a simplicial set, I a category, and F : I→ (Set∆)/K a functor which satisfies
the hypotheses of Proposition 4.2.3.8. Let C be an ∞-category, p : K → C any diagram, and let q : KF → C

be an extension of p which satisfied the conclusions of Proposition 4.2.3.4. The natural maps

Cp/ ← Cq/ → Cq|N(I)/

are trivial fibrations. In particular, we may identify colimits of p with colimits of q|N(I).

Proof. This follows immediately from Proposition 4.2.3.8, since the right anodyne inclusion N I ⊆ KF is
cofinal and therefore induces a trivial fibration Cq/ → Cq|N(I)/ by Proposition 4.1.1.8.

We now illustrate the usefulness of Corollary 4.2.3.10 by giving a sample application. First, a bit of
terminology. If κ and τ are regular cardinals, we will write τ � κ if, for any cardinals τ0 < τ , κ0 < κ,
we have κτ00 < κ (we refer the reader to Definition 5.4.2.8 and the surrounding discussion for more details
concerning this condition).

Corollary 4.2.3.11. Let C be an ∞-category and τ � κ regular cardinals. Then C admits κ-small colimits
if and only if C admits τ -small colimits and colimits indexed by (the nerves of) κ-small, τ -filtered partially
ordered sets.

Proof. The “only if” direction is obvious. Conversely, let p : K → C be any κ-small diagram. Let I denote
the partially ordered set of τ -small simplicial subsets of K. Then I is directed and

⋃
I∈IKI = K, so that

the hypotheses of Proposition 4.2.3.8 are satisfied. Since each pI = p ◦ πI has a colimit in C, there exists
a map q : KF → C satisfying the Proposition 4.2.3.4. Since Cq/ → Cp/ is an equivalence of ∞-categories,
p has a colimit if and only if q has a colimit. By Corollary 4.2.3.10, q has a colimit if and only if q|N(I)
has a colimit. It is clear that I is a τ -filtered partially ordered set. Furthermore, it is κ-small provided that
τ � κ.

Similarly, we have:

Corollary 4.2.3.12. Let f : C→ C′ be a functor between ∞-categories, and let τ � κ be regular cardinals.
Suppose that C admits κ-small colimits. Then f preserves κ-small colimits if and only if it preserves τ -small
colimits, and all colimits indexed by (the nerves of) κ-small, τ -filtered partially ordered sets.

We will conclude this section with another application of Proposition 4.2.3.8, in which I is not a partially
ordered set, and the maps πI : KI → K are not (necessarily) injective. Instead, we take I to be the category
of simplices of K. In other words, an object of I ∈ I consists of a map σI : ∆n → K, and a morphism from
I to I ′ is given by a commutative diagram

∆n

σI

!!B
BB

BB
BB

B
// ∆n′

σ′
I′

}}{{
{{

{{
{{

K.

For each I ∈ I, we let KI denote the domain ∆n of σI , and we let πI = σI : KI → K.

Lemma 4.2.3.13. Let K be a simplicial set, and let I denote the category of simplices of K (as defined
above). Then there is a retraction r : KF → K which fixes K ⊆ KF .

Proof. Given a map e : ∆n → KF , we will describe the composite map r ◦ e : ∆n → K. The map e classifies
the following data:

(i) A decomposition [n] = {0, . . . , i} ∪ {i+ 1, . . . , n}.

(ii) A map e− : ∆i → K.
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(iii) A string of morphisms
∆mi+1 → . . .→ ∆mn → K.

(iv) A compatible family of maps {ej : ∆i → ∆mj}j>i, having the property that each composition ∆i ej→
∆mj → K coincide with e−.

If i = n, we set r ◦ e = e−. Otherwise, we let r ◦ e denote the composition

∆n f→ ∆mn → K

where f : ∆n → ∆mn is defined as follows:

• The restriction f |∆i coincides with en.

• For i < j ≤ n, we let f(j) denote the image in ∆mn of the final vertex of ∆mj .

Proposition 4.2.3.14. For every simplicial set K, there exists a category I and a cofinal map f : N(I)→ K.

Proof. We take I to be the category of simplices of K, as defined above, and f to the composition of the
inclusion N(I) ⊆ KF with the retraction r of Lemma 4.2.3.13. To prove that f is cofinal, it suffices to show
that the inclusion N(I) ⊆ KF is right anodyne, and that the retraction r is cofinal.

To show that N(I) ⊆ KF is right anodyne, it suffices to show that the hypotheses of Proposition 4.2.3.8
are satisfied. Let σ : ∆J → K be a simplex of K. We observe that the category Iσ may be described as
follows: its objects consist of pairs of maps (s : ∆J → ∆M , t : ∆M → K) with t ◦ s = σ. A morphism from
(s, t) to (s′, t′) consists of a map

α : ∆M → ∆M ′

with s′ = α ◦ s, t = t′ ◦ α. In particular, we note that Iσ has an initial object (id∆J , σ). It also has a final
object: namely, a pair (s, t) such that s is surjective and t : ∆M → K is nondegenerate. It follows that
N(Iσ) is weakly contractible for any simplex σ of K. Moreover, if z is degenerate, then any final object of
Iσ belongs to I′σ (and is therefore a final object of I′σ). We conclude that N(I′σ) is weakly contractible when
σ is degenerate, so that the inclusion N(I′σ) ⊆ N(Iσ) is a weak homotopy equivalence. This completes the
verification of the hypotheses of Proposition 4.2.3.8.

We now show that r is cofinal. According to Proposition 4.1.1.8, it suffices to show that for any ∞-
category C and any map p : K → C, the induced map Cq/ → Cp/ is a categorical equivalence, where q = p◦r.
This follows from Proposition 4.2.3.4.

Variant 4.2.3.15. Let K be a simplicial set, and let I be the category of simplices of K as above. Let I′ be
the full subcategory of I spanned by the nondegenerate simplices of K. The inclusion I′ ⊆ I has a left adjoint
L. It follows immediately from Theorem 4.1.3.1 that the inclusion N(I′) ⊆ N(I) is cofinal. Consequently,
we obtain also a cofinal map f : N(I′)→ K. The simplicial set N(I′) can be identified with the barycentric
subdivision of K. The assertion that f is cofinal can be regarded as a generalization of the classical fact that
barycentric subdivision does not change the weak homotopy type of a simplicial set.

Note the category of nondegenerate simplices of N(I′) can be identified with a partially ordered set.
The nerve of this partially ordered set can be identified with the second barycentric subdivision K(2) of K.
Applying the above argument twice, we conclude that there is a cofinal map K(2) → K. Consequently, we
obtain the following refinement of Proposition 4.2.3.14: for every simplicial set K, there exists a partially
ordered set A and a cofinal map N(A)→ K.
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4.2.4 Homotopy Colimits

The goal of this section is to prove the following result:

Theorem 4.2.4.1. Let C be a fibrant simplicial category, I an ordinary category, and let I = I ?{x} be the
category obtained from I by adjoining a final object x. Let p : I→ C be a functor, and let p = p| I. Then the
following conditions are equivalent:

(1) The functor p realizes p(x) as a homotopy colimit of p (see §A.3.5).

(2) The induced map q : N(I). → N(C) is a colimit of q = q|N(I) : N(I)→ N(C).

The proof of Theorem 4.2.4.1 will occupy the remainder of this section.

Remark 4.2.4.2. Theorem 4.2.4.1 can be generalized to the case where indexing category I is a simplicial
category. However, we will not need this generalization: our primary interest in homotopy colimits is as a
tool for establishing properties of ∞-categorical colimits. In view of Proposition 4.2.3.14, questions about
arbitrary colimits can usually be reduced to questions about colimits indexed by ordinary categories.

Suppose given a fibrant simplicial category C and a diagram p : I→ C, where I is an ordinary category.
Let S = N(C), and let q : N(I) → S be the induced map. Every object Z ∈ C determines a functor
FZ : Iop → Set∆, given by the formula

FZ(I) = MapC(p(I), Z).

The main step of the proof of Theorem 4.2.4.1 is to reconstruct the functor FZ using only the ∞-category
S. For each object I ∈ I, Z ∈ C, we may regard q(I) and Z as objects of S, and form the mapping space
HomL

S(q(I), Z). In virtue of Theorem 1.1.5.12, this space is homotopy equivalent to FZ(I). Unfortunately,
HomL

S(q(I), Z) does not depend functorially on I.
To obtain a simplicial set which is functorial in I, we make two observations. First of all, HomL

S(q(I), Z)
is the fiber of the left fibration Sq(I)/ → S over the point Z. For each I ∈ I, let qI denote the composition

N(I/I)→ N(I)
q→ S.

Since I/I contains idI as a final object, the natural map

SqI/ → Sq(I)/

is a trivial fibration of simplicial sets. We now define GZ(I) to be the fiber product

{Z} ×S SqI/,

and we observe that GZ is functor from Iop to the category of Kan complexes.
Our proof of Theorem 4.2.4.1 hinges on a comparison between the functors FZ and GZ . Morally, they

are the same: GZ(I) is homotopy equivalent to the fiber of Sq(I)/ → S over Z, which may be identified with
the simplicial set HomL

S(q(I), Z). However, this equivalence is not functorial in I. Consequently, we cannot
use it to compare the functors FZ and GZ directly. Nevertheless:

Lemma 4.2.4.3. Let C be a fibrant simplicial category, I an ordinary category, p : I → C a functor, and
Z ∈ C an object. Let

FZ , GZ : Iop → Kan

be defined as above.
There exists a functor H from Iop to the category of compactly generated Hausdorff spaces which is

equipped with natural transformations

|FZ(I)| αI← H(I)
βI→ |GZ(I)|

having the property that for each I ∈ I, the maps αI and βI are homotopy equivalences.
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The proof of Lemma 4.2.4.3 is somewhat technical, and will be given in §4.2.5. In this section, we will
show that Lemma 4.2.4.3 implies Theorem 4.2.4.1.

It follows from Lemma 4.2.4.3 that FZ and GZ are weakly equivalent as objects of (Set∆)Iop

. Here
we regard (Set∆)Iop

as endowed with the projective model structure described in §A.3.3. Our next step is
to show that the functor GZ is (strongly) fibrant, and therefore suitable for use in recognizing homotopy
colimits. First, we need a lemma.

Lemma 4.2.4.4. Let X be a simplicial set, and let j : A→ B be a weak homotopy equivalence of simplicial
sets. The induced map

(X × ∂∆1)
∐

X×A×∂∆1

(X ×A×∆1)→ (X × ∂∆1)
∐

X×B×∂∆1

(X ×B ×∆1)

is a categorical equivalence.

Proof. For every map j : A→ B of simplicial sets, let

F (j) : ∂∆1
∐

A×∂∆1

(A×∆1)→ ∂∆1
∐

B×∂∆1

(B ×∆1).

We need to show that if j is a weak homotopy equivalence, then F (j) is a categorical equivalence. This will
imply the desired result, since forming the product with X preserves categorical equivalences.

First suppose that j is the inclusion {0} ⊆ ∆1. In this case, the result follows by a simple explicit
computation.

Now suppose that j : A → B is a cofibration such that F (j) is a categorical equivalence, and let
j′ : A′ → B′ be another cofibration of simplicial sets. Let

j ∧ j′ : (A×B′)
∐
A×A′

(B ×A′)→ (B ×B′)

denote the smash product of j with j′. We now observe that there is a homotopy pushout diagram

idB′×∂∆1 //

��

id∂∆1

��
F (j) ∧ j′ // F (j ∧ j′)

in the category of arrows of Set∆. It follows that F (j ∧ j′) is a categorical equivalence.
The class of all cofibrations j such that F (j) is a categorical equivalence is saturated. The above ar-

guments show that it contains the smash product of {0} ⊆ ∆1 with any other cofibration. By Proposition
2.1.2.5, we deduce that F (j) is a categorical equivalence whenever j is a left anodyne. A dual argument
shows that F (j) is a categorical equivalence whenever j is right anodyne. It follows that F (j) is a categorical
equivalence whenever j is anodyne: that is, whenever j is simultaneously a cofibration and a weak homotopy
equivalence of simplicial sets.

We now treat the general case, when j is not assumed to be a cofibration. Choose a cofibration of
simplicial sets i : A→ K, where K is a contractible Kan complex. Consider the diagram

K ×B
πB

�� ��
A

i×j
;;xxxxxxxxx j // B.

Since i × j is a cofibration and a weak homotopy equivalence, the above arguments show that F (i × j) is
a categorical equivalence. Consequently, to prove that F (j) is a categorical equivalence, it suffices to show
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that F (πB) is a categorical equivalence. But πB admits a section s : B → K×B. The map s is a cofibration
and a weak homotopy equivalence, so that F (s) is a categorical equivalence. Since F (s) is a right inverse of
F (πB), we conclude that F (πB) is a categorical equivalence.

Before giving the next proof, we recall the notion of a coend. Suppose given a pair of functors T : I→ C,
T ′ : Iop → C, where C is any category with finite products and (small) colimits. The coend∫

I∈I

T (I)× T ′(I)

is defined to be the coequalier of the evident pair of maps∐
f :I→I′ T (I)× T ′(I ′) //

//
∐
I T (I)× T ′(I)

Proposition 4.2.4.5. Let C be a fibrant simplicial category, I an ordinary category, p : I → C a functor,
and Z ∈ C an object. The functor GZ : Iop → Set∆ is strongly fibrant (Definition A.3.3.1) when considered
as an object of (Set∆)Iop

.

Proof. Let F ⊆ F′ be an inclusion of functors Iop → Set∆, which induces a weak equivalence when evaluated
at each I ∈ I. We need to show that GZ has the right extension property with respect to the inclusion
F ⊆ F′. Translating this into the language of ∞-categories, we see that it suffices to prove that S = N(C)
has the right extension property with respect to the inclusion

j : N(I)
∐
M(F)

M(F). ⊆ N(I)
∐
M(F′)

M(F′).,

where M(F′) is defined to be the coend
∫
I∈I

F′(I)× N(I/I), and M(F) ⊆ M(F′) is defined similarly. Since
S is an ∞-category, it will suffice to prove that j is a categorical equivalence. Working cell-by-cell on N(I),
we may reduce to the problem of showing that the inclusions

jI : ∆n
∐

∆n×F(I)

(∆n × F(I).) ⊆ ∆n
∐

∆n×F′(I)

(∆n × F′(I).)

are categorical equivalences.
In view of Proposition 4.2.1.2, we are free to replace F(I). = F(I) ? ∆0 by F(I) � ∆0 and F′(I). by

F′(I) �∆0. After this replacement, the relevant map is a pushout of the inclusion

(∆n × ∂∆1)
∐

F(I)×∆n×∂∆1

(F(I)×∆n ×∆1) ⊆ (∆n × ∂∆1)
∐

F′(I)×∆n×∂∆1

(F′(I)×∆n ×∆1).

This map is a cofibration, and furthermore a categorical equivalence by Lemma 4.2.4.4.

Proof of Theorem 4.2.4.1. Let C be a fibrant simplicial category, I an ordinary category, and p : I ?{x} → C

a functor; let q : N(I). → S = N(C) be the induced map of ∞-categories. We wish to show that p is a
homotopy colimit of p = p| I if and only if q is a colimit of q = q|N(I).

By definition, p is a homotopy colimit of p if and only if, for each Z ∈ C, the associated functor FZ
exhibits FZ(x) as a homotopy limit of the diagram FZ | I. In view of Proposition 4.2.4.3, this is equivalent to
the assertion that GZ exhibits GZ(x) as a homotopy limit of the diagram G| I. Applying Proposition 4.2.4.5
to I, we deduce that the homotopy limit of GZ | I is simply the limit of the diagram GZ | I. Consequently, p
is a homotopy colimit of p if and only if

φZ : GZ(x)→ lim←−
I∈I

GZ(I)

is a weak homotopy equivalence (for each Z ∈ C).
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We now observe that GZ(x) is isomorphic to the fiber of Sq/ → S over Z, while the limit lim←−I∈I
GZ(I) is

isomorphic to the fiber of Sq/ → S over Z. Thus, p is a homotopy colimit of p if and only if the projection
φ : Sq/ → Sq/ induces a homotopy equivalence of Kan complexes after taking the fiber over each vertex Z of
S. If q is a colimit of q, then φ is a trivial fibration, so that p is a homotopy colimit of p. For the converse,
we observe that φ is a left fibration. Consequently, φ is a trivial fibration if and only if the fibers of φ are
contractible Kan complexes. If p is a homotopy colimit of p, then for each Z ∈ S, the induced map

φZ : Sq/ ×S {Z} → Sq/ ×S {Z}

is a left fibration and a homotopy equivalence of Kan complexes, hence a (trivial) Kan fibration (Lemma
2.1.3.2). It follows that the fibers of φZ are contractible, as desired.

Corollary 4.2.4.6. Let A be a perfect simplicial model category. The associated ∞-category S = N(A◦)
admits (small) limits and colimits.

Proof. We give the argument for colimits; the case of limits follows by a dual argument. Let p : K → S
be a (small) diagram in S. By Proposition 4.2.3.14, there exists a (small) category I and a cofinal map
q : N(I) → K. Since q is cofinal, p has a colimit in S if and only if p ◦ q has a colimit in S; thus we may
reduce to the case where K = N(I). By Corollary A.3.6.2, we may suppose that p is the nerve of a functor
p′ : I → A◦. Without loss of generality, we may suppose that p′ is a strongly fibrant object of AI. Let
p′ : I ?{x} → AI be a limit of p′, so that p′ is a homotopy limit diagram in A. Now choose a trivial fibration
p′′ → p′ in AI, where p′′ is cofibrant. The simplicial nerve of p′′ determines a colimit diagram f : N(I). → S,
by Theorem 4.2.4.1. We now observe that f = f |N(I) is equivalent to p, so that p also admits a colimit in
S.

4.2.5 Completion of the Proof

In this section, we will finish the proof of Theorem 4.2.4.1 by establishing Lemma 4.2.4.3. Throughout this
section, we will fix a fibrant simplicial category C, an ordinary category I, a functor p : I→ C, and an object
Z ∈ C. We let FZ , GZ : Iop → Kan denote the functors constructed in §4.2.4. We will construct a functor
H : Iop → CG and natural transformations

|FZ |
α← H

β→ |GZ |

which induce homotopy equivalences for each object I ∈ I; here CG denotes the category of compactly
generated Hausdorff spaces.

Notation 4.2.5.1. We let S denote the nerve of the simplicial category C, and q : N(I) → S the induced
map. For I ∈ I, we let qI denote the composition

N(I/I)→ N(I)
q→ S,

and qI : N(II/)→ SqI/ the induced map.

Definition 4.2.5.2. For each I ∈ I, the topological space H(I) is defined as follows.

(1) Let σ denote a commutative diagram

∆{0,...,m} � � //

σ0

��

∆n

σ1

��

∆{m+1,...,n}? _oo

��
N(II/)

qI

// SqI/
// S {Z}.? _oo
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and let Cσ = {k : [n] → [0, 1] : (k(n) = 1) ∧ (∃i ≤ m)[k(i) = 1]} ⊆ [0, 1]n+1. Then there exists a
continuous map

Cσ → H(I)

k 7→ σ[[k]].

(2) Let σ be as in (1), and let k, k′ ∈ Cσ be such that

(∃i > m)[k(i) = 1 ∧ (∀j ≤ i)[k(j) = k′(j)]].

Then σ[[k]] = σ[[k′]] ∈ H(I).

(3) Let σ be as in (1), let k ∈ Cσ, and suppose that k(i) = 0 for some 0 ≤ i < n. Let σ′ denote the
commutative diagram obtained from σ by deleting the ith vertex of ∆n (and ∆m, if i ≤ m), and let
k′ ∈ Cσ′ be the function obtained by omitting the value of k on i. Then

σ[[k]] = σ′[[k′]] ∈ H(I).

(4) The topological space H(I) is the quotient of the disjoint union
∐
σ Cσ obtained by imposing the

relations indicated in (2) and (3).

We observe that H(I) is contravariantly functorial in I. More precisely, suppose that γ : I ′ → I is a
morphism in I, and let σ be a commutative diagram in (1). We can form a composite diagram

∆{0,...,m} � � //

σ0

��

∆n

σ1

��

∆{m+1,...,n}? _oo

��
N(II/)

qI

//

��

SqI/
//

��

S {Z}? _oo

N(II′/)
qI′

// SqI′/
// S {Z}.? _oo

Let σ′ denote the commutative diagram obtained by omitting the middle line, so that we have a map
Cσ′ → H(I ′). There is a uniquely determined map H(γ) with the property that each of the diagrams

Cσ

��

Cσ′

��
H(I)

H(γ) // H(I ′)

is commutative.

Definition 4.2.5.3. If I is an object of I, then the subspace H ′(I) ⊆ H(I) is defined to be the images of
all maps

Cσ → H(I)

where σ is a commutative diagram of the form

∆0 � � //

idI

��

∆n

σ1

��

∆{1,...,n}? _oo

��
N(II/)

qI

// SqI/
// S {Z}.? _oo

where σ0 classifies a map
(N(I/I) ? {I}) ?∆{1,...,n}

which factors through N(I/I) ?∆{1,...,n}.
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Warning 4.2.5.4. The subspaces H ′(I) ⊆ H(I) are not stable under the maps H(γ) defined above. In
other words, H ′(I) does not depend functorially on I.

Lemma 4.2.5.5. For each object I ∈ I, the inclusion H ′(I)→ H(I) is a homotopy equivalence.

Proof. We will define a map h : H(I)× [0, 1]→ H(I) having the property that h|H(I)×{0} is the identity on
H(I), and h|H(I)×{1} is a retraction H(I)→ H ′(I) (which is therefore a homotopy inverse to the inclusion
H ′(I) ⊆ H(I)). ( The map h will not have the property that it induces the identity H ′(I) × {t} → H ′(I)
for 0 < t < 1, but this is not important. )

Let σ be a diagram as in Definition 4.2.5.2, so that the map Cσ → H(I) is defined. We can identify the
map σ0 : ∆m → N(II/) with a diagram

I → σ0(0)→ σ0(1)→ . . .→ σ0(m)

in the category I. We define σ′0 : ∆m+1 → N(II/) to classify the diagram

I
idI→ I → σ0(0)→ . . .→ σ0(m).

Similarly, if σ1 : ∆n → SqI/ classifies a map N(I/I) ?∆n → S, then we let σ′1 classify the induced map

(N(I/I) ? {I}) ?∆n → S,

obtained by composing with the retraction

N(I/I) ? {I} → N(I/I).

Together, σ′0 and σ′1 determine a diagram

∆{0,...,m+1} � � //

σ′0
��

∆n+1

σ′1
��

∆{m+1,...,n}? _oo

��
N(II/)

qI

// SqI/
// S {Z}.? _oo

We define a map hσ : Cσ × [0, 1]→ Cσ′ as follows:

hσ(k)(0) =

{
2t if t ≤ 1

2

1 if t ≥ 1
2

hσ(k)(i) =

{
k(i− 1) if t ≤ 1

2 , i > 0
k(i− 1)(2− 2t) if t ≥ 1

2 , i > 0.

The desired map h : H(I)× [0, 1]→ H(I) is uniquely determined by the requirement that the diagrams

Cσ × [0, 1]
hσ //

��

Cσ′

��
H(I)× [0, 1] h // H(I)

commute.

We now construct the natural transformation

αI : H(I)→ |FZ(I)|.
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First, we need to introduce a bit of notation. Let σ be as in Definition 4.2.5.2, and let 0 ≤ i ≤ m. We let
Cσ[i] denote the closed subset of Cσ consisting of those points k ∈ Cσ such that k(i) = 1. In this case, σ0(i)
determines a morphism η : I → I ′ in I. Let τ = σ1|∆{i,...,n}, and let q = k′|{i, . . . , n}. Using the notation
of §1.3.3, we have a morphism τ [q] ∈ |MapC[S](p(I ′), Z)|. Composing with η and with the counit map, we
obtain a point ψi[k] ∈ |MapC(p(I), Z)| = |FZ(I)|. Allowing k to vary, we obtain a continuous map

ψi : Cσ[i]→ |FZ(I)|.

The map αI is determined by the requirement that the diagrams

Cσ[i]
ψi

))RRRRRRRRRRRRRRR
� � // Cσ // H(I)

αI

��
|FZ(I)|

commute, for all σ and i as above. The uniqueness of αI follows from the observation that Cσ =
⋃

0≤i≤m Cσ[i]
(by construction). The existence follows readily by examining the relations in Definition 4.2.5.2. It is not
difficult to check that this construction is functorial in I. The following claim is somewhat less obvious:

Lemma 4.2.5.6. Let I ∈ I be an object. Then the map αI : H(I)→ |FZ(I)| is a homotopy equivalence.

Proof. For each σ as in Definition 4.2.5.2 and each i ≤ m, we observe that the composition

Cσ[i]→ H(I) αI→ |FZ(I)|

factors through Map|C[S]|(p(I), Z) (by construction). These maps are not strictly compatible with one
another, so the map αI does not itself factor through Map|C[S]|(p(I), Z). However, it is easy to see that
these maps are compatible when restricted to H ′(I), so we have a commutative diagram of topological spaces

H ′(I)� _

��

α′I // Map|C[S]|(p(I), Z)

��
H(I)

αI // |FZ(I)|.

The left vertical map is a homotopy equivalence by Lemma 4.2.5.5, and the right vertical map is a homotopy
equivalence by Theorem 1.1.5.12. Consequently, it will suffice to prove that α′I is a homotopy equivalence.

We observe that α′I factors as a composition

H ′(I) θ1→ |SqI/ ×S {Z}|Q•
θ2→ |Sp(I)/ ×S {Z}|Q•

θ3→ Map|C[S]|(p(I), Z).

We can show that θ1 is a homotopy equivalence using the the proof of Lemma 1.3.3.3. The map θ2 is a
homotopy equivalence because the projection SqI/ → Sp(I)/ is a trivial fibration of simplicial sets. Proposition
1.3.3.1 implies that θ3 is a homotopy equivalence. It follows that α′I is a homotopy equivalence, as desired.

To complete the proof of Lemma 4.2.4.3, it remainss to construct the natural transformation

βI : H(I)→ |GZ(I)|.

We will obtain βI as a composition

H(I)
β′I→ |GZ(I)|Q• → |GZ(I)|.

The second map is a homotopy equivalence (Proposition 1.3.2.8), so it will suffice to construct β′I and to
prove that β′I is a homotopy equivalence. We first construct an auxiliary space XI .
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Definition 4.2.5.7. For I ∈ I, the topological space XI is defined as follows:

(1) Let τ : ∆n → SqI/ fit in a commutative diagram

∆n

τ

��

∆n

��
SqI/

// S {Z}.? _oo

and let Dτ = {k : [n]→ [0, 1] : (k(n) = 1)} ⊆ [0, 1]n+1. Then there exists a continuous map

Dτ → XI

k 7→ τ [[k]].

(2) Let τ be as in (1), and let k, k′ ∈ Dτ be such that

(∃i > m)[k(i) = 1 ∧ (∀j ≤ i)[k(j) = k′(j)]].

Then τ [[k]] = τ [[k′]] ∈ XI .

(3) Let τ be as in (1), let k ∈ Dτ , and suppose that k(i) = 0 for some 0 ≤ i < n. Let τ ′ = diτ , and let
k′ ∈ Dτ ′ be obtained from k by omitting the ith value. Then

τ [[k]] = τ ′[[k′]] ∈ XI .

(4) The topological space XI is the quotient of the disjoint union
∐
τ Dτ obtained by imposing the relations

indicated in (2) and (3).

The argument of Proposition 1.3.3.1 shows that there is a canonical homotopy equivalence θ : XI →
|GZ(I)|Q• . We define the map β′I to be the composition of θ with a map β′′I : H(I)→ XI , which is uniquely
determined by the requirement that if σ is as Definition 4.2.5.2 and k ∈ Cσ, then

β′′I (σ[[k]]) = τ [[k′]] ∈ XI ,

where τ = σ|∆{m+1,...,n} and k′ is obtained by restricting k to the range {m + 1, . . . , n}. It is not difficult
to check that β′′I is well-defined and functorial in I. To show that it is a homotopy equivalence, we observe
that the restriction β′′I |H ′(I) is a homeomorphism and apply Lemma 4.2.5.5.
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4.3 Kan Extensions

Let C and I be ordinary categories. There is an obvious “diagonal” functor δ : C → CI, which carries an
object C ∈ C to the constant diagram I→ C taking the value C. If C admits small colimits, then the functor
δ has a left adjoint CI → C. This left adjoint admits an explicit description: it carries an arbitrary diagram
f : I → C to the colimit lim−→(f). Consequently, we can think of the theory of colimits as the study of left
adjoints to diagonal functors.

More generally, if one is given a functor i : I → I′ between diagram categories, then composition with i

induces a functor i∗ : CI′ → CI. Assuming that C has a sufficient supply of colimits, one can construct a left
adjoint to i∗. We then refer to this left adjoint as left Kan extension along i.

In this section, we will study the ∞-categorical analogue of the theory of left Kan extensions. In the
extreme case where I′ is the one-object category ∗, this theory simply reduces to the theory of colimits
introduced in §1.2.13. Our primary interest will be at the opposite extreme, when i is a fully faithful
embedding; this is the subject of §4.3.2. We will treat the general case in §4.3.3.

With a view toward later applications, we will treat not only the theory of absolute left Kan extensions,
but also a relative notion which works over a base simplicial set S. The most basic example is the case of a
relative colimit which we study in §4.3.1.

4.3.1 Relative Colimits

In §1.2.13, we introduced the notions of limit and colimit for a diagram p : K → C in an ∞-category C. For
many applications, it is convenient to have a relative version of these notions, which makes reference not to
an ∞-category C but to an arbitrary inner fibration of simplicial sets.

Definition 4.3.1.1. Let f : C→ D be an inner fibration of simplicial sets, let p : K. → C be diagram, and
let p = p|K. We will say that p is an f-colimit of p if the map

Cp/ → Cp/×Dfp/
Dfp/

is a trivial fibration of simplicial sets. In this case, we will also say that p is an f-colimit diagram.

Remark 4.3.1.2. Let f : C → D and p : K. → C be as in Definition 4.3.1.1. Then p is an f -colimit of
p = p|K if and only if the map

φ : Cp/ → Cp/×Dfp/
Dfp/

is a categorical equivalence. The “only if” direction is clear. The converse follows from Proposition 2.1.2.2
(which implies that φ is a left fibration), Proposition 3.3.2.8 (which implies that φ is a categorical fibration),
and the fact that a categorical fibration which is a categorical equivalence is a trivial Kan fibration.

Observe that Proposition 2.1.2.2 also implies that the map

Dfp/ → Dfp/

is a left fibration. Using Propositions 3.3.2.3 and 3.3.2.8, we conclude that Cp/×Dfp/
Dfp/ is a homotopy

fiber product of Cp/ with Dfp/ over Dfp/ (with respect to the Joyal model structure on Set∆). Consequently,
we deduce that p is an f -colimit diagram if and only if the diagram of simplicial sets

Cp/ //

��

Dfp/

��
Cp/ // Dfp/

is homotopy Cartesian.
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Example 4.3.1.3. Let C be an ∞-category and f : C→ ∗ the projection of C to a point. Then a diagram
p : K. → C is an f -colimit if and only if it is a colimit in the sense of Definition 1.2.13.4.

Example 4.3.1.4. Let f : C→ D be an inner fibration of simplicial sets, and let e : ∆1 = (∆0). → C be an
edge of C. Then e is an f -colimit if and only if it is f -coCartesian.

The following basic stability properties follow immediately from the definition:

Proposition 4.3.1.5. (1) Let f : C → D be a trivial fibration of simplicial sets. Then every diagram
p : K. → C is an f-colimit.

(2) Let f : C → D and g : D → E be inner fibrations of simplicial sets, and let p : K. → C be a diagram.
Suppose that f ◦ p is a g-colimit. Then p is an f-colimit if and only if p is a g ◦ f-colimit.

(3) Let f : C → D be an inner fibration of ∞-categories, and let p, q : K. → C be diagrams which are
equivalent when viewed as objects of the ∞-category Fun(K.,C). Then p is an f-colimit if and only if
q is an f-colimit.

(4) Suppose given a Cartesian diagram

C′

f ′

��

g // C

f

��
D′ // D

of simplicial sets, where f (and therefore also f ′) is an inner fibration. Let p : K. → C′ be a diagram.
If g ◦ p is an f-colimit, then p is an f ′-colimit.

Proposition 4.3.1.6. Suppose give a commutative diagram of ∞-categories

C
f //

p

��

C′

p′

��
D // D′

where the horizontal arrows are categorical equivalences and the vertical arrows are inner fibrations. Let
q : K. → C be a diagram and let q = q|K Then q is a p-colimit of q if and only if f ◦ q is a p′-colimit of
f ◦ q.
Proof. Consider the diagram

Cq/ //

��

C′fq/

��
Cq/×Dpq/

Dpq/ // C′fq/×D′
p′fq/

D′
p′fq/

.

According to Remark 4.3.1.2, it will suffice to show that the left vertical map is a categorical equivalence
if and only if the right vertical map is a categorical equivalence. For this, it suffices to show that both of
the horizontal maps are categorical equivalences. Proposition 1.2.9.3 implies that the maps Cq/ → C′fq/,
Cq/ → C′fq/, Dpq/ → D′

p′fq/, and Dpq/ → D′
p′fq/ are categorical equivalences. It will therefore suffice to

show that the diagrams

Cq/×Dpq/
Dpq/ //

��

Cq/

��

C′fq/×D′
p′fq/

D′
p′fq/

//

��

C′fq/

��
Dpq/

ψ // Dpq/ D′
p′fq/

ψ′ // D′
p′fq/
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are homotopy Cartesian (with respect to the Joyal model structure). This follows from Proposition 3.3.2.3,
since ψ and ψ′ are coCartesian fibrations.

The next pair of results can be regarded as a generalization of Proposition 4.1.1.8. They assert that,
when computing relative colimits, we are free to replace any diagram by a cofinal subdiagram.

Proposition 4.3.1.7. Let p : C→ D be an inner fibration of ∞-categories, let i : A→ B be a cofinal map,
and let q : B. → C be a diagram. Then q is a p-colimit if and only if q ◦ i. is a p-colimit.

Proof. Recall (Remark 4.3.1.2) that q is a relative colimit diagram if and only if the diagram

Cq/ //

��

Cq/

��
Dq0/

// Dq0/

is homotopy Cartesian with respect to the Joyal model structure. Since i and i. are both cofinal, this is
equivalent to the assertion that the diagram

Cqi./ //

��

Cqi/

��
Dq0i

./ // Dq0i/

is homotopy Cartesian, which (by Remark 4.3.1.2) is equivalent to the assertion that q◦i. is a relative colimit
diagram.

Proposition 4.3.1.8. Let p : C→ D be a coCartesian fibration of ∞-categories, let i : A→ B be a cofinal
map, and let

B
q //

��

C

p

��
B.

q0 // D

be a diagram. Suppose that q ◦ i has a relative colimit lifting q0 ◦ i.. Then q has a relative colimit lifting q0.

Proof. Let q0 = q0|B. We have a commutative diagram

Cq/
f //

��

Cqi/×Dpqi/
Dpq/ //

��

Cqi/

��
Dq0/

// Dq0/
// Dq0i/

where the horizontal maps are categorical equivalences (since i is cofinal, and by Proposition 3.3.2.3). Propo-
sition 2.3.3.2 implies that the vertical maps are coCartesian fibrations, and that f preserves coCartesian
edges. Applying Proposition 3.3.2.5 to f , we deduce that the map φ : Cq/×Dq0/

{q0} → Cqi/×Dq0i/
{q0i.}

is a categorical equivalence. Since φ is essentially surjective, we conclude that there exists an extension
q : B. → C of q which covers q0, such that q ◦ i. is a p-colimit diagram. We now apply Proposition 4.3.1.7
to conclude that q is itself a p-colimit diagram.

Let p : X → S be a coCartesian fibration. The following results will allow us to reduce the theory of
p-colimits to the theory of ordinary colimits in the fibers of p.
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Proposition 4.3.1.9. Let p : X → S be a coCartesian fibration of ∞-categories, K a simplicial set, and
h : ∆1 ×K. → X a natural transformation from h0 = h|{0} ×K. to h1 = h|{1} ×K.. Suppose that:

(1) For every vertex x of K., the restriction h|∆1 × {x} is a p-coCartesian edge of X.

(2) The composition

∆1 × {∞} ⊆ ∆1 ×K. h→ X
p→ S

is a degenerate edge of S, where ∞ denotes the cone point of K..

Then h0 is a p-colimit if and only if h1 is a p-colimit.

Proof. Let h = h|∆1 ×K, h0 = h|{0} ×K, and h1 = h|{1} ×K. Consider the diagram

Xh0/

��

Xh/
φoo //

��

Xh1/

��
Xh0/ ×Sph0/

Sph0
Xh/ ×Sph/

Sph/ //ψoo Xh1/ ×Sph1/
Sph1/

According to Remark 4.3.1.2, it will suffice to show that the left vertical map is a categorical equivalence
if and only if the right vertical map is a categorical equivalence. For this, it will suffice to show that
each of the horizontal arrows is a categorical equivalence. Because the inclusions {1} ×K ⊆ ∆1 ×K and
{1} × K. ⊆ ∆1 × K. are right anodyne, the horizontal maps on the right are trivial fibrations. We are
therefore reduced to proving that φ and ψ are categorical equivalences.

Let f : x → y denote the edge of X obtained by restricting h to the cone point of K.. The map φ fits
into a commutative diagram

Xh/
φ //

��

Xh0/

��
Xf/ // Xx/.

Since the inclusion of the cone point into K. is right anodyne, the vertical arrows are trivial fibrations.
Moreover, hypotheses (1) and (2) guarantee that f is an equivalence in X, so that the map Xf/ → Xx/ is a
trivial fibration. This proves that φ is a categorical equivalence.

The map ψ admits a factorization

Xh/ ×Sph/
Sph/

ψ′→ Xh0/ ×Sph0/
Sph/

ψ′′→ Xh0 ×Sph0/
Sph0/

.

To complete the proof, it will suffice to show that ψ′ and ψ′′ are trivial fibrations of simplicial sets. We first
observe that ψ′ is a pullback of the map

Xh/ → Xh0/ ×Sph0/
Sph/,

which is a trivial fibration (Proposition 3.1.1.12). The map ψ′′ is a pullback of the left fibration ψ′′0 : Sph/ →
Sph0/

. It therefore suffices to show that ψ′′0 is a categorical equivalence. To prove this, we consider the
diagram

Sph/
ψ′′0 //

��

Sph0/

��
Sp(f)/

ψ′′1 // Sp(x)/

As above, we observe that the vertical arrows are trivial fibrations, and ψ′′1 is a trivial fibration because the
morphism p(f) is an equivalence in S. It follows that ψ′′0 is a categorical equivalence, as desired.
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Proposition 4.3.1.10. Let q : X → S be a coCartesian fibration of ∞-categories, let s be an object of S,
and let p : K. → Xs be a diagram. The following conditions are equivalent:

(1) The map p is a q-colimit diagram.

(2) For every morphism e : s → s′ in S, the associated functor e! : Xs → Xs′ has the property that e! ◦ p
is a colimit diagram in the ∞-category Xs′ .

Proof. Let e : s→ s′ be an morphism of S, and choose a coCartesian transformation α : K.×∆1 → X from
p to p′, which covers the composition

K. ×∆1 → ∆1 e→ S.

Let α = α|K ×∆1 and p′ = p′|K.
Let t denote the vertex of Sqα/ corresponding to the map

(K. ×∆1). → (∆1). → ∆1 e→ S,

let t0 denote the image of t in Sqp/ and t1 its image in Sqp′/. Define t, t0, and t1 analogously. Consider the
diagram

Xp/ ×Sqp/
{t0}

h0

��

Xα/ ×Sqα/
{t}oo //

h

��

Xp′/ ×Sqp′/ {t1}

h1

��
Xp/ ×Sqp/

{t0} Xα/ ×Sqα/
{t} //oo Xp′/ ×Sqp′/ {t1}.

Note that the vertical maps are left fibrations (Proposition 2.1.2.2). Since the inclusion K.×{1} ⊆ K.×∆1

is right anodyne, the upper right horizontal map is a trivial fibration. Similarly, the lower right horizontal
map is a trivial fibration. Since α is a coCartesian transformation, we deduce that the left horizontal maps
are also trivial fibrations. Condition (2) is equivalent to the assertion that h1 is a trivial fibration (for
each edge e : s → s′ of S). Since h1 is a left fibration, and therefore a categorical fibration (Proposition
3.3.2.8), this is equivalent to the assertion that h1 is a categorical equivalence. Chasing through the diagram,
we deduce that (2) is equivalent to the assertion that h0 is a categorical equivalence, which (by the same
argument) is equivalent to the assertion that h0 is a trivial fibration.

Consider the left fibration φ : Xp/ → Xp/ ×Sqp/
Sqp/. Using Lemma 2.1.3.3, we deduce that φ is a trivial

fibration if and only if, for every object t′0 ∈ Sqp/, the map of fibers

φt′0 : Xp/ ×Sqp/
{t′0} → Xp/ ×Sqp/

{t′0}

has contractible fibers, where t′0 denotes the image of t′0 in Sqp/. It follows that (1)⇒ (2). For the converse,
it suffices to prove that every object t′0 ∈ Sqp/ is equivalent to the object t0 determined by the edge e

corresponding to the image of t′0 under the projection ψ : Sqp/ → Ss/. We now observe that t0 and t′0 lie in
the same fiber of ψ, and that ψ is a trivial Kan fibration (since the inclusion of the cone point into K. is
right anodyne).

Corollary 4.3.1.11. Let p : X → S be a coCartesian fibration of ∞-categories, and let K be a simplicial
set. Suppose that:

(1) For each vertex s of S, the fiber Xs = X ×S {s} admits colimits for all diagrams indexed by K.

(2) For each edge f : s→ s′, the associated functor Xs → Xs′ preserves colimits of K-indexed diagrams.

Then for every diagram

K
q //

� _

��

X

p

��
K.

f //

q
=={

{
{

{
S
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there exists a map q as indicated, which is a p-colimit.

Proof. Consider the map K ×∆1 → K. which is the identity on K × {0} and carries K × {1} to the cone
point of K.. Let F denote the composition

K ×∆1 → K. f→ S,

and let Q : K ×∆1 → X be a coCartesian lifting of F to X, so that Q is a natural transformation from q to
a map q′ : K → Xs, where s is the image under f of the cone point of K.. In view of assumption (1), there
exists a map q′ : K. → Xs which is a colimit of q′. Assumption (2) and Proposition 4.3.1.10 guarantee that
q′ is also a p-colimit diagram, when regarded as a map from K. to X.

We have a commutative diagram

(K ×∆1)
∐
K×{1}(K

. × {1}) (Q,q′) //
� _

��

X

p

��
(K ×∆1).

r

44iiiiiiiiii
// S.

The left vertical map is an inner fibration, so there exists a morphism r as indicated, rendering the diagram
commutative. We now consider the map K.×∆1 → (K ×∆1). which is the identity on K ×∆1 and carries
the other vertices of K. ×∆1 to the cone point of (K ×∆1).. Let Q denote the composition

K. ×∆1 → (K ×∆1). r→ X,

and let q = Q|K. × {0}. Then Q can be regarded as a natural transformation q → q′ of diagrams K. → X.
Since q′ is a p-colimit diagram, Proposition 4.3.1.9 implies that q is a p-colimit diagram as well.

Proposition 4.3.1.12. Let p : X → S be a coCartesian fibration of ∞-categories, and let q : K. → X be a
diagram. Assume that:

(1) The map q carries each edge of K to a p-coCartesian edge of K.

(2) The simplicial set K is weakly contractible.

Then q is a p-colimit diagram if and only if it carries every edge of K. to a p-coCartesian edge of X.

Proof. Let s denote the image under p ◦ q of the cone point of K.. Consider the map K.×∆1 → K. which
is the identity on K. × {0} and collapses K. × {1} to the cone point of K.. Let h denote the composition

K. ×∆1 → K. q→ X
p→ S,

which we regard as a natural transformation from p ◦ q to the constant map with value s. Let H : q → q′

be a coCartesian transformation from q to a diagram q′ : K. → Xs. Using Proposition 2.3.1.7, we conclude
that q′ carries each edge of K to a p-coCartesian edge of X, which is therefore an equivalence in Xs.

Let us now suppose that q carries every edge of K. to a p-coCartesian edge of X. Arguing as above,
we conclude that q′ carries each edge of K. to an equivalence in Xs. Let e : s → s′ be an edge of S and
e! : Xs → Xs′ an associated functor. The composition

K. q′→ Xs
e!→ Xs′

carries each edge of K. to an equivalence in Xs, and is therefore a colimit diagram in Xs′ (Corollary 4.4.4.10).
Proposition 4.3.1.10 implies that q′ is a p-colimit diagram, so that Proposition 4.3.1.9 implies that q is a
p-colimit diagram as well.
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For the converse, let us suppose that q is a p-colimit diagram. Applying Proposition 4.3.1.9, we conclude
that q′ is a p-colimit diagram. In particular, q′ is a colimit diagram in the ∞-category Xs. Applying
Corollary 4.4.4.10, we conclude that q′ carries each edge of K. to an equivalence in Xs. Now consider an
arbitrary edge f : x → y of K.. If f belongs to K, then q(f) is p-coCartesian by assumption. Otherwise,
we may suppose that y is the cone point of K. The map H gives rise to a diagram

q(x)
q(f) //

φ

��

q(y)

φ′

��
q′(x)

q′(f) // q′(y)

in the ∞-category X ×S ∆1. Here q′(f) and φ′ are equivalences in Xs, so that q(f) and φ are equivalent as
morphisms ∆1 → X×S ∆1. Since φ is p-coCartesian, we conclude that q(f) is p-coCartesian, as desired.

Lemma 4.3.1.13. Let p : C → D be an inner fibration of ∞-categories, let C ∈ C be an object, and let
D = p(C). Then C is a p-initial object of C if and only if (C, idD) is an initial object of C×D DD/.

Proof. We have a commutative diagram

CC/×DD/
DidD /

ψ //

φ

��

CC/

φ′

��
C×D DD/ C×D DD/

where the vertical arrows are left fibrations, and therefore categorical fibrations (Proposition 3.3.2.8). We
wish to show that φ is a trivial fibration if and only if φ′ is a trivial fibration. This is equivalent to proving
that φ is a categorical equivalence if and only if φ′ is a categorical equivalence. For this, it will suffice to
show that ψ is a categorical equivalence. But ψ is a pullback of the trivial fibration DidD / → DD/, and
therefore itself a trivial fibration.

Proposition 4.3.1.14. Suppose given a diagram of ∞-categories

C
q

��>
>>

>>
>>

p // D
r

����
��

��
�

E

where p and r are inner fibrations, q is a Cartesian fibration, and p carries q-Cartesian morphisms to
r-Cartesian morphisms.

Let C ∈ C be an object, D = p(C), and E = q(C). Let CE = C×E{E}, DE = D×E{E}, and pE : CE →
DE the induced map. Suppose that C is a pE-initial object of CE. Then C is a p-initial object of C.

Proof. Our hypothesis, together with Lemma 4.3.1.13, implies that (C, idD) is an initial object of

CE ×DE
(DE)D/ ' (C×D DD/)×EE/

{idE}.

We will prove that the map φ : C×D DD/ → EE/ is a Cartesian fibration. Since idE is an initial object of
EE/, Lemma 2.3.4.7 will allow us to conclude that (C, idD) is an initial object of C×D DD/. We can then
conclude the proof by applying Lemma 4.3.1.13 once more.

It remains to prove that φ is a Cartesian fibration. Let us say that a morphism of C×D DD/ is special
if its image in C is q-Cartesian. Since φ is obviously an inner fibration, it will suffice to prove the following
assertions:
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(1) Given an object X of C×D DD/ and a morphism f : Y → φ(X) in EE/, we can write f = φ(f) where
f is a special morphism of C×D DD/.

(2) Every special morphism in C×D DD/ is φ-Cartesian.

To prove (1), we first identify X with a pair consisting of an object C ′′ ∈ C and a morphism D → p(C ′′)
in D, and f with a 2-simplex σ : ∆2 → E which we depict as a diagram:

E′

g

""F
FFFFFFF

E

??��������
// q(C ′′).

Since q is a Cartesian fibration, the morphism g can be written as q(g) for some morphism g : C ′ → C ′′ in
C. We now have a diagram

p(C ′)
p(g)

##H
HH

HH
HH

HH

D // p(C ′′)

in D. Since p carries q-Cartesian morphisms to r-Cartesian morphisms, we conclude that p(g) is r-Cartesian,
so that the above diagram can be completed to a 2-simplex σ : ∆2 → D such that r(σ) = σ.

We now prove (2). Suppose n ≥ 2, and we have a commutative diagram

Λnn
σ0 //

� _

��

C×D DD/

��
∆n //

σ

::u
u

u
u

u
EE/

where σ0 carries the final edge of Λnn to a special morphism of C×D DD/. We wish to prove the existence of
the morphism σ indicated in the diagram. We first let τ0 denote the composite map

Λnn
σ0→ C×D DD/ → C .

Consider the diagram
Λnn

τ0 //
� _

��

C

q

��
∆n //

τ

==|
|

|
|

E .

Since τ0(∆{n−1,n}) is q-Cartesian, there exists an extension τ as indicated in the diagram. The morphisms
τ and σ0 together determine a map θ0 which fits into a diagram

Λn+1
n+1

θ0 //
� _

��

D

r

��
∆n+1 //

θ

==z
z

z
z

z
E .

To complete the proof, it suffices to prove the existence of the indicated arrow θ. This follows from the fact
that θ0(∆{n,n+1}) = (p ◦ τ0)(∆{n−1,n}) is an r-Cartesian morphism of D.

Proposition 4.3.1.14 immediately implies the following slightly stronger statement:

206



Corollary 4.3.1.15. Suppose given a diagram of ∞-categories

C
q

��>
>>

>>
>>

p // D
r

����
��

��
�

E

where q and r are Cartesian fibrations, p is an inner fibration, and p carries q-Cartesian morphisms to
r-Cartesian morphisms. Let f : K. → C be a diagram such that q ◦ f is constant at a vertex E ∈ E. Then f
is a p-colimit diagram if and only if f is a colimit diagram relative to pE : CE → DE.

Proof. Let f = f |K. The “only if” direction is obvious, and the “if” direction follows by applying Proposition
4.3.1.14 to the diagram

Cf/ //

""E
EE

EE
EE

E
Dpf/

{{xxxxxxxx

Eqf/ .

4.3.2 Kan Extensions along Inclusions

In this section, we introduce the theory of left Kan extensions. Let F : C → D be a functor between ∞-
categories, and let C0 be a full subcategory of C. Roughly speaking, the functor F is a left Kan extension
of its restriction F0 = F |C0 if the values of F are as “small” as possible, given the values of F0. In order to
make this precise, we need to introduce a bit of terminology.

Notation 4.3.2.1. Let C be an ∞-category, and let C0 be a full subcategory. If p : K → C is a diagram, we
let C0

/p denote the fiber product C/p×C C0. In particular, if C is an object of C, then C0
/C denotes the full

subcategory of C/C spanned by the morphisms C ′ → C where C ′ ∈ C0.

Definition 4.3.2.2. Suppose given a commutative diagram of ∞-categories

C0
� _

��

F0 // D

p

��
C //

F

>>}}}}}}}}}
D′,

where p is an inner fibration and the left vertical map is the inclusion of a full subcategory C0 ⊆ C.
We will say that F is a p-left Kan extension of F0 at C ∈ C if the induced diagram

(C0
/C)
� _

��

FC // D

p

��
(C0
/C).

=={{{{{{{{{
// D′

exhibits F (C) as a p-colimit of FC .
We will say that F is a p-left Kan extension of F0 if it is a p-left Kan extension of F0 at C, for every

object C ∈ C.
In the case where D′ = ∆0, we will omit mention of p simply say that F is a left Kan extension of F0 if

the above condition is satisfied.

207



Remark 4.3.2.3. Consider a diagram

C0
� _

��

F0 // D

p

��
C //

F

>>}}}}}}}}
D′

as in Definition 4.3.2.2. If C is an object of C0, then the functor FC : (C0
/C). → D is automatically a

p-colimit. To see this, we observe that idC : C → C is a final object of C0
/C . Consequently, the inclusion

{idC} → (C0
/C) is cofinal and we are reduced to proving that F (idC) : ∆1 → D is a colimit of its restriction

to {0}, which is obvious.

Example 4.3.2.4. Consider a diagram

C� _

��

q // D

p

��
C. //

q
=={{{{{{{{
D′ .

The map q is a p-left Kan extension of q if and only if it is a p-colimit of q. The “only if” direction is clear
from the definition, and the converse follows immediately from Remark 4.3.2.3.

We first note a few basic stability properties for the class of left Kan extensions.

Lemma 4.3.2.5. Consider a commutative diagram of ∞-categories

C0
� _

��

F0 // D

p

��
C //

F

>>}}}}}}}}
D′

as in Definition 4.3.2.2. Let C and C ′ equivalent objects of C. Then F is a p-left Kan extension of F0 at C
if and only if F is a p-left Kan extension of F0 at C ′.

Proof. Let f : C → C ′ be an equivalence, so that the restriction maps

C/C ← C/f → C/C′

are trivial fibrations of simplicial sets. Let C0
/f = C0×C C/f , so that we have trivial fibrations

C0
/C

g← C0
/f

g′→ C0
/C′ .

Consider the associated diagram
(C0
/C).

FC

!!C
CC

CC
CC

CC

(C0
/f )

.

G

;;vvvvvvvvv

G′

##H
HH

HH
HH

HH
D

(C0
/C′)

.

FC′

=={{{{{{{{{
.

This diagram does not commute, but the functors FC ◦ G and FC′ ◦ G′ are equivalent in the ∞-category
D(C0

/f ).

. Consequently, FC ◦G is a p-colimit diagram if and only if FC′ ◦G′ is a p-colimit diagram (Proposition
4.3.1.5). Since g and g′ are cofinal, we conclude that FC is a p-colimit diagram if and only if FC′ is a p-colimit
diagram (Proposition 4.3.1.7).
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Lemma 4.3.2.6. (1) Let C be an ∞-category, p : D→ D′ an inner fibration of ∞-categories, and F, F ′ :
C → D be two functors which are equivalent in DC. Let C0 be a full subcategory of C. Then F is a
p-left Kan extension of F |C0 if and only if F ′ is a p-left Kan extension of F ′|C0.

(2) Suppose given a commutative diagram of ∞-categories

C0

G0

��

// C
F //

G

��

D

��

p // E

��
C′

0 // C′
F ′ // D′ p′ // E′

be a commutative diagram of∞-categories, where the left horizontal maps are inclusions of full subcate-
gories, the right horizontal maps are inner fibrations, and the vertical maps are categorical equivalences.
Then F is a p-left Kan extension of F |C0 if and only if F ′ is a p′-left Kan extension of F ′|C′0.

Proof. Assertion (1) is follows immediately from Proposition 4.3.1.5. Let us prove (2). Choose an object
C ∈ C, and consider the diagram

(C0
/C). //

��

D

��

p // E

��
(C′0/G(C))

. // D′ p′ // E′

We claim that the upper left horizontal map is a p-colimit diagram if and only if the bottom left horizontal
map is a p′-colimit diagram. In view of Proposition 4.3.1.6, it will suffice to show that each of the vertical
maps is an equivalence of ∞-categories. For the middle and right vertical maps, this holds by assumption.
To prove that the left vertical map is a categorical equivalence, we consider the diagram

C0
/C

//

��

C′
0
/G(C)

��
C/C // C′/G(C) .

The bottom horizontal map is a categorical equivalence by Proposition 1.2.9.3, and the vertical maps are
inclusions of full subcategories. It follows that the top horizontal map is fully faithful, and its essential image
consists of those morphisms C ′ → G(C) where C ′ is equivalent (in C′) to the image of an object of C0. Since
G0 is essentially surjective, this is the whole of C′

0
/G(C).

It follows that if F ′ is a p′-left Kan extension of F ′|C′0, then F is a p-left Kan extension of F |C0.
Conversely, if F is a p-left Kan extension of F |C0, then F ′ is a p′-left Kan extension of F ′|C′0 at G(C), for
every object C ∈ C. Since G is essentially surjective, Lemma 4.3.2.5 implies that F ′ is a p′-left Kan extension
of F ′|C′0 at every object of C′. This completes the proof of (2).

Lemma 4.3.2.7. Suppose given a diagram of ∞-categories

C0
� _

��

F0 // D

p

��
C //

F

>>}}}}}}}}
D′

as in Definition 4.3.2.2, where F is a left Kan extension of F0 relative to p. Then the induced map

DF/ → D′
pF/×D′

pF0/
DF0/
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is a trivial fibration of simplicial sets. In particular, we may identify p-colimits of F with p-colimits of F0.

Proof. Using Lemma 4.3.2.6, we may reduce to the case where C is minimal. Let us call a simplicial subset
E ⊆ C complete if it has the following property: for any simplex σ : ∆n → C, if σ|∆{0,...,i} factors through
C0 and σ|∆{i+1,...,n} factors through E, then σ factors through E. Note that if E is complete, then C0 ⊆ E.
We next define a transfinite sequence of complete simplicial subsets of C

C0 ⊆ C1 ⊆ . . .

as follows: if λ is a limit ordinal, we let Cλ =
⋃
α<λ Cα. If Cα = C, then we set Cα+1 = C. Otherwise, choose

some simplex σ : ∆n → C which does not belong to Cα, where the dimension n of σ is chosen as small as
possible, and let Cα+1 be the smallest complete simplicial subset of C containing Cα and the simplex σ.

Let Fα = F |Cα. We will prove that for every β ≤ α the projection

φα,β : DFα/ → D′
pFα/×D′

pFβ/
DFβ/

is a trivial fibration of simplicial sets. Taking α� β = 0, we have Cα = C and the proof will be complete.
Our proof proceeds by induction on α. If α = β, then φα,β is an isomorphism and there is nothing to

prove. If α > β is a limit ordinal, then the inductive hypothesis implies that φα,β is the inverse limit of a
transfinite tower of trivial fibrations, and therefore a trivial fibration. It therefore suffices to prove that if
φα,β is a trivial fibration, then φα+1,β is a trivial fibration. We observe that φα+1,β = φ′α,β ◦ φα+1,α, where
φ′α,β is a pullback of φα,β and therefore a trivial fibration by the inductive hypothesis. Consequently, it will
suffice to prove that φα+1,α is a trivial fibration. The result is obvious if Cα+1 = Cα, so we may assume
without loss of generality that Cα+1 is the smallest complete simplicial subset of C containing Cα together
with a simplex σ : ∆n → C, where σ does not belong to Cα. Since n is chosen to be minimal, we may suppose
that σ is nondegenerate, and that the boundary of σ already belongs to Cα.

Form a pushout diagram
C0
/σ ? ∂∆n //

��

Cα

��
C0
/σ ?∆

n // C′ .

By construction there is an induced map C′ → C, which is easily shown to be a monomorphism of simplicial
sets; we may therefore identify E′ with its image in C. Since C is minimal, we can apply Proposition 2.2.3.9
to deduce that C′ is complete, so that C′ = Cα+1. Let G denote the composition

C0
/σ ?∆

n → C
F→ D

and G∂ = G|C0
/σ ? ∂∆n. It follows that φα+1,α is a pullback of the induced map

ψ : DG/ → D′
pG/×D′

pG∂ /
DG∂/ .

To complete the proof, it will suffice to show that ψ is a trivial fibration of simplicial sets.
Let G0 = G|C0

/σ. Let E = DG0/, E′ = D′
p◦G0/, and let q : E → E′ be the induced map. We can identify

G with a map σ′ : ∆n → E. Let σ′0 = σ′| ∂∆n. Then we wish to prove that the map

ψ′ : Eσ′/ → E′qσ′/×E′
qσ′0/

Eqσ′0/

is a trivial fibration. Let C = σ(0).
The projection C0

/σ → C0
/C is a trivial fibration of simplicial sets, and therefore cofinal. Since F is a p-left

Kan extension of F0 at C, we conclude that σ′(0) is a q-initial object of E.
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To prove that ψ is a trivial fibration, it will suffice to prove that ψ has the right lifting property with
respect to the inclusion ∂∆m ⊆ ∆m, for each m ≥ 0. Unwinding the definitions, this amounts to the
existence of a dotted arrow as indicated in the diagram

∂∆n+m+1 s //
� _

��

E

q

��
∆n+m+1.

::u
u

u
u

u
// E′

However, the map s carries the initial vertex of ∆n+m+1 to a vertex of E which is q-initial, so that the desired
extension can be found.

Proposition 4.3.2.8. Let F : C → D be a functor between ∞-categories, p : D → D′ an inner fibration
of ∞-categories, and C0 ⊆ C1 ⊆ C full subcategories. Suppose that F |C1 is a p-left Kan extension of F |C0.
Then F is a p-left Kan extension of F |C1 if and only if F is a p-left Kan extension of F |C0.

Proof. Let C be an object of C; we will show that F is a p-left Kan extension of F |C0 at C if and only if F
is a p-left Kan extension of F |C1 at C. Consider the composition

F 0
C : (C0

/C). ⊆ (C1
/C).

F 1
C→ D .

We wish to show that F 0
C is a p-colimit diagram if and only if F 1

C is a p-colimit diagram. According to
Lemma 4.3.2.7, it will suffice to show that F 1

C |C
1
/C is a left Kan extension of F 0

C . Let f : C ′ → C be an
object of C1

/C . We wish to show that the composite map

(C0
/f )

. → (C0
/C′)

. F
0
C′→ D

is a p-colimit diagram. Since the projection C0
/f → C0

/C′ is cofinal (in fact, a trivial fibration), it will suffice
to show that F 0

C′ is a p-colimit diagram (Proposition 4.3.1.7). This follows from our hypothesis that F |C1

is a p-left Kan extension of F |C0.

Proposition 4.3.2.9. Let F : C×C′ → D be a functor between ∞-categories, p : D→ D′ an inner fibration
of ∞-categories, and C0 ⊆ C a full subcategory. The following conditions are equivalent:

(1) The functor F is a p-left Kan extension of F |C0×C′.

(2) For each object C ′ ∈ C′, the induced functor FC′ : C×{C ′} → D is a p-left Kan extension of
FC′ |C0×{C ′}.

Proof. It suffices to show that F is a p-left Kan extension of F |C0×C′ at an object (C,C ′) ∈ C×C′ if
and only if FC′ is a p-left Kan extension of FD|C0×{D} at C. This follows from the observation that the
inclusion C0

/C ×{idC′} ⊆ C0
/C ×C′/C′ is cofinal (because idC′ is a final object of C′/C′).

Lemma 4.3.2.10. Let m ≥ 0, n ≥ 1 be integers, and let

∂∆m ×∆n)
∐
∂∆m×∂∆n(∆m × ∂∆n)

� _

��

f0 // X

p

��
∆m ×∆n //

f

33hhhhhhhhhhhhh
S

be a diagram of simplicial sets, where p is an inner fibration and f0(0, 0) is a p-initial vertex of X. Then
there exists a morphism f : ∆m ×∆n → X rendering the diagram commutative.
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Proof. Choose a sequence of simplicial sets

(∂∆m ×∆n)
∐

∂∆m×∂∆n

(∆m × ∂∆n) = Y (0) ⊆ . . . ⊆ Y (k) = ∆m ×∆n,

where each Y (i + 1) is obtained from Y (i) by adjoining a single nondegenerate simplex whose boundary
already lies in Y (i). We prove by induction on i that f0 can be extended to a map fi such that the diagram

Y (i)� _

��

fi // X

p

��
∆m ×∆n // S

is commutative. Having done so, we can then complete the proof by choosing i = k.
If i = 0, there is nothing to prove. Let us therefore suppose that fi has been constructed, and consider

the problem of constructing fi+1 which extends fi. This is equivalent to the lifting problem

∂∆r
� _

��

σ0 // X

p

��
∆r

σ

<<y
y

y
y

// S.

It now suffices to observe that where r > 0 and σ0(0) = f0(0, 0) is a p-initial vertex of X (since every simplex
of ∆m ×∆n which violates one of these conditions already belongs to Y (0) ).

Lemma 4.3.2.11. Suppose given a diagram of simplicial sets

X
p //

��@
@@

@@
@@

Y

��~~
~~

~~
~

S,

where p is an inner fibration. Let K be a simplicial set, let qS ∈ MapS(K×S,X), and let q′S = p ◦ qS. Then
the induced map

XqS/ → Y qS/

is an inner fibration (where the above simplicial sets are defined as in §4.2.2).

Proof. Unwinding the definitions, we see that every lifting problem

A� _

i

��

// XqS/

��
B //

=={
{

{
{

Y qS/

is equivalent to a lifting problem

(A× (K �∆0))
∐
A×K(B ×K) //

� _

i′

��

X

p

��
B × (K �∆0)

55llllllll
// Y.

We wish to show that this lifting problem has a solution, provided that i is inner anodyne. Since p is an
inner fibration, it will suffice to prove that i′ is inner anodyne, which follows from Corollary 2.2.2.4.
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Lemma 4.3.2.12. Consider a diagram of ∞-categories

C→ D′ p← D

where p is an inner fibration. Let C0 ⊆ C be a full subcategory.
Suppose given n > 0 and a commutative diagram

∂∆n
� _

��

f0 // MapD′(C,D)

��
∆n

g //

f

88qqqqqq
MapD′(C0,D)

with the property that the functor F : C → D, determined by evaluating f0 at the vertex {0} ⊆ ∂∆n, is a
p-left Kan extension of F |C0. Then there exists a dotted arrow f rendering the diagram commutative.

Proof. The proof uses the same strategy as that of Lemma 4.3.2.7. Using Lemma 4.3.2.6 and Proposition
A.2.4.1, we may replace C by a minimal model and thereby assume that C is minimal. As in the proof of
Lemma 4.3.2.7, let us call a simplicial subset E ⊆ C complete if it has the following property: for any simplex
σ : ∆n → C, if σ|∆{0,...,i} factors through C0 and σ|∆{i+1,...,n} factors through E, then σ factors through E.
Let P denote the partially ordered set of pairs (E, fE), where E ⊆ C is complete and fE is a map rendering
commutative the diagram

∂∆n
� _

��

f0 // MapD′(C,D)

��
∆n

fE // MapD′(E,D)

��
∆n

g // MapD′(C0,D).

We partially order P as follows: (E, fE) ≤ (E′, fE′) if E ⊆ E′ and fE = fE′ |E. Using Zorn’s lemma, we deduce
that P has a maximal element (E, fE). If E = C, we may take f = fE and the proof is complete. Otherwise,
choose a simplex σ : ∆m → C which does not belong to E, where m is as small as possible. It follows that σ
is nondegenerate, and that the boundary of σ belongs to E. Form a pushout diagram

C0
/σ ? ∂∆m //

� _

��

E

��
C0
/σ ?∆

m // E′ .

As in the proof of Lemma 4.3.2.7, we may identify E′ with a complete simplicial subset of C, which strictly
contains E. Since (E, fE) is maximal, we conclude that fE does not extend to E′. Consequently, we deduce
that there does not exist a dotted arrow rendering the diagram

C0
/σ ? ∂∆m

� _

��

// Fun(∆n,D)

��
C0
/σ ?∆

m //

44iiiiiiiiii
Fun(∆n,D′)×Fun(∂∆n,D′) Fun(∂∆n,D)

213



commutative. Let q : C0
/σ → Fun(∆n,D) be the restriction of the upper horizontal map, and let q′ : C0

/σ →
Fun(∆n,D′), q∂ : C0

/σ → Fun(∂∆n,D), q′∂ : C0
/σ → Fun(∂∆n,D′) be defined by composition with q. It

follows that there exists no solution to the associated lifting problem

∂∆m //
� _

��

Fun(∆n,D)q/

��

∆m //

44hhhhhhhhhhhh Fun(∆n,D′)q′/ ×Fun(∂∆n,D′)q′
∂

/
Fun(∂∆n,D)q∂/.

Applying Proposition A.2.4.1, we deduce also the insolubility of the equivalent lifting problem

∂∆m //

��

Fun(∆n,D)q/

��

∆m //

44hhhhhhhhhhhh Fun(∆n,D′)q
′/ ×

Fun(∂∆n,D′)q′
∂

/ Fun(∂∆n,D)q∂/.

Let q∆n denote the map C0
/σ ×∆n → D×∆n determined by q, and let and let X = (D×∆n)q∆n/ be

the simplicial set constructed in §4.2.2. Let q′∆n : C0
/σ ×∆n → D′×∆n and X′ = (D′×∆n)q

′
∆n/ be defined

similarly. We have natural isomorphisms

Fun(∆n,D)q/ ' Map∆n(∆n,X)

Fun(∂∆n,D)q∂/ ' Map∆n(∂∆n,X).

Fun(∆n,D′)q
′/ ' Map∆n(∆n,X′)

Fun(∂∆n,D′)q
′
∂/ ' Map∆n(∂∆n,X′).

These identifications allow us reformulate our insoluble lifting problem once more:

(∂∆m ×∆n)
∐
∂∆m×∂∆n(∆m × ∂∆n)

g0 //
� _

��

X

ψ

��
∆m ×∆n

g

33ggggggggggggg
// X′ .

We have a commutative diagram

X
ψ //

r

!!B
BB

BB
BB

B X′

r′

}}{{
{{

{{
{{

∆n.

Proposition 4.2.2.4 implies that r and r′ are Cartesian fibrations, and that ψ carries r-Cartesian edges to
r′-Cartesian edges. Lemma 4.3.2.11 implies that ψ is an inner fibration. Let ψ0 : X{0} → X′{0} be the
diagram induced by taking the fibers over the vertex {0} ⊆ ∆n. We have a commutative diagram

DC0
/σ(0) /

θ

��

DC0
/σ

oo

��

// X{0}

ψ0

��
D′

C0
/σ(0) /

D′
C0

/σ
/

//oo X′{0}

214



in which the horizontal arrows are categorical equivalences. The vertex g0(0, 0) ∈ X′{0} lifts to a vertex of
DC0

/σ
/ whose image in DC0

/σ(0) /
is θ-initial (in virtue of our assumption that F is a p-left Kan extension of

F |C0). It follows that g0(0, 0) is ψ0-initial when regarded as a vertex of X{0}. Applying Proposition 4.3.1.14,
we deduce that g0(0, 0) is ψ-initial when regarded as a vertex of X. Lemma 4.3.2.10 now guarantees the
existence of the dotted arrow g, contradicting the maximality of (E, fE).

The following result addresses the existence problem for left Kan extensions:

Lemma 4.3.2.13. Suppose given a diagram of ∞-categories

C0
� _

��

F0 // D

p

��
C //

F

>>}
}

}
}

D′

where p is an inner fibration, and the left vertical arrow is the inclusion of a full subcategory. The following
conditions are equivalent:

(1) There exists a functor F : C → D rendering the diagram commutative, such that F is a p-left Kan
extension of F0.

(2) For every object C ∈ C, the diagram given by the composition

C0
/C → C0 F0→ D

admits a p-colimit.

Proof. It is clear that (1) implies (2). Let us therefore suppose that (2) is satisfied; we wish to prove that
F0 admits a left Kan extension. We will follow the basic strategy used in the proofs of Lemmas 4.3.2.7
and 4.3.2.12. Using Proposition A.2.4.1 and Lemma 4.3.2.6, we can replace the inclusion C0 ⊆ C by any
categorically equivalent inclusion C′

0 ⊆ C′. Using Proposition 2.2.3.8, we can choose C′ to be a minimal
model for C; we thereby reduce to the case where C is itself a minimal ∞-category.

We will say that a simplicial subset E ⊆ C is complete if it has the following property: for any simplex
σ : ∆n → C, if σ|∆{0,...,i} factors through C0 and σ|∆{i+1,...,n} factors through E, then σ factors through E.
Note that if E is complete, then C0 ⊆ E. Let P be the set of all pairs (E, fE) where E ⊆ C is complete, fE is
a map of simplicial sets which fits into a commutative diagram

C0
� _

��

F0 // D

E //
� _

��

fE // D

p

��
C // D′,

and every object C ∈ E, the composite map

(C0
/C). ⊆ (E/C). → E

fE→ D

is a p-colimit diagram. We view P as a partially ordered set, with (E, fE) ≤ (E′, fE′) if E ⊆ E′ and fE′ |E = fE.
This partially ordered set satisfies the hypotheses of Zorn’s lemma, and therefore has a maximal element
which we will denote by (E, fE). If E = C, then fE is a p-left Kan extension of F0 and the proof is complete.
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Suppose that E 6= C. Then there is a simplex σ : ∆n → C which does not factor through E; choose such
a simplex where n is as small as possible. The minimality of n guarantees that σ is nondegenerate, that
σ| ∂∆n factors through E, and (if n > 0) that σ(0) /∈ C0. Form a pushout diagram

C0
/σ ? ∂∆n //

� _

��

E

��
C0
/σ ?∆

n // E′ .

This diagram induces a map E′ → C, which is easily shown to be a monomorphism of simplicial sets; we may
therefore identify E′ with its image in C. Since C is minimal, we can apply Proposition 2.2.3.9 to deduce
that E′ ⊆ C is complete. Since (E, FE) ∈ P is maximal, it follows that we cannot extend FE to a functor
FE′ : E′ → D such that (E′, FE′) ∈ P .

Let q denote the composition
C0
/σ → C0 F0→ D .

The map fE determines a commutative diagram

∂∆n
� _

��

g0 // Dq/

p′

��
∆n //

g
;;x

x
x

x
x

D′
pq/ .

Extending fE to a map fE′ such that (E′, fE′) ∈ P is equivalent to producing a morphism g : ∆n → Dq/

rendering the above diagram commutative which, if n = 0, is a p-colimit of q. In the case n = 0, the existence
of such an extension follows from assumption (2). If n > 0, let C = σ(0); then the projection C0

/σ → C0
/C is

a trivial fibration ∞-categories and q factors as a composition

C0
/σ → C0

/C
q′→ D .

We obtain therefore a commutative diagram

Dq/
r //

p′

��

Dq′/

p′′

��
D′
pq/

// D′
pq′/

where the horizontal arrows are categorical equivalences. Since (E, fE) ∈ P , (r◦g0)(0) is a p′′-initial vertex of
Dq′/. Applying Proposition 4.3.1.6, we conclude that g0(0) is a p′-initial vertex of Dq/, which guarantees the
existence of the desired extension g. This contradicts the maximality of (E, fE) and completes the proof.

Corollary 4.3.2.14. Let p : D → E be a coCartesian fibration of ∞-categories. Suppose that each fiber
of p admits small colimits, and that for every morphism E → E′ in E, the associated functor DE → DE′

preserves small colimits. Let C be a small ∞-category, and C0 ⊆ C a full subcategory. Then every functor
F0 : C0 → D admits a left Kan extension relative to p.

Proof. This follows immediately from Lemma 4.3.2.13 and Corollary 4.3.1.11.

Combining Lemmas 4.3.2.12 and 4.3.2.13, we deduce:
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Proposition 4.3.2.15. Suppose given a diagram of ∞-categories

C→ D′ p← D,

where p is an inner fibration. Let C0 be a full subcategory of C. Let K ⊆ MapD′(C,D) be the full subcategory
spanned by those functors F : C → D which are p-left Kan extensions of F |C0. Let K′ ⊆ MapD′(C0,D) be
the full subcategory spanned by those functors F0 : C0 → D with the property that, for each object C ∈ C,
the induced diagram C0

/C → D has a p-colimit. Then the restriction functor K→ K′ is a trivial fibration of
simplicial sets.

Corollary 4.3.2.16. Suppose given a diagram of ∞-categories

C→ D′ p← D,

where p is an inner fibration. Let C0 be a full subcategory of C. Suppose further that, for every functor
F0 ∈ MapD′(C0,D), there exists a functor F ∈ MapD′(C,D) which is a p-left Kan extension of F0. Then
the restriction map i∗ : MapD′(C,D)→ MapD′(C0,D) admits a section i!, whose essential image consists of
precisely of those functors F which are p-left Kan extensions of F |C0.

In the situation of Corollary 4.3.2.16, we will refer to i! as a left Kan extension functor. We note that
Proposition 4.3.2.15 proves not only the existence of i!, but also its uniqueness up to homotopy (the collection
of all such functors is parametrized by a contractible Kan complex). The following characterization of i!
gives an alternative explanation for its uniqueness:

Proposition 4.3.2.17. Suppose given a diagram of ∞-categories

C→ D′ p← D,

where p is an inner fibration. Let i : C0 ⊆ C be the inclusion of a full subcategory, and suppose that
every functor F0 ∈ MapD′(C0,D) admits a p-left Kan extension. Then the left Kan extension functor i! :
MapD′(C0,D)→ MapD′(C,D) is a left adjoint to the restriction functor i∗ : MapD′(C,D)→ MapD′(C0,D).

Proof. Since i∗ ◦ i! is the identity functor on MapD′(C0,D), there is an obvious candidate for the unit

u : id→ i∗ ◦ i!

of the adjunction: namely, the identity. According to Proposition 5.2.2.7, it will suffice to prove that for
every F ∈ MapD′(C0,D), G ∈ MapD′(C,D), composition with u induces a homotopy equivalence

MapMapD′ (C,D)(i!F,G)→ MapMapD′ (C0,D)(i
∗i!F, i

∗G) u→ MapMapD′ (C0,D)(F, i
∗G)

in the homotopy category H. This morphism in H is represented by the restriction map

HomR
MapD′ (C,D)(i!F,G)→ HomR

MapD′ (C0,D)(F, i
∗G)

which is a trivial fibration by Lemma 4.3.2.12.

Remark 4.3.2.18. Throughout this section we have focused our attention on the theory of (relative) left
Kan extensions. There is an entirely dual theory of right Kan extensions in the ∞-categorical setting, which
can be obtained from the theory of left Kan extensions by passing to opposite ∞-categories.

217



4.3.3 Kan Extensions along General Functors

Our goal in this section is to generalize the theory of Kan extensions to the case where the change of diagram
category is not necessarily given by a fully faithful inclusion C0 ⊆ C. As in §4.3.2, we will discuss only the
theory of left Kan extensions; a dual theory of right Kan extensions can be obtained by passing to opposite
∞-categories.

The ideas introduced in this section are relatively elementary extensions of the ideas of §4.3.2. However,
we will encounter a new complication. Let δ : C → C′ be a change of diagram ∞-category, f : C → D a
functor, and δ!(f) : C′ → D its left Kan extension along δ (to be defined below). Then one does not generally
expect that δ∗δ!(f) to be equivalent to the original functor f . Instead, one has only a unit transformation
f → δ∗δ!(f). To set up the theory, this unit transformation must be taken as part of the data. Consequently,
the theory of Kan extensions in general requires more elaborate notation and terminology than the special
case treated in §4.3.2. We will compensate for this by considering only the case of absolute left Kan extensions.
It is straightforward to set up a relative theory as in §4.3.2, but we will not need such a theory in this book.

Definition 4.3.3.1. Let δ : K → K ′ be a map of simplicial sets, let D be an∞-category, and let f : K → D

be a diagram. A left extension of f along δ consists of a map f ′ : K ′ → D and a morphism f → f ′ ◦ δ in the
∞-category Fun(K,D).

Equivalently, we may view a left extension of f : K → D along δ : K → K ′ as a map F : Mop(δ) → D

such that F |K = f , where Mop(δ) = M(δop)op = (K ×∆1)
∐
K×{1}K

′ denotes the mapping cylinder of δ.

Definition 4.3.3.2. Let δ : K → K ′ be a map of simplicial sets, and let F : Mop(δ)→ D be a diagram in
an ∞-category D (which we view as a left extension of f = F |K along δ). We will say that F is a left Kan
extension of f along δ if there exists a commutative diagram

Mop(δ) F ′′ //

##G
GG

GG
GG

GG
K

F ′ //

p

��

D

∆1

where F ′′ is a categorical equivalence, K is an ∞-category, F = F ′ ◦ F ′′, and F ′ is a left Kan extension of
F ′|K×∆1{0}.

Remark 4.3.3.3. In the situation of Definition 4.3.3.2, the map p : K→ ∆1 is automatically a coCartesian
fibration. To prove this, choose a factorization

M(δop)\ i→ (K′)] → (∆1)]

where i is marked anodyne, and K′ → ∆1 is a Cartesian fibration. Then i is a quasi-equivalence, so that
Proposition 3.2.2.7 implies that M(δop)→ K′ is a categorical equivalence. It follows that K is equivalent to
(K′)op (via an equivalence which respects the projection to ∆1), so that the projection p is a coCartesian
fibration.

The following result asserts that the condition of Definition 4.3.3.2 is essentially independent of the choice
of K.

Proposition 4.3.3.4. Let δ : K → K ′ be a map of simplicial sets, and let F : Mop(δ)→ D be a diagram in
an ∞-category D which is a left Kan extension along δ. Let

Mop F ′′ //

""E
EE

EE
EE

E K

p

��
∆1
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be a diagram where F ′′ is both a cofibration and a categorical equivalence of simplicial sets. Then F = F ′◦F ′′,
for some map F ′ : K→ D which is a left Kan extension of F ′|K×∆1{0}.

Proof. By hypothesis, there exists a commutative diagram

Mop(δ) G′′ //

F ′′

��

K′ G′ //

q

��

D

K
p //

r

;;w
w

w
w

w
∆1

where K′ is an ∞-category, F = G′ ◦G′′, and G′′ is a categorical equivalence, and G′ is a left Kan extension
of G′|K′×∆1{0}. Since K′ is an ∞-category, there exists a map r as indicated in the diagram such that
G′′ = r ◦ F ′′. We note that r is a categorical equivalence so that the commutativity of the lower triangle
p = q ◦ r follows automatically. We now define F ′ = G′ ◦ r, and note that part (2) of Lemma 4.3.2.6 implies
that F ′ is a left Kan extension of F ′|K×∆1{0}.

We have now introduced two different definitions of left Kan extensions: Definition 4.3.2.2, which applies
in the situation of an inclusion C0 ⊆ C of a full subcategory into an ∞-category C, and Definition 4.3.3.2
which applies in the case of a general map δ : K → K ′ of simplicial sets. These two definitions are essentially
the same. More precisely, we have the following assertion:

Proposition 4.3.3.5. Let C and D be ∞-categories, and let δ : C0 → C denote the inclusion of a full
subcategory.

(1) Let f : C→ D be a functor, f0 its restriction to C0, so that (f, idf0) can be viewed as a left extension of
f0 along δ. Then (f, idf0) is a left Kan extension of f0 along δ if and only if f is a left Kan extension
of f0.

(2) A functor f0 : C0 → D has a left Kan extension if and only if it has a left Kan extension along δ.

Proof. Let K denote the full subcategory of C×∆1 spanned by the objects (C, {i}) where either C ∈ C0 or
i = 1, so that we have inclusions

Mop(δ) ⊆ K ⊆ C×∆1.

To prove (1), suppose that f : C → D is a left Kan extension of f0 = f |C0 and let F denote the composite
map

K ⊆ C×∆1 → C
f→ D .

It follows immediately that F is a left Kan extension of F |C0×{0}, so that F |Mop(δ) is a left Kan extension
of f0 along δ.

To prove (2), we observe that the “only if” follows from (1); the converse follows from the existence
criterion of Lemma 4.3.2.13.

Suppose that δ : K0 → K1 is a map of simplicial sets, D an∞-category, and that every diagram K0 → D

admits a left Kan extension along δ. Choose a diagram

Mop(δ)
j //

##G
GG

GG
GG

GG
K

~~~~
~~

~~
~~

∆1

where j is inner anodyne and K is an∞-category, which we regard as a correspondence from K0 = K×∆1{0}
to K1 = K×∆1{1}. Let C denote the full subcategory of Fun(K,D) spanned by those functors F : K → D
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such that F is a left Kan extension of F0 = F |K0. The restriction map p : C→ Fun(K0,D) can be written
as a composition of C → DK0

(a trivial fibration by Proposition 4.3.2.15) and Fun(K0,D) → Fun(K0,D)
(a trivial fibration since K0 → K0 is inner anodyne), and is therefore a trivial fibration. Let δ! be the
composition of a section of p with the restriction map C ⊆ Fun(K,D)→ Fun(Mop(δ),D), and let δ! denote
the composition of δ! with the restriction map Fun(Mop(δ),D) → Fun(K1,D). Then δ! and δ! are well-
defined up to equivalence, at least once K has been fixed (independence of the choice of K will follow from
the characterization given in Proposition 4.3.3.7). We will abuse terminology by referring to both δ! and δ!
as left Kan extension along δ (it should be clear from context which of these functors is meant in a given
situation). We observe that δ! assigns to each object f0 : K0 → D a left Kan extension of f0 along δ.

Example 4.3.3.6. Let C and D be ∞-categories, and let i : C0 → C be the inclusion of a full subcategory.
Suppose that i! : Fun(C0,D) → Fun(C,D) is a section of i∗, which satisfies the conclusion of Corollary
4.3.2.16. Then i! is a left Kan extension along i in the sense defined above; this follows easily from Proposition
4.3.3.5.

Left Kan extension functors admit the following characterization:

Proposition 4.3.3.7. Let δ : K0 → K1 be a map of simplicial sets, let D be an ∞-category, let δ∗ :
Fun(K1,D)→ Fun(K0,D) be the restriction functor, and let δ! : Fun(K0,D)→ Fun(K1,D) be a functor of
left Kan extension along δ. Then δ! is a left adjoint of δ∗.

Proof. The map δ can be factored as a composition

K0 i→Mop(δ) r→ K1

where r denotes the natural retraction of Mop(δ) onto K1. Consequently, δ∗ = i∗ ◦ r∗. Proposition 4.3.2.17
implies that the left Kan extension functor δ! is a left adjoint to i∗. By Proposition 5.2.2.5, it will suffice
to prove that r∗ is a right adjoint to the restriction functor j∗ : Fun(Mop(δ),D) → Fun(K1,D). Using
Corollary 2.3.7.12, we deduce that j∗ is a coCartesian fibration. Moreover, there is a simplicial homotopy
Fun(Mop(δ),D) × ∆1 → Fun(Mop(δ),D) from the identity to r∗ ◦ j∗, which is a fiberwise homotopy over
Fun(K1,D). It follows that for every object F of Fun(K1,D), r∗F is a final object of the ∞-category
Fun(Mop(δ),D) ×Fun(K1,D) {F}. Applying Proposition 5.2.4.3, we deduce that r∗ is right adjoint to j∗ as
desired.

Let δ : K0 → K1 be a map of simplicial sets and D an∞-category which which that left Kan extension δ! :
Fun(K0,D) → δ! Fun(K1,D) is defined. In general, the terminology “Kan extension” is perhaps somewhat
unfortunate: if F : K0 → D is a diagram, then δ∗δ!F need not coincide with F , even up to equivalence. If δ
is fully faithful, then the unit map F → δ∗δ!F is an equivalence: this follows from Proposition 4.3.3.5. We
will later need the following more precise assertion:

Proposition 4.3.3.8. Let δ : C0 → C1 and f0 : C0 → D be functors between ∞-categories, and let f1 : C1 →
D, α : f0 → δ∗f1 = f1 ◦ δ be a left Kan extension of f0 along δ. Let C be an object of C0 such that, for every
C ′ ∈ C0, the functor δ induces an isomorphism

MapC0(C ′, C)→ MapC1(δC ′, δC)

in the homotopy category H. Then the morphism α(C) : f0(C)→ f1(δC) is an equivalence in D.

Proof. Choose a diagram

Mop(δ) G //

##G
GG

GG
GG

GG
M

��

F // D

∆1
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where M is a correspondence from C0 to C1 associated to δ, F is a left Kan extension of f0 = F |C0, and
F ◦G is the map Mop(δ) → D determined by f0, f1, and α. Let u : C → δC be the morphism in M given
by the image of {C} ×∆1 ⊆Mop(δ) under G. Then α(C) = F (u), so it will suffice to prove that F (u) is an
equivalence. Since F is a left Kan extension of f0 at δC, the composition

(C0
/δC). →M

F→ D

is a colimit diagram. Consequently, it will suffice to prove that u : C → δC is a final object of C0
/δC . Consider

the diagram
C0
/C ← C0

/u
q→ C0

/δC .

The ∞-category on the left has a final object idC , and the map on the left is a trivial fibration of simplicial
sets. We deduce that s0u is a final object of C0

/u. Since q(s0u) = u ∈ C0
/δC , it will suffice to show that q is an

equivalence of∞-categories. We observe that q is a map of right fibrations over C0. According to Proposition
3.3.2.5, it will suffice to show that for each object C ′ in C0, the map q induces a homotopy equivalence of
Kan complexes

C0
/u×C0{C ′} → C0

/δC ×C0{C ′}.

This map can be identified with the map

MapC0(C ′, C)→ MapM(C ′, δC) ' MapC1(δC ′, δC),

in the homotopy category H, and is therefore a homotopy equivalence by assumption.

We conclude this section by proving that the construction of left Kan extensions behaves well in families.

Lemma 4.3.3.9. Suppose given a commutative diagram

C0
q //

i

��?
??

??
??

C

p

��

F // D

E

of∞-categories, where p and q are coCartesian fibrations, i is the inclusion of a full subcategory, and i carries
q-coCartesian morphisms of C0 to p-coCartesian morphisms of C. The following conditions are equivalent:

(1) The functor F is a left Kan extension of F |C0.

(2) For each object E ∈ E, the induced functor FE : CE → D is a left Kan extension of FE |C0
E.

Proof. Let C be an object of C and let E = p(C). Consider the composition

(C0
E)./C

G.

→ (C0
/C). FC→ D .

We will show that FC is a colimit diagram if and only if FC ◦ G. is a colimit diagram. For this, it suffices
to show that the inclusion G : (C0

E)/C ⊆ C0
/C is cofinal. According to Proposition 2.3.3.3, the projection

p′ : C/C → E/E is a coCartesian fibration, and a morphism

C ′
f //

  A
AA

AA
AA

C ′′

~~||
||

||
||

C
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in C/C is p′-coCartesian if and only if f is p-coCartesian. It follows that p′ restricts to a coCartesian fibration
C′/C → E/E . We have a pullback diagram of simplicial sets

(C0
E)/C

G //

��

C0
/C

��
{idE}

G0 // E/E .

The right vertical map is smooth (Proposition 4.1.2.14) and G0 is right anodyne, so that G is right anodyne
as desired.

Proposition 4.3.3.10. Let

X
p

��@
@@

@@
@@

δ // Y

q
����

��
��

�

S

be a commutative diagram of simplicial sets, where p and q are coCartesian fibrations, and δ carries p-
coCartesian edges to q-coCartesian edges. Let f0 : X → C be a diagram in an ∞-category C, and let
f1 : Y → C, α : f0 → f1 ◦ δ be a left extension of f0. The following conditions are equivalent:

(1) The transformation α exhibits f1 as a left Kan extension of f0 along δ.

(2) For each vertex s ∈ S, the restriction αs : f0|Xs → (f1 ◦ δ)|Xs exhibits f1|Ys as a left Kan extension
of f0|Xs along δs : Xs → Ys.

Proof. Choose an equivalence of simplicial categories C(S) → E, where E is fibrant, and let [1] denote the
linearly ordered set {0, 1}, regarded as a category. Let φ′ denote the induced map C(S ×∆1)→ E×[1]. Let
M denote the marked simplicial set

((Xop)\ × (∆1)])
∐

(Xop)\×{0}

(Y op)\.

Let St+φ : (Set+∆)(S×∆1)op → (Set+∆)E×[1] denote the straightening functor defined in §3.2.1, and choose a
fibrant replacement

St+φM → Z

in (Set+∆)E×[1]. Let S′ = N(E), so that S′ ×∆1 ' N(E×[1]), and let ψ : C(S′ ×∆1)→ E×[1] be the counit
map. Then

Un+
ψ (Z)

is a fibrant object of (Set+∆)/(S′×∆1)op , which we may identify with a coCartesian fibration of simplicial sets
M→ S′ ×∆1.

We may regard M as a correspondence from M0 = M×∆1{0} to M1 = M×∆1{1}. By construction, we
have a unit map

u : Mop(δ)→M×S′S.

Theorem 3.2.0.1 implies that the induced maps u0 : X → M0×S′S, u1 : Y → M1×S′S are equivalences
of coCartesian fibrations. Proposition 3.3.2.3 implies that the maps M0×S′S → M0, M1×S′S → M1 are
categorical equivalences.

Let u′ denote the composition
Mop(δ) u→M×S′S →M,
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and let u′0 : X → M0, u′1 : Y → M1 be defined similarly. The above argument shows that u′0 and u′1
are categorical equivalences. Consequently, the map u′ is a quasi-equivalence of coCartesian fibrations over
∆1, and therefore a categorical equivalence (Proposition 3.2.2.7). Replacing M by the product M×K if
necessary, where K is a contractible Kan complex, we may suppose that u′ is a cofibration of simplicial sets.
Since D is an ∞-category, there exists a functor F : M→ D as indicated in the diagram below:

Mop(δ)
(f0,f1,α) //

��

D

M .

F

77nnnnnnn

Consequently, we may reformulate condition (1) as follows:

(1′) The functor F is a left Kan extension of F |M0.

Proposition 3.3.2.5 now implies that, for each vertex s of S, the mapXs →M0
s is a categorical equivalence.

Similarly, for each vertex s of S, the inclusion Ys → M1
s is a categorical equivalence. It follows that the

inclusion Mop(δ)s →Ms is a quasi-equivalence, and therefore a categorical equivalence (Proposition 3.2.2.7).
Consequently, we may reformulate condition (2) as follows:

(2′) For each vertex s ∈ S, the functor F |Ms is a left Kan extension of F |M0
s.

Using Lemma 4.3.2.6, it is easy to see that the collection of objects s ∈ S′ such that F |Ms is a left Kan
extension of F |M0

s is stable under equivalence. Since the inclusion S ⊆ S′ is a categorical equivalence, we
conclude that (2′) is equivalent to the following apparently stronger condition:

(2′′) For every object s ∈ S′, the functor F |Ms is a left Kan extension of F |M0
s.

The equivalence of (1′) and (2′′) follows from Lemma 4.3.3.9.
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4.4 Examples of Colimits

In this section, we will analyze in detail the colimits of some very simple diagrams. Our first three examples
are familiar from classical category theory: coproducts (§4.4.1), pushouts (§4.4.2), and coequalizers (§4.4.3).

Our fourth example is slightly more unfamiliar. Let C be an ordinary category which admits coproducts.
Then C is naturally tensored over the category of sets. Namely, for each C ∈ C and S ∈ Set, we can
define C ⊗ S to be the coproduct of a collection of copies of C, indexed by the set S. The object C ⊗ S is
characterized by the following universal mapping property:

HomC(C ⊗ S,D) ' HomSet(S,HomC(C,D)).

In the ∞-categorical setting, it is natural to try to generalize this definition by allowing S to an object of S.
In this case, C ⊗ S can again be viewed as a kind of colimit, but cannot be written as a coproduct unless S
is discrete. We will study the situation in §4.4.4.

Our final objective in this section is to study the theory of retracts in an ∞-category C. In §4.4.5, we
will see that there is a close relationship between retracts in C and idempotent endomorphisms, just as in
classical homotopy theory. Namely, any retract of an object C ∈ C determines an idempotent endomorphism
of C; conversely, if C is idempotent complete, then every idempotent endomorphism of C determines a retract
of C. We will return to this idea in §5.1.4.

4.4.1 Coproducts

In this section, we discuss the simplest type of colimit: namely, coproducts. Let A be a set; we may regard
A as a category with

HomA(I, J) =

{
∗ if I = J

∅ if I 6= J.

We will also identify A with the (constant) simplicial set which is the nerve of this category. We note a
functor G : A→ Set∆ is strongly fibrant if and only if it takes values in the category Kan of Kan complexes.
If this condition is satisfied, then the product

∏
α∈AG(α) is a homotopy limit for G.

Let F : A→ C be a functor from A to a fibrant simplicial category; in other words, F specifies a collection
{Xα}α∈A of objects in C. A homotopy colimit for F will be referred to as a homotopy coproduct of the objects
{Xα}α∈A. Unwinding the definition, we see that a homotopy coproduct is an object X ∈ C equipped with
morphisms φα : Xα → X such that the induced map

MapC(X,Y )→
∏
α∈A

MapC(Xα, Y )

is a homotopy equivalence for every object Y ∈ C. Consequently, we recover the description given in Example
1.2.13.1. As we noted earlier, this characterization can be stated entirely in terms of the enriched homotopy
category hC: the maps {φα} exhibit X as a homotopy coproduct of the family {Xα}α∈A if and only if the
induced map

MapC(X,Y )→
∏
α∈A

MapC(Xα, Y )

is an isomorphism in the homotopy category H of spaces, for each Y ∈ C.
Now suppose that C is an ∞-category, and let p : A→ C be a map. As above, we may identify this with

a collection of objects {Xα}α∈A of C. To specify an object of Cp/ is to give an object X ∈ C together with
morphisms φα : Xα → X for each α ∈ A. Using Theorem 4.2.4.1, we deduce that X is a colimit of the
diagram p if and only if the induced map

MapC(X,Y )→
∏
α∈A

MapC(Xα, Y )
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is an isomorphism in H, for each object Y ∈ C. In this case, we say that X is a coproduct of the family
{Xα}α∈A.

In either setting, we will denote the (homotopy) coproduct of a family of objects {Xα}α∈A by∐
α∈A

XI .

It is well-defined up to (essentially unique) equivalence.
Using Corollary 4.2.3.10, we deduce the following:

Proposition 4.4.1.1. Let C be an ∞-category, and let {pα : Kα → C}α∈A be a family of diagrams in C

indexed by a set A. Suppose that each pα has a colimit Xα in C. Let K =
∐
Kα, and let p : K → C be the

result of amalgamating the maps pα. Then p has a colimit in C if and only if the family {Xα}α∈A has a
coproduct in C; in this case, one may identify colimits of p with coproducts

∐
α∈AXα.

4.4.2 Pushouts

Let C be an ∞-category. A square in C is a map ∆1 × ∆1 → C. We will typically denote squares in C by
diagrams

X ′ p′ //

q′

��

X

q

��
Y ′

p // Y,

with the “diagonal” morphism r : X ′ → Y and homotopies r ' q ◦ p′, r ' p ◦ q′ being implicit.
We have isomorphisms of simplicial sets

(Λ2
0)
. ' ∆1 ×∆1 ' (Λ2

2)
/.

Consequently, given a square σ : ∆1 ×∆1 → C, it makes sense to ask whether or not σ is a limit or colimit
diagram. If σ is a limit diagram, we will also say that σ is a pullback square or a Cartesian square, and we
will informally write X ′ = X ×Y Y ′. Dually, if σ is a colimit diagram, we will say that σ is a pushout square
or a coCartesian square, and write Y = X

∐
X′ Y ′.

Now suppose that C is a (fibrant) simplicial category. By definition, a commutative diagram

X ′ p′ //

q′

��

X

q

��
Y ′

p // Y

is a homotopy pushout square if, for every object Z ∈ C, the diagram

MapC(Y, Z) //

��

MapC(Y ′, Z)

��
MapC(X,Z) // MapC(X ′, Z)

is a homotopy pullback square in Kan. Using Theorem 4.2.4.1, we can reduce questions about pushout
diagrams in an arbitrary ∞-category to questions about homotopy pullback squares in Kan.

The following basic transitivity property for pushout squares will be used repeatedly throughout this
book:
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Lemma 4.4.2.1. Let C be an ∞-category, and suppose given a map σ : ∆2 ×∆1 → C which we will depict
as a diagram

X //

��

Y

��

// Z

��
X ′ // Y ′ // Z ′.

Suppose that the left square is a pushout in C. Then the right square is a pushout if and only if the outer
square is a pushout.

Proof. For every subset A of {x, y, z, x′, y′, z′}, let D(A) denote the corresponding full subcategory of ∆2 ×
∆1, and let σ(A) denote the restriction of σ to D(A). We may regard σ as determining an object σ̃ ∈
Cσ({y,z,x′,y′,z′})/. Consider the maps

Cσ({z,x′,z′})/
φ← Cσ({y,z,x′,y′,z′})/

ψ→ Cσ({y,x′,y′})/

The map on φ is the composition of the trivial fibration

Cσ({z,x′,y′,z′})/ → Cσ({z,x′,z′})/

with a pullback of
Cσ({y,z,y′,z′})/ → Cσ({z,y′,z′})/,

also a trivial fibration in virtue of our assumption that the square

Y

��

// Z

��
Y ′ // Z ′

is a pullback in C. The map ψ is a trivial fibration because the inclusion D({y, x′, y′}) ⊆ D({y, z, x′, y′, z′})
is left anodyne. It follows that φ(σ̃) is an initial object of Cσ({z,x′,z′})/ if and only if ψ(σ̃) is an initial object
of Cσ({y,x′,y′})/, as desired.

Our next objective is to apply Proposition 4.2.3.8 to show that in many cases, complicated colimits may
be decomposed as pushouts of simpler colimits. Suppose given a pushout diagram of simplicial sets

L′
i //

��

L

��
K ′ // K

and a diagram p : K → C, where C is an ∞-category. Suppose furthermore that p|K ′, p|L′, and p|L admit
colimits in C, which we will denote by X, Y , and Z, respectively. If we suppose further that the map i is
a cofibration of simplicial sets, then the hypotheses of Proposition 4.2.3.4 are satisfied. Consequently, we
deduce:

Proposition 4.4.2.2. Let C be an ∞-category, and let p : K → C be a map of simplicial sets. Suppose given
a decomposition K = K ′ ∐

L′ L, where L′ → L is a monomorphism of simplicial sets. Suppose further that
p|K ′ has a colimit X ∈ C, p|L′ has a colimit Y ∈ C, and p|L has a colimit Z ∈ C. Then one may identify
colimits for p with pushouts X

∐
Y Z.

Remark 4.4.2.3. The statement of Proposition 4.4.2.2 is slightly vague. Implicit in the discussion is that
identifications of X with the colimit of p|K ′ and Y with the colimit of p|L′ induce a morphism Y → X in
C (and similarly for Y and Z). This morphism is not uniquely determined, but it is determined up to a
contractible space of choices: see the proof of Proposition 4.2.3.4.
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It follows from Proposition 4.4.2.2 that any finite colimit can be built using initial objects and pushout
squares. For example, we have the following:

Corollary 4.4.2.4. Let C be an ∞-category. Then C admits all finite colimits if and only if C admits
pushouts and has an initial object.

Proof. The “only if” direction is clear. For the converse, let us suppose that C has pushouts and an initial
object. Let p : K → C be any diagram, where K is a finite simplicial set: that is, K has only finitely many
nondegenerate simplices. We will prove that p has a colimit. The proof goes by induction: first on the
dimension of K, then on the number of simplices of K having the maximal dimension.

If K is empty, then an initial object of C is a colimit for p. Otherwise, we may fix a nondegenerate
simplex of K having the maximal dimension, and thereby decompose K ' K0

∐
∂∆n ∆n. By the inductive

hypothesis, p|K0 has a colimit X and p| ∂∆n has a colimit Y . The ∞-category ∆n has a final object, so
p|∆n has a colimit Z (which we may take to be p(v), where v is the final vertex of ∆n). Now we simply
apply Proposition 4.4.2.2 to deduce that X

∐
Y Z is a colimit for p.

Using the same argument, one can show:

Corollary 4.4.2.5. Let f : C→ C′ be a functor between ∞-categories. Assume that C has all finite colimits.
Then f preserves all finite colimits if and only if f preserves initial objects and pushouts.

We conclude by showing how all colimits can be constructed out of simple ones.

Proposition 4.4.2.6. Let C be an ∞-category. Suppose that C admits pushouts and κ-small coproducts.
Then C admits colimits for all κ-small diagrams.

Proof. If κ = ω, we have already shown this as Corollary 4.4.2.4. Let us therefore suppose that κ > ω, and
that C has pushouts and κ-small sums.

Let p : K → C be a diagram, where K is κ-small. We first suppose that the dimension n of K is finite:
that is, K has no nondegenerate simplices of dimension > n. We prove that p has a colimit, working by
induction on n.

If n = 0, then K consists of a finite disjoint union of fewer than κ vertices. The colimit of p exists by the
assumption that C has κ-small sums.

Now suppose that every diagram indexed by a κ-small simplicial set of dimension n has a colimit. Let
p : K → C be a diagram, with the dimension of K equal to n+ 1. Let Kn denote the n-skeleton of K, and
K ′
n+1 ⊆ Kn+1 the set of all nondegenerate (n + 1)-simplices of K, so that there is a pushout diagram of

simplicial sets
Kn

∐
K′

n+1×∂∆n+1

(K ′
n+1 ×∆n+1) ' K.

By Proposition 4.4.2.2, we can construct a colimit of p as a pushout, using colimits for p|Kn, p|(K ′
n+1 ×

∂∆n+1), and p|(K ′
n+1×∆n+1). The first two exist by the inductive hypothesis; the last, because it is a sum

of diagrams which possess colimits.
Now let us suppose that K is not necessarily finite dimensional. In this case, we can filter K by its

skeleta {Kn}. This is a family of simplicial subsets of K indexed by the set Z≥0 of nonnegative integers.
By what we have shown above, each p|Kn has a colimit xn in C. Since this family is directed and covers K,
Corollary 4.2.3.10 shows that we may identify colimits of p with colimits of a diagram N(Z≥0) → C which
we may write informally as

x0 → x1 → . . .

Let L be the simplicial subset of N(Z≥0) which consists of all vertices, together with the edges which
join consecutive integers. A simple computation shows that the inclusion L ⊆ N(Z≥0) is a categorical
equivalence, and therefore cofinal. Consequently, it suffices to construct the colimit of a diagram L → C.
But L is 1-dimensional, and is κ-small since κ > ω.
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The same argument proves also the following:

Proposition 4.4.2.7. Let κ be a regular cardinal, and let f : C → D be a functor between ∞-categories,
where C admits κ-small colimits. Then f preserves κ-small colimits if and only if f preserves pushout squares
and κ-small coproducts.

Let D be an∞-category containing an object X, and suppose that D admits pushouts. Then DX/ admits
pushouts, and these pushouts map be computed in D. In other words, the projection f : DX/ → D preserves
pushouts. In fact, this is a special case of a very general result; it requires only that f is a left fibration and
the simplicial set Λ2

0 is weakly contractible.

Proposition 4.4.2.8. Let f : C → D be a left fibration of ∞-categories, and let p : K → C be a diagram.
Suppose that K is weakly contractible. Then:

(1) Let p : K. → C be an extension of p. Then p is a colimit of p if and only if f ◦ p is a colimit of f ◦ p.

(2) Let q : K. → D be a colimit of f ◦p. Then q = f ◦p, where p is an extension ( automatically a colimit,
in virtue of (1) ) of p.

Proof. To prove (1), fix an extension p : K. → C. We first claim that the map

φ : Cp/ → Cp/×Df◦p/
Df◦p/

is a trivial fibration of simplicial sets. In other words, we must show that we can solve any lifting problem
of the form

(K ? A)
∐
K?A0

(K. ? A) //
� _

��

C

f

��
K. ? A //

66mmmmmmmm
D .

Since f is a left fibration, it will suffice to prove that the left vertical map is left anodyne, which follows
immediately from Lemma 4.2.3.5.

We have a commutative diagram

Cp/
φ // Cp/×Dfp/

Dfp/
ψ′ //

��

Cp/

θ

��
Dfp/

ψ // Dfp/ .

If f ◦ p is a colimit diagram, the map ψ is a trivial fibration. Since ψ′ is a pullback of ψ, we conclude that ψ′

is a trivial fibration. It follows that ψ′ ◦ φ is a trivial fibration, so that p is a colimit diagram. This proves
the “if” direction of (1).

To prove the converse, let us suppose that p is a colimit diagram. The maps φ and ψ′ ◦φ are both trivial
fibrations. It follows that the fibers of ψ′ are contractible. Using Lemma 4.2.3.6, we conclude that the map
θ is a trivial fibration, and therefore surjective on vertices. It follows that the fibers of ψ are contractible.
Since ψ is a left fibration with contractible fibers, it is a trivial fibration (Lemma 2.1.3.3). Thus f ◦ p is a
colimit diagram and the proof is complete.

To prove (2), it suffices to show that f has the right lifting property with respect to the inclusion
i : K ⊆ K.. Since f is a left fibration, it will suffice to show that i is left anodyne, which follows immediately
from Lemma 4.2.3.6.
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4.4.3 Coequalizers

Let I denote the category depicted by the diagram

X
F //
G
// Y .

In other words, I has two objects, X and Y , with HomI(X,X) = HomI(Y, Y ) = ∗, HomI(Y,X) = ∅, and
HomI(X,Y ) = {F,G}.

To give a diagram p : N(I) → C in an ∞-category C, one must give a pair of morphisms f = p(F ),
g = p(G) in C, having the same domain x = p(X) and the same codomain y = p(Y ). A colimit for the
diagram p is said to be a coequalizer of f and g.

Applying Corollary 4.2.3.10, we deduce the following:

Proposition 4.4.3.1. Let K and A be a simplicial sets, and let i0, i1 : A→ K be embeddings having disjoint
images in K. Let K ′ denote the coequalizer of i0 and i1; in other words, the simplicial set obtained from K
by identifying the image of i0 with the image of i1. Let p : K ′ → C be a diagram in an ∞-category S, and
let q : K → C be the composition

K → K ′ p→ S.

Suppose that the diagrams q ◦ i0 = q ◦ i1 and q possess colimits x and y in S. Then i0 and i1 induce maps
j0, j1 : x→ y (well-defined up to homotopy); colimits for p may be identified with coequalizers of j0 and j1.

Like pushouts, coequalizers are a basic construction out of which other colimits can be built. More
specifically, we have the following:

Proposition 4.4.3.2. Let C be an ∞-category and κ a regular cardinal. Then C has all κ-small colimits if
and only if C has coequalizers and κ-small coproducts.

Proof. The “only if” direction is obvious. For the converse, suppose that C has coequalizers and κ-small
coproducts. In view of Proposition 4.4.2.6, it suffices to show that C has pushouts. Let p : Λ2

0 be a
pushout diagram in C. We note that Λ2

0 is the quotient of ∆{0,1} ∐
∆{0,2} obtained by identifying the initial

vertex of ∆{0,1} with the initial vertex of ∆{0,2}. In view of Proposition 4.4.3.1, it suffices to show that
p|(∆{0,1} ∐

∆{0,2}) and p|{0} possess colimits in C. The second assertion is obvious. Since C has finite sums,
to prove that there exists a colimit for p|(∆{0,1} ∐

∆{0,2}), it suffices to prove that p|∆{0,1} and p|∆{0,2}

possess colimits in C. This is immediate, since ∆{0,1} and ∆{0,2} both have final objects.

Using the same argument, we deduce:

Proposition 4.4.3.3. Let κ be a regular cardinal and C be an ∞-category which admits κ-small colimits.
A full subcategory D ⊆ C is stable under κ-small colimits in C if and only if D is stable under coequalizers
and under κ-small sums.

4.4.4 Tensoring with Spaces

Every ordinary category C can be regarded as a category enriched over Set. Moreover, if C admits coproducts,
then C can be regarded as tensored over Set, in an essentially unique way. In the ∞-categorical setting, one
has a similar situation: if C is an ∞-category which admits all small limits, then C may be regarded as
tensored over the ∞-category S of spaces. To make this idea precise, we would need a good theory of
enriched ∞-categories, which lies outside the scope of this book. We will instead settle for a slightly ad-hoc
point of view which nevertheless allows us to construct the relevant tensor products. We begin with a few
remarks concerning representable functors in the ∞-categorical setting.
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Definition 4.4.4.1. Let D be a closed monoidal category, and let C be a category enriched over D. We
will say that a D-enriched functor G : Cop → D is representable if there exists an object C ∈ C and a map
η : 1D → G(C) such that the induced map

MapC(X,C) ' MapC(X,C)⊗ 1D → MapC(X,C)⊗G(C)→ G(X)

is an isomorphism, for every object X ∈ C. In this case, we will say that (C, η) represents the functor F .

Remark 4.4.4.2. In the situation of Definition 4.4.4.1, we will sometimes abuse terminology and simply
say that the functor F is represented by the object C.

Remark 4.4.4.3. The dual notion of a corepresentable functor is may be defined in an obvious way.

Definition 4.4.4.4. Let C be an ∞-category, and let S denote the ∞-category of spaces. We will say that
a functor F : Cop → S is representable if the underlying functor

hF : hCop → hS ' H

of ( H-enriched ) homotopy categories is representable. We will say that a pair C ∈ C, η ∈ π0F (C) represents
F if the pair (C, η) represents hF .

Proposition 4.4.4.5. Let f : C̃→ C be a right fibration of∞-categories, let C̃ be an object of C̃, C = f(C̃) ∈
C, and let F : Cop → S be a functor which classifies f (§3.3.3). The following conditions are equivalent:

(1) Let η ∈ π0F (C) ' π0(C̃ ×C {C}) be the connected component containing C̃. Then the pair (C, η)
represents the functor F .

(2) The object C̃ ∈ C̃ is final.

(3) The inclusion {C̃} ⊆ C̃ is a contravariant equivalence in (Set∆)/C.

Proof. We have a commutative diagram of right fibrations

C̃/ eC φ //

��

C̃

��
C/C // C .

Observe that the left vertical map is actually a trivial fibration. Fix an object D ∈ C. The fiber of the upper
horizontal map

φD : C̃/ eC ×C {D} → C̃×C {D}

can be identified, in the homotopy category H, with the map

MapC(D,C)→ F (C).

The map φD is a right fibration of Kan complexes, and therefore a Kan fibration. If (1) is satisfied, then φD
is a homotopy equivalence, and therefore a trivial fibration. It follows that the fibers of φ are contractible.
Since φ is a right fibration, it is a trivial fibration (Lemma 2.1.3.3). This proves that C̃ is a final object of C̃.
Conversely, if (2) is satisfied, then φD is a trivial Kan fibration and therefore a weak homotopy equivalence.
Thus (1)⇔ (2).
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If (2) is satisfied, then the inclusion {C̃} ⊆ C̃ is right anodyne, and therefore a contravariant equivalence
by Proposition 4.1.2.1. Thus (2)⇒ (3). Conversely, suppose that (3) is satisfied. The inclusion {idC} ⊆ C/C
is right anodyne, and therefore a contravariant equivalence. It follows that the lifting problem

{idC}
eC //

� _

��

C̃

f

��
C/C //

e

=={
{

{
{

{
C

has a solution. We observe that e is a contravariant equivalence of right fibrations over C, and therefore a
categorical equivalence. By construction, e carries a final object of C/C to C̃, so that C̃ is a final object of
C̃.

We will say that a right fibration C̃→ C is representable if C̃ has a final object.

Remark 4.4.4.6. Let C be an ∞-category, and let p : K → C be a diagram. Then the right fibration
C/p → C is representable if and only if p has a limit in C.

Remark 4.4.4.7. All of the above ideas dualize in an evident way, so that we may speak of corepresentable
functors and corepresentable left fibrations in the setting of ∞-categories.

Notation 4.4.4.8. For each diagram p : K → C in an ∞-category C, we let Fp denote the H-enriched
functor

hC→ H

corresponding to the left fibration Cp/ → C.
If p : ∗ → C is the inclusion of an object X of C, then we write FX for Fp. We note that FX is the functor

co-represented by X:
FX(Y ) = MapC(X,Y ).

Now suppose that X is an object in an ∞-category C, and let p : K → C be a constant map taking the
value X. For every object Y of C, we have an isomorphism of simplicial sets (Cp/)×C {Y } ' (CX/×C{Y })K .
This identification is functorial up to homotopy, so we actually obtain an equivalence

Fp(Y ) ' MapC(X,Y )[K]

in the homotopy category H of spaces, where [K] denotes the simplicial set K regarded as an object of H.
Applying Proposition 4.4.4.5, we deduce the following:

Corollary 4.4.4.9. Let C be an ∞-category, X and object of C, and K a simplicial set. Let p : K → C be
the constant map taking the value X. The objects of the fiber

Cp/×C{Y }

are classified, up to equivalence, by maps

ψ : [K]→ MapC(X,Y )

in the homotopy category H. Such a map ψ classifies a colimit for p if and only if it induces isomorphisms

MapC(Y, Z) = MapC(X,Z)[K]

in the homotopy category H, for every object Z of C.
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In the situation of Corollary 4.4.4.9, we will denote a colimit for p by X ⊗K, if such a colimit exists. We
note that X⊗K is well defined up to (essentially unique) equivalence, and that it depends (up to equivalence)
only on the weak homotopy type of the simplicial set K.

Corollary 4.4.4.10. Let C be an∞-category, let K be a weakly contractible simplicial set, and let p : K → C

be a diagram which carries each edge of K to an equivalence in C. Then:

(1) The diagram p has a colimit in C.

(2) An arbitrary extension p : K. → C is a colimit for C if and only if p carries each edge of K. → C to
an equivalence in C.

Proof. Let C′ ⊆ C be the largest Kan complex contained in C. By assumption, p factors through C′. Since K
is weakly contractible, we conclude that p : K → C′ is homotopic to a constant map p′ : K → C′. Replacing
p by p′ if necessary, we may reduce to the case where p is constant, taking value equal to some fixed object
C ∈ C.

Let p : K. → C be the constant map with value C. Using the characterization of colimits in Corollary
4.4.4.9, we deduce that p is a colimit diagram in C. This proves (1), and (in view of the uniqueness of colimits
up to equivalence) the “only if” direction of (2). To prove the converse, we suppose that p′ is an arbitrary
extension of p which carries each edge of K. to an equivalence in C. Then p′ factors through C′. Since K. is
weakly contractible, we conclude as above that p′ is homotopic to a constant map, and is therefore a colimit
diagram.

4.4.5 Retracts and Idempotents

Let C be a category. An object Y ∈ C is said to be a retract of an object X ∈ C if there is a commutative
diagram

X
r

  @
@@

@@
@@

Y
idY //

i

>>~~~~~~~
Y

in C. In this case we can identify Y with a subobject of X via the monomorphism i, and think of r as a
retraction from X onto Y ⊆ X. We observe also that the map i ◦ r : X → X is idempotent. Moreover,
this idempotent determines Y up to canonical isomorphism: we can recover Y as the equalizer of the pair of
maps (idX , i ◦ r) : X → X (or, dually, as the coequalizer of the same pair of maps). Consequently, we obtain
an injective map from the collection of isomorphism classes of retracts of X to the set of idempotent maps
f : X → X. We will say that C is idempotent complete if this correspondence is bijective for every X ∈ C:
that is, if every idempotent map f : X → X comes from a (uniquely determined) retract of X. If C admits
equalizers (or coequalizers), then C is idempotent complete.

These ideas can be adapted to the∞-categorical setting in a straightforward way. If X and Y are objects
of an ∞-category C, then we say that Y is a retract of X if it is a retract of X in the homotopy category hC.
Equivalently, Y is a retract of X if there exists a 2-simplex ∆2 → C corresponding to a diagram

X
r

  A
AA

AA
AA

Y
idY //

i

>>~~~~~~~
Y.

As in the classical case, there is a correspondence between retracts Y of X and idempotent maps f : X → X.
However, there are two important differences: first, the notion of an idempotent map needs to be interpreted
in an ∞-categorical sense. It is not enough to require that f = f ◦ f in the homotopy category hC. This
would correspond to the condition that there is a path p joining f to f ◦ f in the endomorphism space of
X, which would give rise to two paths from f to f ◦ f ◦ f . In order to have a hope of recovering Y , we need
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these paths to be homotopic. This condition does not even make sense unless p is specified; thus we must
take p as part of the data of an idempotent map. In other words, in the ∞-categorical setting, idempotence
is not merely a condition, but involves additional data (see Definition 4.4.5.4).

The second important difference between the classical and ∞-categorical theory of retracts is that in the
∞-categorical case, one cannot recover a retract Y of X as the limit (or colimit) of a finite diagram involving
X.

Example 4.4.5.1. Let R be a commutative ring, and let C•(R) be the category of complexes of finite free
R-modules, so that an object of C•(R) is a chain complex

. . .→M1 →M0 →M−1 → . . .

such that each Mi is a finite free R-module, and Mi = 0 for |i| � 0; morphisms in C•(R) are given by
morphisms of chain complexes. There is a natural simplicial structure on the category C•(R), for which the
mapping spaces are Kan complexes; let C = N(C•(R)) be the associated∞-category. Then C admits all finite
limits and colimits (C is an example of a stable ∞-category, which will study in detail in [34]). However, C

is idempotent complete if and only if every finitely generated projective R-module is stably free.

The purpose of this section is to define the notion of an idempotent in an ∞-category C, and to obtain a
correspondence between idempotents and retracts in C.

Definition 4.4.5.2. The simplicial set Idem+ is defined as follows: for every nonempty, finite, linearly
ordered set J , HomSet∆(∆J , Idem+) can be identified with the set of pairs (J0,∼), where J0 ⊆ J and ∼ is
an equivalence relation on J0 which satisfies the following condition:

(∗) Let i ≤ j ≤ k be elements of J such that i, k ∈ J0, and i ∼ k. Then j ∈ J0, and i ∼ j ∼ k.

We let Idem denote the simplicial subset of Idem+, corresponding to those pairs (J0,∼) such that J = J0.
We let Ret ⊆ Idem+ denote the simplicial subset corresponding to those pairs (J0,∼) such that the

quotient J0/ ∼ has at most one element.

Remark 4.4.5.3. The simplicial set Idem has exactly one nondegenerate simplex in each dimension n
(corresponding to the equivalence relation ∼ on {0, 1, . . . , n} given by (i ∼ j) ⇔ (i = j) ), and the set of
nondegenerate simplices of Idem is stable under passage to faces. In fact, Idem is characterized up to unique
isomorphism by these two properties.

Definition 4.4.5.4. Let C be an ∞-category.

(1) An idempotent in C is a map of simplicial sets Idem → C. We will refer to Fun(Idem,C) as the
∞-category of idempotents in C.

(2) A weak retraction diagram in C is a map of simplicial sets Ret → C. We will refer to Fun(Ret,C) as
the ∞-category of weak retraction diagrams in C.

(3) A strong retraction diagram in C is a map of simplicial sets Idem+ → C. We will refer to Fun(Idem+,C)
as the ∞-category of strong retraction diagrams in C.

We now spell out Definition 4.4.5.4 in more concrete terms. We first observe that Idem+ has precisely
two vertices. Once of these vertices, which we will denote by x, belongs to Idem, and the other, which we
will denote by y, does not. The simplicial set Ret can be identified with the quotient of ∆2 obtained by
collapsing ∆{0,2} to the vertex y. A weak retraction diagram F : Ret→ C in an ∞-category C can therefore
be identified with a 2-simplex

X

  @
@@

@@
@@

Y

>>~~~~~~~ idY // Y
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where X = F (x) and Y = F (y). In other words, it is precisely the datum that we need in order to exhibit
Y as a retract of X in the homotopy category hC.

To give an idempotent F : Idem→ C in C, it suffices to specify the image under F of each nondegenerate
simplex of Idem in each dimension n ≥ 0. Taking n = 0, we obtain an object X = F (x) ∈ C. Taking n = 1,
we get a morphism f : X → X. Taking n = 2, we get a 2-simplex of C corresponding to a diagram

X
f

  A
AA

AA
AA

X

f
>>}}}}}}} f // X

which verifies the equation f = f ◦f in the homotopy category hC. Taking n > 2, we get higher-dimensional
diagrams which express the idea that f is not only idempotent “up to homotopy”, but “up to coherent
homotopy”.

The simplicial set Idem+ can be thought of as “interweaving” its simplicial subsets Idem and Ret, so
that giving a strong retraction diagram F : Idem+ → C is equivalent to giving a weak retraction diagram

X
r

  @
@@

@@
@@

Y

i

>>~~~~~~~ idY // Y

together with a coherently idempotent map f = i ◦ r : X → X. Our next result makes precise the sense in
which f really is “determined” by Y .

Lemma 4.4.5.5. Let J ⊆ {0, . . . , n}, and let K ⊆ ∆n be the simplicial subset spanned by the nondegenerate
simplices of ∆n which do not contain ∆J . Suppose that there exist 0 ≤ i < j < k ≤ n such that i, k ∈ J ,
j /∈ J . Then the inclusion K ⊆ ∆n is inner anodyne.

Proof. Let P denote the collection of all subset J ′ ⊆ {0, . . . , n} which contain J ∪ {j}. Choose a linear
ordering

{J(1) ≤ . . . ≤ J(m)}
of P , with the property that if J(i) ⊆ J(j), then i ≤ j. Let

K(k) = K ∪
⋃

1≤i≤k

∆J(i).

Note that there are pushout diagrams

ΛJ(i)
j

//

��

∆J(i)

��
K(i− 1) // K(i).

It follows that the inclusions K(i − 1) ⊆ K(i) are inner anodyne. Therefore the composite inclusion K =
K(0) ⊆ K(m) = ∆n is also inner anodyne.

Proposition 4.4.5.6. The inclusion Ret ⊆ Idem+ is an inner anodyne map of simplicial sets.

Proof. Let Retm ⊆ Idem+ be the simplicial subset defined so that (J0,∼) : ∆J → Idem+ factors through
Retm if and only if the quotient J0/ ∼ has cardinality ≤ m. We observe that there is a pushout diagram

K //

��

∆2m

��
Retm−1

// Retm
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where K ⊆ ∆2m denote the simplicial subset spanned by those faces which do not contain ∆{1,3,...,2m−1}.
If m ≥ 2, Lemma 4.4.5.5 implies that the upper horizontal arrow is inner anodyne, so that the inclusion
Retm−1 ⊆ Retm is inner anodyne. The inclusion Ret ⊆ Idem+ can be identified with an infinite composition

Ret = Ret1 ⊆ Ret2 ⊆ . . .

of inner anodyne maps, and is therefore inner anodyne.

Corollary 4.4.5.7. Let C be an ∞-category. Then the restriction map

Fun(Idem+,C)→ Fun(Ret,C)

from strong retraction diagrams to weak retraction diagrams is a trivial fibration of simplicial sets. In
particular, every weak retraction diagram in C can be extended to a strong retraction diagram.

We now study the relationship between strong retraction diagrams and idempotents in an∞-category C.
We will need the following lemma, whose proof is somewhat tedious.

Lemma 4.4.5.8. The simplicial set Idem+ is an ∞-category.

Proof. Suppose given 0 < i < n and a map Λni → Idem+, corresponding to a compatible family of pairs
{(Jk,∼k)}k 6=i, where Jk ⊆ {0, . . . , k−1, k+1, . . . , n} and ∼k is an equivalence relation Jk defining an element
of HomSet∆(∆{0,...,k−1,k+1,...,n}, Idem+). Let J =

⋃
Jk, and define a relation ∼ on J as follows: if a, b ∈ J ,

then a ∼ b if and only if either
(∃k 6= i)[(a, b ∈ Jk) ∧ (a ∼k b)]

or
(a 6= b 6= i 6= a) ∧ (∃c ∈ Ja ∩ Jb)[(a ∼b c) ∧ (b ∼a c)].

We must prove two things: that (J,∼) ∈ HomSet∆(∆n, Idem+), and that the restriction of (J,∼) to
{0, . . . , k − 1, k + 1, . . . , n} coincides with (Jk,∼k) for k 6= i.

We first check that ∼ is an equivalence relation. It is obvious that ∼ is reflexive and symmetric. Suppose
that a ∼ b and that b ∼ c; we wish to prove that a ∼ c. There are several cases to consider:

• Suppose that there exists j 6= i, k 6= i such that a, b ∈ Jj , b, c ∈ Jk, and a ∼j b ∼k c. If a 6= k, then
also a ∈ Jk and a ∼k b, and we may conclude that a ∼ c by invoking the transitivity of ∼k. Therefore
we may suppose that a = k. By the same argument, we may suppose that b = j; we therefore conclude
that a ∼ c.

• Suppose that there exists k 6= i with a, b ∈ Jk, that b 6= c 6= i 6= b and there exists d ∈ Jb ∩ Jc with
a ∼k b ∼c d ∼b c. If a = b or a = c there is nothing to prove; assume therefore that a 6= b and a 6= c.
Then a ∈ Jc and a ∼c b, so by transitivity a ∼c d. Similarly, a ∈ Jb and a ∼b d so that a ∼b c by
transitivity.

• Suppose that a 6= b 6= i 6= a, b 6= c 6= i 6= b, and that there exist d ∈ Ja ∩ Jb and e ∈ Jb ∩ Jc such
that a ∼b d ∼a b ∼c e ∼b c. It will suffice to prove that a ∼b c. If c = d, this is clear; let us therefore
assume that c 6= d. By transitivity, it suffices to show that d ∼b e. Since c 6= d, we have d ∈ Jc and
d ∼c b, so that d ∼c e by transitivity, and therefore d ∼b e.

To complete the proof that (J,∼) belongs to HomSet∆(∆n, Idem+), we must show that if a < b < c,
a ∈ J , c ∈ J , and a ∼ c, then also b ∈ J and a ∼ b ∼ c. There are two cases to consider. Suppose first that
there exists k 6= j such that a, c ∈ Jk and a ∼k c. These relations hold for any k /∈ {i, a, c}. If it is possible
to choose k 6= b, then we conclude that b ∈ Jk and a ∼k b ∼k c as desired. Otherwise, we may suppose that
the choices k = 0 and k = n are impossible, so that a = 0 and c = n. Then a < i < c, so that i ∈ Jb and
a ∼b i ∼b c. Without loss of generality we may suppose b < i. Then a ∼c i, so that b ∈ Jc and a ∼c b ∼c i
as desired.
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We now claim that (J,∼) : ∆n → Idem+ is an extension of the original map Λni → Idem+. In other
words, we claim that for k 6= i, Jk = J ∩{0, . . . , k− 1, k+1, . . . , n} and ∼k is the restriction of ∼ to Jk. The
first claim is obvious. For the second, let us suppose that a, b ∈ Jk and a ∼ b. We wish to prove that a ∼k b.
It will suffice to prove that a ∼j b for any j /∈ {i, a, b}. Since a ∼ b, either such a j exists, or a 6= b 6= i 6= a
and there exists c ∈ Ja ∩ Jb such that a ∼b c ∼a b. If there exists j /∈ {a, b, c, i}, then we conclude that
a ∼j c ∼j b and hence a ∼j b by transitivity. Otherwise, we conclude that c = k 6= i and that 0, n ∈ {a, b, c}.
Without loss of generality, i < c; thus 0 ∈ {a, b} and we may suppose without loss of generality that a < i.
Since a ∼b c, we conclude that i ∈ Jb and a ∼b i ∼b c. Consequently, i ∈ Ja and i ∼a c ∼a b, so that i ∼a b
by transitivity and therefore i ∼c b. We now have a ∼c i ∼c b so that a ∼c b as desired.

Remark 4.4.5.9. It is clear that Idem ⊆ Idem+ is the full simplicial subset spanned by the vertex x, and
therefore an ∞-category as well.

According to Corollary 4.4.5.7, every weak retraction diagram

X

  @
@@

@@
@@

Y

>>~~~~~~~ idY // Y

in an ∞-category C can be extended to a strong retraction diagram F : Idem+ → C, which restricts to give
an idempotent in C. Our next goal is to show that F is canonically determined by the restriction F | Idem.

Our next result expresses the idea that if an idempotent in C arises in this manner, then F is essentially
unique.

Lemma 4.4.5.10. The ∞-category Idem is weakly contractible.

Proof. An explicit computation shows that the topological space | Idem | is connected, simply connected, and
has vanishing homology in degrees greater than zero. (Alternatively, we can deduce this from Proposition
4.4.5.15 below.)

Lemma 4.4.5.11. The inclusion Idem ⊆ Idem+ is a cofinal map of simplicial sets.

Proof. According to Theorem 4.1.3.1, it will suffice to prove that the simplicial sets Idemx/ and Idemy/ are
weakly contractible. The simplicial set Idemx/ is an ∞-category with an initial object, and therefore weakly
contractible. The projection Idemy/ → Idem is an isomorphism, and Idem is weakly contractible by Lemma
4.4.5.10.

Proposition 4.4.5.12. Let C be an ∞-category, and let F : Idem+ → C be a strong retraction diagram.
Then F is a left Kan extension of F | Idem.

Remark 4.4.5.13. Passing to opposite ∞-categories, it follows that a strong retraction diagram F :
Idem+ → C is also a right Kan extension of F | Idem.

Proof. We must show that the induced map

(Idem/y). → (Idem+
/y)

. G→ Idem+ F→ C

is a colimit diagram. Consider the commutative diagram

Idem/y //

��

Idem+
/y

��
Idem // Idem+ .
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The lower horizontal map is cofinal by Lemma 4.4.5.11, and the vertical maps are isomorphisms: therefore
the upper horizontal map is also cofinal. Consequently, it will suffice to prove that F ◦G is a colimit diagram,
which is obvious.

We will say that an idempotent F : Idem → C in an ∞-category C is effective if it extends to a map
Idem+ → C. According to Lemma 4.3.2.13, F is effective if and only if it has a colimit in C. We will say
that C is idempotent complete if every idempotent in C is effective.

Corollary 4.4.5.14. Let C be an ∞-category, and let D ⊆ Fun(Idem,C) be the full subcategory spanned by
the effective idempotents in C. The restriction map Fun(Idem+,C)→ D is a trivial fibration. In particular,
if C is idempotent complete, then we have a diagram

Fun(Ret,C)← Fun(Idem+,C)→ Fun(Idem,C)

of trivial fibrations.

Proof. Combine Proposition 4.4.5.12 with Proposition 4.3.2.15.

By definition, an ∞-category C is idempotent complete if and only if every idempotent Idem→ C has a
colimit. In particular, if C admits all small colimits, then it is idempotent complete. As we noted above, this
is not necessarily true if C admits only finite colimits. However, it turns out that filtered colimits do suffice:
this assertion is not entirely obvious, since the ∞-category Idem itself is not filtered.

Proposition 4.4.5.15. Let A be a linearly ordered set with no largest element. Then there exists a cofinal
map p : N(A)→ Idem.

Proof. Let p : N(A) → Idem be the unique map which carries nondegenerate simplices to nondegenerate
simplices. Explicitly, this map carries a simplex ∆J → N(A) corresponding to a map s : J → A of linearly
ordered sets to the equivalence relation (i ∼ j) ⇔ (s(i) = s(j)). We claim that p is cofinal. According to
Theorem 4.1.3.1, it will suffice to show that the fiber product N(A) ×Idem Idemx/ is weakly contractible.
We observe that N(A) ×Idem Idemx ' N(A′), where A′ denote the set A × {0, 1} equipped with the partial
ordering

(α, i) < (α′, j)⇔ (j = 1) ∧ (α < α′).

For each α ∈ A, let A<α = {α′ ∈ A : α′ < α} and let

A′α = {(α′, i) ∈ A′ : (α′ < α) ∨ ((α′, i) = (α, 1))}.

By hypothesis, we can write A as a filtered union
⋃
α∈AA<α. It therefore suffices to prove that for each

α ∈ A, the map
f : N(A<α)×Idem Idemx/ → N(A)×Idem Idemx/

has a nullhomotopic geometric realization |f |. But this map factors through N(A′α), and |N(A′α)| is con-
tractible because A′α has a largest element.

Corollary 4.4.5.16. Let κ be a regular cardinal, and suppose that C is an∞-category which admits κ-filtered
colimits. Then C is idempotent complete.

Proof. Apply Proposition 4.4.5.15 to the linearly ordered set consisting of all ordinals less than κ (and
observe that this linearly ordered set is κ-filtered).
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Chapter 5

Presentable and Accessible
∞-Categories

Many categories which arise naturally, such as the category A of abelian groups, are large: they have a
proper class of objects, even when the objects are considered only up to isomorphism. However, though A

itself is large, it is in some sense determined by the much smaller category A0 of finitely generated abelian
groups: A is naturally equivalent to the category of Ind-objects of A0. This remark carries more than simply
philosophical significance. When properly exploited, it can be used to prove statements such as the following:

Proposition 5.0.0.1. Let F : A → Set be a contravariant functor from A to the category of sets. Then F
is representable by an object of A if and only if it carries colimits in A to limits in Set.

Proposition 5.0.0.1 is valid not only for the category A of abelian groups, but for any presentable cat-
egory: that is, any category which possess all (small) colimits and satisfies mild set-theoretic assumptions
(such categories are referred to as locally presentable in [1]). Our goal in this chapter is to develop an ∞-
categorical generalization of the theory of presentable categories, and to obtain higher-categorical analogues
of Proposition 5.0.0.1 and related results (such as the adjoint functor theorem).

The most basic example of a presentable ∞-category is the ∞-category S of spaces. More generally, we
can define an ∞-category P(C) of presheaves (of spaces) on an arbitrary small ∞-category C. We will study
the properties of P(C) in §5.1; in particular, we will see that there exists a Yoneda embedding j : C→ P(C)
which is fully faithful, just as in ordinary category theory. Moreover, we give a characterization of P(C) in
terms of C: it is, in some sense, freely generated by the essential image of j under (small) colimits.

The presheaf ∞-categories P(C) are all presentable. Conversely, any presentable ∞-category can be
obtained as a localization of some presheaf ∞-category P(C) (Proposition 5.5.1.1). To make sense of this
statement, we need a theory of localizations of ∞-categories. We will develop such a theory in §5.2, as part
of a more general theory of adjoint functors between ∞-categories.

In §5.3 we will introduce, for every small ∞-category C, an ∞-category Ind(C) of Ind-objects of C.
Roughly speaking, this is an ∞-category which is obtained from C by freely adjoining colimits for all filtered
diagrams. It is characterized up to equivalence by the fact that Ind(C) contains a full subcategory equivalent
to C, which generates Ind(C) under filtered colimits and consists of compact objects.

The construction of Ind-categories will be applied in §5.4 to the study of accessible∞-categories. Roughly
speaking, an ∞-category C is accessible if it is generated under (sufficiently) filtered colimits by a small
subcategory C0 ⊆ C. We will prove that the class of accessible ∞-categories is stable under a various
categorical constructions. Results of this type will play an important technical role later this book: they
generally allow us to dispense with the set-theoretic aspects of an argument (such as cardinality estimation),
and to focus instead on the more conceptual aspects.

We will say that an∞-category C is presentable if C is accessible and admits (small) colimits. In §5.5, we
will describe the theory of presentable ∞-categories in detail. In particular, we will generalize Proposition
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5.0.0.1 to the ∞-categorical setting, and prove an analogue of the adjoint functor theorem. We will also
study localizations of presentable ∞-categories, following ideas of Bousfield. The theory of presentable
∞-categories will play a vital role in the study of ∞-topoi, which is the subject of the next chapter.
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5.1 ∞-Categories of Presheaves

The category of sets plays a central role in classical category theory. The primary reason for this is Yoneda’s
lemma, which asserts that for any category C, the “Yoneda embedding”

j : C→ SetCop

C 7→ HomC(•, C)

is fully faithful. Consequently, objects in C can be thought of as a kind of “generalized sets”, and various
questions about the category C can be reduced to questions about the category of sets.

If C is an ∞-category, then the mapping sets of the above discussion should be replaced by mapping
spaces. Consequently, one should expect the Yoneda embedding to take values in presheaves of spaces,
rather than presheaves of sets. To formalize this, we introduce the following notation:

Definition 5.1.0.1. Let S be a simplicial set. We let P(S) denote the simplicial set Fun(Sop, S); here S

denotes the ∞-category of spaces defined in §1.2.16. We will refer to P(S) as the ∞-category of presheaves
on S.

Remark 5.1.0.2. More generally, for any ∞-category C, we might refer to Fun(Sop,C) as the ∞-category
of C-valued presheaves on S. Unless otherwise specified, the word “presheaf” will always refer to a S-valued
presheaf. This is somewhat nonstandard terminology: one usually understands the term “presheaf” to refer
to a presheaf of sets, rather than a presheaf of spaces. The shift in terminology is justified by the fact that
the important role of Set in ordinary category theory is taken on by S in the ∞-categorical setting.

Our goal in this section is to establish the basic properties of P(S). We begin in §5.1.1 by reviewing
two other possible definitions of P(S): one via the theory of right fibrations over S, another via simplicial
presheaves on the category C[S]. Using the “straightening” results of §3.3.1 and §A.3.6, we will show that
all three of these definitions are equivalent.

The presheaf ∞-categories P(S) are examples of presentable ∞-categories (see §5.5). In particular, each
P(S) admits all (small) limits and colimits. We will give a proof of this assertion in §5.1.2, by reducing to
the case where S is a point.

The main question regarding the ∞-category P(S) is how it relates to the original simplicial set S. In
§5.1.3 we will construct a map j : S → P(S), which is an ∞-categorical analogue of the usual Yoneda
embedding. Just as in classical category theory, the Yoneda embedding is fully faithful. In particular, we
note that any ∞-category C can be embedded in a larger ∞-category which admits limits and colimits; this
observation allows us to construct an idempotent completion of C, which we will study in §5.1.4.

In §5.1.5, we will characterize the ∞-category P(S) in terms of the Yoneda embedding j : S → P(S).
Roughly speaking, we will show that P(S) is freely generated by S under colimits (Theorem 5.1.5.6). In
particular, if C is a category which admits colimits, then any diagram f : S → C extends uniquely (up to
homotopy) to a functor F : P(S) → C. In §5.1.6, we will give a criterion for determining whether or not F
is an equivalence.

5.1.1 Other Models for P(S)

Let S be a simplicial set. We have defined the ∞-category P(S) of presheaves on S to be the mapping space
Fun(Sop, S). However, there are several equivalent models which would serve equally well; we discuss two of
them in this section.

Let P′∆(S) denote the full subcategory of (Set∆)/S spanned by the right fibrations X → S. We define
P′(S) to be the simplicial nerve N(P′∆(S)). Because P′∆(S) is a fibrant simplicial category, P′(S) is an
∞-category. We will see in a moment that P′(S) is (naturally) equivalent to P(S). In order to do this, we
need to introduce a third model.
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Let φ : C[S]op → C be an equivalence of simplicial categories. Let SetC
∆ denote the category of simplicial

functors C → Set∆ (which we may view as simplicial presheaves on Cop). We regard SetC
∆ as endowed

with the projective model structure defined in §A.3.3. With respect to this structure, SetC
∆ is a simplicial

model category; we let P′′∆(φ) = (SetC
∆)◦ denote the full simplicial subcategory consisting of fibrant-cofibrant

objects, and we define P′′(φ) to be the simplicial nerve N(P′′∆(φ)).
We are now ready to describe the relationship between these different models:

Proposition 5.1.1.1. Let S be a simplicial set, and let φ : C[S]op → C be an equivalence of simplicial
categories. Then there are (canonical) equivalences of ∞-categories

P(S)
f← P′′(φ)

g→ P′(S).

Proof. The map f was constructed in Proposition A.3.6.1; it therefore suffices to give a construction of g.
Recall that the category (Set∆)/S of simplicial sets over S may be endowed with a perfect model structure,

the contravariant model structure defined in §2.1.4. Moreover, this model structure is simplicial (Proposition
2.1.4.5) and the fibrant objects are precisely the right fibrations over S (Proposition 3.3.1.2). Thus, we may
identify P′∆(S) with the simplicial category (Set∆)◦/S of fibrant-cofibrant objects of (Set∆)/S .

According to Theorem 2.1.4.7, the straightening and unstraightening functors (Stφ, Unφ) determine a
Quillen equivalence between (Set∆)C and (Set∆)/S . Moreover, for any X ∈ (Set∆)/S and any simplicial set
K, there is a natural chain of equivalences

Stφ(X ×K)→ (StφX)⊗ |K|Q• → (StφX)⊗K.

( The fact that the first map is an equivalence follows easily from Proposition 3.2.1.13. ) It follows from
Proposition A.2.8.1 that Unφ is endowed with the structure of a simplicial functor, and induces an equivalence
of simplicial categories

(SetC
∆)◦ → (Set∆)◦/S .

We obtain the desired equivalence g by passing to the simplicial nerve.

5.1.2 Colimits in ∞-Categories of Functors

Let S be an arbitrary simplicial set. Our goal in this section is to prove that the ∞-category P(S) of
presheaves on S has all (small) limits and colimits. There are (at least) three approaches to proving this:

(1) According to Proposition 5.1.1.1, we may identify P(S) with the ∞-category underlying the simplicial
model category SetC[S]op

∆ . We can then deduce the existence of limits and colimits in P(S) by invoking
Corollary 4.2.4.6.

(2) Since the ∞-category S classifies left fibrations, the ∞-category P(S) classifies left fibrations over Sop:
in other words, homotopy classes of maps K → P(S) can be identified with equivalence classes of
left fibrations X → K × Sop. It is possible to generalize Proposition 3.3.5.5 and Corollary 3.3.4.3 to
describe limits and colimits in P(S) entirely in the language of left fibrations. The existence problem
can then be solved by exhibiting explicit constructions of left fibrations.

(3) Applying either (1) or (2) in the case where S is a point, we can deduce that S ' P(∗) admits limits
and colimits. We can then attempt to deduce the same result for P(S) = Fun(Sop, S) using a general
result about (co)limits in functor categories (Proposition 5.1.2.2).

Although approach (1) is probably the quickest, we will adopt approach (3) because it gives additional
information: our proof will show that the formation of limits and colimits in P(S) are computed pointwise.
The same proof will also apply to ∞-categories of C-valued presheaves in the case where C is not necessarily
the ∞-category S of spaces.
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Lemma 5.1.2.1. Let q : Y → S be a Cartesian fibration of simplicial sets, and let C = MapS(S, Y ) denote
the ∞-category of sections of q. Let p : S → Y be an object of C having the property that p(s) is an initial
object of the fiber Ys for each vertex s of S. Then p is an initial object of C.

Proof. By Proposition 4.2.2.4, the map Y pS/ → S is a Cartesian fibration. By hypothesis, for each vertex
s of S, the map Y pS/ ×S {s} → Ys is a trivial fibration. It follows that the projection Y pS/ → Y is an
equivalence of Cartesian fibrations over S, and therefore a categorical equivalence; taking sections over S we
obtain another categorical equivalence

MapS(S, Y pS/)→ MapS(Y, S).

But this map is just the left fibration j : Cp/ → C; it follows that j is a categorical equivalence. Applying
Propostion 3.3.2.5 to the diagram

Cp/

j

  A
AA

AA
AA

A
j // C

idC����
��

��
��

C,

we deduce that j induces categorical equivalences Cp/×C{t} → {t} for each vertex t of Q. Thus the fibers
of j are contractible Kan complexes, so that j is a trivial fibration (by Lemma 2.1.3.3) and p is an initial
object of C, as desired.

Proposition 5.1.2.2. Let K be a simplicial set, q : X → S a Cartesian fibration, and p : K → MapS(S,X)
a diagram. For each vertex s of S, we let ps : K → Xs be the induced map. Suppose, furthermore, that each
ps has a colimit in the ∞-category Xs. Then:

(1) There exists a map p : K � ∆0 → MapS(S,X) which extends p and induces a colimit diagram p :
K �∆0 → Xs, for each vertex s ∈ S.

(2) An arbitrary extension p : K�∆0 → MapS(S,X) of p is a colimit for p if and only if each ps : K�∆0 →
Xs is a colimit for ps.

Proof. Choose a factorization K → K ′ → MapS(S,X) of p, where K → K ′ is inner anodyne (and therefore a
categorical equivalence) and K ′ → CS is an inner fibration (so that K ′ is an∞-category). The map K → K ′

is a categorical equivalence, and therefore cofinal. We are free to replace K by K ′, and may thereby assume
that K is an ∞-category.

We apply Proposition 4.2.2.7 to the Cartesian fibration X → S and the diagram pS : K × S → X
determined by the map p. We deduce that there exists a map

pS : (K × S) �S S = (K �∆0)× S → X

having the property that its restriction to the fiber over each s ∈ S is a colimit of ps; this proves (1).
The “if” direction of (2) follows immediately from Lemma 5.1.2.1. The “only if” follows from (1) and

the fact that colimits, when they exist, are unique up to equivalence.

Corollary 5.1.2.3. Let S be a simplicial set. The ∞-category P(S) of presheaves on S admits all small
limits and colimits.

5.1.3 Yoneda’s Lemma

In this section, we will construct the ∞-categorical analogue of the Yoneda embedding, and prove that it is
fully faithful. We begin with a somewhat naive approach, based on the formalism of simplicial categories.
We note that an analogoue of Yoneda’s Lemma is valid in enriched category theory (with the usual proof).
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Namely, suppose that C is a category enriched over another category E. Then there is an “enriched Yoneda
embedding”

i : C→ ECop

X 7→ MapC(•, X).

Consequently, for any simplicial category C, one obtains a fully faithful embedding i of C into the simplicial
category MapCat∆(Cop, Set∆) of simplicial functors from Cop into Set∆. In fact, i is fully faithful in the strong
sense that it induces isomorphisms of simplicial sets

MapC(X,Y )→ MapSetCop

∆
(i(X), i(Y )),

rather than merely weak homotopy equivalences. Unfortunately, this assertion does not necessarily have
any ∞-categorical content, because the simplicial category SetCop

∆ does not generally represent the correct
∞-category of functors from Cop to Set∆.

Let us describe an analogous construction in the setting of ∞-categories. Let K be a simplicial set, and
let C = C[K]. Then C is a simplicial category, so

(X,Y ) 7→ Sing |HomC(X,Y )|

determines a simplicial functor from Cop×C to the category Kan. The functor C does not commute with
products, but there exists a natural map C[Kop × K] → Cop×C. Composing with this map, we obtain a
map of simplicial sets

C[Kop ×K]→ Kan .

Passing to the adjoint, we obtain a map of simplicial sets Kop ×K → S, which we can identify with

j : K → Fun(Kop, S) = P(K).

We shall refer to j (or, more generally, any map equivalent to j) as the Yoneda embedding.

Proposition 5.1.3.1 (∞-Categorical Yoneda Lemma). Let K be a simplicial set. Then the Yoneda embed-
ding j : K → P(K) is fully faithful.

Proof. Let C′ = Sing |C[Kop]| be the “fibrant replacement” for C = C[Kop]. We endow SetC′

∆ with the
projective model structure described in §A.3.3.

We note that the Yoneda embedding factors as a composition

K
j′→ N((SetC′

∆ )◦)
j′′→ Fun(Kop, S),

where j′′ is the map of Proposition A.3.6.1 and consequently a categorical equivalence. It therefore suffices
to prove that j′ is fully faithful. For this, we need only show that the adjoint map

J : C[K]→ SetC′

∆ .

is a fully-faithful functor between simplicial categories. We now observe that J is the composition of an
equivalence C[K] → (C′)op with the (simplicial enriched) Yoneda embedding (C′)op → SetC′

∆ , which is fully
faithful in virtue of the classical (simplicially enriched) version of Yoneda’s Lemma.

We conclude by establishing another pleasant property of the Yoneda embedding:

Proposition 5.1.3.2. Let C be a ( small ) ∞-category, and j : C → P(C) the Yoneda embedding. Then j
preserves all limits which exist in C.
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Proof. Let p : K → C be a diagram having a limit in C. We wish to show that j carries any limit for p to a
limit of j ◦ p. Choose a category I and a cofinal map N(Iop) → Kop (the existence of which is guaranteed
by Proposition 4.2.3.14) Replacing K by N(I), we may suppose that K is the nerve of a category. Let
p : N(I)/ → C be a limit for p.

We recall the definition of the Yoneda embedding. It involves the choice of an equivalence C[C] → D,
where D is a fibrant simplicial category. For definiteness, we took D to be Sing |C[C]|. However, we could just
as well choose some other fibrant simplicial category D′ equivalent to C[C] and obtain a “modified Yoneda
embedding” j′ : C→ P(C); it is easy to see that j′ and j are equivalent functors, so it suffices to show that j′

preserves the limit of p. Using Corollary A.3.6.2, we may suppose that p is obtained from a functor between
simplicial categories q : {x} ? I→ D by passing to the nerve. According to Theorem 4.2.4.1, q is a homotopy
limit of q = q| I. Consequently, for each object Z ∈ D, the induced functor

qZ : I 7→ HomD(Z, q(I))

is a homotopy limit of qZ = qZ | I. Taking Z to be the image of an object C of C, we deduce that

N(I)/ → C
j′→ P(C)→ S

is a limit for its restriction to N(I), where the map on the right is given by “evaluation at C”. Proposition
5.1.2.2 now implies that j′ ◦ p is a limit for j′ ◦ p, as desired.

5.1.4 Idempotent Completions

Recall that an∞-category C is said to be idempotent complete if every functor Idem→ C admits a colimit in
C (see §4.4.5). If an ∞-category C is not idempotent complete, then we can attempt to correct the situation
by passing to a larger ∞-category.

Definition 5.1.4.1. Let f : C → D be a functor between ∞-categories. We will say that f exhibits D as
an idempotent completion of C if D is idempotent complete, f is fully faithful, and every object of D is a
retract of f(C), for some object C ∈ C.

Our goal in this section is to show that ∞-category C has an idempotent completion D, which is unique
up to equivalence. The uniqueness is a consequence of Proposition 5.1.4.9, proven below. The existence
question is much easier to address.

Proposition 5.1.4.2. Let C be an ∞-category. Then C admits an idempotent completion.

Proof. Enlarging the universe if necessary, we may suppose that C is small. Let C′ denote the full subcategory
of P(C) spanned by those objects which are retracts of objects which belong to the image of the Yoneda
embedding j : C → P(C). Then C′ is stable under retracts in P(C). Since P(C) admits all small colimits,
Corollary 4.4.5.16 implies that P(C) is idempotent complete. It follows that C′ is idempotent complete.
Proposition 5.1.3.1 implies that the Yoneda embedding j : C→ C′ is fully faithful, and therefore exhibits C′

as an idempotent completion of C.

We now address the question of uniqueness for idempotent completions. First, we need a few preliminary
results.

Lemma 5.1.4.3. Let C be an ∞-category which is idempotent complete, and let p : K → C be a diagram.
Then C/p and Cp/ are also idempotent complete.

Proof. By symmetry, it will suffice to prove that C/p is idempotent complete. Let q : C/p → C be the
associated right fibration, and let F : Idem→ C/p be an idempotent. We will show that F has a limit. Since
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C is idempotent complete, q ◦ F has a limit q ◦ F : Idem/ → C. Consider the lifting problem

Idem� _

��

F // C/p

q

��
Idem/

q◦F //

F
;;x

x
x

x
C .

The right vertical map is a right fibration, and the left vertical map is right anodyne (Lemma 4.2.3.6), so
that there exists a dotted arrow F as indicated. Using Proposition 4.4.2.8, we deduce that F is a limit of
F .

Lemma 5.1.4.4. Let f : C → D be a functor between ∞-categories which exhibits D as an idempotent
completion of C, and let p : K → D be a diagram. Then the induced map f/p : C×D D/p → D/p exhibits
D/p as an idempotent completion of C×D D/p.

Proof. Lemma 5.1.4.3 asserts that D/p is idempotent complete. We must show that every object D ∈ D/p

is a retract of f/p(C), for some C ∈ C×D D/p. Let q : D/p → D be the projection, and let D = q(D). Since
f exhibits D as an idempotent completion of C, there is a diagram

f(C)

!!D
DD

DD
DD

D

D′ g //

<<zzzzzzzz
D

in D, where g is an equivalence. Since q is a right fibration, we can lift this to a diagram

f(C)

  B
BB

BB
BB

B

D
′ g //

=={{{{{{{{
D

in D/q. Since g is q-Cartesian and g is an equivalence, g is ann equivalence. It follows that D is a retract of
f(C). By construction, f(C) = f/p(C) for an appropriately chosen object C ∈ C×D D/p.

Lemma 5.1.4.5. Let f : C → D be a functor between ∞-categories which exhibits D as an idempotent
completion of C. Suppose that D has an initial object ∅. Then C is weakly contractible as a simplicial set.

Proof. Without loss of generality, we may suppose that C is a full subcategory of D and that f is the
inclusion. Since f exhibits D as an idempotent completion of C, the initial object ∅ of D admits a map
f : C → ∅, where C ∈ C. The ∞-category CC/ has an initial object, and is therefore weakly contractible.
Since composition

Cf/ → CC/ → C

is both a weak homotopy equivalence (in fact, a trivial fibration) and weakly nullhomotopic, we conclude
that C is weakly contractible.

Lemma 5.1.4.6. Let f : C → D be a functor between ∞-categories which exhibits D as an idempotent
completion of C. Then f is cofinal.

Proof. According to Theorem 4.1.3.1, it suffices to prove that for every objectD ∈ D, simplicial set C×D DD/

is weakly contractible. Lemma 5.1.4.4 asserts that fD/ is also an idempotent completion, and Lemma 5.1.4.5
completes the proof.
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Lemma 5.1.4.7. Let F : C → D be a functor between ∞-categories, and let C0 ⊆ C be a full subcategory
such that the inclusion exhibits C as an idempotent completion of C0. Then F is a left Kan extension of
F |C0.

Proof. We must show that for every object C ∈ C, the composite map

(C0
/C). → (C/C). G→ C

F→ D

is a colimit diagram in D. Lemma 5.1.4.4 guarantees that C0
/C ⊆ C/C is an idempotent completion, and

therefore cofinal by Lemma 5.1.4.6. Consequently, it suffices prove that F ◦G is a colimit diagram, which is
obvious.

Lemma 5.1.4.8. Let C and D be ∞-categories which are idempotent complete, and let C0 ⊆ C be a full
subcategory such that the inclusion exhibits C as an idempotent completion of C0. Then any functor F0 :
C0 → D has an extension F : C→ D.

Proof. We will suppose that the∞-categories C and D are small. Let P(D) be the∞-category of presheaves
on D (see §5.1), j : D → P(D) the Yoneda embedding, and D′ the essential image of j. According to
Proposition A.2.4.1, it will suffice to prove that j ◦F0 can be extended to a functor F ′ : C→ D′. Since P(D)
admits small colimits, we can choose F ′ : C→ P(D) to be a left Kan extension of j ◦ F0. Every object of C

is a retract of an object of C0, so that every object in the essential image of F ′ is a retract of the Yoneda
image of an object of D. Since D is idempotent complete, it follows that the F ′ factors through D′.

Proposition 5.1.4.9. Let f : C→ D be a functor which exhibits D as the idempotent completion of C, and
let E be an ∞-category which is idempotent complete. Then composition with f induces an equivalence of
∞-categories f∗ : Fun(D,E)→ Fun(C,E).

Proof. Without loss of generality, we may suppose that f is the inclusion of a full subcategory. In this case,
we combine Lemmas 5.1.4.7, 5.1.4.8, and Proposition 4.3.2.15 to deduce that f∗ is a trivial fibration.

Remark 5.1.4.10. Let C be a small∞-category, and let f : C→ C′ be an idempotent completion of C. The
proof of Proposition 5.1.4.2 shows that C′ is equivalent to a full subcategory of P(C), and therefore locally
small (see §5.4.1). Moreover, every object of hC′ is the image of some retraction map in hC; it follows that
the set of equivalence classes of objects in C′ is bounded in size. It follows that C′ is essentially small.

5.1.5 The Universal Property of P(S)

Let S be a (small) simplicial set. We have defined P(S) to be the ∞-category of maps from Sop into the ∞-
category S of spaces. Informally, we may view P(S) as the limit of a diagram in the ∞-bicategory of (large)
∞-categories: namely, the constant diagram carrying Sop to S. In more concrete terms, our definition of P(S)
leads immediately to a characaterization of P(S) by a universal mapping property: for every ∞-category C,
there is an equivalence of ∞-categories (in fact an isomorphism of simplicial sets)

Fun(C,P(S)) ' Fun(C×Sop, S).

The goal of this section is to give a dual characterization of P(S): it may also be viewed as a colimit of
copies of Set∆, indexed by S. However, this colimit needs to be understood in an appropriate ∞-bicategory
of ∞-categories where the morphisms are given by colimit preserving functors. In other words, we will show
that P(S) is in some sense “freely generated” by S under (small) colimits (Theorem 5.1.5.6). First, we need
to introduce a bit of notation.

Notation 5.1.5.1. Let C be an ∞-category and S a simplicial set. We will let FunL(P(S),C) denote the
full subcategory of Fun(P(S),C) spanned by those functors P(S)→ C which preserve small colimits.

The motivation for this notation is as follows: in §5.2.5, we will use the notation FunL(D,C) to denote
the full subcategory of Fun(D,C) spanned by those functors which are left adjoints. In §5.5.2, we will see
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that when D = P(S) (or, more generally, when D is presentable), then a functor D → C is a left adjoint if
and only if it preserves small colimits (see Corollary 5.5.2.9 and Remark 5.5.2.10).

We wish to prove that if C is an ∞-category which admits all (small) colimits, then any map S → C

extends in an essentially unique fashion to a colimit-preserving functor P(S) → C. To prove this, we need
a second characterization of the colimit-preserving functors f : P(S)→ C: they are precisely those functors
which are left Kan extensions of their restriction to the essential image of the Yoneda embedding.

Lemma 5.1.5.2. Let S be a small simplicial set, let s be a vertex of S, let e : P(S)→ S be the map given by
evaluation at s, and let f : C→ P(S) be the associated left fibration (see §3.3.3). Then f is corepresentable
by the object j(s) ∈ P(S), where j : S → P(S) denotes the Yoneda embedding.

Proof. Without loss of generality, we may suppose that S is an ∞-category. We make use of the equivalent
model P′(S) of §5.1.1. Observe that the functor f : P(S) → S is equivalent to f ′ : P′(S) → S, where f ′ is
the nerve of the simplicial functor P′∆(S) → Kan which associates to each left fibration Y → S the fiber
Ys = Y ×S {s}. Furthermore, under the equivalence of P(S) with P′(S), the object j(s) corresponds to a
left fibration X(s) → S which is corepresented by s. Then X(s) contains an initial object x lying over s.
The choice of x determines a point η ∈ π0f

′(X(s)). According to Proposition 4.4.4.5, to show that X(s)
corepresents f ′, it suffices to show that for every left fibration X → S, the map

MapS(X(s), Y )→ Ys,

given by evaluation at x, is a homotopy equivalence of Kan complexes. We may rewrite the space on the right
hand side as MapS({x}, Y ). According to Proposition 2.1.4.5, the covariant model structure on (Set∆)/S
is compatible with the simplicial structure. It therefore suffices to prove that the inclusion i : {x} ⊆ X(s)
is a covariant equivalence. But this is clear, since i is the inclusion of an initial object and therefore left
anodyne.

Lemma 5.1.5.3. Let S be a small simplicial set, and let j : S → P(S) denote the Yoneda embedding. Then
idP(S) is a left Kan extension of j along itself.

Proof. Let C ⊆ P(S) denote the essential image of j. According to Proposition 5.1.3.1, j induces an equiva-
lence S → C. It therefore suffices to prove that idP(S) is a left Kan extension of its restriction to C. Let X
be an object of P(S); we must show that the natural map

φ : C./X ⊆ P(S)./X → P(S)

is a colimit diagram.
According to Proposition 5.1.2.2, it will suffice to prove that for each vertex s of S, the map

φs : C./X → S

given by composing φ with the evaluation map is a colimit diagram in S. Let D → C./X be the pullback
of the universal left fibration along φs, and let D0 ⊆ D be the preimage in D of C/X ⊆ C./X . According
to Proposition 3.3.5.5, it will suffice to prove that the inclusion D0 ⊆ D is a weak homotopy equivalence of
simplicial sets.

Let C = j(s). Let E = C./X ×P(S) P(S)C/, let E0 = C/X ×C CC/ ⊆ E, and let E1 = C/X ×C{idC} ⊆ E0.
Lemma 5.1.5.2 implies that the left fibrations

D→ C./X ← E

are equivalent. It therefore suffices to show that the inclusion E0 ⊆ E is a weak homotopy equivalence. To
prove this, we observe that both E and E0 contain E1 as a deformation retract (that is, there is a retraction
r : E→ E1 and a homotopy E×∆1 → E from r to idE, so that the inclusion E1 ⊆ E is a homotopy equivalence;
the situation for E0 is similar).
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Lemma 5.1.5.4. Let

A
f //

��?
??

??
??

B

g
����

��
��

�

S

be a diagram of simplicial sets. The following conditions are equivalent:

(1) The map f is a covariant equivalence in (Set∆)/S.

(2) For every diagram p : S → C taking values in an ∞-category C, and every limit p ◦ g : B/ → C of p ◦ g,
the composition p ◦ g ◦ f/ : A/ → C is a limit diagram.

(3) For every diagram p : S → S taking values in the∞-category S of spaces, and every limit p ◦ g : B/ → S

of p ◦ g, the composition p ◦ g ◦ f/ : A/ → S is a limit diagram.

Proof. The equivalence of (1) and (3) follows from Corollary 3.3.4.4 (and the definition of a contravariant
equivalence). The implication (2)⇒ (3) is obvious. We show that (3)⇒ (2). Let p : S → C and p ◦ g be as
in (2). Passing to a larger universe if necessary, we may suppose that C is small. For each object C ∈ C, let
jC : C → S denote the composition of the Yoneda embedding j : C → P(C) with the map P(C) → S given
by evaluation at C. Combining Proposition 5.1.3.2 with Proposition 5.1.2.2, we deduce that each jC ◦ p ◦ g
is a limit diagram. Applying (3), we conclude that each jC ◦ p ◦ g ◦ f/ is a limit diagram. We now apply
Propositions 5.1.3.2 and 5.1.2.2 to conclude that p ◦ g ◦ f/ is a limit diagram, as desired.

Lemma 5.1.5.5. Let S be a small simplicial set, j : S → P(S) the Yoneda embedding, let C denote the
full subcategory of P(S) spanned by the objects j(s), where s is a vertex of S, and let D be an arbitrary
∞-category.

(1) Let f : P(S)→ D be a functor. Then f is a left Kan extension of f |C if and only if f preserves small
colimits.

(2) Suppose that D admits small colimits, and let f0 : C → D be an arbitrary functor. There exists an
extension f : P(S)→ D which is a left Kan extension of f0 = f |C.

Proof. Assertion (2) follows immediately from Lemma 4.3.2.13, since the ∞-category C/X is small for each
object X ∈ P(S). We will prove (1). Suppose first that f preserves small colimits. We must show that for
each X ∈ P(S), the composition

C./X
δ→ P(S)

f→ D

is a colimit diagram. Lemma 5.1.5.3 implies that δ is a colimit diagram; if f preserves small colimits, then
f ◦ δ is also a colimit diagram.

Now suppose that f is a left Kan extension of f0 = f |C. We wish to prove that f preserves small colimits.
Let K be a small simplicial set, and let p : K. → P(S) be a colimit diagram. We must show that f ◦ p is
also a colimit diagram.

Let
E = C×Fun({0},P(S) Fun(∆1,P(S))×Fun({1},P(S)) K

.,

and let E = E×K. K ⊆ E. We have a commutative diagram

E

��

// E

��
K // K..
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where the vertical arrows are coCartesian fibrations (Corollary 2.3.7.12). Let η : E �K. K. → P(S) be the
natural map, and η = η|E �KK. Proposition 4.3.3.10 implies that f ◦ η exhibits f ◦ p as a left Kan extension
of f ◦ (η|E) along q|E. Similarly, f ◦ η exhibits f ◦ p as a left Kan extension of f ◦ (η|E). It will therefore
suffice to prove that every colimit of f ◦ (η|E) is also a colimit of f ◦ (η|E). According to Lemma 5.1.5.4, it
suffices to show that the inclusion E ⊆ E is a contravariant equivalence in (Set∆)/C.

Since the map E→ K.× C is a bivariant fibration, we can apply Proposition 4.1.2.15 to deduce that the
map E

op → Cop is smooth. Similarly, Eop → Cop is smooth. According to Proposition 4.1.2.17, the inclusion
E ⊆ E is a contravariant equivalence if and only if, for every object C ∈ C, the inclusion of fibers EC ⊆ EC
is a weak homotopy equivalence. Lemma 5.1.5.2 implies that

EC → K.

is equivalent to the left fibration given by the pullback of the universal left fibration along the map

K. p→ P(S) s→ S .

We now conclude by applying Proposition 3.3.5.5, noting that p is a colimit diagram by assumption and that
s preserves colimits by Proposition 5.1.2.2.

Theorem 5.1.5.6. Let S be a (small) simplicial set, and let C be an ∞-category which admits all (small)
colimits. Composition with the Yoneda embedding j : S → P(S) induces an equivalence of ∞-categories

FunL(P(S),C)→ Fun(S,C).

Proof. Combine Corollary 4.3.2.16 with Lemma 5.1.5.5.

Definition 5.1.5.7. Let C be an ∞-category. A full subcategory C′ ⊆ C is stable under colimits if, for any
(small) diagram p : K → C′ which has a colimit p : K. → C in C, the map p factors through C′.

Let C be an ∞-category which admits all small colimits. Let A be a collection of objects of C. We will
say that A generates C under colimits if the following condition is satisfied: for any full subcategory C′ ⊆ C

containing every element of A, if C′ is stable under colimits, then C = C′.
We say that a map f : S → C generates C under colimits if the image f(S0) generates C under colimits.

Corollary 5.1.5.8. Let S be a small simplicial set. Then the Yoneda embedding j : S → P(S) generates
P(S) under colimits.

Proof. Let C be the smallest full subcategory of P(S) which contains the essential image of j and is stable
under small colimits. Applying Theorem 5.1.5.6, we deduce that the diagram j : S → C is equivalent to
F ◦ j, for some colimit-preserving functor F : P(S) → C. We may regard F as a colimit preserving functor
from P(S) to itself. Applying Theorem 5.1.5.6 again, we deduce that F is equivalent to the identity functor
from P(S) to itself. It follows that every object of P(S) is equivalent to an object which lies in C, so that
C = P(S) as desired.

5.1.6 Complete Compactness

Let S be a small simplicial set, and f : S → C a diagram in an ∞-category C. Our goal in this section
is to analyze the following question: when is the diagram f : S → C equivalent to the Yoneda embedding
j : S → P(S)? An obvious necessary condition is that C admit small colimits (Corollary 5.1.2.3). Conversely,
if C admits small colimits, then Theorem 5.1.5.6 implies that f is equivalent to F ◦ j, where F : P(S) → C

is a colimit-preserving functor. We are now reduced to the question of deciding whether or not the functor
F is an equivalence. There are two obvious necessary conditions for this to be so: f must be fully faithful
(Proposition 5.1.3.1), and f must generate C under colimits (Corollary 5.1.5.8). We will show that the
converse holds, provided that the essential image of f consists of completely compact objects of C (see
Definition 5.1.6.2 below).
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We begin by considering an arbitrary simplicial set S and a vertex s of S. Composing the Yoneda
embedding j : S → P(S) with the “evaluation map”

P(S) = Fun(Sop, S)→ Fun({s}, S) ' S,

we obtain a map js : S → S. We will refer to js as the functor corepresented by s.

Remark 5.1.6.1. The above definition makes sense even when the simplicial set S is not small. However,
in this case we need to replace S (the simplicial nerve of the category of small Kan complexes) by the (very
large) ∞-category Ŝ, where Ŝ is the simplicial nerve of the category of all Kan complexes (not necessarily
small).

Definition 5.1.6.2. Let C be an∞-category which admits small colimits. We will say that an object C ∈ C

is completely compact if the functor jC : C→ Ŝ corepresented by C preserves small colimits.

The requirement that an object C of an ∞-category C be completely compact is very restrictive (see
Example 5.1.6.9 below). We introduce this notion not because it is a generally useful one, but because it is
relevant for the purpose of characterizing ∞-categories of presheaves.

Our first goal is to establish that the class of completely compact objects of C is stable under retracts.

Lemma 5.1.6.3. Let C be an ∞-category, K a simplicial set, and p, q : K. → C a pair of diagrams. Suppose
q is a colimit diagram, and p is a retract of q in the ∞-category Fun(K.,C). Then p is a colimit diagram.

Proof. Choose a map σ : ∆2 ×K. → C such that σ|{1} ×K. = q and σ|∆{0,2} ×K. = p ◦ πK. . We have a
commutative diagram of simplicial sets:

Cσ/ //

��

Cσ|∆2×K/

��
Cσ|∆{1,2}/×K.

f //

��

Cσ|∆{1,2}×K/

��
Cσ|{2}×K./

f ′ // Cσ|{2}×K/ .

We first claim that both vertical compositions are categorical equivalences. We give the argument for
the right vertical composition; the other case is similar. We have a factorization

Cσ|∆2×K/
g′→ Cσ|∆{0,2}×K/

g′′→ Cσ|{2}×K/

where the g′ is a trivial fibration, and g′′ admits a section s, where s is also a section of the trivial fibration
C/σ|∆{0,2}×K → C/σ|{0}×K . Consequently, s and therefore also g′′ are categorical equivalences. It follows
that the map f ′ is a retract of f in the homotopy category of Set∆ (taken with respect to the Joyal model
structure).

The map f sits in a commutative diagram

Cσ|∆{1,2}/×K.
f //

��

Cσ|∆{1,2}/×K

��
Cq/ // Cq/

where the vertical maps and the lower horizontal map are trivial fibrations. It follows that f is a categorical
equivalence. Since f ′ is a retract of f , f ′ is also a categorical equivalence. Since f ′ is a left fibration, we
deduce that f ′ is a trivial fibration (Corollary 2.3.4.6), so that p is a colimit diagram as desired.
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Lemma 5.1.6.4. Let C be an ∞-category which admits (small) colimits. Let C and D be objects of C.
Suppose that C is completely compact, and that D is a retract of C (that is, there exist maps f : D → C and
r : C → D with r ◦ f ' idD. Then D is completely compact. In particular, if C and D are equivalent, then
D is completely compact.

Proof. Let j : Cop → SC denote the Yoneda embedding (for Cop). Since D is a retract of C, j(D) is a retract
of j(C). Let p : K. → C be a diagram. Then j(D) ◦ p : K. → S is a retract of j(C) ◦ p : K. → S in the
∞-category Fun(K., S). If p is a colimit diagram, then j(C) ◦ p is a colimit diagram (since C is completely
compact). Lemma 5.1.6.3 now implies that j(D) ◦ p is a colimit diagram as well.

In order to study the condition of complete compactness in more detail, it is convenient to introduce a
slightly more general notion.

Definition 5.1.6.5. Let C be an ∞-category which admits small colimits, and let φ : C̃ → C be a left
fibration. We will say that φ is completely compact if it is classified by a functor C→ Ŝ that preserves small
colimits.

Lemma 5.1.6.6. Let C be an∞-category which admits small colimits, f : X ′ → X a map of Kan complexes,
and

F′ //

��

F

��
X ′ × C

f×idC // X × C

be a diagram of left fibrations over C, which is a homotopy pullback square ( with respect to the covariant
model structure on (Set∆)/C ). If F → C is completely compact, then F′ → C is completely compact.

Proof. Replacing the diagram by an equivalent one if necessary, we may suppose that it is Cartesian and
that f is a Kan fibration. Let p : K. → C be a colimit diagram, and let F : C → Ŝ be a functor which
classifies the left fibration F′. We wish to show that F ◦ p is a colimit diagram in Ŝ.

We have a pullback diagram
K ×C F′ //

ψ′

��

K ×C F

ψ

��
K. ×C F′ // K. ×C F

of simplicial sets, which is homotopy Cartesian (with respect to the usual model structure on Set∆) since
the horizontal maps are pullbacks of f . Since F is completely compact, Proposition 3.3.5.5 implies that
the inclusion ψ is a weak homotopy equivalence. It follows that ψ′ is also a weak homotopy equivalence.
Applying Proposition 3.3.5.5 again, we deduce that F ◦ p is a colimit diagram as desired.

Lemma 5.1.6.7. Let C be a presentable ∞-category, p : K → C be a (small) diagram, and let X ∈ C/p be
an object whose image in C is completely compact. Then X is completely compact.

Proof. Let p : K/ → C be a limit of p, carrying the cone point to an object Z ∈ C. Then we have trivial
fibrations

C/Z ← C/p → C/p .

Consequently, we may replace the diagram p : K → C with the inclusion {Z} → C.
We may identify the object X ∈ C/Z with a morphism f : Y → Z in C. We have a commutative diagram

of simplicial sets

(C/Z)f/
ψ

%%JJJJJJJJJJ
θ // (C/Y )f/

��

θ′ // (C/Y )f/

ψ′

��
C/Z

θ′0 //
C/Z
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where θ is an isomorphism, the maps θ′ and θ′0 are categorical equivalences (see §4.2.1), and the vertical
maps are left fibrations. We wish to prove that ψ is a completely compact left fibration. It will therefore
suffice to prove that ψ′ is completely compact. We have a (homotopy) pullback diagram

C
/f
Y/

//

��

C∆1

Y/ ×C{1}{Z}

��

C/Z
// (CY/×C{Z})× C/Z

of left fibrations over C/Z . We observe that the left fibrations in the lower part of the diagram are constant.
According to Lemma 5.1.6.6, to prove that ψ′ is completely compact, it will suffice to prove that the left

fibration C∆1

Y/ ×C{1}{Z}
ψ′′→ C/Z is completely compact. We observe that ψ′′ admits a factorization

C∆1

Y/ ×C{1}{Z}
φ→ CY/×C{0} C/Z

φ′→ C/Z

where φ is a trivial fibration, and φ′ is a pullback of the left fibration left fibration φ′′ : CY/ → C. Since Y
is completely compact, φ′′ is completely compact. The projection C/Z → C is equivalent to C/Z → C, and
therefore commutes with colimits by Proposition 1.2.13.8. It follows that φ′ is completely compact, which
completes the proof.

Proposition 5.1.6.8. Let S be a small simplicial set, and let j : S → P(S) denote the Yoneda embedding.
Let C be an object of P(S). The following conditions are equivalent:

(1) The object C ∈ P(S) is completely compact.

(2) There exists a vertex s of S such that C is a retract of j(s).

Proof. Suppose first that (1) is satisfied. Let S/C = S ×P(S) P(S)/C . According to Lemma 5.1.5.3, the
natural map

S./C
j′→ P(S)./C → P(S)

is a colimit diagram. Let f : P(S)→ S be the functor corepresented by C. Since C is completely compact.
f(C) can be identified with a colimit of the diagram f |S/C . The space f(C) is homotopy equivalent to
MapP(S)(C,C), and therefore contains a point corresponding to idC . It follows that idC lies in the image
of MapP(S)(C, j′(s̃)) → MapP(S)(C,C), for some vertex s̃ of S/C . The vertex s̃ classifies a vertex s ∈ S
equipped with a morphism α : j(s)→ C. It follows that there is a commutative triangle

j(s)
α

!!B
BB

BB
BB

B

C

==|||||||| idC // C

in the ∞-category P(S), so that C is a retract of j(s).
Now suppose that (2) is satisfied. According to Lemma 5.1.6.4, it suffices to prove that j(s) is completely

compact. Using Lemma 5.1.5.2, we may identify the functor P(S)→ S co-represented by j(s) with the functor
given by evaluation at s. Proposition 5.1.2.2 implies that this functor preserves all limits and colimits that
exist in P(S).

Example 5.1.6.9. Let C be the ∞-category S of spaces. Then an object C ∈ S is completely compact if
and only if it is equivalent to ∗, the final object of S.

We now use the theory of completely compact objects to give a characterization of presheaf∞-categories.
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Proposition 5.1.6.10. Let S be a (small) simplicial set and C an ∞-category which admits all (small)
colimits. Let F : P(S)→ C be functor which preserves small colimits, and f = F ◦ j its composition with the
Yoneda embedding j : S → P(S). Suppose further that:

(1) The functor f is fully faithful.

(2) For every vertex s of S, the object f(s) ∈ C is completely compact.

Then F is fully faithful.

Proof. Let C and D be objects of P(S). We wish to prove that the natural map

ηC,D : MapP(S)(C,D)→ MapC(F (C), F (D))

is an isomorphism in the homotopy category H. Suppose first that C belongs to the essential image of j.
Let G : P(S) → S be a functor co-represented by C, and let G′ : C → S be a functor co-represented by
F (C). Then we have a natural transformation of functors G → G′ ◦ F . Assumption (2) implies that G′

preserves small colimits, so that G′ ◦F preserves small colimits. Proposition 5.1.6.8 implies that G preserves
small colimits. It follows that the collection of objects D ∈ P(S) such that ηC,D is an equivalence is stable
under small colimits. If D belongs to the essential image of j, then assumption (1) implies that ηC,D is an
equivalence. It follows from Lemma 5.1.5.3 that the essential image of j generates P(S) under small colimits;
thus ηC,D is an isomorphism in H for every object D ∈ P(S).

We now prove the result in general. Fix D ∈ P(S). Let H : P(S)op → S be a functor represented
by D, and let H ′ : Cop → S be a functor represented by FD. Then we have a natural transformation of
functors H → H ′ ◦ F op, which we wish to prove is an equivalence. By assumption, F op preserves small
limits. Proposition 5.1.3.2 implies that H and H ′ preserve small limits. It follows that the collection P of
objects C ∈ P(S) such that ηC,D is an equivalence is stable under small colimits. The special case above
established that P contains the essential image of the Yoneda embedding. We once again invoke Lemma
5.1.5.3 to deduce every object of P(S) belongs to P , as desired.

Corollary 5.1.6.11. Let C be an ∞-category which admits all (small) colimits. Let S be a (small) simplicial
set and F : P(S) → C a colimit preserving functor. Then F is an equivalence if and only if the following
conditions are satisfied:

(1) The composition f = F ◦ j : S → C is fully faithful.

(2) For every vertex s ∈ S, the object f(s) ∈ C is completely compact.

(3) The set of objects {f(s) : s ∈ S0} generates C under colimits.

Proof. If (1), (2), and (3) are satisfied, then F is fully faithful (Proposition 5.1.6.10). Since P(S) is admits
small colimits, and F preserves small colimits, the essential image of F is stable under small colimits.
Using (3), we conclude that F is essentially surjective and therefore an equivalence of ∞-categories. For
the converse, it suffices to check that idP(S) : P(S) → P(S) satisfies (1), (2), and (3). For this, we invoke
Propsition 5.1.3.1, Proposition 5.1.6.8, and Lemma 5.1.5.3, respectively.

Corollary 5.1.6.12. Let C be a (small) ∞-category, and let p : K → C be a diagram, and let p′ : K → P(C)
be the composition of p with the Yoneda embedding j : C → P(C), and let f : C/p → P(C)/p′ be the induced
map. Let F : P(C/p) → P(C)/p′ be a colimit-preserving functor such that F ◦ j′ is equivalent to f , where
j′ : C/p → P(C/p) denotes the Yoneda embedding for C/p ( according to Theorem 5.1.5.6, F exists and is
unique up to equivalence ). Then F is an equivalence of ∞-categories.

Proof. We will show that the f satisfies conditions (1) through (3) of Corollary 5.1.6.11. The assertion that
f is fully faithful follows immediately from the assertion that j is fully faithful (Proposition 5.1.3.1). To
prove that the essential image of f consists of completely compact objects, we use Lemma 5.1.6.7 to reduce
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to proving that the essential image of j consists of completely compact objects of P(C), which follows from
Proposition 5.1.6.8. It remains to prove that P(C)/p′ is generated under colimits by f . Let X be an object
of P(C)/p′ and X its image in P(C). Let D ⊆ P(C) be the essential image of j, and D the inverse image of
D in P(C)/p′ , so that D is the essential image of f . Using Lemma 5.1.5.3, we can choose a colimit diagram
q : L. → P(C) which carries the cone point to X such that q = q|L factors through D. Since the inclusion
of the cone point into L. is right anodyne, there exists a map q′ : L. → P(C)/p′ lifting q, which carries the
cone point of L. to X. Proposition 1.2.13.8 implies that q′ is a colimit diagram, so that X can be written
as the colimit of a diagram L→ D.
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5.2 Adjoint Functors

Let C and D be (ordinary) categories. Two functors

C
F // D
G
oo

are said to be adjoint to one another if there is a functorial bijection

HomD(F (C), D) ' HomC(C,G(D))

defined for C ∈ C, D ∈ D. Our goal in this section is to extend the theory of adjoint functors to the
∞-categorical setting.

By definition, a pair of functors F and G (as above) are adjoint if and only if they determine the same
correspondence

Cop×D→ Set .

In §2.2.1, we introduced an ∞-categorical generalization of the notion of a correspondence. In certain cases,
a correspondence M from an ∞-category C to an ∞-category D determines a functor F : C → D, which
we say is a functor associated to M. We will study these associated functors in §5.2.1. The notion of a
correspondence is self-dual, so it is possible that the correspondence M also determines an associated functor
G : D→ C. In this case, we will say that F and G are adjoint. We will study the basic properties of adjoint
functors in §5.2.2.

One of the most important features of adjoint functors is their behavior with respect to limits and colimits:
left adjoints preserve colimits, while right adjoints preserve limits. We will prove an ∞-categorical analogue
of this statement in §5.2.3. In certain situations, the adjoint functor theorem provides a converse to this
statement: see §5.5.2.

The theory of model categories provides a host of examples of adjoint functors between ∞-categories.
In §5.2.4, we will show that a simplicial Quillen adjunction between a pair of model categories (A,A′)
determines an adjunction between the associated∞-categories (N(A◦),N(A′◦)). We will also consider some
other examples of situations which give rise to adjoint functors.

If a functor F : C→ D has a right adjoint G, then G is uniquely determined up to equivalence. In §5.2.5,
we will prove a strong version of this statement, phrased as an (anti)equivalence of functor categories.

In §5.2.6, we will restrict the theory of adjoint functors to the special case in which one of the functors
is the inclusion of a full subcategory. In this case, we obtain the theory of localizations of ∞-categories.
This theory will play a central role in our study of presentable ∞-categories (§5.5), and later in the study of
∞-topoi (§6).

5.2.1 Correspondences and Associated Functors

Let p : X → S be a Cartesian fibration of simplicial sets. In §3.3.3, we saw that p is classified by a functor
Sop → Cat∞. In particular, if S = ∆1, then p determines a diagram

G : D→ C

in the ∞-category Cat∞, which is well-defined up to equivalence. We can obtain this diagram by applying
the straightening functor St+S to the marked simplicial set X\, and then taking a fibrant replacement. In
general, this construction is rather complicated. However, in the special case where S = ∆1, it is possible to
give a direct construction of G; that is our goal in this section.

Definition 5.2.1.1. Let p : M → ∆1 be a Cartesian fibration, and suppose given equivalences of ∞-
categories h0 : C → p−1{0} and h1 : D → p−1{1}. We will say that a functor g : D → C is associated to M

255



if there is a commutative diagram

D×∆1

##G
GG

GG
GG

GG
s // M

~~}}
}}

}}
}}

∆1

such that s|D×{1} = h1, s|D×{0} = h0 ◦ g, and s|{x} ×∆1 is a p-Cartesian edge of M for every object x
of D.

Remark 5.2.1.2. The terminology of Definition 5.2.1.1 is slightly abusive: it would be more accurate to
say that g is associated to the triple (p : M→ ∆1, h0 : C→ p−1{0}, h1 : D→ p−1{1}).

Proposition 5.2.1.3. Let C and D be ∞-categories, and let g : D→ C be a functor.

(1) There exists a diagram
C //

��

M

p

��

Doo

��
{0} // ∆1 {1}oo

where p is a Cartesian fibration, the associated maps C→ p−1{0} and D→ p−1{1} are isomorphisms,
and g is associated to M.

(2) Suppose given a commutative diagram

C //

��

M′

s

��

Doo

��

M

p

��
{0} // ∆1 {1}oo

where s is a categorical equivalence, p and p′ = p◦s are Cartesian fibrations, and the maps C→ p−1{0},
D→ p−1{1} are categorical equivalences. The functor g is associated to M if and only if it is associated
to M ′.

(3) Suppose given diagrams
C //

��

M′

p′

��

Doo

��
{0} // ∆1 {1}oo

C //

��

M′′

p′′

��

Doo

��
{0} // ∆1 {1}oo

as above, such that g is associated to both M′ and M′′. Then there exists a third such diagram

C //

��

M

p

��

Doo

��
{0} // ∆1 {1}oo
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and a diagram
M′ ←M→M′′

of categorical equivalences in (Set∆)C
‘

D / /∆1 .

Proof. We begin with (1). Let C\ and D\ denote the simplicial sets C and D considered as marked simplicial
sets, where the marked edges are precisely the equivalences. We set

N = (D\×(∆1)])
∐

D\ ×{0}]

C\ .

The small object argument implies the existence of a factorization

N → N(∞)→ (∆1)],

where the left map is marked anodyne and the right map is a marked fibration. We remark that we can
obtain N(∞) as the colimit of a transfinite sequence of simplicial sets N(α), where N(0) = N , N(α) is the
colimit of the sequence {N(β)}β<α when α is a limit ordinal, and each N(α+1) fits into a pushout diagram

A� _

��

// N(α)

�� %%JJJJJJJJJ

B //

;;w
w

w
w

w
N(α+ 1) // (∆1)]

where the left vertical map is one of the generators for the class of marked anodyne maps given in Definition
3.1.1.1. We may furthermore assume that there does not exist a dotted arrow as indicated in the diagram. It
follows by induction on α that N(α)×∆1 {0} ' C\ and N(α)×∆1 {1} ' D\. According to Proposition 3.1.1.6,
N(∞) ' M\ for some Cartesian fibration M → ∆1. It follows immediately that C ' M{0}, D ' M{1}, and
that g is associated to M.

We now prove (2). The “if” direction is immediate from the definition. Conversely, suppose that g is
associated to M. To show that g is associated to M′, we need to produce the dotted arrow indicated in the
diagram

D× ∂∆1 //
� _

��

M′

D×∆1.

::u
u

u
u

u

According to Proposition A.2.4.1, we may replace M′ by the equivalent ∞-category M; the desired result
then follows form the assumption that g is associated to M.

To prove (3), we take M to be the correspondence constructed in the course of proving (1). It will suffice
to construct an appropriate categorical equivalence M→M′; the same argument will construct the desired
map M→M′′. Consider the diagram

N� _

s′

��

s // M′

��
M //

s′′
==|

|
|

|
∆1.

(Here we identify N with its underlying simplicial set by forgetting the class of marked edges, and the top
horizontal map exhibits g as associated to M′.) In the terminology of §3.2.2, the maps s and s′ are both
quasi-equivalences. By Proposition 3.2.2.10, they are categorical equivalences. The projection M′ → ∆1

is a categorical fibration and s′ is a trivial cofibration, which ensures the existence of the arrow s′′. The
factorization s = s′′ ◦ s′ shows that s′′ is a categorical equivalence, and completes the proof.
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Proposition 5.2.1.3 may be informally summarized by saying that every functor g : D→ C is associated
to some Cartesian fibration p : M → ∆1, and that M is determined up to equivalence. Conversely, the
Cartesian fibration also determines g:

Proposition 5.2.1.4. Let p : M → ∆1 be a Cartesian fibration, and let h0 : C → p−1{0} and h1 : D →
p−1{1} be categorical equivalences. There exists a functor g : D → C associated to M. Any other functor
g′ : C→ D is associated to p if and only if g is equivalent to g′ as objects of the ∞-category CD.

Proof. Consider the diagram

D[×{1}

��

//
M\

��
D[×(∆1)] //

s

99s
s

s
s

s
(∆1)].

By Proposition 3.1.2.3, the left vertical map is marked anodyne, so the dotted arrow exists. Consider the
map s0 : s|D×{0} : D → p−1{0}. Since h0 is a categorical equivalence, there exists a map g : D → C such
that the functions h0 ◦ g and s0 are equivalent. Let e : D×∆1 →M be an equivalence from h0 ◦ g to s0. Let
e′ : D×Λ2

1 → M be the result of amalgamating e with s. Then we have a commutative diagram of marked
simplicial sets

D[×(Λ2
1)
]

� _

��

e′ //
M\

��
D[×(∆2)] //

e′′

99s
s

s
s

s
(∆1)].

Because left vertical map is marked anodyne there exists a morphism e′′ as indicated, rendering the diagram
commutative. The restriction e′′|D×∆{0,2} exhibits g as associated to M.

Now suppose that g′ is another functor associated to p. Then there exists a commutative diagram of
marked simplicial sets

D[×{1}� _

��

//
M\

��
D[×(∆1)] //

s′

99s
s

s
s

s
(∆1)],

with g′ = s′|D×{0}. Let s′′ be the map obtained by amalgamating s and s′. Consider the diagram

D[×(Λ2
2)
]

� _

��

s′′ //
M\

��
D[×(∆2)] //

s′′′

99s
s

s
s

s
(∆1)].

Since the left vertical map is marked anodyne, the indicated dotted arrow s′′ exists. The restriction
s′′|D×∆{0,1} is an equivalence between h0 ◦ g and h0 ◦ g′. Since h0 is a categorical equivalence, g and
g′ are themselves homotopic.

Conversely, suppose that f : D×∆1 → C is an equivalence from g′ to g. The maps s and h0 ◦ f
amalgamate to give a map f ′ : D×Λ2

1 → C which fits into a commutative diagram of marked simplicial sets:

D[×(Λ2
1)
]

� _

��

f ′ //
M\

��
D[×(∆2)] //

f ′′
99s

s
s

s
s

(∆1)].
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The left vertical map is marked anodyne, so there exists a dotted arrow f ′′ as indicated; then the map
f ′′|D×∆{0,2} exhibits that g′ is associated to p.

Proposition 5.2.1.5. Let p : M → ∆2 be a Cartesian fibration, and suppose given equivalences of ∞-
categories C→ p−1{0}, D→ p−1{1}, and E→ p−1{2}. Suppose that M×∆2∆{0,1} is associated to a functor
f : D→ C, and that M×∆2∆{1,2} is associated to a functor g : E→ D. Then M×∆2∆{0,2} is associated to
the composite functor f ◦ g.

Proof. Let X be the mapping simplex of the sequence of functors

E
g→ D

f→ C .

Since f and g are associated to restrictions of M, we obtain a commutative diagram

X ×∆2 Λ2
1� _

��

// M

��
X //

s

::t
t

t
t

t
t

∆2.

The left vertical inclusion is a pushout of E×Λ2
1 ⊆ E×∆2, which is inner anodyne. Since p is inner anodyne,

there exists a dotted arrow s as indicated in the diagram. The restriction s|X ×∆2 ∆{0,2} exhibits that the
functor f ◦ g is associated to the correspondence M×∆2∆{0,2}.

Remark 5.2.1.6. Taken together, Propositions 5.2.1.3 and 5.2.1.4 assert that there is a bijective corre-
spondence between equivalence classes of functors D → C and equivalence classes of Cartesian fibrations
p : M→ ∆1 equipped with equivalences C→ p−1{0}, D→ p−1{1}.

5.2.2 Adjunctions

In §5.2.1, we established a dictionary that allows us to pass back and forth between functors g : D→ C and
Cartesian fibrations p : M→ ∆1. The dual argument shows if p is a coCartesian fibration it also determines
a functor f : C→ D. In this case, we will say that f and g are adjoint functors.

Definition 5.2.2.1. Let C and D be ∞-categories. An adjunction between C and D is a map q : M→ ∆1

which is both a Cartesian fibration and a coCartesian fibration, together with equivalences C → M{0} and
D 'M{1}.

Let M be an adjunction between C and D, and let f : C → D and g : D → C be functors associated to
M. In this case, we will say that f is left adjoint to g and g is right adjoint to f .

Remark 5.2.2.2. Propositions 5.2.1.3 and 5.2.1.4 imply that if a functor f : C → D has a right adjoint
g : D→ C, then g is uniquely determined up to homotopy. In fact, we will later see that g is determined up
to a contractible ambiguity.

We now verify a few basic properties of adjunctions:

Lemma 5.2.2.3. Let p : X → S be a Cartesian fibration of simplicial sets. An edge e : x → y of X is
p-coCartesian if and only if it is locally p-coCartesian (see the discussion preceding Proposition 2.3.2.4).

Proof. Suppose that e is locally p-Cartesian. We must show that for any n ≥ 2 and any diagram

Λn0
f //

� _

��

X

��
∆n //

>>|
|

|
|

S
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such that f |∆{0,1} = e, there exists a dotted arrow as indicated. Pulling back along the bottom horizontal
map, we may reduce to the case S = ∆n; in particular, X and S are both ∞-categories.

According to (the dual of) Proposition 2.3.4.3, it suffices to show that composition with e gives a homotopy
Cartesian diagram

MapX(y, z) //

��

MapX(x, z)

��
MapS(p(y), p(z)) // MapS(p(x), p(z))

.

There are two cases to consider: if MapS(p(y), p(z)) = ∅, there is nothing to prove. Otherwise, we must
show that composition with f induces a homotopy equivalence MapX(y, z)→ MapX(x, z).

In view of the assumption that S = ∆n, there is a unique morphism g0 : p(y)→ p(z). Let g : y′ → z be
a p-Cartesian edge lifting g0. We have a commutative diagram

MapX(y, y′) //

��

MapX(x, y′)

��
MapX(y, z) // MapX(x, z)

where the vertical arrows are homotopy equivalences, in view of Proposition 2.3.4.3. It therefore suffices to
show that the top horizontal map is a homotopy equivalence, which follows from the assumption that e is
locally p-coCartesian.

Corollary 5.2.2.4. Let p : X → S be a Cartesian fibration of simplicial sets. The following conditions are
equivalent:

(1) The map p is a coCartesian fibration.

(2) For every edge f : s→ s′ of S, the induced functor f∗ : Xs′ → Xs has a left adjoint.

Proof. By definition, the functor corresponding to an edge f : ∆1 → S has a left adjoint if and only if
the pullback X ×S ∆1 → ∆1 is a coCartesian fibration. In other words, condition (2) is equivalent to the
assertion that for every edge f : s→ s′ and every vertex s̃ of X lifting s, there exists a locally p-coCartesian
edge f̃ : s̃ → s̃′ lifting f . Using Lemma 5.2.2.3, we conclude that f̃ is automatically p-coCartesian, so that
(2) is equivalent to (1).

Proposition 5.2.2.5. Let f : C→ D and f ′ : D→ E be functors between ∞-categories. Suppose that f has
a right adjoint g and that f ′ has a right adjoint g′. Then g ◦ g′ is right adjoint to f ′ ◦ f .

Proof. Let φ denote the composable sequence of morphisms

C
g← D

g′← E .

Let M(φ) denote the mapping simplex, and choose a factorization

M(φ) s→ X
q→ ∆2

where s is a quasi-equivalence and X → ∆2 is a Cartesian fibration (using Proposition 3.2.2.11). We first
show that q is a coCartesian fibration. In other words, we must show that for every object x ∈ C and every
morphism e : q(x) → y, there is a q-Cartesian edge e : x → y lifting e. This is clear if e is degenerate. If
e = ∆{0,1} ⊆ ∆2, then the existence of a left adjoint to g implies that e has a locally q-coCartesian lift e.
Lemma 5.2.2.3 implies that e is q-coCartesian. Similarly, if e = ∆{1,2}, then we can find a q-coCartesian
lift of e. Finally, if e is the long edge ∆{0,2}, then we may write e as a composite e′ ◦ e′′; the existence
of a q-coCartesian lift of e follows from the existence of q-coCartesian lifts of e′ and e′′. We now apply
Proposition 5.2.1.5 and deduce that the adjunction X ×∆2 ∆{0,2} is associated to both g ◦ g′ and f ′ ◦ f .
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In classical category theory, one can spell out the relationship between a pair of adjoint functors f : C→ D

and g : D → C by specifying a unit transformation idC → g ◦ f (or, dually, a counit f ◦ g → idD). This
concept generalizes to the ∞-categorical setting as follows:

Definition 5.2.2.6. Suppose given a pair of functors

C
f // D
g

oo

between ∞-categories. A unit transformation for (f, g) is a morphism u : idC → g ◦ f in Fun(C,C) with the
following property: for every pair of objects C ∈ C, D ∈ D, the composition

MapD(f(C), D)→ MapC(g(f(C)), g(D))
u(C)→ MapC(C, g(D))

is an isomorphism in the homotopy category H.

Proposition 5.2.2.7. Let f : C → D and g : D → C be a pair of functors between ∞-categories C and D.
The following conditions are equivalent:

(1) The functor f is a left adjoint to g.

(2) There exists a unit transformation u : idC → g ◦ f .

Proof. Suppose first that (1) is satisfied. Choose an adjunction p : M → ∆1 which is associated to f and g;
according to (1) of Proposition 5.2.1.3 we may identify M{0} with C and M{1} with D. Since f is associated
to M , there is a map F : C×∆1 → M such that F |C×{0} = idC and F |C×{1} = f , with each edge
F |{c}×∆1 p-coCartesian. Similarly, there is a map G : D×∆1 →M with G|D×{1} = idD, G|D×{0} = g,
and G|{d} ×∆1 is p-Cartesian for each object d ∈ D. Let F ′ : Λ2

2 × C→M be such that F ′|∆{0,2} × C = F
and F ′|∆{1,2} × C = G ◦ (f × id∆1). Consider the diagram

Λ2
2 × C� _

��

F ′ // M

��
∆2 × C //

F ′′
;;w

w
w

w
w

∆1.

Using the fact F ′|{c}×∆{1,2} is p-Cartesian for every object c ∈ C, we deduce the existence of the indicated
dotted arrow F ′′. We now define u = F ′|C×∆{0,1}. We may regard u as a natural transformation idC → g◦f .
We claim that u is a unit transformation. In other words, we must show that for any objects C ∈ C, D ∈ D,
the composite map

MapD(fC,D)→ MapC(gfC, gD) u→ MapC(C, gD)

is an isomorphism in the homotopy category H of spaces. This composite map fits into a commutative
diagram

MapD(f(C), D) //

��

MapD(g(f(C)), g(D)) // MapD(C, g(D))

��
MapM (C,D) // MapM (C,D).

The left and right vertical arrows in this diagram are given by composition with a p-coCartesian and a
p-Cartesian morphism in M , respectively. Proposition 2.3.4.2 implies that these maps are homotopy equiv-
alences.

We now prove that (2)⇒ (1). Choose a correspondence p : M → ∆1 from C to D which is associated to
the functor g, via a map G : D×∆1 →M as above. We have natural transformations

idC
u→ g ◦ f

G◦(f×id∆1 )
−→ f.
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Let F : C×∆1 →M be a composition of these transformations. We will complete the proof by showing that
F exhibits M as a correspondence associated to the functor f . It will suffice to show that for each object
C ∈ C, F (C) : C → fC is p-coCartesian. According to Proposition 2.3.4.3, it will suffice to show that for each
object D ∈ D, composition with F (C) induces a homotopy equivalence MapD(f(C), D) → MapM (C,D).
As above, this map fits into a commutative diagram

MapD(f(C), D) //

��

MapD(g(f(C)), g(D)) // MapD(C, g(D))

��
MapM (C,D) // MapM (C,D)

where the upper horizontal composition is an equivalence (since u is a unit transformation) and the right
vertical arrow is an equivalence (since it is given by composition with a p-Cartesian morphism). It follows
that the left vertical arrow is also a homotopy equivalence, as desired.

Proposition 5.2.2.8. Let C and D be ∞-categories, and let f : C→ D and g : D→ C be adjoint functors.
Then f and g induce adjoint functors hf : hC → hD and hg : hD → hC between ( H-enriched ) homotopy
categories.

Proof. This follows immediately from Proposition 5.2.2.7, since a unit transformation idC → g ◦ f induces a
unit transformation idhC → (hg) ◦ (hf ).

The converse to Proposition 5.2.2.8 is false. If f : C→ D and g : D→ C are functors such that hf and hg
are adjoint to one another, then f and g are not necessarily adjoint. Nevertheless, the existence of adjoints
can be tested at the level of (enriched) homotopy categories.

Lemma 5.2.2.9. Let p : M → ∆1 be an inner fibration of simplicial sets, giving a correspondence between
the ∞-categories C = M{0} and D = M{1}. Let c be an object of C, d an object of D, and f : c → d a
morphism. The following are equivalent:

(1) The morphism f is p-Cartesian.

(2) The morphism f gives rise to a Cartesian morphism in the enriched homotopy category hM ; in other
words, composition with p induces homotopy equivalences

MapC(c′, c)→ MapM(c′, d)

for every object c′ ∈ C.

Proof. This follows immediately from Proposition 2.3.4.3.

Lemma 5.2.2.10. Let p : M→ ∆1 be an inner fibration, so that M can be identified with a correspondence
from C = p−1{0} to D = p−1{1}. The following conditions are equivalent:

(1) The map p is a Cartesian fibration.

(2) There exists a H-enriched functor functor g : hD→ hC and a functorial identification

MapM(c, d) ' MapC(c, g(d)).

Proof. If p is a Cartesian fibration, then there is a functor D → C associated to M; we can then take g to
be the associated functor on enriched homotopy categories. Conversely, suppose that there exists a functor
g as above. We wish to show that p is a Cartesian fibration. In other words, we must show that for every
object d ∈ D, there is an object c ∈ C and a p-Cartesian morphism f : c→ d. We take c = g(d); in view of
the identification MapM(c, d) ' MapC(c, c), there exists a morphism f : c→ d corresponding to the identity
idc. Lemma 5.2.2.9 implies that f is p-Cartesian, as desired.
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Proposition 5.2.2.11. Let f : C→ D be a functor between ∞-categories. Suppose that the induced functor
of H-enriched categories hf : hC→ hD admits a right adjoint. Then f admits a right adjoint.

Proof. According to (1) of Proposition 5.2.1.3, there is a coCartesian fibration p : M→ ∆1 associated to f .
Let hg be the right adjoint of hf . Applying Lemma 5.2.2.10, we deduce that p is a Cartesian fibration. Thus
p is an adjunction, so that f has a right adjoint as desired.

5.2.3 Preservation of Limits and Colimits

Let C and D be ordinary categories, and let F : C → D be a functor. If F has a right adjoint G, then F
preserves colimits; we have a chain of natural isomorphisms

HomD(F (lim−→Cα), D) ' HomC(lim−→Cα, G(D))
' lim←−HomC(Cα, G(D))
' lim←−HomD(F (Cα), D)
' HomD(lim−→F (Cα), D).

In fact, this is in some sense the defining feature of left adjoints: under suitable set-theoretic assumptions,
the adjoint functor theorem asserts that any colimit preserving functor admits a right adjoint. We will prove
an ∞-categorical version of the adjoint functor theorem in §5.5.2. Our goal in this section is to lay the
groundwork, by showing that left adjoints preserve colimits in the ∞-categorical setting. We will first need
to establish several lemmas.

Lemma 5.2.3.1. Suppose given a diagram

K ×∆1 P //

##H
HH

HH
HH

HH
M

q
~~}}

}}
}}

}}

∆1

of simplicial sets, where M is an ∞-category and P |{k} ×∆1 is q-coCartesian for every vertex k of K. Let
p = P |K × {0}. Then the induced map

ψ : MP/ →Mp/

induces a trivial fibration
ψ1 : MP/×∆1{1} →Mp/×∆1{1}.

Proof. If K is a point, then the assertion of the Lemma reduces immediately to the definition of a coCartesian
edge. In the general case, we note that ψ and ψ1 are both left fibrations between∞-categories. Consequently,
it suffices to show that ψ1 is a categorical equivalence. In doing so, we are free to replace ψ by the equivalent
map ψ′ : MP/ → Mp/. To prove that ψ′1 : MP/×∆1{1} → Mp/×∆1{1} is a trivial fibration, we must show
that for every inclusion A ⊆ B of simplicial sets and any map

k0 : ((K ×∆1) �A)
∐

(K×{0})�A

((K × {0}) �B)→M

with k0|K ×∆1 = P and k0(B) ⊆ q−1{1}, there exists an extension of k0 to a map k : (K ×∆1) �B →M.
Let

X = (K ×∆1)
∐

K×∆1×B×{0}

(K ×∆1 ×B ×∆1)

and let h : X → K �B be the natural map. Let

X ′ = h−1((K ×∆1) �A)
∐

(K×{0})�A

((K × {0}) �B) ⊆ X,
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and let k̃0 : X ′ →M be the composition k0 ◦ h. It suffices to prove that there exists an extension of k̃0 to a
map k̃ : X → M. Replacing M by Map∆1(K,M), we may reduce to the case where K is a point, which we
already treated above.

Lemma 5.2.3.2. Let q : M→ ∆1 be a correspondence between ∞-categories C = q−1{0} and D = q−1{1},
and let p : K → C be a diagram in C. Let f : c→ d be a q-Cartesian morphism in M from c ∈ C to d ∈ D.
Let r : Mp/ →M be the projection, and let d be an object of Mp/ with r(d) = d. Then:

(1) There exists a morphism f : c→ d in Mp/ satisfying f = r(f).

(2) Any morphism f : c→ d which satisfies r(f) = f is r-Cartesian.

Proof. We may identify d with a map d : K → M/d. Consider the set of pairs (L, s) where L ⊆ K and
s : L→M/f sits in a commutative diagram

L //
� _

��

M/f

��
K // M/d .

We order these pairs by setting (L, s) ≤ (L′, s′) if L ⊆ L′ and s = s′|L. By Zorn’s lemma, there exists a pair
(L, s) which is maximal with respect to this ordering. To prove (1), it suffices to show that L = K. Otherwise,
we may obtain a larger simplicial subset L′ = L

∐
∂∆n ∆n ⊆ K by adjoining a single nondegenerate simplex.

By maximality, there is no solution to the associated lifting problem

∂∆n //
� _

��

M/f

��
∆n //

<<x
x

x
x

x
M/d,

nor to the associated lifting problem
Λn+2
n+2� _

��

s // M

q

��
∆n+2 //

<<z
z

z
z

z
∆1,

which contradicts the fact that s carries ∆{n+1,n+2} to the q-Cartesian morphism f in M.
Now suppose that f is a lift of f . To prove that f is r-Cartesian, it suffices to show that for every m ≥ 2

and every diagram

Λmm
g0 //

� _

��

Mp/

��
∆m //

g
<<y

y
y

y
// M

such that g0|∆{m−1,m} = f̃ , there exists a dotted arrow g as indicated, rendering the diagram commutative.
We can identify the diagram with a map

t0 : (K ? Λmm)
∐
Λm

m

∆m →M .
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Consider the set of all pairs (L, t), where L ⊆ K and

t : (K ? Λmm)
∐
L?Λm

m

(L ?∆m)→M

is an extension of t0. As above, we order the set of such pairs by declaring (L, t) ≤ (L′, t′) if L ⊆ L′ and
t = t′|L. Zorn’s lemma guarantees the existence of a maximal pair (L, t). If L = K, we are done; otherwise
let L′ be obtained from L by adjoining a single nondegenerate n-simplex of K. By maximality, the map t
does not extend to L′; consequently the associated mapping problem

(∆n ? Λmm)
∐
∂∆n?Λm

m
(∂∆n ?∆m) //

� _

��

M

��
∆n ?∆m //

55kkkkkkkkk
∆1

has no solution. But this contradicts the assumption that r(f̃) = f is a q-Cartesian edge of M.

Lemma 5.2.3.3. Let q : M → ∆1 be a correspondence between the ∞-categories C = q−1{0} and D =
q−1{1}. Let f : c→ d be a morphism in M between objects c ∈ C, d ∈ D. Let p : K → C be a diagram, and
consider an associated map

k : Mp/×M{c} →Mp/×M{d}

( the map k is well-defined up to homotopy, according to Lemma 2.1.1.3 ). If f is q-Cartesian, then k is a
homotopy equivalence.

Proof. Let X = (Mp/)∆
1 ×

M∆1 {f}, and consider the diagram

X

u

%%KKKKKKKKKK

vyytttttttttt

Mp/×M{c} Mp/×M{d}.

The map u is a homotopy equivalence, and k is defined as the composition of v with a homotopy inverse to
u. Consequently, it will suffice to show that v is a trivial fibration. To prove this, we must show that v has
the right lifting property with respect to ∂∆n ⊆ ∆n, which is equivalent to solving a lifting problem

(∂∆n ×∆1)
∐
∂∆n×{1}(∆

n × {1}) //
� _

��

Mp/

r

��
∆n ×∆1 //

55jjjjjjjjj
M

.

If n = 0, we invoke (1) of Lemma 5.2.3.2. If n > 0, then Proposition 2.3.1.8 implies that it suffices to show
that the upper horizontal map carries {n} × ∆1 to an r-Cartesian edge of Mp/, which also follows from
assertion (2) of Lemma 5.2.3.2.

Lemma 5.2.3.4. Let q : M → ∆1 be a Cartesian fibration, and let C = q−1{0}. The inclusion C ⊆ M

preserves all colimits which exist in C.

Proof. Let p : K. → C be a colimit of p = p|K. We wish to show that Mp/ → Mp/ is a trivial fibration.
Since we have a diagram

Mp/ →Mp/ →M
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of left fibrations, it will suffice to show that the induced map

Mp/×M{d} →Mp/×M{d}

is a homotopy equivalence of Kan complexes, for each object d of M. If d belongs to C, this is obvious. In
general, we may choose a q-Cartesian morphism f : c → d in M. Composition with f gives a commutative
diagram

[Mp/×M{c}] //

��

[Mp/×M{c}]

��
[Mp/×M{d}] // [Mp/×M{d}]

in the homotopy category H of spaces. The upper horizontal map is a homotopy equivalence since p is a
colimit of p in C. The vertical maps are homotopy equivalences by Lemma 5.2.3.3. Consequently, the bottom
horizontal map is also a homotopy equivalence, as desired.

Proposition 5.2.3.5. Let f : C→ D be a functor between∞-categories which has a right adjoint g : D→ C.
Then f preserves all colimits which exist in C, and g preserves all limits which exist in D.

Proof. We will show that f preserves colimits; the analogous statement for g follows by a dual argument.
Let p : K. → C be a colimit for p = p|K. We must show that f ◦ p is a colimit of f ◦ p.

Let q : M→ ∆1 be an adjunction between C = M{0} and D = M{1} which is associated to f and g. We
wish to show that

φ1 : Dfp/ → Dfp/

is a trivial fibration. Since φ1 is a left fibration, it suffices to show that φ1 is a categorical equivalence.
Since M is associated to f , there is a map F : C×∆1 → M with F |C×{0} = idC, F |C×{1} = f , and

F |{c} ×∆1 a q-coCartesian morphism of M for every object c ∈ C. Let P = F ◦ (p× id∆1) be the induced
map K. ×∆1 →M, and let P = P |K ×∆1.

Consider the diagram

Mp/
φ′ // Mp/

MP/
//

v

OO

u

��

MP/

v

OO

u

��
Mfp/

φ // Mfp/ .

We note that every object in this diagram is an ∞-category with a map to ∆1; moreover, the map φ1 is
obtained from φ by passage to the fiber over {1} ⊆ ∆1. Consequently, to prove that φ1 is a categorical
equivalence, it suffices to verify three things:

(1) The bottom vertical maps u and u are trivial fibrations. This follows from the fact that K × {1} ⊆
K ×∆1 and K. × {1} ⊆ K. ×∆1 are right anodyne inclusions (Proposition 2.1.2.4).

(2) The upper vertical maps v and v are trivial fibrations when restricted to D ⊆ M. This follows from
Lemma 5.2.3.1, since F carries each {c} ×∆1 to a q-coCartesian edge of M.

(3) The map φ′ is a trivial fibration, since p is a colimit of p in M according to Lemma 5.2.3.4.

Remark 5.2.3.6. Under appropriate set-theoretic hypotheses, one can prove a converse to Proposition
5.2.3.5. See Corollary 5.5.2.9.
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5.2.4 Examples of Adjoint Functors

In this section, we describe a few simple criteria for establishing the existence of adjoint functors.

Lemma 5.2.4.1. Let q : M → ∆1 be a coCartesian fibration associated to a functor f : C → D, where
C = q−1{0} and D = q−1{1}. Let D be an object of D. The following are equivalent:

(1) There exists a q-Cartesian morphism g : C → D in M, where C ∈ C.

(2) The right fibration C×D D/D → C is representable.

Proof. Let F : C×∆1 → M be a p-coCartesian natural transformation from idC to f . Define a simplicial
set X so that for every simplicial set K, HomSet∆(K,X) parametrizes maps H : K × ∆2 → M such that
h = H|K ×{0} factors through C, H|K ×∆{0,1} = F ◦ (h|(K ×{0})× id∆1), and H|K ×{2} is the constant
map at the vertex D. We have restriction maps

X

$$JJJJJJJJJJ

zzuuu
uuu

uuu
u

C×M M/D C×D D/D .

which are both trivial fibrations (the map on the right because M is an ∞-category, the map on the left
because F is a p-coCartesian transformation). Consequently, (2) is equivalent to the assertion that the ∞-
category C×M M/D has a final object. It now suffices to observe that a final object of C×M M/D is precisely
a q-Cartesian morphism C → D, where C ∈ C.

Proposition 5.2.4.2. Let F : C→ D be a functor between ∞-categories. The following are equivalent:

(1) The functor F has a right adjoint.

(2) For every pullback diagram

C //

p′

��

D

p

��
C

F // D,

if p is a representable right fibration, then p′ is also a representable right fibration.

Proof. Let M be a correspondence from C to D associated to F , and apply Lemma 5.2.4.1 to each object of
D.

Proposition 5.2.4.3. Let p : C → D be a Cartesian fibration of ∞-categories, and let s : D → C be a
section of p such that s(D) is an initial object of CD = C×D{D} for every object D ∈ D. Then s is a left
adjoint of p.

Proof. Let C0 ⊆ C denote the full subcategory of C spanned by those objects C ∈ C such that C is initial
in the ∞-category Cp(C). According to Proposition 2.3.4.9, the restriction p|C0 is a trivial fibration from
C0 to D. Consequently, it will suffice to show that the inclusion C0 ⊆ C is left adjoint to the composition
s ◦ p : C → C0. Let M ⊆ C×∆1 be the full subcategory spanned by the vertices (C, {i}) where i = 1 or
C ∈ C0. Let q : M → ∆1 be the projection. It is clear that q is a coCartesian fibration which is associated
to the inclusion C0 ⊆ C. To complete the proof, it will suffice to show that q is also a Cartesian fibration
which is associated to s ◦ p.

We first show that q is a Cartesian fibration. It will suffice to show that for any object C ∈ C, there
is a q-Cartesian edge (C ′, 0) → (C, 1) in M. By assumption, C ′ = (s ◦ p)(C) is an initial object of Cp(C).
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Consequently, there exists a morphism f : C ′ → C in Cp(C); we will show that f × id∆1 is a q-Cartesian edge
of M. To prove this, it suffices to show that for every n ≥ 2 and every diagram

Λnn� _

��

G0 // M

��
∆n //

G

==|
|

|
|

∆1

such that F0|∆{n−1,n} = f × id∆1 , there exists a dotted arrow F : ∆n → M as indicated, rendering the
diagram commutative. We may identify G0 with a map g0 : Λnn → C. The composite map p ◦ g0 carries
∆{n−1,n} to a degenerate edge of D, and therefore admits an extension g : ∆n → D. Consider the diagram

Λnn
g0 //

� _

��

C

p

��
∆n

g //

g

=={
{

{
{

D .

Since g0 carries the initial vertex v of ∆n to an initial object of the fiber Cg(v), Lemma 2.3.4.8 implies the
existence of the indicated map g rendering the diagram commutative. This gives rise to a map G : ∆n →M

with the desired properties, and completes the proof that q is a Cartesian fibration.
We now wish to show that s ◦ p is associated to q. To prove this, it suffices to prove the existence of a

map H : C×∆1 → C such that p ◦H = p ◦ πC, H|C×{1} = idC, and H|C × {0} = s ◦ p. We construct the
map H inductively, working cell-by-cell on C. Suppose that we have a nondegenerate simplex σ : ∆n → C

and that H has already been defined on skn−1 C×∆1. To define H ◦ (σ × id∆1), we must solve a lifting
problem that may be depicted as follows:

(∂∆n ×∆1)
∐
∂∆n×∂∆1(∆n × ∂∆1)

h0 //
� _

��

C

p

��
∆n ×∆1 //

h

22eeeeeeeeeeeeeeeeeee
D .

We now consider the filtration

X(n+ 1) ⊆ X(n) ⊆ . . . ⊆ X(0) = ∆n ×∆1

defined in the proof of Proposition 2.1.2.5. Let Y (i) = X(i)
∐
∂∆n×{0}(∆

n × {1}). For i > 0, the inclusion
Y (i+ 1) ⊆ Y (i) is a pushout of the inclusion X(i+ 1) ⊆ X(i), and therefore inner anodyne. Consequently,
we may use the assumption that p is an inner fibration to extend h0 to a map defined on Y (1). The inclusion
Y (1) ⊆ ∆n×∆1 is a pushout of ∂∆n+1 ⊆ ∆n+1; we then obtain the desired extension h by applying Lemma
2.3.4.8.

Proposition 5.2.4.4. Let M be a fibrant simplicial category equipped with a functor p : M → ∆1 (here we
identify ∆1 with the two-object category whose nerve is ∆1), so that we may view M as a correspondence
between the simplicial categories C = p−1{0} and D = p−1{1}. The following are equivalent

(1) The map p is a Cartesian fibration.

(2) For every object D ∈ D, there exists a morphism f : C → D in M which induces homotopy equivalences

MapC(C ′, C)→ MapM(C ′, D)

for every C ′ ∈ C.
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Proof. This follows immediately from Proposition 2.3.1.10, since nonempty morphism spaces in ∆1 are
contractible.

Corollary 5.2.4.5. Let C and D be fibrant simplicial categories, and let

C
F // D
G
oo

be a pair of adjoint functors F : C→ D ( in the sense of enriched category theory, so that there is a natural
isomorphism of simplicial sets MapC(F (C), D) ' MapD(C,G(D)) for C ∈ C, D ∈ D ). Then the induced
functors

N(C)
f // N(D)
g

oo

are also adjoint to one another.

Proof. Let M be the correspondence associated to the adjunction (F,G). In other words, M is a simplicial
category containing C and D as full (simplicial) subcategories, with

MapM(C,D) = MapC(C,G(D)) = MapD(F (C), D)

MapM(D,C) = ∅

for every pair of objects C ∈ C, D ∈ D. Let M = N(M). Then M is a correspondence between N(C) and
N(D). By Proposition 5.2.4.4, it is an adjunction. It is easy to see that this adjunction is associated to both
f and g.

The following variant on the situation of Corollary 5.2.4.5 arises very often in practice:

Proposition 5.2.4.6. Let A and A′ be simplicial model categories, and let

A
F //A′
G
oo

be a ( simplicial ) Quillen adjunction. Let M be the simplicial category defined as in the proof of Proposition
5.2.4.4, and let M◦ be the full subcategory of M consisting of those objects which are fibrant-cofibrant (either
as objects of A or as objects of A′). Then N(M◦) determines an adjunction between N(A◦) and N(A′◦).

Proof. We need to show that N(M◦) → ∆1 is both a Cartesian fibration and a coCartesian fibration. We
will argue the first point; the second follows from a dual argument. According to Proposition A.2.4.1, it
suffices to show that for every fibrant-cofibrant object D of A′, there is a fibrant-cofibrant object C of A
and a morphism f : C → D in M◦ which induces weak homotopy equivalences

MapA(C ′, C)→ MapM(C ′, D)

for every fibrant-cofibrant object C ′ ∈ A. We define C to be a cofibrant replacement for GD: in other
words, we choose a fibrant object C with a trivial fibration C → G(D) in the model category A. Then
MapA(C ′, C) → MapM(C ′, D) = MapA(C ′, G(D)) is a trivial fibration of simplicial sets, whenever C ′ is a
cofibrant object of A.

Remark 5.2.4.7. Suppose that F : A → A′ and G : A′ → A are as in Proposition 5.2.4.6. We may
associate to the adjunction N(M◦) a pair of adjoint functors f : N(A◦)→ N(A′◦) and g : N(A′◦)→ N(A◦).
In this situation, f is often called a (nonabelian) left derived functor of F , and g a (nonabelian) right derived
functor of G. On the level of homotopy categories, f and g reduce to the usual derived functors associated
to the Quillen adjunction (see §A.2.5).
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5.2.5 Uniqueness of Adjoint Functors

We have seen that if f : C → D is a functor which admits a right adjoint g : D → C, then g is uniquely
determined up to homotopy. Our next result is a slight refinement of this assertion.

Definition 5.2.5.1. Let C and D be ∞-categories. We let FunL(C,D) ⊆ Fun(C,D) denote the full sub-
category of Fun(C,D) spanned by those functors F : C → D which are left adjoints. Similarly, we define
FunR(C,D) to be the full subcategory of Fun(C,D) spanned by those functors which are right adjoints.

Proposition 5.2.5.2. Let C and D be ∞-categories. Then the ∞-categories FunL(C,D) and FunR(D,C)op

are (canonically) equivalent to one another.

Proof. Enlarging the universe if necessary, we may assume without loss of generality that C and D are small.
Let j : D→ P(D) be the Yoneda embedding. Composition with j induces a fully faithful embedding

i : Fun(C,D)→Fun(C,P(D)) ' Fun(C×Dop, S).

The essential image of i consists of those functors G : C×Dop → S with the property that, for each C ∈ C,
the induced functor GC : Dop → S is representable by an object D ∈ D. The functor i induces a fully faithful
embedding

i0 : FunR(C,D)→ Fun(C×Dop, S)

whose essential image consists of those functors G which belong to the essential image of i, and furthermore
satisfy the additional condition that for each D ∈ D, the induced functor GD : C→ S is corepresentable by
an object C ∈ C (this follows from Proposition 5.2.4.2). Let E ⊆ Fun(C×Dop, S) be the full subcategory
spanned by those functors which satisfy these two conditions, so that the Yoneda embedding induces an
equivalence

FunR(C,D)→ E .

We note that the above conditions are self-dual, so that the same reasoning gives an equivalence of ∞-
categories

FunR(Dop,Cop)→ E .

We now conclude by observing that there is a natural equivalence of ∞-categories FunR(Dop,Cop) '
FunL(D,C)op.

We will later need a slight refinement of Proposition 5.2.5.2, which exhibits some functoriality in C. We
begin with a few preliminary remarks concerning the construction of presheaf ∞-categories.

Let f : C→ C′ be a functor between small ∞-categories. Then composition with f induces a restriction
functor G : P(C′) → P(C). However, there is another slightly less evident functoriality of the construction
C 7→ P(C). Namely, according to Theorem 5.1.5.6, there is a colimit-preserving functor P(f) : P(C)→ P(C′),
uniquely determined up to equivalence, such that the diagram

C

��

f // C′

��
P(C)

P(f) // P(C′)

commutes up to homotopy (here the vertical arrows are given by the Yoneda embeddings).
The functor P(f) has an alternative characterization in the language of adjoint functors:

Proposition 5.2.5.3. Let f : C→ C′ be a functor between small ∞-categories, let G : P(C′)→ P(C) be the
functor given by composition with f . Then G is right adjoint to P(f).
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Proof. We first prove that G admits a left adjoint. Let e : P(C) → Fun(P(C)op, Ŝ) denote the Yoneda
embedding. According to Proposition 5.2.4.2, it will suffice to show that for each M ∈ P(C), the composite
functor e(M) ◦ G is corepresentable. Let D denote the full subcategory of P(C) spanned by those objects
M such that G ◦ eM is corepresentable. Since P(C) admits small colimits, Proposition 5.1.3.2 implies that
the collection of corepresentable functors on P(C) is stable under small colimits. According to Propositions
5.1.3.2 and 5.1.2.2, the functor M 7→ e(M) ◦ G preserves small colimits. It follows that D is stable under
small colimits in P(C). Since P(C) is generated under small colimits by the Yoneda embedding jC′ : C→ P(C)
(Corollary 5.1.5.8), it will suffice to show that jC(C) ∈ D for each C ∈ C. According to Lemma 5.1.5.2,
e(jC(C)) is equivalent to the functor P(C)→ Ŝ given by evaluation at C. Then e(jC(C)) ◦G is equivalent to
the functor given by evaluation at f(C) ∈ C′, which is corepresentable (Lemma 5.1.5.2 again). We conclude
that G has a left adjoint F .

To complete the proof, we must show that F is equivalent to P(f). To prove this, it will suffice to show
that F preserves small colimits and that the diagram

C
f //

��

C′

��
P(C) F // P(C′)

commutes up to homotopy. The first point is obvious: since F is a left adjoint, it preserves all colimits
which exist in P(C) (Proposition 5.2.3.5). For the second, choose a counit map v : F ◦ G → idP(C′). By
construction, the functor f induces a natural transformation u : jC → G ◦ jC′ ◦ f . To complete the proof, it
will suffice to show that the composition

θ : F ◦ jC
u→ F ◦G ◦ jC′ ◦ f

v→ jC′ ◦ f

is an equivalence of functors from C to P(C′). Fix objects C ∈ C, M ∈ P(C′). We have a commutative
diagram

MapP(C′)(jC′(f(C)),M) // MapP(C)(G(jC′(f(C))), G(M)) //

��

MapP(C)(jC(C), G(M))

��
MapP(C′)(jC′(f(C)),M) // MapP(C′)(F (G(jC′(f(C)))),M) // MapP(C′)(F (jC(C)),M)

in the homotopy category H of spaces, where the vertical arrows are isomorphisms. Consequently, to prove
that the lower horizontal composition is an isomorphism, it suffices to prove that the upper horizontal com-
position is an isomorphism. Using Lemma 5.1.5.2, we reduce to the assertion that M(f(C))→ (G(M))(C)
is an isomorphism in H, which follows immediately from the definition of G.

Remark 5.2.5.4. Suppose given a functor f : D → D′ which admits a right adjoint g. Let E ⊆
Fun(C×Dop, S) and E′ ⊆ Fun(C×(D′)op, S) be defined as in the proof of Proposition 5.2.5.2, and consider
the diagram

FunR(C,D)

◦g
��

// E

��

FunL(D,C)op

◦f
��

oo

FunR(C,D′) // E′ FunL(D′,C)op.oo

Here the middle vertical map is given by composition with idC×f . The square on the right is manifestly
commutative, but the square on the left commutes only up to homotopy. To verify the second point, we
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observe that the square in question is given by applying the functor Map(C, •) to the diagram

D //

g

��

P(D)

G

��
D′ // P(D′)

where G is given by composition with f and the horizontal arrows are given by the Yoneda embedding.
Let P0(D) ⊆ P(D) and P0(D′) denote the essential images of the Yoneda embeddings. Proposition 5.2.4.2
asserts that G carries P0(D′) into P0(D), so that it will suffice to verify that the diagram

D //

g

��

P0(D)

G0

��
D′ // P0(D′)

is homotopy commutative. In view of Proposition 5.2.2.5, it will suffice to show that G0 admits a left adjoint
F 0 and that the diagram

D // P0(D)

D′ //

OO

P0(D′)

F0

OO

is homotopy commutative. According to Proposition 5.2.5.3, the functor G has a left adjoint P(f) which fits
into a commutative diagram

D // P(D)

D′ //

f

OO

P(D′).

P(f)

OO

In particular, P(f) carries P0(D) into P0(D′) and therefore restricts to give a left adjoint F 0 : P0(D) →
P0(D′) which verifies the desired commutativity.

5.2.6 Localization Functors

Suppose we are given a ∞-category C and a collection S of morphisms of C which we would like to invert.
In other words, we wish to find an ∞-category S−1 C equipped with a functor η : C → S−1 C which carries
each morphism in S to an equivalence, and is in some sense universal with respect to these properties. One
can give a general construction of S−1 C using the formalism of §3.1.1. Without loss of generality, we may
suppose that S contains all the identity morphisms in C. Consequently, the pair (C, S) may be regarded as
a marked simplicial set, and we can choose a marked anodyne map (C, S)→ (S−1 C, S′), where S−1 C is an
∞-category and S′ is the collection of all equivalences in S−1 C. However, this construction is generally very
difficult to analyze, and the properties of S−1 C are very difficult to control. For example, it might be the
case that C is locally small and S−1 C is not.

Under suitable hypotheses on S (see §5.5.4), there is a drastically simpler approach: we can find the
desired ∞-category S−1 C inside of C, as the full subcategory of S-local objects of C.

Example 5.2.6.1. Let C be the (ordinary) category of abelian groups, p a prime number, and let S denote
the collection of morphisms f whose kernel and cokernel consist entirely of p-power torsion elements. A
morphism f lies in S if and only if it induces an isomorphism after inverting the prime number p. In this
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case, we may identify S−1 C with the full subcategory of C consisting of those abelian groups which are
uniquely p-divisible. The functor C→ S−1 C is given by

M 7→M ⊗Z Z[
1
p
].

In Example 5.2.6.1, the functor C → S−1 C is actually left adjoint to an inclusion functor. We will take
this as our starting point.

Definition 5.2.6.2. A functor f : C → D between ∞-categories is a localization if f has a fully faithful
right adjoint.

If f : C→ D is a localization of ∞-categories, then we will also say that D is a localization of C. In this
case, a right adjoint g : D→ C of f gives an equivalence between D and a full subcategory of C (the essential
image of g). We let L : C → C denote the composition g ◦ f . We will abuse terminology by referring to L
as a localization functor if it arises in this way. The following result will allow us to recognize localization
functors:

Proposition 5.2.6.3. Let C be a ∞-category, and let L : C→ C be a functor with essential image LC ⊆ C.
The following conditions are equivalent:

(1) There exists a functor f : C → D with a fully faithful right adjoint g : D → C, and an equivalence
between g ◦ f and L.

(2) When regarded as a functor from C to LC, L is a left adjoint of the inclusion LC ⊆ C.

(3) There exists a natural transformation α : C×∆1 → C from idC to L such that, for every object C of C,
the morphisms L(α(C)), α(LC) : LC → LLC of C are equivalences, and homotopic to one another.

Proof. It is obvious that (2) implies (1) (take D = LC, f = L, and g to be the inclusion). The converse
follows from the observation that, since g is fully faithful, we are free to replace D by the essential image of
g (which is equal to the essential image of L).

We next prove that (2) implies (3). Let α : idC → L be a unit for the adjunction. Then, for each pair of
objects C ∈ C, D ∈ LC, composition with α(C) induces a homotopy equivalence

MapC(LC,D)→ MapC(C,D),

and in particular a bijection HomhC(LC,D) → HomhC(C,D). If C belongs to LC, then Yoneda’s lemma
implies that α(C) is an isomorphism in hC. This proves that α(LC) is an equivalence for every C ∈ C. Since
α is a natural transformation, we have obtain a diagram

C
α(C) //

α(C)

��

LC

Lα(C)

��
LC

α(LC)// LLC.

Since composition with α(C) gives an injective map from HomhC(LC,LLC) to HomhC(C,LLC), we conclude
that α(LC) is homotopic to Lα(C). This proves (3).

Now suppose that (3) is satisfied; we will prove that α is the unit of an adjunction between C and LC.
In other words, we must show that for each C ∈ C and D ∈ C, composition with α(C) induces a homotopy
equivalence

φ : MapC(LC,LD)→ MapC(C,LD).

Let ψ denote the composition

MapC(C,LD)
ψ′→ MapC(LC,LLD)

ψ′′→ MapC(LC,LD)
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where ψ′ is the map induced by the functor L and ψ′′ is the inverse of the map given by composition with
α(LD) (which is well defined since α(LD) is an equivalence). We will prove that ψ is a an inverse to φ in
the homotopy category H. We first compute the composition ψ ◦φ. Since L is a functor, ψ′ ◦φ is equivalent
to the composition

MapC(LC,LD) L→ MapC(LLC,LLD)
Lα(C)→ MapC(LC,LLD).

Since Lα(C) is equivalent to α(LC) and α is a natural transformation of functors, this composition is
equivalent to the map given by composition with α(LD), which is the inverse of ψ′′. Thus ψ ◦ φ is the
identity on MapC(LC,LD).

We now compute the composition φ ◦ψ = φ ◦ψ′′ ◦ψ′. Clearly φ ◦ψ′′ can be rewritten as the composition

MapC(LC,LLD) θ→ MapC(C,LLD) θ′→ MapC(C,LD)

where θ is given by composition with α(C) and θ′ is the inverse of the map given by composition with α(LD).
Since α is a natural transformation of functors, θ ◦ ψ′ is given by composition with α(LD), and is therefore
inverse to θ′ as desired.

Remark 5.2.6.4. Let L : C → D be a localization functor and K a simplicial set. Suppose that every
diagram p : K → C admits a colimit in C. Then the ∞-category D has the same property. Moreover, we can
give an explicit prescription for computing colimits in D. Let q : K → D be a diagram, and let p : K → C

be the composition of q with a right adjoint to L. Choose a colimit p : K. → C. Since L is a left adjoint,
L ◦ p is a colimit diagram in D, and L ◦ p is equivalent to the diagram q.

We conclude this section by introducing a few ideas which will allow us to recognize localization functors,
when they exist.

Definition 5.2.6.5. Let C be an ∞-category and C0 ⊆ C a full subcategory. We will say that a morphism
f : C → D in C exhibits D as a C0-localization of C if D ∈ C0, and composition with f induces an
isomorphism

MapC0(D,E)→ MapC(C,E)

in the homotopy category H, for each object E ∈ C0.

Remark 5.2.6.6. In the situation of Definition 5.2.6.5, a morphism f : C → D exhibits D as a localization
of C if and only if f is an initial object of the ∞-category C0

C/ = CC/×C C0. In particular, f is uniquely
determined up to equivalence.

Proposition 5.2.6.7. Let C be an ∞-category and C0 ⊆ C a full subcategory. The following conditions are
equivalent:

(1) For every object C ∈ C, there exists a localization f : C → D relative to C0.

(2) The inclusion C0 ⊆ C admits a left adjoint.

Proof. Let D be the full subcategory of C×∆1 spanned by objects of the form (C, i), where C ∈ C0 if i = 1.
Then the projection p : D→ ∆1 is a correspondence from C to C0 which is associated to the inclusion functor
i : C0 ⊆ C. It follows that i admits a left adjoint if and only if p is a coCartesian fibration. It now suffices to
observe that if C is an object of C, then we may identify p-coCartesian edges f : (C, 0)→ (D, 1) of D with
localizations C → D relative to C0.

Remark 5.2.6.8. By analogy with classical category theory, we will say that a full subcategory C0 of an
∞-category C is a reflective subcategory if the hypotheses of Proposition 5.2.6.7 are satisfied by the inclusion
C0 ⊆ C.
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5.3 ∞-Categories of Inductive Limits

Let C be a category. An Ind-object of C is a diagram f : I → C where I is a (small) filtered category. We
will informally denote the Ind-object f by

[lim−→Xi]

where Xi = f(i). The collection of all Ind-objects of C forms a category, where the morphisms are given by
the formula

HomInd(C)([lim−→Xi], [lim−→Yj ]) = lim←− lim−→HomC(Xi, Yj).

We note that C may be identified with a full subcategory of Ind(C), corresponding to diagrams indexed by the
one-point category I = ∗. The idea is that Ind(C) is obtained from C by formally adjoining colimits of filtered
diagrams. More precisely, Ind(C) may be described by the following universal property: for any category D

which admits filtered colimits, and any functor F : C → D, there exists a functor F̃ : Ind(C) → D, whose
restriction to C is isomorphic to F , and which commutes with filtered colimits. Moreover, F̃ is determined
up to (unique) isomorphism.

Example 5.3.0.1. Let C denote the category of finitely presented groups. Then Ind(C) is equivalent to
the category of groups. (More generally, one could replace “group” by any type of mathematical structure
described by algebraic operations which are required to satisfy equational axioms.)

Our objective in this section is to generalize the definition of Ind(C) to the case where C is an∞-category.
If we were to work in the setting of simplicial (or topological) categories, we could apply the definition given
above directly. However, this leads to a number of problems:

(1) The construction of Ind-categories does not preserve equivalences between simplicial categories.

(2) The obvious generalization of the right hand side in equation above is given by

lim←− lim−→MapC(Xi, Yj).

While the relevant limits and colimits certainly exist in the category of simplicial sets, they are not
necessarily the correct objects: really one should replace the limit by a homotopy limit.

(3) In the higher-categorical setting, we should really allow the indexing diagram I to be a higher category
as well. While this does not result in any additional generality (Corollary 5.3.1.16), the restriction to
the diagrams indexed by ordinary categories is a technical inconvenience.

Although these difficulties are not insurmountable, it is far more convenient to proceed differently, using
the theory of ∞-categories. In §5.1, we showed that if C is a ∞-category, then P(C) can be interpreted as
an ∞-category which is freely generated by C under colimits. We might therefore hope to find Ind(C) inside
of P(C), as a full subcategory. The problem, then, is to characterize this subcategory, and to prove that it
has the appropriate universal mapping property.

We will begin in §5.3.1, by introducing the definition of a filtered∞-category. Let C be a small∞-category.
In §5.3.5, we will define Ind(C) to be the smallest full subcategory of P(C) which contains all representable
presheaves on C and is stable under filtered colimits. There is also a more direct characterization of which
presheaves F : C→ Sop belong to Ind(C): they are precisely the right exact functors, which we will study in
§5.3.2.

In §5.3.5, we will define the Ind-categories Ind(C) and study their properties. In particular, we will show
that morphism spaces in Ind(C) are computed by the naive formula

HomInd(C)([lim−→Xi], [lim−→Yj ]) = lim←− lim−→HomC(Xi, Yj).

Unwinding the definitions, this amounts to two conditions:

(1) The (Yoneda) embedding of j : C→ Ind(C) is fully faithful (Proposition 5.1.3.1).
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(2) For each object C ∈ C, the corepresentable functor

HomInd(C)(j(C), •)

commutes with filtered colimits.

It is useful to translate condition (2) into a definition: an object D of an∞-category D is said to be compact
if the functor D → S corepresented by D commutes with filtered colimits. We will study this compactness
condition in §5.3.4.

5.3.1 Filtered ∞-Categories

Recall that a partially ordered set A is filtered if every finite subset of A has an upper bound in A. Diagrams
indexed by directed partially ordered sets are extremely common in mathematics. For example, if A is the
set

Z≥0 = {0, 1, . . .}

of natural numbers, then a diagram indexed by A is a sequence

X0 → X1 → . . . .

The formation of direct limits for such sequences is one of the most basic constructions in mathematics.
In classical category theory, it is convenient to consider not only diagrams indexed by filtered partially

ordered sets, but also more general diagrams indexed by filtered categories. A category C is said to be filtered
if it satisfies following conditions:

(1) For every finite collection {Xi} of objects of C, there exists an object X ∈ C equipped with morphisms
φi : Xi → X.

(2) Given any two morphisms f, g : X → Y in C, there exists a morphism h : Y → Z such that h◦f = h◦g.

Condition (1) is analogous to the requirement that any finite part of C admits an “upper bound”, while
condition (2) guarantees that the upper bound is unique in some asymptotic sense.

If we wish to extend the above definition to the ∞-categorical setting, it is natural to strengthen the
second condition.

Definition 5.3.1.1. Let C be a topological category. We will say that C is filtered if it satisfies the following
conditions:

(1′) For every finite set {Xi} of objects of C, there exists an object X ∈ C and morphisms φi : Xi → X.

(2′) For every pair X,Y ∈ C of objects of C, every nonnegative integer n ≥ 0, and every continuous map
Sn → MapC(X,Y ), there exists a morphism Y → Z such that the induced map Sn → MapC(X,Z) is
nullhomotopic.

Remark 5.3.1.2. It is easy to see that an ordinary category C is filtered in the usual sense if and only if it
is filtered when regarded as a topological category with discrete mapping spaces. Conversely, if C is a filtered
topological category, then its homotopy category hC is filtered (when viewed as an ordinary category).

Remark 5.3.1.3. Condition (2′) of Definition 5.3.1.1 is a reasonable analogue of condition (2) in the
definition of a filtered category. In the special case n = 0, condition (2′) asserts that any pair of morphisms
f, g : X → Y become homotopic after composition with some map Y → Z.

Remark 5.3.1.4. Topological spheres Sn need not play any distinguished role in the definition of a filtered
topological category. Condition (2′) is equivalent to the following apparently stronger condition:
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(2′′) For every pair X,Y ∈ C of objects of C, every finite cell complex K, and every continuous map
K → MapC(X,Y ), there exists a morphism Y → Z such that the induced map K → MapC(X,Z) is
nullhomotopic.

Remark 5.3.1.5. The condition that a topological category C be filtered depends only on the homotopy
category hC, viewed as a H-enriched category. Consequently if F : C → C′ is an equivalence of topological
categories, then C is filtered if and only if C′ is filtered.

Remark 5.3.1.6. Definition 5.3.1.1 has an obvious analogue for (fibrant) simplicial categories: one simply
replaces the topological n-sphere Sn by the simplicial n-sphere ∂∆n. It is easy to see that a topological
category C is filtered if and only if the simplicial category Sing C is filtered. Similarly, a (fibrant) simplicial
category D is filtered if and only if the topological category |D | is filtered.

We now wish to study the analogue of Definition 5.3.1.1 in the setting of ∞-categories. It will be
convenient to introduce a slightly more general notion:

Definition 5.3.1.7. Let κ be a regular cardinal, and let C be a ∞-category. We will say that C is κ-filtered
if, for every κ-small simplicial set K and every map f : K → C, there exists a map f : K. → C extending
f . (In other words, C is κ-filtered if it has the extension property with respect to the inclusion K ⊆ K., for
every κ-small simplicial set K.)

We will say that C is filtered if it is ω-filtered.

Example 5.3.1.8. Let C be the nerve of a partially ordered set A. Then C is κ-filtered if and only if every
κ-small subset of A has an upper bound in A.

Remark 5.3.1.9. One may rephrase Definition 5.3.1.7 as follows: an ∞-category C is κ-filtered if and only
if, for every diagram p : K → C, where K is κ-small, the slice ∞-category Cp/ is nonempty. Let q : C → C′

be a categorical equivalence of ∞-categories. Proposition 1.2.9.3 asserts that the induced map Cp/ → C′q◦p/
is a categorical equivalence. Consequently Cp/ is nonempty if and only if C′q◦p/ is nonempty. It follows that
C is κ-filtered if and only if C′ is κ-filtered.

Remark 5.3.1.10. An ∞-category C is κ-filtered if and only if, for every κ-small partially ordered set A,
C has the left lifting property with respect to the inclusion N(A) ⊆ N(A). ' N(A ∪ {∞}). The “only if”
direction is obvious. For the converse, we observe that for every κ-small diagram p : K → C, the∞-category

Cp/ is equivalent to Cq/, where q denotes the composition K ′′ p
′

→ K
p→ C. Here K ′′ is the second barycentric

subdivision of K and p′ is the map described in Variant 4.2.3.15. We now observe that K ′′ is equivalent to
the nerve of a κ-small partially ordered set.

Remark 5.3.1.11. We will say that an arbitrary simplicial set S is κ-filtered if there exists a categorical
equivalence j : S → C, where C is a κ-filtered ∞-category. In view of the Remark 5.3.1.9, this condition is
independent of the choice of j.

Our next major goal is to prove Proposition 5.3.1.13, which asserts that an ∞-category C is filtered if
and only if the associated topological category |C[C]| is filtered. First, we need a lemma.

Lemma 5.3.1.12. Let C be an ∞-category. Then C is filtered if and only if it has the right extension
property with respect to every inclusion ∂∆n ⊆ Λn+1

n+1, n ≥ 0.

Proof. The “only if” direction is clear: we simply take K = ∂∆n in Definition 5.3.1.7. For the converse, let
us suppose that the assumption of Definition 5.3.1.7 is satisfied whenever K is the boundary of a simplex;
we must then show that it remains satisfied for any K which has only finitely many nondegenerate simplices.

We work by induction on the dimension of K, and then by the number of nondegenerate simplices of K.
If K is empty, there is nothing to prove (since it is the boundary of a 0-simplex). Otherwise, we may write
K = K ′ ∐

∂∆n ∆n, where n is the dimension of K.
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Choose a map p : K → C; we wish to show that p may be extended to a map p̃ : K ? {y} → C. We
first consider the restriction p|K ′; by the inductive hypothesis it admits an extension q : K ′ ? {x} → C. The
restriction q| ∂∆n ? {x} together with p|∆n assemble to give a map

r : ∂∆n+1 ' (∂∆n ? {x})
∐
∂∆n

∆n → C .

By assumption, the map r admits an extension

r̃ : ∂∆n+1 ? {y} → C .

Let
s : (K ′ ? {x})

∐
∂∆n+1

(∂∆n+1 ? {y})

denote the result of amalgamating r with p̃. We note that the inclusion

(K ′ ? {x})
∐

∂∆n?{x}

(∂∆n+1 ? {y}) ⊆ (K ′ ? {x} ? {y})
∐

∂∆n?{x}?{y}

(∆n ? {y})

is a pushout of
(K ′ ? {x})

∐
∂∆n?{x}

(∂∆n ? {x} ? {y}) ⊆ K ′ ? {x} ? {y},

and therefore a categorical equivalence by Lemma 2.3.3.1. It follows that s admits an extension

s̃ : (K ′ ? {x} ? {y})
∐

∂∆n?{x}?{y}

(∆n ? {y})→ C,

and we may now define p̃ = s̃|K ? {y}.

Proposition 5.3.1.13. Let C be a topological category. Then C is filtered if and only if the ∞-category N(C)
is filtered.

Proof. Suppose first that N(C) is filtered. We verify conditions (1′) and (2′) of Definition 5.3.1.1:

(1′) Let {Xi}i∈I be a finite collection of objects of C, corresponding to a map p : I → N(C), where I is
regarded as a discrete simplicial set. If N(C) is filtered, then p extends to a map p̃ : I ? {x} → N(C),
corresponding to an object X = p(x) equipped with maps Xi → X in C.

(2′) Let X,Y ∈ C be objects, n ≥ 0, and Sn → MapC(X,Y ) a map. We note that this data may be
identified with a topological functor F : |C[K]| → C, where K is the simplicial set obtained from
∂∆n+2 by collapsing the initial face ∆n+1 to a point. If N(C) is filtered, then F extends to a functor F̃
defined on |C[K ? {z}]|; this gives an object Z = F̃ (z) and a morphism Y → Z such that the induced
map Sn → MapC(X,Z) is nullhomotopic.

For the converse, let us suppose that C is filtered. We wish to show that N(C) is filtered. By Lemma
5.3.1.12, it will suffice to prove that N(C) has the extension property with respect to the inclusion ∂∆n ⊆
Λn+1
n+1, for each n ≥ 0. Equivalently, it suffices to show that C has the right extension property with respect

to the inclusion |C[∂∆n]| ⊆ |C[Λn+1
n+1]|. If n = 0, this is simply the assertion that C is nonempty; if n = 1,

this is the assertion that for any pair of objects X,Y ∈ C there exists an object Z equipped with morphisms
X → Z, Y → Z. Both of these conditions follow from part (1) of Definition 5.3.1.1; we may therefore assume
that n > 1.

Let A0 = |C[∂∆n]|, A1 = |C[∂∆n
∐

Λn
n

Λnn ? {n+ 1}]|, A2 = |C[Λn+1
n+1]|, and A3 = |C[∆n+1]|, so that we

have inclusions of topological categories

A0 ⊆ A1 ⊆ A2 ⊆ A3 .
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We will make use of the description of A3 given in Remark 1.1.5.2: its objects are integers i satisfying
0 ≤ i ≤ n + 1, with MapA3

(i, j) given by the cube of all functions p : {i, . . . , j} → [0, 1] satisfying p(i) =
p(j) = 1 for i ≤ j, andHomA3(i, j) = ∅ for j < i. Composition is given by amalgamation of functions.

We note that A1 and A2 are subcategories of A3 having the same objects, where:

• MapA1
(i, j) = MapA2

(i, j) = MapA3
(i, j) unless i = 0 and j ∈ {n, n+ 1}.

• MapA1
(0, n) = MapA2

(0, n) is the boundary of the cube MapA3
(0, n) = [0, 1]n−1.

• MapA1
(0, n + 1) consists of all functions p : [n + 1] → [0, 1] satisfying p(0) = p(n + 1) = 1 and

(∃i)[(1 ≤ i ≤ n− 1) ∧ p(i) ∈ {0, 1}].

• MapA2
(0, n+1) is the union of MapA1

(0, n+1) with the collection of functions p : {0, . . . , n+1} → [0, 1]
satisfying p(0) = p(n) = p(n+ 1) = 1.

Finally, we note that A0 is the full subcategory of A1 (or A2) whose set of objects is {0, . . . , n}.
We wish to show that any topological functor F : A0 → C can be extended to a functor F̃ : A2 → C.

Let X = F (0), Y = F (n). Then F induces a map Sn−1 ' MapA0
(0, n)→ MapC(X,Y ). Since C is filtered,

there exists a map φ : Y → Z such that the induced map f : Sn−1 → MapC(X,Z) is nullhomotopic.
Now set F̃ (n + 1) = Z; for p ∈ MapA1

(i, n + 1), we set F̃ (p) = φ ◦ F (q), where q ∈ MapA1
(i, n) is such

that q|{i, . . . , n− 1} = p|{i, . . . , n− 1}. Finally, we note that the assumption that f is nullhomotopic allows
us to extend F̃ from MapA1

(0, n+ 1) to the whole of MapA2
(0, n+ 1).

Remark 5.3.1.14. Suppose that C is a κ-filtered∞-category, and let K be a simplicial set which is categor-
ically equivalent to a κ-small simplicial set. Then C has the extension property with respect to the inclusion
K ⊆ K.. This follows from Proposition A.2.4.1: to test whether or not a map K → S extends over K., it
suffices to check in the homotopy category of Set∆ (with respect to the Joyal model structure), where we
may replace K by an equivalent κ-small simplicial set.

Proposition 5.3.1.15. Let C be a ∞-category with a final object. Then C is κ-filtered for every regular
cardinal κ. Conversely, if C is κ-filtered and there exists a categorical equivalence K → C, where K is a
κ-small simplicial set, then C has a final object.

Proof. We remark that C has a final object if and only if there exists a retraction r of C. onto C. If C

is κ-filtered and categorically equivalent to a κ-small simplicial set, then the existence of such a retraction
follows from Remark 5.3.1.14. On the other hand, if the retraction r exists, then any map p : K → C admits
an extension K. → C: one merely considers the composition K. → C.

r→ C .

A useful observation from classical category theory is that, if we are only interested in using filtered
categories to index colimit diagrams, then in fact we do not need the notion of a filtered category at all: we
can work instead with diagrams indexed by filtered partially ordered sets. We now prove an ∞-categorical
analogue of this statement.

Proposition 5.3.1.16. Suppose that C is a κ-filtered ∞-category. Then there exists a κ-filtered partially
ordered set A and a cofinal map N(A)→ C.

Proof. The proof uses the ideas introduced in §4.2.3, and in particular Proposition 4.2.3.8. Let X be a set
of size ≥ κ, and regard X as a category with a unique isomorphism between any pair of objects. We note
that N(X) is a contractible Kan complex; consequently the projection C×N(X) → C is cofinal. Hence, it
suffices to produce a cofinal map N(A)→ C×N(X) with the desired properties.

Let {Kα}α∈A be the collection of all simplicial subsets of K = C×N(X) which are κ-small and possess
a final vertex. Regard A as a partially ordered by inclusion. We first claim that A is κ-filtered and that⋃
α∈AKα = K. To prove both of these assertions, it suffices to show that any κ-small simplicial subset

L ⊆ K is contained in a κ-small simplicial subset L′ which has a final vertex.
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Since C is κ-filtered, the composition

L→ C×N(X)→ C

extends to a map p : L. → C. Since X has cardinality ≥ κ, there exists an element x ∈ X which is not in
the image of L0 → N(X)0 = X. Lift p to a map p̃ : L. → K which extends the inclusion L ⊆ K × N(X)
and carries the cone point to the element x ∈ X = N(X)0. It is easy to see that p̃ is injective, so that we
may regard L. as a simplicial subset of K ×N(X). Moreover, it is clearly κ-small and has a final vertex, as
desired.

Now regard A as a category, and let F : A → (Set∆)/K be the functor which carries each α ∈ A to the
simplicial set Kα. For each α ∈ A, choose a final vertex xα of Kα. Let KF be defined as in §4.2.3. We claim
next that there exists a retraction r : KF → K with the property that r(Xα) = xα for each I ∈ I.

The construction of r proceeds as in the proof of Proposition 4.2.3.4. Namely, we well-order the finite
linearly ordered subsets B ⊆ A, and define r|K ′

B by induction on B. Moreover, we will select r so that it
has the property that if B is nonempty with largest element β, then r(K ′

B) ⊆ Kβ .
If B is empty, then r|K ′

B = r|K is the identity map. Otherwise, B has a least element α and a largest
element β. We are required to construct a map Kα ?∆B → Kβ , or a map rB : ∆B → Kid |Kα/, where the
values of this map on ∂∆B have already been determined. If B is a singleton, we define this map to carry
the vertex ∆B to a final object of Kid |Kα/ lying over xβ . Otherwise, we are guaranteed that some extension
exists by the fact that rB | ∂∆B carries the final vertex of ∆B to a final object of Kid |Kα/.

Now let j : N(A) → K denote the restriction of the retraction of r to N(A). Using Propositions 4.2.3.4
and 4.2.3.8, we deduce that j is a cofinal map as desired.

A similar technique can be used to prove the following characterization of κ-filtered ∞-categories:

Proposition 5.3.1.17. Let S be a simplicial set. The following conditions are equivalent:

(1) The simplicial set S is κ-filtered.

(2) There exists a diagram of simplicial sets {Yα}α∈I having colimit Y and a categorical equivalence S → Y ,
where each Tα is κ-filtered and the indexing category I is κ-filtered.

(3) There exists a categorical equivalence S → C where C is a κ-filtered union of simplicial subsets Cα ⊆ C

such that each Cα is an ∞-category with a final object.

Proof. Let T : Set∆ → Set∆ be the “fibrant replacement” functor given by

T (X) = N(|C[X]|).

There is a natural transformation jX : X → T (X) which is a categorical equivalence every simplicial set X
the map jX is a categorical equivalence. Moreover, each T (X) is an ∞-category. Furthermore, the functor
T preserves inclusions and commutes with filtered colimits.

It is clear that (3) implies (2). Suppose that (2) is satisfied. Replacing the diagram {Yα}α∈I by
{T (Yα)}α∈I if necessary, we may suppose that each Yα is an∞-category. It follows that Y is an∞-category.
If p : K → Y is a diagram indexed by a κ-small simplicial set, then p factors through a map pα : K → Yα
for some α ∈ I, in virtue of the assumption that I is κ-filtered. Since Yα is a κ-filtered ∞-category, we can
find an extension K. → Yα of pα, hence an extension K. → Y of p.

Now suppose that (1) is satisfied. Replacing S by T (S) if necessary, we may suppose that S is an ∞-
category. Choose a set X of cardinality ≥ κ, and let N(X) be defined as in the proof of Proposition 5.3.1.16.
The proof of Proposition 5.3.1.16 shows that we may write S × N(X) as a κ-filtered union of simplicial
subsets {Yα}, where each Yα has a final vertex. We now take C = T (S ×N(X)), and let Cα = T (Yα): these
choices satisfy (3), which completes the proof.

By definition, a ∞-category C is κ-filtered if any map p : K → C, whose source K is κ-small, extends
over the cone K.. We now consider the possibility of constructing this extension uniformly in p. First, we
need a few lemmas.
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Lemma 5.3.1.18. Let C be a filtered ∞-category. Then C is weakly contractible.

Proof. Since C is filtered, it is nonempty. Fix an object C ∈ C. Let |C | denote the geometric realization of
C as a simplicial set. We identify C with a point of the topological space |C |. By Whitehead’s theorem,
to show that C is weakly contractible, it suffices to show that for every i ≥ 0, the homotopy set πi(|C |, C)
consists of a single point. If not, we can find a finite simplicial subset K ⊆ C containing C such that the map
f : πi(|K|, C) → πi(|C |, C) has nontrivial image. But C is filtered, so the inclusion K ⊆ C factors through
a map K. → C. It follows that f factors through πi(|K.|, C). But this homotopy set is trivial, since K. is
weakly contractible.

Lemma 5.3.1.19. Let C be a κ-filtered ∞-category, and let p : K → C be a diagram indexed by a κ-small
simplicial set K. Then Cp/ is κ-filtered.

Proof. Let K ′ be a κ-small simplicial set, and p′ : K ′ → Cp/ a κ-small diagram. Then we may identify
p′ with a map q : K ? K ′ → C, and we get an isomorphism (Cp/)p′/ ' Cq/. Since K ? K ′ is κ-small, the
∞-category Cq/ is nonempty.

Proposition 5.3.1.20. Let C be an ∞-category and κ a regular cardinal. Then C is κ-filtered if and only
if, for each κ-small simplicial set K, the diagonal map d : C→ Fun(K,C) is cofinal.

Proof. Suppose first that the diagonal map d : C → Fun(K,C) is cofinal, for any κ-small simplicial set K.
Choose any map j : K → C; we wish to show that j can be extended to K.. By Proposition A.2.4.1, it
suffices to show that j can be extended to the equivalent simplicial set K � ∆0. In other words, we must
produce an object C ∈ C and a morphism j → d(C) in Fun(K,C). It will suffice to prove that the ∞-
category D = C×Fun(K,C) Fun(K,C)j/ is nonempty. We now invoke Theorem 4.1.3.1 to deduce that D is
weakly contractible.

Now suppose that S is κ-filtered, and that K is a κ-small simplicial set. We wish to show that the
diagonal map d : C → Fun(K,C) is cofinal. By Theorem 4.1.3.1, it suffices to prove that for every object
X ∈ Fun(K,C), the ∞-category Fun(K,C)X/ ×Fun(K,C) C is weakly contractible. But if we identify X with
a map x : K → C, then we get a natural identification

Fun(K,C)X/ ×Fun(K,C) C ' Cx/,

which is κ-filtered by Lemma 5.3.1.19 and therefore weakly contractible by Lemma 5.3.1.18.

5.3.2 Right Exactness

Let A and B be abelian categories. In classical homological algebra, a functor F : A→ B is said to be right
exact if it is additive, and whenever

A′ → A→ A′′ → 0

is an exact sequence in A, the induced sequence

F (A′)→ F (A)→ F (A′′)→ 0

is exact in B.
The notion of right exactness generalizes in a natural way to functors between categories which are not

assumed to be abelian. Let F : A → B be a functor between abelian categories, as above. Then F is
additive if and only if F preserves finite coproducts. Furthermore, an additive functor F is right exact if
and only if it preserves coequalizer diagrams. Since every finite colimit can be built out of finite coproducts
and coequalizers, right exactness is equivalent to the requirement that F preserves all finite colimits. This
condition makes sense whenever the category A admits finite colimits.

It is possible to generalize even further, to the case of a functor between arbitrary categories. To simplify
the discussion, let us suppose that B = Setop. Then we may regard a functor F : A → B as a presheaf

281



of sets on the category A. Using this presheaf we can define a new category AF , whose objects are pairs
(A, η) where A ∈ A and η ∈ F (A), and morphisms from (A, η) to (A′, η′) are maps f : A → A′ such that
f∗(η′) = η, where f∗ denotes the induced map F (A′)→ F (A). If A admits finite colimits, then the functor
F preserves finite colimits if and only if the category AF is filtered.

Our goal in this section is to adapt the notion of right-exact functors to the ∞-categorical context. We
begin with the following:

Definition 5.3.2.1. Let F : A→ B be a functor between∞-categories and κ a regular cardinal. We will say
that F is κ-right exact if, for any right fibration B′ → B where B′ is κ-filtered, the∞-category A′ = A×B B′

is also κ-filtered. We will say that F is right exact if it is ω-right exact.

Remark 5.3.2.2. We also have an evident dual notion of left exact functor.

We note the following basic stability properties of κ-right exact maps.

Proposition 5.3.2.3. Let κ be a regular cardinal.

(1) If F : A → B and G : B → C are κ-right exact functors between ∞-categories, then G ◦ F : A → C is
κ-right exact.

(2) Any equivalence of ∞-categories is κ-right exact.

(3) Let F : A→ B be a κ-right exact functor, and let F ′ : A→ B be homotopic to F . Then F ′ is κ-right
exact.

Proof. Property (1) is immediate from the definition. We will establish (2) and (3) as a consequence of the
following more general assertion: if F : A → B and G : B → C are functors such that F is a categorical
equivalence, then G is κ-right exact if and only if G ◦F is κ-right exact. To prove this, let C′ → C be a right
fibration. Proposition 3.3.2.3 implies that the induced map

A′ = A×C C′ → B×C C′ = B′

is a categorical equivalence. Thus A′ is κ-filtered if and only if B′ is κ-filtered.
We now deduce (2) by specializing to the case where G is the identity map. To prove (3), we choose a

contractible Kan complex K containing a pair of vertices {x, y} and a map g : K → BA with g(x) = F ,
g(y) = F ′. Applying the above argument to the composition

A ' A×{x} ⊆ A×K G→ B,

we deduce that G is κ-right exact. Applying the converse to the diagram

A ' A×{y} ⊆ A×K G→ B

we deduce that F ′ is κ-right exact.

The next result shows that the κ-right exactness of a functor F : A → B can be tested on a very small
collection of right fibrations B′ → B.

Proposition 5.3.2.4. Let F : A → B be a functor between ∞-categories and κ a regular cardinal. The
following are equivalent:

(1) The functor F is κ-right exact.

(2) For every object B of B, the ∞-category A×B B/B is κ-filtered.
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Proof. We observe that for every object B ∈ B, the ∞-category B/B is right-fibered over B and is κ-
filtered (since it has a final object). Consequently, (1) implies (2). Now suppose that (2) is satisfied. Let
T : (Set∆)/B → (Set∆)/B denote the composite functor

(Set∆)/B
StB→ (Set∆)C[Bop] Sing |•|→ (Set∆)C[Bop] UnB→ (Set∆)/B.

We will use the following properties of T :

(i) There is a natural transformation jX : X → T (X), where jX is a contravariant equivalence in (Set∆)/B

for every X ∈ (Set∆)/B.

(ii) For every X ∈ (Set∆)/B, the associated map T (X)→ B is a right fibration.

(iii) The functor T commutes with filtered colimits.

We will say that an object X ∈ (Set∆)/B is good if the ∞-category T (X)×B A is κ-filtered. We now make
the following observations:

(A) If X → Y is a contravariant equivalence in (Set∆)/B, then X is good if and only if if Y is good. This
follows from the fact that T (X) → T (Y ) is an equivalence of right fibrations, so that the induced
map T (X) ×B A → T (Y ) ×B A is an equivalence of right fibrations and consequently a categorical
equivalence of ∞-categories.

(B) If X → Y is a categorical equivalence in (Set∆)/B, then X is good if and only if Y is good. This
follows (A), since every categorical equivalence is a contravariant equivalence.

(C) The collection of good objects of (Set∆)B is stable under κ-filtered colimits. This follows from the fact
that the functor X 7→ T (X)×B A commutes with κ-filtered colimits (in fact, with all filtered colimits)
and Proposition 5.3.1.17.

(D) If X ∈ (Set∆)/B corresponds to a right fibration X → B, then X is good if and only if X ×B A is
κ-filtered.

(E) For every object B ∈ B, the overcategory B/B is a good object of (Set∆)/B. In view of (D), this is
equivalent to the assumption (2).

(F ) If X consists of a single vertex x, then X is good. To see this, let B ∈ B denote the image of X. The
natural map X → B/B can be identified with the inclusion of a final vertex; this map is right anodyne
and therefore a contravariant equivalence. We now conclude by applying (A) and (E).

(G) If X ∈ (Set∆)/B is an ∞-category with a final object x, then X is good. To prove this, we note that
{x} is good by (F ) and the inclusion {x} ⊆ X is right anodyne, hence a contravariant equivalence. We
conclude by applying (A).

(H) If X ∈ (Set∆)/B is κ-filtered, then X is good. To prove this, we apply Proposition 5.3.1.17 to deduce
the existence of a categorical equivalence i : X → C, where C is a κ-filtered union of ∞-categories
with final objects. Replacing C by C×K if necessary, where K is a contractible Kan complex, we may
suppose that i is a cofibration. Since B is an ∞-category, the lifting problem

S //

i

��

B

C

??�
�

�
�

has a solution. Thus we may regard C as an object of (Set∆)/B. According to (B), it suffices to show
that C is good. But C is a κ-filtered colimit of good objects of (Set∆)B (by (G)), and is therefore itself
good (by (C)).
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Now let B′ → B be a right fibration, where B′ is κ-filtered. By (H), B′ is a good object of (Set∆)/B.
Applying (D), we deduce that A′ = B′×B A is κ-filtered. This proves (1).

Our next goal is to prove Proposition 5.3.2.8, which gives a very concrete characterization of right
exactness under the assumption that there is a sufficient supply of colimits. We first need a few preliminary
results.

Lemma 5.3.2.5. Let B′ → B be a Cartesian fibration. Suppose that B has an initial object B and that B′

is filtered. Then the fiber B′
B = B′×B{B} is a contractible Kan complex.

Proof. Since B is an initial object of B, the inclusion {B}op ⊆ Bop is cofinal. Proposition 4.1.2.14 implies
that the inclusion (B′

B)op ⊆ (B′)op is also cofinal, and therefore a weak homotopy equivalence. It now suffices
to prove that B′ is weakly contractible, which follows from Lemma 5.3.1.18.

Lemma 5.3.2.6. Let f : A→ B be a right exact functor between ∞-categories, and let A ∈ A be an initial
object. Then f(A) is an initial object of B.

Proof. Let B be an object of B. Proposition 5.3.2.4 implies that A′ = B/B ×B A is filtered. We may identify
MapB(f(A), B) with the fiber of the right fibration A′ → A over the object A. We now apply Lemma 5.3.2.5
to deduce that MapB(f(A), B) is contractible.

Lemma 5.3.2.7. Let κ be a regular cardinal, f : A→ B a κ-right exact functor between ∞-categories, and
p : K → A be a diagram indexed by a κ-small simplicial set K. The induced map Ap/ → Bfp/ is κ-right
exact.

Proof. According to Proposition 5.3.2.4, it suffices to prove that for each object B ∈ Bf◦p/, the ∞-category
A′ = Ap/×Bfp/

(Bfp/)/B is κ-filtered. Let B denote the image of B in B, and let q : K ′ → A′ be a diagram
indexed by a κ-small simplicial set K ′; we wish to show that q admits an extension to K ′.. We may regard
p and q together as defining a diagram K ? K ′ → A×B B/B . Since f is κ-filtered, we can extend this to a
map (K ?K ′). → A×B B/B , which can be identified with an extension q : K ′. → A′ of q.

Proposition 5.3.2.8. Let f : A→ B be a functor between ∞-categories and let κ be a regular cardinal.

(1) If f is κ-right exact, then f preserves all κ-small colimits which exist in A.

(2) Conversely, if A admits κ-small colimits and f preserves κ-small colimits, then f is right exact.

Proof. Suppose first that f is κ-right exact. Let K be a κ-small simplicial set, and let p : K. → A be a
colimit of p = p|K. We wish to show that f ◦ p is a colimit diagram. Using Lemma 5.3.2.7, we may replace
A by Ap/ and B by Bfp/, and thereby reduce to the case K = ∅. We are then reduced to proving that f
preserves initial objects, which follows from Lemma 5.3.2.6.

Now suppose that A admits κ-small colimits, and that f preserves κ-small colimits. We wish to prove
that f is κ-right exact. Let B be an object of B and set A′ = A×B B/B . We wish to prove that A′ is
κ-filtered. Let p′ : K → A′ be a diagram indexed by a κ-small simplicial set K; we wish to prove that p′

extends to a map p′ : K. → A′. Let p : K → A be the composition of p′ with the projection A′ → A, and
let p : K. → A be a colimit of p. We may identify f ◦ p and p′ with objects of Bfp/. Since f preserves
κ-small colimits, f ◦ p is an initial object of Bfp/, so that there exists a morphism α : f ◦ p → p′ in Bf◦p/.
The morphism α can be identified with the desired extension p′ : K. → A′.

Remark 5.3.2.9. The results of this section all dualize in an evident way: a functor G : A→ B is said to
be κ-left exact if the induced functor Gop : Aop → Bop is κ-right exact. In the case where A admits κ-small
limits, this is equivalent to the requirement that G preserves κ-small limits.
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Remark 5.3.2.10. Let C be an ∞-category, and let F : C → Sop be a functor, and let C̃ → C be the
associated right fibration (the pullback of the universal right fibration Q0 → Sop). If F is κ-right exact,
then C̃ is κ-filtered (since Q0 has a final object). If C admits κ-small colimits, then the converse holds: if
C̃ is κ-filtered, then F preserves κ-small colimits by Proposition 5.3.5.3, and is therefore κ-right exact by
Proposition 5.3.2.4. The converse does not hold in general: it is possible to give an example of right fibration
C̃→ C such that C̃ is filtered, yet the classifying functor F : C→ Sop is not right exact.

5.3.3 Filtered Colimits

Filtered categories tend not to be very interesting in themselves. Instead, they are primarily useful for
indexing diagrams in other categories. This is because the colimits of filtered diagrams enjoy certain exactness
properties which are not shared by colimits in general. In this section, we will formulate and prove these
exactness properties in the ∞-categorical setting. First, we need a few definitions.

Definition 5.3.3.1. Let κ be a regular cardinal. We will say that an ∞-category C is κ-closed if every
diagram p : K → C indexed by a κ-small simplicial set K admits a colimit p : K. → C.

In a κ-closed∞-category, it is possible to construct κ-small colimits functorially. More precisely, suppose
that C is an∞-category and that K is a simplicial set with the property that every diagram p : K → C has a
colimit in C. Let D denote the full subcategory of Fun(K.,C) spanned by the colimit diagrams. Proposition
4.3.2.15 implies that the restriction functor D → Fun(K,C) is a trivial fibration. It therefore admits a
section s (which is unique up to a contractible ambiguity). Let e : Fun(K.,C)→ C be the functor given by
evaluation at the cone point of K.. We will refer to the composition

Fun(K,C) s→ D ⊆ Fun(K.,C) e→ C

as a colimit functor; it associates to each diagram p : K → C a colimit of p in C. We will generally denote
colimit functors by lim−→K

: Fun(K,C)→ C.

Lemma 5.3.3.2. Let F ∈ Fun(K, S) be a corepresentable functor (that is, F lies in the essential image of
the Yoneda embedding Kop → Fun(K, S)), and let X ∈ S be a colimit of F . Then X is contractible.

Proof. Without loss of generality, we may suppose that K is an ∞-category. Let K̃ → K be a left fibration
classified by F . Since F is corepresentable, K̃ has an initial object and is therefore weakly contractible.
Corollary 3.3.5.6 implies that there is an isomorphism K̃ ' X in the homotopy category H, so that X is
also contractible.

Proposition 5.3.3.3. Let κ be a regular cardinal and let I be an ∞-category. The following conditions are
equivalent:

(1) The ∞-category I is κ-filtered.

(2) The colimit functor lim−→I
: Fun(I, S)→ S preserves κ-small limits.

Proof. Suppose that (1) is satisfied. According to Proposition 5.3.1.16, there exists a κ-filtered partially
ordered set A and a cofinal map i : N(A) → S. Since i is cofinal, the colimit functor for I admits a
factorization

Fun(I, S) i∗→ Fun(N(A), S)→ S .

Proposition 5.1.2.2 implies that i∗ preserves limits. We may therefore replace I by N(A) and thereby reduce
to the case where I is itself the nerve of a κ-filtered partially ordered set A.

We note that the functor lim−→I
: Fun(I, S) → S can be characterized as the left adjoint to the diagonal

functor δ : S → Fun(I, S). Let A denote the category of all functors from A to Set∆; we regard A as a
simplicial model category with respect to the projective model structure described in §A.3.3. Let φ∗ : Set∆ →
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A denote the diagonal functor which associates to each simplicial set K the constant functor A→ Set∆ with
value K, and let φ! be a left adjoint of φ∗, so that the pair (φ∗, φ!) gives a Quillen adjunction between A
and Set∆. Proposition A.3.6.1 implies that there is an equivalence of ∞-categories N(A◦)→ Fun(I, S), and
δ may be identified with the right derived functor of φ∗. Consequently, the functor lim−→I

may be identified
with the left derived functor of φ!. To prove that lim−→I

preserves κ-small limits, it suffices to prove that lim−→I
preserves fiber products and κ-small products. According to Theorem 4.2.4.1, it suffices to prove that φ!

preserves homotopy fiber products and κ-small homotopy products. For fiber products, this reduces to the
classical assertion that if we are given a family of homotopy Cartesian squares

Wα
//

��

Xα

��
Yα // Zα

in the category of Kan complexes, indexed by a filtered partially ordered set A, then the colimit square

W //

��

X

��
Y // Z

is also homotopy Cartesian. The assertion regarding homotopy products is handled similarly.
Now suppose that (2) is satisfied. Let K be a κ-small simplicial set and p : K → Iop a diagram; we

wish to prove that I
op
/p is nonempty. Suppose otherwise. Let j : Iop → Fun(I, S) be the Yoneda embedding,

let q = j ◦ p, and let q : K/ → Fun(I, S) be a limit of q, and let X ∈ Fun(I, S) be the image of the cone
point of K/ under q. Since j is fully faithful and I

op
/p is empty, we have MapSI(j(I), X) = ∅ for each I ∈ I.

Using Lemma 5.1.5.2, we may identify MapSI(j(I), X) with X(I) in the homotopy category H of spaces.
We therefore conclude that X is an initial object of Fun(I, S). Since the functor lim−→I

: Fun(I, S)→ S is a left
adjoint, it preserves initial objects. We conclude that lim−→I

X is an initial object of S. On the other hand, if
lim−→I

preserves κ-small limits, then lim−→I
◦q exhibits lim−→I

X as the limit of the diagram lim−→I
◦q : K → S. For

each vertex k in K, Lemmas 5.1.5.2 and 5.3.3.2 imply that lim−→I
q(k) is contractible, and therefore a final

object of S. It follows that lim−→I
X is also a final object of S. This is a contradiction, since the initial object

of S is not final.

5.3.4 Compact Objects

Let C be a category which admits filtered colimits. An object C ∈ C is said to be compact if the corepre-
sentable functor

HomC(C, •)

commutes with filtered colimits.

Example 5.3.4.1. Let C = Set be the category of sets. An object C ∈ C is compact if and only if is finite.

Example 5.3.4.2. Let C be the category of groups. An object G of C is compact if and only if it is finitely
presented (as a group).

Example 5.3.4.3. LetX be a topological space, and let C be the category of open sets ofX (with morphisms
given by inclusions). Then an object U ∈ C is compact if and only if U is compact when viewed as a
topological space: that is, every open cover of U admits a finite subcover.

Remark 5.3.4.4. Because of Example 5.3.4.2, many authors call an object C of a category C finitely
presented if HomC(C, •) preserves filtered colimits. Our terminology is motivated instead by Example 5.3.4.3.
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Definition 5.3.4.5. Let C be an ∞-category which admits small, κ-filtered colimits. We will say a functor
f : C→ D is κ-continuous if it preserves κ-filtered colimits.

Let C be an ∞-category containing an object C, and let jC : C→ Ŝ denote the functor corepresented by
C. If C admits κ-filtered colimits, then we will say that C is κ-compact if jC is κ-continuous. We will say
that C is compact if it is ω-compact (and C admits filtered colimits).

Let κ be a regular cardinal, and let C be an ∞-category which admits small, κ-filtered colimits. We will
say that a left fibration C̃→ C is κ-compact if it is classified by a κ-continuous functor C→ Ŝ.

Notation 5.3.4.6. Let C be an ∞-category and κ a regular cardinal. We will generally let Cκ denote the
full subcategory spanned by the κ-compact objects of C.

Lemma 5.3.4.7. Let C be an ∞-category which admits small κ-filtered colimits, and let D ⊆ Fun(C, Ŝ) be
the full subcategory spanned by the κ-continuous functors f : C→ Ŝ. Then D is stable under κ-small limits

in Ŝ
C
.

Proof. Let K be a κ-small simplicial set, and let p : K → Fun(C, Ŝ) be a diagram, which we may identify
with a map p′ : C → Fun(K, Ŝ). Using Proposition 5.1.2.2, we may obtain a limit of the diagram p by
composing p′ with a limit functor

lim←− : Fun(K, Ŝ)→ Ŝ

(that is, a right adjoint to the diagonal functor Ŝ→ Fun(K, Ŝ); see §5.3.3). It therefore suffices to show that
the functor lim←− is κ-continuous. This is simply a reformulation of Proposition 5.3.3.3.

The basic properties of κ-compact left fibrations are summarized in the following Lemma::

Lemma 5.3.4.8. Let κ be a regular cardinal.

(1) Let C be an ∞-category which admits small, κ-filtered colimits, and let C ∈ C be an object. Then C is
κ-compact if and only if the left fibration CC/ → C is κ-compact.

(2) Let f : C → D be a κ-continuous functor between ∞-categories which admit small, κ-filtered colimits,
and let D̃ → D be a κ-compact left fibration. Then the associated left fibration C×DD̃ → C is also
κ-compact.

(3) Let C be an ∞-category which admits small, κ-filtered colimits, and let A ⊆ (Set∆)/C denote the full
subcategory spanned by the κ-compact left fibrations over C. Then A is stable under κ-small homotopy
limits (with respect to the covariant model structure on (Set∆)/C. In particular, A is stable under the
formation homotopy pullbacks, κ-small products, and ( if κ is uncountable ) the formation of homotopy
inverse limits of towers.

Proof. Assertions (1) and (2) are obvious. To prove (3), let us suppose that C̃ is a κ-small homotopy limit
of κ-compact left fibrations C̃α → C. Let J be a small, κ-filtered ∞-category, and p : J. → C a colimit
diagram. We wish to prove that the composition of p with the functor C → Ŝ classifying C̃ is a colimit
diagram. Applying Proposition 5.3.1.16, we may reduce to the case where J is the nerve of a κ-filtered
partially ordered set A. According to Theorem 2.1.4.7, it will suffice to show that the collection of homotopy
colimit diagrams

A ∪ {∞} → Kan

is stable under κ-small homotopy limits in the diagram category (Set∆)A∪{∞}, which follows easily from our
assumption that A is κ-filtered.

Our next goal is to prove a very useful stability result for κ-compact objects (Proposition 5.3.4.13). We
first need to establish a few technical lemmas.
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Lemma 5.3.4.9. Let κ be a regular cardinal, let C be an ∞-category which admits small, κ-filtered colimits,
and let f : C → D be a morphism in C. Suppose that C and D are κ-compact objects of C. Then f is a
κ-compact object of Fun(∆1,C).

Proof. Let X = Fun(∆1,C)×Fun({1},C) Cf/, Y = Fun(∆1,CC/), and Z = Fun(∆1,C)×Fun({1},C) CC/, so that
we have a (homotopy) pullback diagram

Fun(∆1,C)f/ //

��

X

��
Y // Z

of left fibrations over Fun(∆1,C). According to Lemma 5.3.4.8, it will suffice to show that X, Y , and Z are
κ-compact left fibrations. To show that X is a κ-compact left fibration, it suffices to show that Cf/ → C is
a κ-compact left fibration, which follows since we have a trivial fibration Cf/ → CD/, where D is κ-compact
by assumption. Similarly, we have a trivial fibration Y → Fun(∆1,C)×C(0) CC/, so that the κ-compactness
of C implies that Y is a κ-compact left fibration. Lemma 5.3.4.8 and the compactness of C immediately
imply that Z is a κ-compact left fibration, which completes the proof.

Lemma 5.3.4.10. Let κ be a regular cardinal, and let {Cα} be a κ-small family of ∞-categories having
product C. Suppose that each C admits small, κ-filtered colimits. Then:

(1) The ∞-category C admits κ-filtered colimits.

(2) If C ∈ C is an object whose image in each Cα is κ-compact, then C is κ-compact as an object of C.

Proof. The first assertion is obvious, since colimits in a product can be computed pointwise. For the second,
choose an object C ∈ C whose images {Cα ∈ Cα} are κ-compact.

The left fibration CC/ → C can obtained as a κ-small product of the left fibrations C×Cα
(Cα)Cα/ → C.

Lemma 5.3.4.8 implies that each factor is κ-compact, so that the product is also κ-compact.

Lemma 5.3.4.11. Let S be a simplicial set, and suppose given a tower

. . . X(1)
f1→ X(0)

f0→ S

where each fi is a left fibration. Then the inverse limit X(∞) is a homotopy inverse limit of the tower
{X(i)} with respect to the covariant model structure on (Set∆)/S.

Proof. Construct a ladder

. . . // X(1)
f1 //

��

X(0)
f0 //

��

S

��
. . . // X ′(1)

f ′1 // X ′(0)
f ′0 // S

where the vertical maps are covariant equivalences and the tower {X ′(i)} is fibrant, in the sense that each of
the maps f ′i is a covariant fibration. We wish to show that the induced map on inverse limits X(∞)→ X ′(∞)
is a covariant equivalence. Since both X(∞) and X ′(∞) are left-fibered over S, this can be tested by passing
to the fibers over each vertex s of S. We may therefore reduce to the case where S is a point, in which case
the tower {X(i)} is already fibrant (since a left fibration over a Kan complex is a Kan fibration; see Lemma
2.1.3.2).
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Lemma 5.3.4.12. Let κ be an uncountable regular cardinal, and let

. . .→ C2 f2→ C1 f1→ C0

be a tower of ∞-categories. Suppose that each Ci admits small κ-filtered colimits, and that each of the
functors fi is a categorical fibration which preserves κ-filtered colimits. Let C denote the inverse limit of the
tower. Then:

(1) The ∞-category C admits small κ-filtered colimits, and the projections pn : C→ Cn are κ-continuous.

(2) If C ∈ C has κ-compact image in Ci for each i ≥ 0, then C is a κ-compact object of C.

Proof. Let q : K. → C be a diagram indexed by an arbitrary simplicial set, let q = q|K, and set qn = pn ◦ q,
qn = pn ◦ q. Suppose that each qn is a colimit diagram in Cn. Then the map Cq/ → Cq/ is the inverse limit
of a tower of trivial fibrations Cnqn/

→ Cnqn/, and therefore a a trivial fibration.
To complete the proof of (1), it will suffice to show that if K is a κ-filtered∞-category, then any diagram

q : K → C can be extended to a map q : K. → C with the property described above. To construct q, it
suffices to construct a compatible family qn : K. → Cn. We begin by selecting arbitrary colimit diagrams
q′n : K. → Cn which extend qn. We now explain how to adjust these choices to make them compatible with
one another, using induction on n. Set q0 = q′0. Suppose next that n > 0. Since fn preserves κ-filtered
colimits, we may identify qn−1 and fn ◦ q′n with initial objects of Cn−1

qn−1/
. It follows that there exists an

equivalence e : qn−1 → fn ◦ q′n in Cn−1
qn−1/

. The map fn induces a categorical fibration Cnqn/ → Cn−1
qn−1/

, so that
e lifts to an equivalence e : qn → q′n in Cnqn/. The existence of the equivalence e proves that qn is a colimit
diagram in Cn, and we have qn−1 = fn ◦ qn by construction. This proves (1).

Now suppose that C ∈ C is as in (2), and let Cn = pn(C) ∈ Cn. The left fibration C/C is the inverse
limit of a tower of left fibrations

. . .→ C1
C1/×C1 C→ C0

C0/×C0 C .

Using Lemma 5.3.4.8, we deduce that each term in this tower is a κ-compact left fibration over C. Proposition
2.1.2.2 implies that each map in the tower is a left fibration, so that CC/ is a homotopy inverse limit of a
tower of κ-compact left fibrations, by Lemma 5.3.4.11. We now apply Lemma 5.3.4.8 again to deduce that
CC/ is a κ-compact left fibration, so that C ∈ C is κ-compact as desired.

Proposition 5.3.4.13. Let κ be a regular cardinal, let C be an ∞-category which admits small κ-filtered
colimits, and let f : K → C be a diagram indexed by a κ-small simplicial set K. Suppose that for each vertex
x of K, f(x) ∈ C is κ-compact. Then f is a κ-compact object of Fun(K,C).

Proof. Let us say that a simplicial set K is good if it satisfies the conclusions of the lemma. We wish to
prove that all κ-small simplicial sets are good. The proof proceeds in several steps:

(1) Given a pushout square
K ′ //

i

��

K

��
L′ // L

where i is a cofibration and the simplicial sets K ′, K, and L′ are good, the simplicial set L is also
good. To prove this, we observe that the associated diagram of ∞-categories

Fun(L,C) //

��

Fun(L′,C)

��
Fun(K,C) // Fun(K ′,C)

is homotopy Cartesian, and every arrow in the diagram preserves κ-filtered colimits (by Proposition
5.1.2.2). Now apply Lemma 5.4.5.7.
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(2) If K → K ′ is a categorical equivalence and K is good, then K ′ is good: the forgetful functor
Fun(K ′,C)→ Fun(K,C) is an equivalence of ∞-categories, and therefore detects κ-compact objects.

(3) Every simplex ∆n is good. To prove this, we observe that the inclusion

∆{0,1}
∐
{1}

. . .
∐

{n−1}

∆{n−1,n} ⊆ ∆n

is a categorical equivalence. Applying (1) and (2), we can reduce to the case n ≤ 1. If n = 0 there is
nothing to prove, and if n = 1 we apply Lemma 5.3.4.9.

(4) If {Kα} is a κ-small collection of good simplicial sets having coproduct K, then K is also good. To
prove this, we observe that Fun(C) '

∏
α Fun(Kα,C) and apply Lemma 5.3.4.10.

(5) If K is a κ-small simplicial set of dimension ≤ n, then K is good. The proof is by induction on n. Let
K(n−1) ⊆ K denote the (n− 1)-skeleton of K, so that we have a pushout diagram∐

σ∈Kn
∂∆n //

��

K(n−1)

��∐
σ∈Kn

∆n // K.

The inductive hypothesis implies that
∐
σ∈Kn

∂∆n and K(n−1) are good. Applying (3) and (4), we
deduce that

∐
σ∈Kn

∆n is good. We now apply (1) to deduce that K is good.

(6) Every κ-small simplicial set K is good. If κ = ω, then this follows immediately from (5), since every
κ-small simplicial set is finite dimensional. If κ is uncountable, then we have an increasing filtration

K(0) ⊆ K(1) ⊆ . . .

which gives rise to a tower of ∞-categories

. . .Fun(K(1),C)→ Fun(K(0),C)

having (homotopy) inverse limit Fun(K,C). Using Proposition 5.1.2.2, we deduce that the hypotheses
of Lemma 5.3.4.12 are satisfied, so that K is good.

Corollary 5.3.4.14. Let κ be a regular cardinal, and let C be an ∞-category which admits small, κ-filtered
colimits. Suppose that p : K → C is a κ-small diagram with the property that for every vertex x of K, p(x)
is a κ-compact object of C. Then the left fibration Cp/ → C is κ-compact.

Proof. It will suffice to show that the equivalent left fibration Cp/ → C is κ-compact. Let P be the object of
Fun(K,C) corresponding to p. Then we have an isomorphism of simplicial sets

Cp/ ' C×Fun(K,C) Fun(K,C)P/.

Proposition 5.3.4.13 asserts that P is a κ-compact object of Fun(K,C), so that the left fibration

Fun(K,C)P/ → Fun(K,C)

is κ-compact. Proposition 5.1.2.2 implies that the diagonal map C→ Fun(K,C) preserves κ-filtered colimits,
so we can apply part (2) of Lemma 5.3.4.8 to deduce that Cp/ → C is κ-compact, as well.
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Corollary 5.3.4.15. Let C be an ∞-category which admits small, κ-filtered colimits, and let Cκ denote the
full subcategory of C spanned by the κ-compact objects. Then Cκ is stable under the formation of all κ-small
colimits which exist in C.

Proof. Let K be a κ-small simplicial set, and let p : K. → C be a colimit diagram. Suppose that, for each
vertex x of K, the object p(x) ∈ C is κ-compact. We wish to show that C = p(∞) ∈ C is κ-compact, where
∞ denotes the cone point of K.. Let p = p|K, and consider the maps

Cp/ ← Cp/ → CC/ .

Both are trivial fibrations (the first because p is a colimit diagram, and the second because the inclusion
{∞} ⊆ K. is right anodyne). Corollary 5.3.4.14 asserts that the left fibration Cp/ → C is κ-compact. It
follows that the equivalent left fibration CC/ is κ-compact, so that C is a κ-compact object of C as desired.

Remark 5.3.4.16. Let κ be a regular cardinal, and let C be an∞-category which admits κ-filtered colimits.
Then the full subcategory Cκ ⊆ C of κ-compact objects is stable under retracts. If κ > ω, this follows from
Proposition 4.4.5.15 and Corollary 5.3.4.15 (since every retract can be obtained as a κ-small colimit). We
give an alternative argument that works also in the most important case κ = ω. Let C be κ-compact, and let
D be a retract of C. Let j : Cop → Fun(C, Ŝ) be the Yoneda embedding. Then j(D) ∈ Fun(C, Ŝ) is a retract
of j(C). Since j(C) preserves κ-filtered colimits, then Lemma 5.1.6.3 implies that j(D) preserves κ-filtered
colimits, so that D is κ-compact.

The following result gives a convenient description of the compact objects of an∞-category of presheaves:

Proposition 5.3.4.17. Let C be a (small) ∞-category, κ a regular cardinal, and C ∈ P(C) an object. The
following are equivalent:

(1) There exists a diagram p : K → C indexed by a κ-small simplicial set, such that j ◦ p has a colimit D
in P(C), and C is a retract of D.

(2) The object C is κ-compact.

Proof. Proposition 5.1.6.8 asserts that for every object A ∈ C, j(A) is completely compact, and in particular
κ-compact. According to Corollary 5.3.4.15 and Remark 5.3.4.16, the collection of κ-compact objects of P(C)
is stable under κ-small colimits and retracts. Consequently, (1)⇒ (2).

Now suppose that (2) is satisfied. Let C/C = C×P(C) P(C)/C . Lemma 5.1.5.3 implies that the composition

p : C./C → P(S)./C → P(S)

is a colimit diagram. As in the proof of Corollary 4.2.3.11, we can write C as the colimit of a κ-filtered
diagram q : I→ P(C), where each object q(I) is the colimit of p|C0, where C0 is a κ-small simplicial subset
of C/C . Since C is κ-compact, we may argue as in the proof of Proposition 5.1.6.8 to deduce that C is a
retract of q(I), for some object I ∈ I. This proves (1).

We close with a result which we will need in §5.5. First, a bit of notation: if C is a small ∞-category and
κ a regular cardinal, we let Pκ(C) denote the full subcategory consisting of κ-compact objects of P(C).

Proposition 5.3.4.18. Let C be a small, idempotent complete ∞-category and κ a regular cardinal. The
following conditions are equivalent:

(1) The ∞-category C admits κ-small colimits.

(2) The Yoneda embedding j : C→ Pκ(C) has a left adjoint.
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Proof. Suppose that (1) is satisfied. For each object M ∈ P(C), let FM : P(C) → Ŝ denote the associated
corepresentable functor. Let D ⊆ P(C) denote the full subcategory of P(C) spanned by those objects M
such that FM ◦ j : C→ Ŝ is corepresentable. According to Proposition 5.1.2.2, composition with j induces a
limit-preserving functor

Fun(P(C), Ŝ)→ Fun(C, Ŝ).

Applying Proposition 5.1.3.2 to Cop, we conclude that the collection of corepresentable functors on C is stable
under retracts and κ-small limits. A second application of Proposition 5.1.3.2 (this time to P(C)op) now shows
that D is stable under retracts and κ-small colimits in P(C). Since j is fully faithful, D contains the essential
image of j. It follows from Proposition 5.3.4.17 that D contains Pκ(C). We now apply Proposition 5.2.4.2
to deduce that j : C→ Pκ(C) admits a left adjoint.

Conversely, suppose that (2) is satisfied. Let L denote a left adjoint to the Yoneda embedding, let
p : K → C be a κ-small diagram, and let q = j ◦ p. Using Corollary 5.3.4.15, we deduce that q has a colimit
q : K. → Pκ(C). Since L is a left adjoint, L ◦ q is a colimit of L ◦ q. Since j is fully faithful, the diagram p
is equivalent to L ◦ q, so that p has a colimit as well.

5.3.5 Ind-Objects

Let S be a simplicial set. In §5.1.5, we proved that the ∞-category P(S) is freely generated under (small)
colimits by the image of the Yoneda embedding j : S → P(S) (Theorem 5.1.5.6). Our goal in this section is
to study the an analogous construction, where we allow only filtered colimits.

Definition 5.3.5.1. Let C be a (small) ∞-category and let κ be a regular cardinal. We let Indκ(C) denote
the full subcategory of P(C) spanned by those functors f : Cop → S which classify right fibrations C̃ → C

where the ∞-category C̃ is κ-filtered. In the case where κ = ω, we will simply write Ind(C) for Indκ(C). We
will refer to Ind(C) as the ∞-category of Ind-objects of C.

Remark 5.3.5.2. Let C be a small ∞-category and κ a regular cardinal. Then the Yoneda embedding
j : C → P(C) factors through Indκ(C). This follows immediately from Lemma 5.1.5.2, since j(C) classifies
the right fibration C/C → C. The ∞-category C/C has a final object and is therefore κ-filtered (Proposition
5.3.1.15).

Proposition 5.3.5.3. Let C be a small ∞-category, and let κ be a regular cardinal. The full subcategory
Indκ(C) ⊆ P(C) is stable under κ-filtered colimits.

Proof. Let P′∆(C) denote the full subcategory of (Set∆)/C spanned by the right fibrations C̃→ C. According
to Proposition 5.1.1.1, the ∞-category P(C) is equivalent to the simplicial nerve N(P′∆(C)). Let Ind′κ(C)
denote the full subcategory of P′∆(C) spanned by right fibrations C̃→ C where C̃ is κ-filtered. It will suffice
to prove that for any diagram p : I→ N(Ind′∆(C)) indexed by a (small) κ-filtered ∞-category I, the colimit
of p in N(P′∆(C)) also belongs to Ind′κ(C). Using Proposition 5.3.1.16, we may reduce to the case where I

is the nerve of a κ-filtered partially ordered set A. Using Proposition A.3.6.1, we may further reduce to the
case where p is the simplicial nerve of a diagram taking values in the ordinary category Ind′κ(C). In virtue of
Theorem 4.2.4.1, it will suffice to prove that Ind′κ(C) ⊆ P′∆(C) is stable under κ-filtered homotopy colimits.
We may identify P′∆ with the collection of fibrant objects of (Set∆)/C with respect to the contravariant
model structure. Since the class of contravariant equivalences is stable under filtered colimits, any κ-filtered
colimit in (Set∆)/C is also a homotopy colimit. Consequently, it will suffice to prove that Ind′κ(C) ⊆ P′∆(C) is
stable under κ-filtered colimits. This follows immediately from the definition of a κ-filtered ∞-category.

Corollary 5.3.5.4. Let C be a (small) ∞-category, let κ be a regular cardinal, and let F : Cop → S be an
object of P(C). The following conditions are equivalent:

(1) There exists a ( small ) κ-filtered ∞-category I, a diagram p : I → C such that F is a colimit of the
composition j ◦ p : I→ P(C).
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(2) The functor F belongs to Indκ(C).

If C admits κ-small colimits, then (1) and (2) are equivalent to

(3) The functor F preserves κ-small limits.

Proof. Lemma 5.1.5.3 implies that F is a colimit of the diagram

C/F → C
j→ P(C),

and Lemma 5.1.5.2 allows us to identify C/F = C×P(C) P(C)/F with the right fibration associated to F .
Thus (2)⇒ (1). The converse follows from Proposition 5.3.5.3, since every representable functor belongs to
Indκ(C) (Remark 5.3.5.2).

Now suppose that C admits κ-small colimits. If (3) is satisfied, then F op : C → Sop is κ-right exact by
Proposition 5.3.3.3. The right fibration associated to F is the pullback of the universal right fibration by
F op. Using Corollary 3.3.3.7, the universal right fibration over Sop is representable by the final object of S.
Since F is κ-right exact, the fiber product (Sop)/∗ ×Sop C is κ-filtered. Thus (3)⇒ (2).

We now complete the proof by showing that (1)⇒ (3). First suppose that F lies in the essential image
of the Yoneda embedding j : C→ P(C). According to Lemma 5.1.5.2, j(C) is equivalent to the composition
of the opposite Yoneda embedding j′ : Cop → Fun(C, S) with the evaluation functor e : Fun(C, S) → S

associated to the object C ∈ C. Propositions 5.1.3.2 and 5.1.2.2 imply that j′ and e preserve κ-small limits,
so that j(C) preserves κ-small limits. To conclude the proof, it will suffice to show that the collection of
functors F : Cop → S which satisfy (3) is stable under κ-filtered colimits: this follows easily from Proposition
5.3.3.3.

Proposition 5.3.5.5. Let C be a small ∞-category, let κ be a regular cardinal, and let j : C → Indκ(C) be
the Yoneda embedding. For each object C ∈ C, j(C) is a κ-compact object of Indκ(C).

Proof. The functor Indκ(C)→ S co-represented by j(C) is equivalent to the composition

Indκ(C) ⊆ P(C)→ S

where the first map is the canonical inclusion and the second is given by evaluation at C. The second map
preserves all colimits (Proposition 5.1.2.2), and the first preserves κ-filtered colimits since Indκ(C) is stable
under κ-filtered colimits in P(C) (Proposition 5.3.5.3).

Remark 5.3.5.6. Let C be a small ∞-category and κ a regular cardinal. Suppose that C is equivalent to
an n-category, so that the Yoneda embedding j : C → P(C) factors through P≤n−1(C) = Fun(Cop, τ≤n−1 S),
where τ≤n−1 S denotes the full subcategory of S spanned by the (n − 1)-truncated spaces: that is, spaces
whose homotopy groups vanish in dimensions n and above. The class of (n − 1)-truncated spaces is stable
under filtered colimits, so that P≤n−1(C) is stable under filtered colimits in P(C). Corollary 5.3.5.4 implies
that Ind(C) ⊆ P≤n−1(C). In particular, Ind(C) is itself equivalent to an n-category. In particular, if C is
the nerve of an ordinary category I, then Ind(C) is equivalent to the nerve of an ordinary category J, which
is uniquely determined up to equivalence. Moreover, J admits filtered colimits, and there is a fully faithful
embedding I→ J which generates J under filtered colimits, whose essential image consists of compact objects
of J. It follows that J is equivalent to the category of Ind-objects of I, in the sense of ordinary category
theory.

According to Corollary 5.3.5.4, we may characterize Indκ(C) as the smallest full subcategory of P(C)
which contains the image of the Yoneda embedding j : C→ P(C) and is stable under κ-filtered colimits. Our
goal is to obtain a more precise characterization of Indκ(C): namely, we will show that it is freely generated
by C under κ-filtered colimits.

Lemma 5.3.5.7. Let D be an ∞-category (not necessarily small). There exists a fully faithful functor
i : D→ D′ with the following properties:
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(1) The ∞-category D′ admits small colimits.

(2) A small diagram K. → D is a colimit if and only if the composite map K. → D′ is a colimit.

Proof. Let D′ = Fun(D, Ŝ)op, and let i be the opposite of the Yoneda embedding. Then (1) follows from
Proposition 5.1.2.2 and (2) from Proposition 5.1.3.2.

We will need the following analogue of Lemma 5.1.5.5:

Lemma 5.3.5.8. Let C be a small ∞-category, κ a regular cardinal, j : C→ Indκ(C) the Yoneda embedding,
and C′ ⊆ C the essential image of j. Let D be an ∞-category which admits small κ-filtered colimits. Then:

(1) Every functor f0 : C′ → D admits a left Kan extension f : Indκ(C)→ D.

(2) An arbitrary functor f : Indκ(C)→ D is a left Kan extension of f |C′ if and only if f is κ-continuous.

Proof. Fix an arbitrary functor f0 : C′ → D. Without loss of generality, we may assume that D is a full
subcategory of a larger ∞-category D′, satisfying the conclusions of Lemma 5.3.5.7; in particular, D is
stable under small κ-filtered colimits in D′. We may further assume that D coincides with its essential
image in D′. Lemma 5.1.5.5 guarantees the existence of a functor F : P(C) → D′ which is a left Kan
extension of f0 = F |C′, and such that F preserves small colimits. Since Indκ(C) is generated by C′ under
κ-filtered colimits (Corollary 5.3.5.4), the restriction f = F | Indκ(C) factors through D. It is then clear that
f : Indκ(C)→ D is a left Kan extension of f0, and that f is κ-continuous. This proves (1) and the “only if”
direction of (2) (since left Kan extensions of f0 are unique up to equivalence).

We now prove the “if” direction of (2). Let f : Indκ(C) → D be the functor constructed above, and let
f ′ : Indκ(C)→ D be an arbitrary κ-continuous functor such that f |C′ = f ′|C′. We wish to prove that f ′ is
a left Kan extension of f ′|C′. Since f is a left Kan extension of f |C′, there exists a natural transformation
α : f → f ′ which is an equivalence when restricted to C′. Let E ⊆ Indκ(C) be the full subcategory spanned
by those objects C for which the morphism αC : f(C) → f ′(C) is an equivalence in D. By hypothesis,
C′ ⊆ E. Since both f and f ′ are κ-continuous, E is stable under κ-filtered colimits in Indκ(C). We now apply
Corollary 5.3.5.4 to conclude that E = Indκ(C). It follows that f ′ and f are equivalent, so that f ′ is a left
Kan extension of f ′|C′ as desired.

Remark 5.3.5.9. The proof of Lemma 5.3.5.8 is very robust, and can be used to establish a number
of analogous results. Roughly speaking, given any class S of colimits, one can consider the smallest full
subcategory C′′ of P(C) which contains the essential image C′ of the Yoneda embedding and is stable under
colimits of type S. Given any functor f0 : C′ → D, where D is an ∞-category which admits colimits of
type S, one can show that there exists a functor f : C′′ → D which is a left Kan extension of f0 = f |C′,
and that f is characterized by the fact that it preserves colimits of type S. Taking S to be the class of all
small colimits, we recover Lemma 5.1.5.5. Taking S to be the class of all small κ-filtered colimits, we recover
Lemma 5.3.5.8. Other variants are possible: for example, we could take S to be the class of all κ-small
colimits.

Proposition 5.3.5.10. Let C and D be ∞-categories, and let κ be a regular cardinal. Suppose that C is
small and that D admits (small) κ-filtered colimits. Then composition with the Yoneda embedding induces
an equivalence of ∞-categories

Mapκ(Indκ(C),D)→ Fun(C,D),

where the left hand side denotes the ∞-category of all κ-continuous functors from Indκ(C) to D.

Proof. Combine Lemma 5.3.5.8 with Corollary 4.3.2.16.

In other words, if C is small and D admits κ-filtered colimits, then any functor f : C→ D determines an
essentially unique extension F : Indκ(C)→ D (such that f is equivalent to F ◦ j). We next give a criterion
which will allow us to determine when F is an equivalence.
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Proposition 5.3.5.11. Let C be a small ∞-category, κ a regular cardinal, and D an ∞-category which
admits κ-filtered colimits. Let F : Indκ(C) → D be a κ-continuous functor, and f = F ◦ j its composition
with the Yoneda embedding j : C→ Indκ(C). Then:

(1) If f is fully faithful and its essential image consists of κ-compact objects of D, then F is fully faithful.

(2) The functor F is an equivalence if and only if the following conditions are satisfied:

(i) The functor f is fully faithful.

(ii) The functor f factors through Dκ.

(iii) The objects {f(C)}C∈C generate D under κ-filtered colimits.

Proof. We first prove (1), using argument of Proposition 5.1.6.10. Let C and D be objects of Indκ(C). We
wish to prove that the map

ηC,D : MapP(C)(C,D)→ MapD(F (C), F (D))

is an isomorphism in the homotopy category H. Suppose first that C belongs to the essential image of j.
Let G : P(C)→ S be a functor co-represented by C, and let G′ : D→ S be a functor co-represented by F (C).
Then we have a natural transformation of functors G → G′ ◦ F . Assumption (2) implies that G′ preserves
small κ-filtered colimits, so that G′ ◦F preserves small κ-filtered colimits. Proposition 5.3.5.5 implies that G
preserves small κ-filtered colimits. It follows that the collection of objects D ∈ Indκ(C) such that ηC,D is an
equivalence is stable under small κ-filtered colimits colimits. If D belongs to the essential image of j, then
the assumption that f is fully faithful implies that ηC,D is a homotopy equivalence. Since the image of the
Yoneda embedding generates Indκ(C) under (small) κ-filtered colimits, we conclude that ηC,D is a homotopy
equivalence for every object D ∈ Indκ(C).

We now drop the assumption that C lies in the essential image of j. Fix D ∈ Indκ(C). Let H :
Indκ(C)op → S be a functor represented by D, and let H ′ : Dop → S be a functor represented by FD. Then
we have a natural transformation of functors H → H ′ ◦ F op, which we wish to prove is an equivalence.
By assumption, F op preserves small κ-filtered limits. Proposition 5.1.3.2 implies that H and H ′ preserve
small limits. It follows that the collection P of objects C ∈ P(S) such that ηC,D is an equivalence is stable
under small κ-filtered colimits. The special case above established that P contains the essential image of the
Yoneda embedding. Since Indκ(C) is generated under small κ-filtered colimits by the image of the Yoneda
embedding, we deduce that ηC,D is an equivalence in general. This completes the proof of (1).

We now prove (2). Suppose first that F is an equivalence. Then (i) follows from Proposition 5.1.3.1,
(ii) from Proposition 5.3.5.5, and (iii) from Corollary 5.3.5.4. Conversely, suppose that (i), (ii), and (iii)
are satisfied. Using (1), we deduce that F is fully faithful. The essential image of F contains the essential
image of f and is stable under small κ-filtered colimits. Therefore F is essentially surjective, so that F is an
equivalence as desired.

According to Corollary 4.2.3.11, an ∞-category C admits all (small) colimits if and only if C admits
κ-small colimits and κ-filtered colimits. Using Proposition 5.3.5.11, we can make a much more precise
statement:

Proposition 5.3.5.12. Let C be a small ∞-category and κ a regular cardinal. The ∞-category Pκ(C) of
κ-compact objects of P(C) is essentially small: that is, there exists a small ∞-category D and an equivalence
i : D → Pκ(C). Let F : Indκ(D) → P(C) be a κ-continuous functor such that the composition of f with the
Yoneda embedding

D→ Indκ(D)→ P(C)

is equivalent to i ( according to Proposition 5.3.5.10, F exists and is unique up to equivalence ). Then F is
an equivalence of ∞-categories.

295



Proof. Since P(C) is locally small, to prove that Pκ(C) is small it will suffice to show that the collection of
isomorphism classes of objects in the homotopy category hPκ(C) is small. For this, we invoke Proposition
5.3.4.17: every κ-compact object X of P(C) is a retract of some object Y , which is itself the colimit of some
composition

K
p→ C→ P(C)

where K is κ-small. Since there is a bounded collection of possibilities for K and p (up to isomorphism in
Set∆), and a bounded collection of idempotent maps Y → Y in hP(C), there are only a bounded number of
possibilities for X.

To prove that F is an equivalence, it will suffice to show that F satisfies conditions (i), (ii), and (iii)
of Proposition 5.3.5.11. Conditions (i) and (ii) are obvious. For (iii), we must prove that every object of
X ∈ P(C) can be obtained as a (small) κ-filtered colimit of κ-compact objects of C. Using Lemma 5.1.5.3, we
can write X as a small colimit taking values in the essential image of j : C→ P(C). The proof of Corollary
4.2.3.11 shows that X can be written as a κ-filtered colimit of a diagram with values in a full subcategory
E ⊆ P(C), where each object of E is itself a κ-small colimit of some diagram taking values in the essential
image of j. Using Corollary 5.3.4.15, we deduce that E ⊆ Pκ(C), so that X lies in the essential image of F
as desired.

Note that the construction C 7→ Indκ(C) is functorial in C. Given a functor f : C → C′, Proposition
5.3.5.10 implies that the composition of f with the Yoneda embedding jC′ : C′ → Indκ C′ is equivalent to the
composition

C
jC→ Indκ C

F→ Indκ C′,

where F is a κ-continuous functor. The functor F is well-defined up to equivalence (in fact, up to contractible
ambiguity). We will denote F by Indκ f (though this is perhaps a slight abuse of notation, since F is uniquely
determined only up to equivalence).

Proposition 5.3.5.13. Let f : C→ C′ be a functor between small ∞-categories. The following are equiva-
lent:

(1) The functor f is κ-right exact.

(2) The map G : P(C′)→ P(C) given by composition with f restricts to a functor g : Indκ(C′)→ Indκ(C).

(3) The functor Indκ f has a right adjoint.

Moreover, if these conditions are satisfied, then g is a right adjoint to Indκ f .

Proof. The equivalence (1) ⇔ (2) is just a reformulation of the definition of κ-right exactness. Let P(f) :
P(C)→ P(C′) be a functor which preserves small colimits such that the diagram of ∞-categories

C

��

f // C′

��
P(C)

P(f) // P(C′)

is homotopy commutative. Then we may identify Indκ(f) with the restriction P(f)| Indκ(C). Proposition
5.2.5.3 asserts that G is a right adjoint of P(f). Consequently, if (2) is satisfied, then g is a right adjoint to
Indκ(f). We deduce in particular that (2) ⇒ (3). We will complete the proof by showing that (3) implies
(2). Suppose that Indκ(f) admits a right adjoint g′ : Indκ(C′) → Indκ(C). Let X : (C′)op → S be an object
of Indκ(C′). Then Xop is equivalent to the composition

C′
j→ Indκ(C′)

cX→ Sop,
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where the cX denotes the functor represented byX. Since g′ is a left adjoint to Indκ f , the functor cX◦Indκ(f)
is represented by g′X. Consequently, we have a homotopy commutative diagram

C
jC //

f

��

Indκ(C) //

Indκ(f)

��

cg′X // Sop

��
C′ // Indκ(C′)

cX // Sop

so that G(X)op = f ◦Xop ' cg′X ◦ jC, and therefore belongs to Indκ(C).

We conclude with the following observation about the fully faithful embedding of C in Indκ(C).

Proposition 5.3.5.14. Let C be a small ∞-category and κ a regular cardinal. The Yoneda embedding
j : C→ Indκ(C) preserves all κ-small colimits which exist in C.

Proof. Let K be a κ-small simplicial set, and p : K. → C a colimit diagram. We wish to show that
j ◦ p : K. → Indκ(C) is also a colimit diagram. Let C ∈ Indκ(C) be an object, and let F : Indκ(C)op → Ŝ

be the functor represented by F . According to Proposition 5.1.3.2, it will suffice to show that F ◦ (j ◦ p)op
is a limit diagram in S. We observe that F ◦ jop is equivalent to the object C ∈ Indκ(C) ⊆ Fun(Cop, S), and
therefore κ-right exact. We now conclude by invoking Proposition 5.3.2.8.
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5.4 Accessible ∞-Categories

Many of the categories which commonly arise in mathematics can be realized as categories of Ind-objects.
For example, the category of sets is equivalent to Ind(C), where C is the category of finite sets; the category
of rings is equivalent to Ind(C), where C is the category of finitely presented rings. The theory of accessible
categories is an axiomatization of this situation. We refer the reader to [1] for an exposition of the theory
of accessible categories. In this section, we will describe an ∞-categorical generalization of the theory of
accessible categories.

We will begin in §5.4.1 by introducing the notion of a locally small ∞-category. A locally small ∞-
category C need not be small, but has small morphism spaces MapC(X,Y ) for any fixed pair of objects
X,Y ∈ C. This is analogous to the usual set-theoretic conventions taken in category theory: one allows
categories which have a proper class of objects, but requires that morphisms between any pair of objects
form a set.

In §5.4.2, we will introduce the definition of an accessible ∞-category. An ∞-category C is accessible if it
is locally small and has a good supply of filtered colimits and compact objects. Equivalently, C is accessible if
it is equivalent to Indκ(C0), for some small∞-category C0 and some regular cardinal κ (Proposition 5.4.2.2).

The theory of accessible ∞-categories will play an important technical role throughout the remainder
of this book. To understand the usefulness of the hypothesis of accessibility, let us consider the following
example. Suppose that C is an ordinary category, F : C→ Set is a functor, and we would like to prove that
F is representable by an object C ∈ C. The functor F determines a category C̃ = {(C, η) : C ∈ C, η ∈ F (C)},
which is fibered over C in sets. We would like to prove that C̃ is equivalent to C/C , for some C ∈ C. The
object C can then be characterized as the colimit of the diagram p : C̃ → C. If C admits colimits, then we
can attempt to construct C by forming the colimit lim−→(p).

We now encounter a set-theoretic difficulty. Suppose that we try to ensure the existence of lim−→(p) by
assuming that C admits all small colimits. In this case, it is not reasonable to expect C itself to be small.
The category C̃ is roughly the same size as C (or larger), so our assumption will not allow us to construct
lim−→(p). On the other hand, if we assume C and C̃ are small, then it is not reasonable to expect C to admit
colimits of arbitrary small diagrams.

An accessibility hypothesis can be used to circumvent the difficulty described above. An accessible
category C is generally not small, but is “controlled” by a small subcategory C0 ⊆ C: it therefore enjoys
the best features of both the “small” and “large” worlds. More precisely, the fiber product C̃×C C0 is small
enough that we might expect the colimit lim−→(p|C̃ ×C C0) to exist on general grounds, yet large enough to
expect a natural isomorphism

lim−→(p) ' lim−→(p|C̃×C C0).

We refer the reader to §5.5.2 for a detailed account of this argument, which we will use to prove an ∞-
categorical version of the adjoint functor theorem.

The discussion above can be summarized as follows: the theory of accessible ∞-categories is a tool
which allows us to manipulate large ∞-categories as if they were small, without fear of encountering any
set-theoretic paradoxes. This theory is quite useful because the condition of accessibility is very robust: the
class of accessible ∞-categories is stable under most of the basic constructions of higher category theory:

(1) A small ∞-category C is accessible if and only if C is idempotent complete (§5.4.3).

(2) If C is an accessible ∞-category and K is a small simplicial set, then Fun(K,C) is accessible ( §5.4.4 ).

(3) If C is an accessible ∞-category and p : K → C is a small diagram, then Cp/ and C/p are accessible (
§5.4.5 and §5.4.6).

(4) The collection of accessible ∞-categories is stable under homotopy fiber products ( §5.4.6).

We will apply these facts in §5.4.7 to deduce a miscellany of further stability results, which will be needed
throughout §5.5 and §6.
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5.4.1 Locally Small ∞-Categories

In mathematical practice, it is very common to encounter categories C for which the collection of all objects
is large (too big to be form a set), but the collection of morphisms HomC(X,Y ) is small for every X,Y ∈ C.
The same situation arises frequently in higher category theory. However, it is a slightly trickier to describe,
because the formalism of ∞-categories blurs the distinction between objects and morphisms. Nevertheless,
there is an adequate notion of “local smallness” in the ∞-categorical setting, which we will describe in this
section.

Our first step is to give a characterization of the class of essentially small∞-categories. We will need the
following lemma.

Lemma 5.4.1.1. Let C be a simplicial category, n a positive integer, and f0 : ∂∆n → N(C) a map. Let
X = f0({0}), Y = f0({n}), and g0 denote the induced map

∂(∆1)n−1 → MapC(X,Y ).

Let f, f ′ : ∆n → N(C) be extensions of f0, and g, g′ : (∆1)n−1 → MapC(X,Y ) the corresponding extensions
of g0. The following conditions are equivalent:

(1) The maps f and f ′ are homotopic relative to ∂∆n.

(2) The maps g and g′ are homotopic relative to ∂(∆1)n−1.

Proof. It is not difficult to show that (1) is equivalent to the assertion that f and f ′ are left homotopic in
the model category (Set∆)∂∆n/ (with the Joyal model structure), and that (2) equivalent to the assertion
that C[f ] and C[f ′] are left homotopic in the model category (Cat∆)C[∂∆n]/. We now invoke the Quillen
equivalence of Theorem 1.3.4.1 to complete the proof.

Proposition 5.4.1.2. Let C be an ∞-category, and κ an uncountable regular cardinal. The following con-
ditions are equivalent:

(1) The collection of equivalence classes of objects of C is κ-small, and for every morphism f : C → D in
C and every n ≥ 0, the homotopy set πi(HomR

C(C,D), f) is κ-small.

(2) If C′ ⊆ C is a minimal model for C, then C′ is κ-small.

(3) There exists a κ-small ∞-category C′ and an equivalence C′ → C of ∞-categories.

(4) There exists a κ-small simplicial set K and a categorical equivalences K → C.

(5) The ∞-category C is κ-compact, when regarded as an object of Cat∞.

Proof. We begin by proving that (1) ⇒ (2). Without loss of generality, we may suppose that C = N(D),
where D is a topological category. Let C′ ⊆ C be a minimal model for C. We will prove by induction on
n ≥ 0 that the set HomSet∆(∆n,C′) is κ-small. If n = 0, this reduces to the assertion that C has fewer
than κ equivalence classes of objects. Suppose therefore that n > 0. By the inductive hypothesis, the set
HomSet∆(∂∆n,C′) is κ-small. Since κ is regular, it will suffice to prove that for each map f0 : ∂∆n → C′,
the set S = {f ∈ HomSet∆(∆n,C′) : f | ∂∆n = f0} is κ-small. Let C = f0({0}), D = f0({n}), and let
g0 : ∂(∆1)n−1 → MapD(C,D) be the corresponding map. Assumption (1) ensures that there are fewer than
κ extensions g : (∆1)n−1 → MapD(C,D) modulo homotopy relative to ∂(∆1)n−1. Invoking Lemma 5.4.1.1,
we deduce that there are fewer than κ maps f : ∆n → C modulo homotopy relative to ∂∆n. Since C′ is
minimal, no two distinct elements of S are homotopic in C relative to ∂∆n; therefore S is κ-small as desired.

It is clear that (2)⇒ (3)⇒ (4). We next show that (4)⇒ (3). Let K → C be a categorical equivalence,
where K is κ-small. We construct a sequence of inner anodyne inclusions

K = K(0) ⊆ K(1) ⊆ . . .
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Supposing that K(n) has been defined, we form a pushout diagram∐
Λni

� � //

��

∐
∆n

��
K(n) � � // K(n+ 1)

where the coproduct is taken over all 0 < i < n and all maps Λni → K(n). It follows by induction on n
that each K(n) is κ-small. Since κ is regular and uncountable, the limit K(∞) =

⋃
nK(n) is κ-small.The

inclusion K ⊆ K(∞) is inner anodyne; therefore the map K → C factors through an equivalence K(∞)→ C

of ∞-categories; thus (3) is satisfied.
We next show that (3)⇒ (5). Suppose that (3) is satisfied. Without loss of generality, we may replace C

by C′ and thereby suppose that C is itself κ-small. Let F : Cat∞ → S denote the functor co-represented by
C. According to Lemma 5.1.5.2, we may identify F with the simplicial nerve of the functor f : Cat∆∞ → Kan,
which carries an∞-category D to the largest Kan complex contained in DC. Let I be a κ-filtered∞-category
and p : I→ Cat∞ a diagram. We wish to prove that p has a colimit p : I. → Cat∞ such that F ◦p is a colimit
diagram in S. According to Proposition 5.3.1.16, we may suppose that I is the nerve of a κ-filtered partially
ordered set A. Using Proposition A.3.6.1, we may further reduce to the case where p is the simplicial nerve
of a diagram P : A → Cat∆∞ ⊆ Set+∆ taking values in the ordinary category of marked simplicial sets. Let
P be a colimit of P . Since the class of weak equivalences in Set+∆ is stable under filtered colimits, P is a
homotopy colimit. Theorem 4.2.4.1 implies that p = N(P ) is a colimit of p. It therefore suffices to show that
F ◦ p = N(f ◦ P ) is a colimit diagram. Using Theorem 4.2.4.1, it suffices to show that f ◦ P is a homotopy
colimit diagram in Set∆. Since the class of weak homotopy equivalences in Set∆ is stable under filtered
colimits, it will suffice to prove that f ◦P is a colimit diagram in the ordinary category Set∆. It now suffices
to observe that f preserves κ-filtered colimits, because C is κ-small.

We now complete the proof by showing that (5) ⇒ (1). Let A denote the collection of all κ-small
simplicial subsets Kα ⊆ C, and let A′ ⊆ A be the subcollection consisting of indices α such that Kα is an
∞-category. It is clear that A is a κ-filtered partially ordered set, and that C =

⋃
α∈AKα. Using the fact

that κ > ω, it is easy to see that A′ is cofinal in A, so that A′ is also κ-filtered and C =
⋃
α∈A′ Kα. We may

therefore regard C as the colimit of a diagram P : A′ → Set+∆ in the ordinary category of fibrant objects of
Set+∆. Since A′ is filtered, we may also regard C as a homotopy colimit of P . The above argument shows
that CC = f C can be identified with a homotopy colimit of the diagram f ◦ P : A′ → Set∆. In particular,
the vertex idC ∈ CC must be homotopic to the image of some map KC

α → CC, for some α ∈ A′. It follows
that C is a retract of Kα in the homotopy category hCat∞. Since Kα is κ-small, we easily deduce that Kα

satisfies condition (1). Therefore C, being a retract of Kα, satisfies condition (1) as well.

Definition 5.4.1.3. An∞-category C is essentially κ-small if it satisfies the equivalent conditions of Propo-
sition 5.4.1.2. We will say that C is essentially small if it is essentially κ-small for some (small) regular
cardinal κ.

The following criterion for essential smallness is occasionally useful:

Proposition 5.4.1.4. Let p : C→ D be a Cartesian fibration of ∞-categories and κ an uncountable regular
cardinal. Suppose that D is essentially κ-small and that, for each object D ∈ D, the fiber CD = C×D{D} is
essentially κ-small. Then C is essentially κ-small.

Proof. We will apply criterion (1) of Proposition 5.4.1.2. Choose a κ-small set of representatives {Dα} for
the equivalence classes of objects of D. For each α, choose a κ-small set of representatives {Cα,β} for the
equivalence classes of objects of CDα

. The collection of all objects Cα,β is κ-small (since κ is regular) and
contains representatives for all equivalence classes of objects of C.

Now suppose that C and C ′ are objects of C, having images D,D′ ∈ D. Since D is essentially κ-small,
the set π0 MapD(D,D′) is κ-small. Let f : D → D′ be a morphism, and choose a p-Cartesian morphism
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f̃ : C̃ → D′ covering f . According to Proposition 2.3.4.2, we have a homotopy fiber sequence

MapCD
(C, C̃)→ MapC(C,C ′)→ MapD(D,D′)

in the homotopy category H. In particular, we see that MapC(C,C ′) contains fewer than κ-connected
components lying over f ∈ π0 MapD(D,D′), and therefore fewer than κ components in total (since κ is
regular). Moreover, the long exact sequence of homotopy groups shows that for every f : C → C ′ lifting f ,
the homotopy sets πi(Homr

C(C,C ′), f) are κ-small, as desired.

By restricting our attention to Kan complexes, we obtain an analogue of Proposition 5.4.1.2 for spaces:

Corollary 5.4.1.5. Let X be a Kan complex, and κ an uncountable regular cardinal. The following condi-
tions are equivalent:

(1) For each vertex x ∈ X and each n ≥ 0, the homotopy set πn(X,x) is κ-small.

(2) If X ′ ⊆ X is a minimal model for X, then X ′ is κ-small.

(3) There exists a κ-small Kan complex X ′ and a homotopy equivalence X ′ → X.

(4) There exists a κ-small simplicial set K and a weak homotopy equivalence K → X.

(5) The ∞-category C is κ-compact, when regarded as an object of S.

(6) The Kan complex X is essentially small ( when regarded as an ∞-category ).

Proof. The equivalences (1) ⇔ (2) ⇔ (3) ⇔ (6) follow from Proposition 5.4.1.2. The implication (3) ⇒ (4)
is obvious. We next prove that (4) ⇒ (5). Let p : K → S be the constant diagram taking the value ∗, let
p : K. → S be a colimit of p, and let X ′ ∈ S be the image under p of the cone point of K.. It follows
from Proposition 5.1.6.8 that ∗ is a κ-compact object of S. Corollary 5.3.4.15 implies that X ′ is a κ-compact
object of S. Let K̃ → K. denote the left fibration associated to p, and let X ′′ ⊆ K̃ denote the fiber lying over
the cone point of K.. The inclusion of the cone point in K. is right anodyne. It follows from Proposition
4.1.2.14 that the inclusion X ′′ ⊆ K̃ is right anodyne. Since p is a colimit diagram, Proposition 3.3.5.5 implies
that the inclusion K ' K ×K. K̃ ⊆ K̃ is a weak homotopy equivalence. We therefore have a chain of weak
homotopy equivalences

X ← K ⊆ K̃ ← X ′′ ← X ′,

so that X and X ′ are equivalent objects of S. Since X ′ is κ-compact, it follows that X is κ-compact.
To complete the proof, we will show that (5) ⇒ (1). We employ the argument used in the proof of

Proposition 5.4.1.2. Let F : S → S be the functor co-represented by X. Using Lemma 5.1.5.2, we can
identify F can be with the simplicial nerve of the functor f : Kan→ Kan given by

Y 7→ Y X .

Let A denote the collection of κ-small simplicial subsets Xα ⊆ X which are Kan complexes. Since κ is
uncountable, A is κ-filtered and X =

⋃
α∈AKα. We may regard X as the colimit of a diagram P : A→ Set∆.

Since A is filtered, X is also a homotopy colimit of this diagram. Since F preserves κ-filtered colimits, f
preserves κ-filtered homotopy colimits; thereforeXX is a homotopy colimit of the diagram f◦P . In particular,
the vertex idX ∈ XX must be homotopic to the image of some map XX

α → XX , for some α ∈ A. It follows
that X is a retract of Xα in the homotopy category H. Since Xα is κ-small, we can readily verify that Xα

satisfies (1). Because X is a retract of Xα, X satisfies (1) as well.

Remark 5.4.1.6. When κ = ω, the situation is quite a bit more complicated. Suppose that X is a Kan
complex representing a compact object of S. Then there exists a simplicial set Y with only finitely many
nondegenerate simplices, and a map i : Y → X which realizes X as a retract of Y in the homotopy category
H of spaces. However, one cannot generally assume that Y is a Kan complex, or that i is a weak homotopy
equivalence. The latter can be achieved if X is connected and simply connected, or more generally if a
certain K-theoretic invariant of X (the Wall finiteness obstruction ) vanishes: we refer the reader to [53] for
a discussion.
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For many applications, it is important to be able to slightly relax the condition that an ∞-category be
essentiall small.

Proposition 5.4.1.7. Let C be an ∞-category. The following conditions are equivalent:

(1) For every pair of objects X,Y ∈ C, the space MapC(X,Y ) is essentially small.

(2) For every small collection S of objects of C, the full subcategory of C spanned by the elements of S is
essentially small.

Proof. This follows immediately from criterion (1) in Propositions 5.4.1.2 and 5.4.1.5.

We will say that an ∞-category C is locally small if it satisfies the equivalent conditions of Proposition
5.4.1.7.

Example 5.4.1.8. Let C and D be ∞-categories. Suppose that C is locally small and that D is essentially
small. Then CD is essentially small. To prove this, we may assume without loss of generality that C and D

are minimal. Let {Cα} denote the collection of all full subcategories of C, spanned by small collections of
objects. Since D is small, every finite collection of functors D → C factors through some small Cα ⊆ C. It
follows that Fun(D,C) is the union of it small full subcategories Fun(D,Cα), and is therefore locally small.
In particular, for every small ∞-category D, the ∞-category P(D) of presheaves is locally small.

5.4.2 Accessibility

In this section, we will begin our study of the class of accessible ∞-categories.

Definition 5.4.2.1. Let κ be a regular cardinal. An ∞-category C is κ-accessible if there exists a small
∞-category C0 and an equivalence Indκ(C0) → C. We will say that C is accessible if it is κ-accessible for
some regular cardinal κ.

The following result gives a few alternative characterizations of the class of accessible ∞-categories.

Proposition 5.4.2.2. Let C be an ∞-category and κ a regular cardinal. The following conditions are
equivalent:

(1) The ∞-category C is κ-accessible.

(2) The ∞-category C is locally small, admits κ-filtered colimits, the full subcategory Cκ ⊆ C of κ-compact
objects is essentially small, and Cκ generates C under small, κ-filtered colimits.

(3) The ∞-category C admits small κ-filtered colimits and contains an essentially small full subcategory
C′′ ⊆ C which consists of κ-compact objects and generates C under small κ-filtered colimits.

The main obstacle to proving Proposition 5.4.2.2 is in verifying that if C0 is small, then Indκ(C0) has only
a bounded number of κ-compact objects, up to equivalence. It is tempting to guess that any such object
must be equivalent to an object of C0. The following example shows that this is not necessarily the case.

Example 5.4.2.3. Let R be a ring, and let C0 denote the (ordinary) category of finitely generated free
R-modules. Then C = Ind(C0) is equivalent to the category of flat R-modules (by Lazard’s theorem; see
for example the appendix of [33]). The compact objects of C are precisely the finitely generated projective
R-modules, which need not be free.

Nevertheless, the naive guess is not far off, in virtue of the following result:

Lemma 5.4.2.4. Let C be a small ∞-category, κ a regular cardinal, and C′ ⊆ Indκ(C) the full subcategory
of Indκ(C) spanned by the κ-compact objects. Then the Yoneda embedding j : C → C′ exhibits C′ as an
idempotent completion of C. In particular, C′ is essentially small.
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Proof. Corollary 4.4.5.16 implies that Indκ(C) is idempotent complete. Since C′ is stable under retracts in
Indκ(C), C′ is also idempotent complete. Proposition 5.1.3.1 implies that j is fully faithful. It therefore
suffices to prove that every object C ′ ∈ C′ is a retract of j(C), for some C ∈ C.

Let C/C′ = C×Indκ(C) Indκ(C)/C′ . Lemma 5.1.5.3 implies that the diagram

p : C./C′ → Indκ(C)./C′ → Indκ(C)

is a colimit of p = p|C/C′ . Let F : Indκ(C) → S be the functor co-represented by C ′; we note that the left
fibration associated to F is equivalent to Indκ(C)C′/. Since F is κ-continuous, Proposition 3.3.5.5 implies
that the inclusion

C/C′ ×Indκ(C) Indκ(C)C′/ ⊆ C./C′ ×Indκ(C) Indκ(C)C′/

is a weak homotopy equivalence. The simplicial set on the right has a canonical vertex, corresponding to
the identity map idC′ . It follows that there exists a vertex on the left hand side belonging to the same path
component. Such a vertex classifies a diagram

j(C)

!!D
DD

DD
DD

D

C ′

==zzzzzzzz f // C ′

where f is homotopic to the identity, which proves that C ′ is a retract of j(C) in Indκ(C).

Proof of Proposition 5.4.2.2. Suppose that (1) is satisfied. Without loss of generality we may suppose that
C = Indκ C′, where C′ is small. Since C is a full subcategory of P(C′), it is locally small (see Example
5.4.1.8). Proposition 5.3.5.3 implies that C admits small κ-filtered colimits. Corollary 5.3.5.4 shows that C

is generated under κ-filtered colimits by the essential image of the Yoneda embedding j : C′ → C, which
consists of κ-compact objects by Proposition 5.3.5.5. Lemma 5.4.2.4 implies that full subcategory of Indκ(C′)
consisting of compact objects is essentially small. We conclude that (1)⇒ (2).

It is clear that (2)⇒ (3). Suppose that (3) is satisfied. Choose a small∞-category C′ and an equivalence
i : C′ → C′′. Using Proposition 5.3.5.10, we may suppose that i factors as a composition

C′
j→ Indκ(C′)

f→ C

where f preserves small κ-filtered colimits. It follows from Proposition 5.3.5.11 that f is a categorical
equivalence. This shows that (3)⇒ (1) and completes the proof.

Definition 5.4.2.5. If C is an accessible ∞-category, then a functor F : C → C′ is accessible if it is
κ-continuous for some regular cardinal κ (and therefore for all regular cardinals τ ≥ κ).

Remark 5.4.2.6. Generally we will only speak of the accessibility of a functor F : C→ C′ in the case where
both C and C′ are accessible. However, it is occasionally convenient to use the terminology of Definition
5.4.2.5 in the case where C is accessible and C′ is not (or C′ is not yet known to be accessible).

Example 5.4.2.7. The ∞-category S of spaces is accessible. More generally, for any small ∞-category C,
the ∞-category P(C) is accessible: this follows immediately from Proposition 5.3.5.12.

If C is a κ-accessible ∞-category and τ > κ, then C is not necessarily τ -accessible. Nevertheless, this is
true for many values of τ .

Definition 5.4.2.8. Let κ and τ be regular cardinals. We write τ � κ if the following condition is satisfied:
for every τ0 < τ and every κ0 < κ, we have κτ00 < κ.

Note that there exist arbitrarily large regular cardinals κ′ with κ′ � κ: for example, one may take κ′ to
be the successor of any cardinal having the form τκ.
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Remark 5.4.2.9. Every (infinite) regular cardinal κ satisfies ω � κ. An uncountable regular cardinal κ
satisfies κ� κ if and only if κ is strongly inaccessible.

Lemma 5.4.2.10. If κ′ � κ, then any κ′-filtered partially ordered set I may be written as a union of
κ-filtered subsets having size < κ′. Moreover, the family of all such subsets is κ′-filtered.

Proof. It will suffice to show that every subset of S ⊆ I having cardinality < κ′ can be included in a larger
subset S′, such that |S′| < κ′, but S′ is κ-filtered.

We define a transfinite sequence of subsets Sα ⊆ I by induction. Let S0 = S, and when λ is a limit
ordinal we let Sλ =

⋃
α<λ Sα. Finally, we let Sα+1 denote a set which is obtained from Sα by adjoining an

upper bound for every subset of Sα having size < κ (which exists because I is κ′-filtered). It follows from
the assumption κ′ � κ that if Sα has size < κ′, then so does Sα+1. Since κ′ is regular, we deduce easily by
induction that |Sα| < κ′ for all α < κ′. It is easy to check that the set S′ = Sκ has the desired properties.

Proposition 5.4.2.11. Let C be a κ-accessible ∞-category. Then C is κ′-accessible for any κ′ � κ.

Proof. Let Cκ ⊆ C denote the full subcategory consisting of κ-compact objects, and let C′ ⊆ C denote the full
subcategory spanned by the colimits of all κ′-small, κ-filtered diagrams in Cκ. Since C is locally small and
the collection of all equivalence classes of such diagrams is bounded, we conclude that C′ is essentially small.
Corollary 5.3.4.15 implies that C′ consists of κ′-compact objects of C. According to Proposition 5.4.2.2, it
will suffice to prove that C′ generates C under small κ′-filtered colimits. Let X be an object of C, and let
p : I → Cκ be a small κ-filtered diagram with colimit X. Using Proposition 5.3.1.16, we may reduce to
the case where I is the nerve of a κ-filtered partially ordered set A. Lemma 5.4.2.10 implies that A can be
written as a κ′-filtered union of κ′-small, κ-filtered subsets {Aβ ⊆ A}β∈B . Using Propositions 4.2.3.4 and
4.2.3.8, we deduce that X can also be obtained as the colimit of a diagram indexed by N(B), which takes
values in C′.

Remark 5.4.2.12. If C is a κ-accessible∞-category and κ′ > κ, then C is generally not κ′-accessible. There
are counterexamples even in ordinary category theory: see [1].

Remark 5.4.2.13. Let C be an accessible ∞-category and κ a regular cardinal. Then the full subcategory
Cκ ⊆ C consisting of κ-compact objects is essentially small. To prove this, we are free to enlarge κ and we
may invoke Proposition 5.4.2.11 to reduce to the case where C is κ-accessible, in which case the desired result
is a consequence of Proposition 5.4.2.2.

Notation 5.4.2.14. If C and D are accessible ∞-categories, we will write FunA(C,D) to denote the full
subcategory of Fun(C,D) spanned by accessible functors from C to D.

Remark 5.4.2.15. Accessible ∞-categories are usually not small. However, they are determined by a
“small” amount of data: namely, they always have the form Indκ(C) where C is a small∞-category. Similarly,
an accessible functor F : C → D between accessible categories is determined by a “small” amount of data,
in the sense that there always exists a regular cardinal κ such that F is κ-continuous and maps Cκ into Dκ.
The restriction F |Cκ then determines F up to equivalence, by Proposition 5.3.5.10. To prove the existence
of κ, we first choose a regular cardinal τ such that F is τ -continuous. Enlarging τ if necessary, we may
suppose that C and D are τ -accessible. The collection of equivalence classes of τ -compact objects of C is
small; consequently, Remark 5.4.2.13 there exists a (small) regular cardinal τ ′ such that F carries Cτ into
Dτ ′ . We may now choose κ to be any regular cardinal such that κ� τ ′.

Definition 5.4.2.16. Let κ be a regular cardinal. We let Accκ ⊆ Ĉat∞ denote the subcategory defined as
follows:

(1) The objects of Accκ are the κ-accessible ∞-categories.

(2) A functor F : C→ D between accessible ∞-categories belongs to Acc if and only if F is κ-continuous
and preserves κ-compact objects.
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Let Acc =
⋃
κ Accκ. We will refer to Acc as the ∞-category of accessible ∞-categories.

Proposition 5.4.2.17. Let κ be a regular cardinal, and let θ : Accκ → Ĉat∞ be the simplicial nerve of the
functor which associates to each C ∈ Accκ the full subcategory of C spanned by the κ-compact objects. Then:

(1) The functor θ is fully faithful.

(2) An ∞-category C ∈ Ĉat∞ belongs to the essential image of θ if and only if C is essentially small and
idempotent complete.

Proof. Assertion (1) follows immediately from Proposition 5.3.5.10. If C ∈ Ĉat∞ belongs to the essential
image of θ, then C is essentially small and idempotent complete (because C is stable under retracts in an
idempotent complete∞-category). Conversely, suppose that C is essentially small and idempotent complete,
and choose a minimal model C′ ⊆ C. Then Indκ(C′) is κ-accessible. Moreover, the collection of κ-compact
objects of Indκ(C′) is an idempotent completion of C′ (Lemma 5.4.2.4), and therefore equivalent to C (since
C′ is already idempotent complete).

Let Cat∨∞ denote the full subcategory of Cat∞ spanned by the idempotent complete ∞-categories.

Proposition 5.4.2.18. The inclusion Cat∨∞ ⊆ Cat∞ has a left adjoint.

Proof. Combine Propositions 5.1.4.2, 5.1.4.9, and 5.2.6.7.

We will refer to a left adjoint to the inclusion Cat∨∞ ⊆ Cat∞ as the idempotent completion functor.
Proposition 5.4.2.17 implies that we have fully faithful embeddings Accκ → Ĉat∞ ←↩ Cat∨∞ with the same
essential image. Consequently, there is a (canonical) equivalence of ∞-categories e : Cat∨∞ ' Accκ, well-
defined up to homotopy. We let Indκ : Cat∞ → Accκ denote the composition of e with the idempotent
completion functor. In summary:

Proposition 5.4.2.19. There is a functor Indκ : Cat∞ → Accκ which exhibits Accκ as a localization of the
∞-category Cat∞.

Remark 5.4.2.20. There is a slight danger of confusion with our terminology. The functor Indκ : Cat∞ →
Accκ is only well-defined up to contractible space of choices, so that if C is an∞-category which admits finite
colimits, then the image of C under Indκ is only well-defined up to equivalence. Definition 5.3.5.1 produces
a canonical representative for this image.

5.4.3 Accessibility and Idempotent Completeness

Let C be an accessible ∞-category. Then there exists a regular cardinal κ such that C admits κ-filtered
colimits. It follows from Corollary 4.4.5.16 that C is idempotent complete. Our goal in this section is to
prove a converse to this result: if C is a small and idempotent complete, then C is accessible.

Let C be a small ∞-category, and suppose we want to prove that C is accessible. The main problem is
to show that C admits κ-filtered colimits, provided that κ is sufficiently large. The idea is that if κ is much
larger than the size of C, then any κ-filtered diagram J → C is necessarily very “redundant” (Proposition
5.4.3.4). Before we making this precise, we will need a few preliminary results.

Lemma 5.4.3.1. Let κ < τ be uncountable regular cardinals, A a τ -filtered partially ordered set, and
F : A → Kan a diagram of Kan complexes indexed by A. Suppose that for each α ∈ A, the Kan complex
F (α) is essentially κ-small. For every τ -small subset A0 ⊆ A, there exists a filtered τ -small subset A′0 ⊆ A
containing A0, with the property that the map

lim−→α∈A′0
F (α)→ lim−→α∈A F (α)

is a homotopy equivalence.
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Proof. Let X = lim−→α∈A F (α). Since F is a filtered diagram, X is also a Kan complex. Let K be a simplicial
set with only finitely many nondegenerate simplices. Our first claim is that the set [K,X] of homotopy
classes of maps from K into X has cardinality < κ. For suppose given a collection {gβ : K → X} of pairwise
nonhomotopic maps, having cardinality κ. Since A is τ -filtered, we may suppose that there is a fixed index
α ∈ A such each gβ factors as a composition

K
g′β→ F (α)→ X.

The maps g′β are also pairwise nonhomotopic, which contracts our assumption that F (α) is weakly homotopy
equivalent to a κ-small simplicial set.

We now define an increasing sequence
α0 ≤ α1 ≤ . . .

of elements of A. Let α0 be any upper bound for A0. Assuming that αi has already been selected, choose a
representative for every homotopy class of diagrams

∂∆n
� _

��

// F (αi)

��
∆n

hγ // X.

The argument above proves that we can take the set of all such representatives to be κ-small, so that there
exists αi+1 ≥ αi such that each hγ factors as a composition

∆n
h′γ→ F (αi+1)→ X

and the associated diagram
∂∆n

� _

��

// F (αi)

��
∆n

h′γ // F (αi+1)

is commutative. We now set A′0 = A0 ∪ {α0, α1, . . .}; it is easy to check that this set has the desired
properties.

Lemma 5.4.3.2. Let κ < τ be uncountable regular cardinals, let A be a τ -filtered partially ordered set, let
{Fβ}β∈B be a collection of diagrams A→ Set∆ indexed by a set B of cardinality < τ . Suppose that for each
α ∈ A and each β ∈ B, the Kan complex Fβ(α) is essentially κ-small. Then there exists a filtered, τ -small
subset A′ ⊆ A such that for each β ∈ B, the map

lim−→A′
Fβ(α)→ lim−→A

Fβ(α)

is a homotopy equivalence of Kan complexes.

Proof. Without loss of generality, we may suppose that B = {β : β < β0} is a set of ordinals. We will
define a sequence of filtered, τ -small subsets A(n) ⊆ A by induction on n. For n = 0, choose an element
α ∈ A and set A(0) = {α}. Suppose next that A(n) has been defined. We define a sequence of enlargements
{A(n)β}β≤β0 by induction on β. Let A(n)0 = A(n), let A(n)λ =

⋃
β<λA(n)β when λ is a nonzero limit

ordinal, and let A(n)β+1 be a τ -small, filtered subset of A such that the map

lim−→A(n)β+1
Fβ(α)→ lim−→A

Fβ(α)

is a weak homotopy equivalence (such a subset exists in virtue of Lemma 5.4.3.1). We now take A(n+ 1) =
A(n)β0 and A′ =

⋃
nA(n); it is easy to check that A′ ⊆ A has the desired properties.
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Lemma 5.4.3.3. Let κ < τ be uncountable regular cardinals. Let C be a τ -small ∞-category with the
property that each of the spaces MapC(C,D) is essentially κ-small, and j : C→ P(C) the Yoneda embedding.
Let p : K → C be a diagram indexed by a τ -filtered ∞-category K, and p : K. → P(C) a colimit of j ◦ p.
Then there exists a map i : K → K such that K is τ -small, and the composition p ◦ i. : K. → K. → P(C)
is a colimit diagram.

Proof. In view of Proposition 5.3.1.16, we may suppose that K is the nerve of a τ -filtered partially ordered
set A. According to Proposition 5.1.2.2, p induces a colimit diagram

pC : K. → P(C) eC→ S

where eC denote the evaluation functor associated to an object C ∈ C. We will identify K. with the
nerve of the partially ordered set A ∪ {∞}. Proposition A.3.6.1 implies that we may replace pC with the
simplicial nerve of a functor FC : A ∪ {∞} → Kan. Our hypothesis on C implies that FC |A takes values in
κ-small simplicial sets. Applying Theorem 4.2.4.1, we see that the map lim−→A

FC(α)→ FC(∞) is a homotopy
equivalence. We now apply Lemma 5.4.3.1 to deduce the existence of a filtered, τ -small subset A′ ⊆ A such
that each of the maps

lim−→A′
FC(α)→ FC(∞)

is a homotopy equivalence. Let K = N(A′), and let i : K → K denote the inclusion. Using Theorem 4.2.4.1
again, we deduce that the composition eC ◦ p ◦ i. : K. → S is a colimit diagram for each C ∈ C. Applying
Proposition 5.1.2.2, we deduce that p ◦ i. is a colimit diagram, as desired.

Proposition 5.4.3.4. Let κ < τ be uncountable regular cardinals. Let C be an ∞-category which is τ -small,
such that the morphism spaces MapC(C,D) are essentially κ-small. Let j : C → P(C) denote the Yoneda
embedding, let p : K→ C be a diagram indexed by a τ -filtered ∞-category K, and let X ∈ P(C) be a colimit
of j ◦ p : K→ P(C). Then there exists an object C ∈ C such that X is a retract of j(C).

Proof. Let i : K → K be a map satisfying the conclusions of Lemma 5.4.3.3. Since K is τ -small and K is
τ -filtered, there exists an extension i : K. → K of i. Let C be the image of the cone point of K. under p ◦ i,
and C̃ ∈ Cp◦i/ the corresponding lift. Let p : K. → P(C) be a colimit of j ◦ p carrying the cone point of K.

to X. Let q = j ◦ p ◦ i : K → P(C), X̃ ∈ P(C)q/ the corresponding lift of X, and Ỹ ∈ P(C)q/ a colimit of q.
Since Ỹ is an initial object of P(C)q/, there is a commutative triangle

j(C̃)

  B
BB

BB
BB

B

Ỹ //

>>}}}}}}}}
X̃

in the∞-category P(C)q/. Moreover, Lemma 5.4.3.3 asserts that the horizontal map is an equivalence. Thus
X̃ is a retract of j(C̃) in the homotopy category of P(C)q/, so that X is a retract of j(C) in P(C).

Corollary 5.4.3.5. Let κ < τ be uncountable regular cardinals, and let C be a τ -small ∞-category whose
morphism spaces MapC(C,D) are essentially κ-small. Then the Yoneda embedding j : C→ Indτ (C) exhibits
Indτ (C) as an idempotent completion of C.

Proof. Since Indτ (C) admits τ -filtered colimits, it is idempotent complete by Corollary 4.4.5.16. Proposition
5.4.3.4 implies that every object of Indτ (C) is a retract of j(C), for some object C ∈ C.

Corollary 5.4.3.6. A small ∞-category C is accessible if and only if it is idempotent complete. Moreover,
if these conditions are satisfied and D is an any accessible ∞-category, then every functor f : C → D is
accessible.
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Proof. The “only if” follows from Corollary 4.4.5.16, and the “if” direction follows from Corollary 5.4.3.5.
Now suppose that C is small and accessible, and let D be a κ-accessible ∞-category and f : C → D any
functor; we wish to prove that f is accessible. By Proposition 5.3.5.10, we may suppose that f = F ◦j, where
j : C → Indκ(C) is the Yoneda embedding and F : Indκ(C) → D is a κ-continuous functor, and therefore
accessible. Enlarging κ if necessary, we may suppose that j is an equivalence of ∞-categories, so that f is
accessible as well.

5.4.4 Accessibility of Functor ∞-Categories

Let C be an accessible ∞-category, and let K be a small simplicial set. Our goal in this section is to prove
that Fun(K,C) is accessible (Proposition 5.4.4.3). In §5.4.7, we will prove a much more general stability
result of this kind (Proposition 5.4.7.11), but the proof of that result ultimately rests on the ideas presented
here.

Our proof goes roughly as follows. If C is accessible, then C has a many τ -compact objects, provided
that τ is sufficiently large. Using Proposition 5.3.4.13, we deduce the existence of many τ -compact objects
in Fun(K,C). Our main problem is to show that these objects generate Fun(K,C) under τ -filtered colimits.
To prove this, we will use a rather technical cofinality result (Lemma 5.4.4.2 below). We begin with the
following prelimiinary observation:

Lemma 5.4.4.1. Let τ be a regular cardinal, and let q : Y → X be a coCartesian fibration with the property
that for every vertex x of X, the fiber Yx = Y ×X {x} is τ -filtered. Then q has the right lifting property with
respect to K ⊆ K., for every τ -small simplicial set K.

Proof. Using Proposition A.2.4.1, we can reduce to the problem of showing that q has the right lifting
property with respect to the inclusion K ⊆ K � ∆0. In other words, we must show that given any edge
e : C → D in XK , where D is a constant map, and any vertex C̃ of Y K lifting C, there exists an edge
ẽ : C̃ → D̃ lifting ẽ, where D̃ is a constant map from K to Y . We first choose an arbitrary edge ẽ′ : C̃ → D̃′

lifting e (since the map qK : Y K → XK is a coCartesian fibration, we can even choose ẽ′ to be qK-coCartesian,
though we will not need this). Suppose that D takes the constant value x : ∆0 → X. Since the fiber Yx
is τ -filtered, there exists an edge ẽ′′ : D̃′ → D̃ in Y Kx , where D̃ is a constant map from K to Yx. We now
invoke the fact that qK is an inner fibration to supply the dotted arrow in the diagram

Λ2
1

(ee′,•,ee′′) //
� _

��

Y K

��
∆2

σ

77ppppppp s1e // XK .

We now define ẽ = σ|∆{0,2}.

Lemma 5.4.4.2. Let κ < τ be regular cardinals. Let q : Y → X be a map of simplicial sets with the
following properties:

(i) The simplicial set X is τ -small.

(ii) The map q is a coCartesian fibration.

(iii) For every vertex x ∈ X, the fiber Yx = Y ×X {x} is τ -filtered and admits τ -small, κ-filtered colimits.

(iv) For every edge e : x→ y in X, the associated functor Yx → Yy preserves τ -small, κ-filtered colimits.

Then:

(1) The ∞-category C = Map/X(X,Y ) of sections of q is τ -filtered.
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(2) For each vertex x of X, the evaluation map ex : C→ Yx is cofinal.

Proof. Choose a categorical equivalence X →M , where M is a minimal∞-category. Since τ is uncountable,
Proposition 5.4.1.2 implies that M is τ -small. According to Corollary 3.3.2.2, Y is equivalent to the pullback
of a coCartesian fibration Y ′ →M . We may therefore replace X by M and thereby reduce to the case where
X is a minimal ∞-category. For each ordinal α, let (α) = {β < α}.

LetK be a τ -small simplicial set equipped with a map f : K → Y . We define a new objectK ′
X ∈ (Set∆)/X

as follows. For every finite, nonempty, linearly ordered set J , a map ∆J → K ′
X is determined by the following

data:

• A map χ : ∆J → X.

• A map ∆J → ∆2, corresponding to a decomposition J = J0

∐
J1

∐
J2.

• A map ∆J0 → K.

• An order-preserving map m : J1 → (κ), having the property that if m(i) = m(j), then χ(∆{i,j}) is a
degenerate edge of X.

We will prove the existence of a dotted arrow F ′X as indicated in the diagram

K

��

f // Y

q

��
K ′
X

F ′X

=={
{

{
{

// X.

Let K ′′ ⊆ K ′
X be the simplicial subset corresponding to simplices, as above, where J1 = ∅, and let F ′′ =

F ′X |K ′′. Specializing to the case where K = Z × X, Z a τ -small simplicial set, we will deduce that any
diagram Z → C extends to a map Z. → C (given by F ′′), which proves (1). Similarly, by specializing
to the case K = (Z × X)

∐
Z×{x}(Z

/ × {x}), we will deduce that for every object y ∈ Y with q(y) = x,
the ∞-category C×Yx

(Yx)y/ is τ -filtered, and therefore weakly contractible. Applying Theorem 4.1.3.1, we
deduce (2).

It remains to construct the map F ′X . There is no harm in enlarging K. We may therefore apply the
small object argument to replace K by an ∞-category (which we may also suppose is τ -small, since τ is
uncountable). We begin by defining, for each α ≤ κ, a simplicial subset K(α) ⊆ K ′

X . The definition is as
follows: we will say that a simplex ∆J → K ′

X factors through K(α) if, in the corresponding decomposition
J = J0

∐
J1

∐
J2, we have J2 = ∅, and the map J1 → (κ) factors through (α). Our first task is to construct

F (α) = F ′X |K(α), which we do by induction on α. If α = 0, K(α) = K and we set F (0) = f . When α is a
limit ordinal, we have K(α) =

⋃
β<αK(β) and we set F (α) =

⋃
β<α F (β). It therefore suffices to construct

F (α + 1), assuming that F (α) has already been constructed. For each vertex x of X, let x̃ = (x, α) denote
the unique vertex of K(α+ 1) lying over x which does not belong to K(α). Since X is minimal, Proposition
2.2.3.9 implies that we have a pushout diagram∐

xK(α)/ex � � //

��

∐
x(K(α)/ex).

��
K(α) � � // K(α+ 1).

Therefore, to construct fα+1, it suffices to prove that q has the right lifting property with respect to each
inclusion K(α)/ex ⊆ (K(α)/ex)., which follows from Lemma 5.4.4.1.

We now define, for each simplicial subset X ′ ⊆ X, a corresponding simplicial subset K ′
X′ ⊆ K ′

X . The
definition is as follows: let σ : ∆J → K ′

X be a simplex corresponding to a decomposition J = J0

∐
J1

∐
J2.
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Then σ factors through K ′
X′ if and only if the induced map ∆J2 → X factors through X ′. Our next job is

to extend the definition of F ′X from K ′
∅ = K(κ) to K ′

X , by adjoining simplices to X one at a time.
Let F ′∅ = F (κ), and let x be a vertex of X. We begin by defining a map F ′{x} : K ′

{x} → Y which extends
F ′∅. Since X is minimal, there is a pushout diagram

K(κ)/x
� � //

��

K(κ)./x

��
K∅

� � // K{x}

where K(κ)/x denotes the fiber product K(κ) ×X X/x. Constructing an extension F ′{x} of F ′∅ is therefore
equivalent to providing the dotted arrow indicated in the diagram

K(κ)/x� _

��

px // Y

��
K(κ)./x //

px

<<y
y

y
y

y
X

.

We will choose px to be a relative colimit of px over X (see §4.3.1). To prove that such a relative colimit
exists, we consider the inclusion ix : N(κ) ⊆ K(κ)/x ×X/x

{idx} ⊆ K(κ)/x. Using Proposition 2.2.3.9, it
is not difficult to see that K(κ)/x is an ∞-category. For each object y ∈ K(κ)/x, the minimality of X
implies that N(κ)×K/x

(K/x)y/ is isomorphic to N({α : β < α < κ}) for some β < κ, and therefore weakly
contractible. Theorem 4.1.3.1 implies that ix is cofinal. Invoking Proposition 4.3.1.8, it will suffice to prove
that px ◦ ix : N(κ) → Y admits a relative colimit over X. Using conditions (ii), (iv), and Proposition
4.3.1.10, we may reduce to producing a colimit of px ◦ ix in the ∞-category Yx, which is possible in virtue
of assumption (iii).

Applying the above argument separately to each vertex of X, we may suppose that F ′
X(0) has been

constructed, where X(0) denotes the 0-skeleton of X. We now consider the collection of all pairs (X ′, F ′X′)
where X ′ is a simplicial subset of X containing all vertices of X, and F ′X′ : KX′ → Y is a map over X
whose restriction to KX0 coincides with F ′

X(0) . This collection is partially ordered, if we write (X ′, F ′X′) ≤
(X ′′, F ′X′′) to mean that X ′ ⊆ X ′′ and F ′X′′ |KX′ = F ′X′ . The hypotheses of Zorn’s lemma are satisfied, so
that there exists a maximal such pair (X ′, F ′X′). To complete the proof, it suffices to show that X ′ = X.
If not, we can choose X ′ ⊆ X ′′ ⊆ X, where X ′′ is obtained from X ′ by adjoining a single nondegenerate
simplex σ : ∆n → X whose boundary already belongs to X ′. Since X ′ contains X(0), we may suppose that
n > 0. Let K(κ)/σ = K(κ)×X X/σ, and let x = σ(0). Since X is minimal, we have a pushout diagram

K(κ)/σ ? ∂∆n � � //

��

K(κ)/σ ?∆n

��
K ′
X′

� � // K ′
X′′ .

Let s : K(κ)/σ → Y denote the composition of the projection K(κ)/σ → K ′
X′ with F ′X′ . We obtain a

commutative diagram

∂∆n r //
� _

��

Ys/

��
∆n //

;;w
w

w
w

w
Xq◦s/,

and supplying the indicated dotted arrow is tantamount to giving a map F ′X′′ : KX′′ → Y over X which
extends F ′X′ . To prove the existence of F ′X′′ , it suffices to prove that the map s : K ′. → Y associated to
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r(0) is a a q-colimit diagram. We note that s is given as a composition

K ′. → K.
/x

s′→ Y,

where s′ is a q-colimit diagram by construction. According to Proposition 4.3.1.7, it will suffice to show that
the map K(κ)/σ → K(κ)/x is cofinal. We have a pullback diagram

K(κ)/σ //

��

K(κ)/x

��
X/σ // X/x

where the lower horizontal map is a trivial fibration of simplicial sets. It follows that the upper horizontal
map is a trivial fibration, and in particular cofinal. Consequently, there exists an extension FX′′ of FX′ ,
which contradicts the maximality of (X ′, FX′) and completes the proof.

Proposition 5.4.4.3. Let C be an accessible∞-category, and let K be a small simplicial set. Then Fun(K,C)
is accessible.

Proof. Without loss of generality, we may suppose that K is an ∞-category. Choose a regular cardinal κ
such that C admits small κ-filtered colimits, and choose a second regular cardinal τ > κ such that C is also τ -
accessible and K is τ -small. We will prove that Fun(K,C) is τ -accessible. Let C′ = Fun(K,Cτ ) ⊆ Fun(K,C).
It is clear that C′ is essentially small. Proposition 5.1.2.2 implies that Fun(K,C) admits small τ -filtered
colimits, and Proposition 5.3.4.13 asserts that C′ consists of τ -compact objects of Fun(K,C). According to
Proposition 5.4.2.2, it will suffice to prove that C′ generates Fun(K,C) under small, τ -filtered colimits.

Without loss of generality, we may suppose that C = Indτ D′, where D′ is a small∞-category. Let D ⊆ C

denote the essential image of the Yoneda embedding. Let F : K → C be an arbitrary object of CK , and let
Fun(K,D)/F = Fun(K,D)×Fun(K,C) Fun(K,C)/F . Consider the composite diagram

p : Fun(K,D)/F �∆0 → Fun(K,C)/F �∆0 → Fun(K,C).

The ∞-category Fun(K,D)/F is equivalent to Fun(K,D′) ×Fun(K,C) Fun(K,C)/F , and therefore essentially
small. To complete the proof, it will suffice to show that Fun(K,D)/F is τ -filtered, and that p is a colimit
diagram.

We may identify F with a map fK : K → C×K in (Set∆)/K . According to Proposition 4.2.2.4, we
obtain a coCartesian fibration q : (C×K)/fK → K, and the q-coCartesian morphisms are precisely those
which project to equivalences in C. Let X denote the full subcategory of (C×K)/fK consisting of those
objects whose projection to C belongs to D. It follows that q′ = q|X : X → K is a coCartesian fibration. We
may identify the fiber of q′ over a vertex x ∈ K with D/F (x) = D×C C/F (x). It follows that the fibers of q′

are τ -filtered ∞-categories; Lemma 5.4.4.2 now guarantees that Fun(K,D)/F ' Map/K(K,X) is τ -filtered.
According to Proposition 5.1.2.2, to prove that p is a colimit diagram, it will suffice to prove that for

every vertex x of K, the composition of p with the evaluation map ex : Fun(K,C)→ C is a colimit diagram.
The composition ex ◦ p admits a factorization

Fun(K,D)/F �∆0 → D/F (x) �∆0 → C

where D/F (x) = D×C C/F (x) and the second map is a colimit diagram in C by Lemma 5.1.5.3. It will
therefore suffice to prove that the map gx : Fun(K,D)/F → D/F (x) is cofinal, which follows from Lemma
5.4.4.2.
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5.4.5 Accessibility of Undercategories

Let C be an accessible ∞-category, and let p : K → C be a small diagram. Our goal in this section is to
prove that the ∞-category Cp/ is accessible (Corollary 5.4.5.16).

Remark 5.4.5.1. The analogous result for the ∞-category C/p will be proven in §5.4.6, using Propositions
5.4.4.3 and 5.4.6.6. It is possible to use the same argument to give a second proof of Corollary 5.4.5.16;
however, we will need Corollary 5.4.5.16 in our proof of Proposition 5.4.6.6.

We begin by studying the behavior of colimits with respect to (homotopy) fiber products of∞-categories.

Lemma 5.4.5.2. Let

X′
q′ //

p′

��

X

p

��
Y′

q // Y

be a diagram of ∞-categories which is homotopy Cartesian ( with respect to the Joyal model structure ).
Suppose that X and Y have initial objects, and that p and q preserve initial objects. An object X ′ ∈ X′ is
initial if and only if p′(X ′) is an initial object of Y′ and q′(X ′) is an initial object of X. Moreover, there
exists an initial object of X′.

Proof. Without loss of generality, we may suppose that p and q are categorical fibrations, and that X′ =
X×Y Y′. Suppose first that X ′ is an object of X′ with the property that X = q′(X ′) and Y ′ = p′(X ′) are
initial objects of X and Y′. Then Y = p(X) = q(Y ′) is an initial object of Y. Let Z be another object of X′.
We have a pullback diagram of Kan complexes

HomR
X′(X ′, Z) //

��

HomR
X(X, q′(Z))

��
HomR

Y′(Y
′, p′(Z)) // HomR

Y (Y, (q ◦ p′)(Z)).

Since the maps p and q are inner fibrations, Lemma 2.3.4.1 implies that this diagram is homotopy Cartesian
(with respect to the usual model structure on Set∆). Since X, Y ′, and Y are initial objects, the Kan
complexes HomR

X(X, q′(Z)), HomR
Y′(Y

′, p′(Z)), and HomR
Y (Y, (q ◦ p′)(Z)) are contractible. It follows that

HomR
X′(X ′, Z) is contractible as well, so that X ′ is an initial object of X′.

We now prove that there exists an object X ′ ∈ X′ such that p′(X ′) and q′(X ′) are initial. The above
argument shows that X ′ is an initial obejct of X′. Since all initial objects of X′ are equivalent, this will prove
that for any initial object X ′′ ∈ X′, the objects p′(X ′′) and q′(X ′′) are initial.

We begin by selecting arbitrary initial objects X ∈ X and Y ∈ Y′. Then p(X) and q(Y ) are both initial
objects of Y, so there is an equivalence e : p(X) → q(Y ). Since q is a categorical fibration, there exists an
equivalence e : Y ′ → Y in Y such that q(e) = e. It follows that Y ′ is an initial object of Y′ with q(Y ′) = p(X),
so that the pair (X,Y ′) can be identified with an object of X′ which has the desired properties.

Lemma 5.4.5.3. Let p : X→ Y be a categorical fibration of ∞-categories, and let f : K → X be a diagram.
Then the induced map p′ : Xf/ → Ypf/ is a categorical fibration.

Proof. It suffices to show that p′ has the right lifting property with respect to every inclusion A ⊆ B which is
a categorical equivalence. Unwinding the definitions, it suffices to show that p has the right lifting property
with respect to i : K ?A ⊆ K ?B. This is immediate, since p is a categorical fibration and i is a categorical
equivalence.
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Lemma 5.4.5.4. Let

X′
q′ //

p′

��

X

p

��
Y′

q // Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to the Joyal model structure), and
let f : K → X′ be a diagram in X′. Then the induced diagram

X′f/ //

��

Xq′f/

��
Y′p′f/ // Yqp′f/

is also homotopy Cartesian.

Proof. Without loss of generality, we may suppose that p and q are categorical fibrations and that X′ =
X×Y Y′. Then X′f/ ' Xq′f/×Yqp′f/

Y′p′f/, so the result follows immediately from Lemma 5.4.5.3.

Lemma 5.4.5.5. Let

X′
q′ //

p′

��

X

p

��
Y′

q // Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to the Joyal model structure), and
let K be a simplicial set. Suppose that X and Y′ admit colimits for all diagrams indexed by K, and that p
and q preserve colimits of diagrams indexed by K. Then:

(1) A diagram f : K. → X′ is a colimit of f = f |K if and only if p′ ◦ f and q′ ◦ f are colimit diagrams.
In particular, p′ and q′ preserve colimits indexed by K.

(2) Every diagram f : K → X′ has a colimit in X′.

Proof. Replacing X′ by X′f/, X by Xq′f/, Y′ by Y′p′f/, and Y by Yqp′f/, we may apply Lemma 5.4.5.4 to reduce
to the case K = ∅. Now apply Lemma 5.4.5.2.

Lemma 5.4.5.6. Let C be a small filtered category, and let C. be the category obtained by adjoining a ( new
) final object to C. Suppose given a homotopy pullback diagram

F ′ //

��

F

p

��
G′

q // G

in the diagram category SetC.

∆ ( which we endow with the projective model structure ). Suppose further that
the diagrams F,G,G′ : C. → Set∆ are homotopy colimits. Then F ′ is also a homotopy colimit diagram.

Proof. Without loss of generality, we may suppose that G is fibrant, p and q are fibrations, and that F ′ =
F ×G G′. Let ∗ denote the cone point of C., and let F (∞), G(∞), F ′(∞), and G′(∞) denote the colimits
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of the diagrams F |C, G|C, F ′|C, and G′|C. Since fibrations in Set∆ are stable under filtered colimits, the
pullback diagram

F ′(∞) //

��

F (∞)

��
G′(∞) // G(∞)

exhibits F ′(∞) as a homotopy fiber product of F (∞) with G′(∞) over G(∞) in Set∆. Since weak homotopy
equivalences are stable under filtered colimits, the natural maps G(∞) → G(∗), F ′(∞) → F ′(∗), and
G′(∞)→ G′(∗) are weak homotopy equivalences. Consequently, the diagram

F ′(∞)
f

$$H
HH

HH
HH

HH

F ′(∗) //

��

F (∗)

��
G′(∗) // G(∗)

exhibits both F ′(∞) and F ′(∗) as homotopy fiber products of F (∗) with G′(∗) over G(∗). It follows that f
is a weak homotopy equivalence, so that F is a homotopy colimit diagram as desired.

Lemma 5.4.5.7. Let

X′
q′ //

p′

��

X

p

��
Y′

q // Y

be a diagram of ∞-categories which is homotopy Cartesian ( with respect to the Joyal model structure ), and
let κ be a regular cardinal. Suppose that X and Y′ admit small κ-filtered colimits, and that p and q preserve
small κ-filtered colimits. Then:

(1) The ∞-category X′ admits small κ-filtered colimits.

(2) If X ′ is an object of X′ such that Y ′ = p′(X ′) and X = q′(X ′), and Y = p(X) = q(Y ′) are κ-compact,
then X ′ is a κ-compact object of X′.

Proof. Claim (1) follows immediately from Lemma 5.4.5.5. To prove (2), consider a colimit diagram f :
I. → X′. We wish to prove that the composition of f with the functor X′ → Ŝ corepresented by X ′ is also
a colimit diagram. Using Proposition 5.3.1.16, we may assume without loss of generality that I is the nerve
of a κ-filtered partially ordered set A. We may further suppose that p and q are categorical fibrations and
that X′ = X×Y Y′. Let I.X′/ denote the fiber product I.×X′ XX′/, and define I.X/, I.Y ′/, and I.Y/ similarly.
We have a pullback diagram

I.X′/
//

��

I.X/

��
I.Y ′/ // I.Y/

of left fibrations over I.. Proposition 2.1.2.2 implies that every arrow in this diagram is a left fibration, so
that Corollary 3.3.2.7 implies that I.X′/ is a homotopy fiber product of I.X/ with I.Y ′/ over I.Y/ in the covariant
model category (Set∆)/ I. . Let G : (Set∆)A∪{∞} → (Set∆)I. denote the unstraightening functor of §2.1.4.
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Since G is the right Quillen functor of a Quillen equivalence, the above diagram is weakly equivalent to the
image under G of a homotopy pullback diagram

FX′ //

��

FX

��
FY ′ // FY

of (weakly) fibrant objects of (Set∆)A∪{∞}. Moreover, the simplicial nerve of each FZ can be identified with
the composition of f with the functor corepresented by Z. According to Theorem 4.2.4.1, it will suffice to
show that FX′ is a homotopy colimit diagram. We now observe that FX , FY ′ , and FY are homotopy colimit
diagrams (since X, Y ′, and Y are assumed to be κ-compact) and conclude by applying Lemma 5.4.5.6.

In some of the arguments below, it will be important to be able to replace colimits of a diagram J → C

by colimits of some composition I
f→ J → C. According to Proposition 4.1.1.8, this maneuver is justified

provided that f is cofinal. Unfortunately, the class of cofinal morphisms is not sufficiently robust for our
purposes. We will therefore introduce a property somewhat stronger than cofinality, which has better stability
properties.

Definition 5.4.5.8. Let f : I→ J be a functor between filtered ∞-categories. We will say that f is weakly
cofinal if, for every object J ∈ J, there exists an object I ∈ I and a morphism J → f(I) in J. We will say
that f is κ-cofinal if, for every diagram p : K → I where K is κ-small and weakly contractible, the induced
functor Ip/ → Jfp/ is weakly cofinal.

Example 5.4.5.9. Let I be a τ -filtered ∞-category, and let p : K → I be a τ -small diagram. Then the
projection Ip/ → I is τ -cofinal. To prove this, consider a τ -small diagram K ′ → Ip/ where K ′ is weakly
contractible, corresponding to a map q : K?K ′ → I. According to Lemma 4.2.3.6, the inclusion K ′ ⊆ K?K ′

is right anodyne, so that the map Iq/ → Iq|K′/ is a trivial fibration (and therefore weakly cofinal).

Lemma 5.4.5.10. Let A, B, and C be simplicial sets, and suppose that B is weakly contractible. Then the
inclusion

(A ? B)
∐
B

(B ? C) ⊆ A ? B ? C

is a categorical equivalence.

Proof. Let F (A,B,C) = (A ?B)
∐
B(B ? C), and let G(A,B,C) = A ?B ? C. We first observe that both F

and G preserve filtered colimits and homotopy pushout squares, separately in each argument. Using standard
arguments (see, for example, the proof of Proposition 1.3.2.8), we can reduce to the case where A and C are
simplices.

Let us say that a simplicial set B is good if the inclusion F (A,B,C) ⊆ G(A,B,C) is a categorical
equivalence. We now make the following observations:

(1) Every simplex is good. Unwinding the definitions, this is equivalent to the assertion that for 0 ≤ m ≤
n ≤ p, the diagram

∆{m,...n} � � //
� _

��

∆{0,...,n}
� _

��
∆{m,...,p} � � // ∆{0,...,p}

is a homotopy pushout square (with respect to the Joyal model structure). It suffices to check that the
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equivalent subdiagram

∆{m,m+1} ∐
{m+1} . . .

∐
{n−1} ∆{n−1,n} � � //

� _

��

∆{0,1} ∐
{1} . . .

∐
{n−1} ∆{n−1,,n}
� _

��
∆{m,m+1} ∐

{m+1} . . .
∐
{n−1} ∆{n−1,n} � � // ∆{0,1} ∐

{1} . . .
∐
{p−1} ∆{p−1,p}

is a homotopy pushout, which is clear.

(2) Given a pushout diagram of simplicial sets

B //
� _

��

B′� _

��
B′′ // B′′′

in which the vertical arrows are cofibrations, if B, B′, and B′′ are good, then B′′′ is good. This follows
from the compatibility of the functors F and G with homotopy pushouts in B.

(3) Every horn Λni is good. This follows by induction on n, using (1) and (2).

(4) The collection of good simplicial sets is stable under filtered colimits; this follows from the compatibility
of F and G with filtered colimits, and the stability of categorical equivalences under filtered colimits.

(5) Every retract of a good simplicial set is good (since the collection of categorical equivalences is stable
under the formation of retracts).

(6) If i : B → B′ is an anodyne map of simplicial sets, and B is good, then B′ is good. This follows by
combining observations (1) through (5).

(7) If B is weakly contractible, then B is good. To see this, choose a vertex b of B. The simplicial set
{b} ' ∆0 is good (by (1) ), and the inclusion {b} ⊆ B is anodyne. Now apply (6).

Lemma 5.4.5.11. Let κ and τ be regular cardinals, let f : I → J be a κ-cofinal functor between τ -filtered
∞-categories, and let p : K → J be a κ-small diagram. Then:

(1) The ∞-category Ip/ = I×J Jp/ is τ -filtered.

(2) The induced functor Ip/ → Jp/ is κ-cofinal.

Proof. We first prove (1). Let q̃ : K ′ → Ip/ be a τ -small diagram, classifying a compatible pair of maps
q : K ′ → I and q′ : K ?K ′ → J. Since I is τ -filtered, we can find an extension q : (K ′). → I of q. To find a
compatible extension of q̃, it suffices to solve the lifting problem

(K ?K ′)
∐
K′(K ′).� _

i

��

// J

(K ?K ′).,

88ppppppp

which is possible since i is a categorical equivalence (Lemma 5.4.5.10) and J is an ∞-category.
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To prove (2), we consider a map q̃ : K ′ → Ip/ as above, where now K is κ-small and weakly contractible.
We have a pullback diagram

(Ip/)q/ //

��

Iq/

��
Jq′/ // Jq′|K′/ .

Lemma 4.2.3.6 implies that the inclusion K ′ ⊆ K ?K ′ is right anodyne, so that the lower horizontal map is
a trivial fibration. It follows that the upper horizontal map is also a trivial fibration. Since f is κ-cofinal,
the right vertical map is weakly cofinal, so that the left vertical map is weakly cofinal as well.

Lemma 5.4.5.12. Let κ be a regular cardinal, and let f : I→ J be an κ-cofinal map of filtered ∞-categories.
Then f is cofinal.

Proof. According to Theorem 4.1.3.1, to prove that f is cofinal it suffices to show that for every object J ∈ J,
the fiber product IJ/ = I×J JJ/ is weakly contractible. Lemma 5.4.5.11 asserts that IJ/ is κ-filtered; now
apply Lemma 5.3.1.18.

Lemma 5.4.5.13. Let κ be a regular cardinal, let C be an ∞-category which admits κ-filtered colimits, let
p : K. → Cτ be a κ-small diagram in the ∞-category of κ-compact objects of C, and let p = p|K. Then p is
a κ-compact object of Cp/.

Proof. Let p′ denote the composition
K �∆0 → K. p→ Cκ;

it will suffice to prove that p′ is a τ -compact object of Cp/. Consider the pullback diagram

Cp/
//

��

Fun(K ×∆1,C)

f

��
∗ p // Fun(Ktimes{0},C).

Corollary 2.3.7.12 implies that the f is a Cartesian fibration, so we can apply Proposition 3.3.2.3 to deduce
that the diagram is homotopy Cartesian (with respect to the Joyal model structure). Using Proposition
5.1.2.2, we deduce that f preserves κ-filtered colimits, and any functor ∗ → D preserves filtered colimits
(since filtered ∞-categories are weakly contractible; see §4.4.4). Consequently, Lemma 5.4.5.7 implies that
p′ is a κ-compact object of Cp/ provided that its images in ∗ and Fun(K×∆1,C) are κ-compact. The former
condition is obvious, and the latter follows from Proposition 5.3.4.13.

Lemma 5.4.5.14. Let C be an ∞-category which admits small, τ -filtered colimits, and let p : K → C be a
small diagram. Then Cp/ admits small, τ -filtered colimits.

Proof. Without loss of generality, we may suppose that K is an∞-category. Let I be a τ -filtered∞-category
and q0 : I→ Cp/ a diagram, corresponding to a diagram q : K ? I→ C. We next observe that K ? I is small
and τ -filtered, so that q admits a colimit q : (K ? I). → C. The map q can also be identified with a colimit
of q0.

Proposition 5.4.5.15. Let τ � κ be regular cardinals, let C be a τ -accessible∞-category, and let p : K → Cτ

be a κ-small diagram. Then Cp/ is τ -accessible, and an object of Cp/ is τ -compact if and only if its image in
C is τ -compact.
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Proof. Let D = Cp/×C Cτ be the full subcategory of Cp/ spanned by those objects whose image in C is τ -
compact. Since Cp/ is idempotent complete, and the collection of τ -compact objects of C is stable under the
formation of retracts, we conclude that D is idempotent complete. We also note that D is essentially small;
replacing C by a minimal model if necessary, we may suppose that D is actually small. Proposition 5.3.5.10
and Lemma 5.4.5.14 imply that there is an (essentially unique) τ -continuous functor F : Indτ (D) → Cp/

such that the composition D→ Indτ (D) F→ Cp/ is equivalent to the inclusion of D in Cp/. To complete the
proof, it will suffice to show that F is an equivalence of ∞-categories. According to Proposition 5.3.5.11, it
will suffice to show that D consists of τ -compact objects of Cp/ and generates Cp/ under τ -filtered colimits.
The first assertion follows from Lemma 5.4.5.13.

To complete the proof, choose an object p : K. → C of Cp/, and let C ∈ C denote the image under p
of the cone point of K.. Then we may identify p with a diagram p̃ : K → Cτ/C . Since C is τ -accessible,
the ∞-category E = Cτ/C is τ -filtered. It follows that Eep/ is τ -filtered and essentially small; to complete the
proof, it will suffice to show that the associated map

E.ep/ → Cp/

is a colimit diagram. Equivalently, we must show that the compositition

K ? E.ep/ θ.
0→ E.

θ1→ C

is a colimit diagram. Since θ1 is a colimit diagram, it suffices to prove that θ0 is cofinal. For this, we consider
the composition

q : Eep/ i→ K ? Eep/ θ0→ E .

The ∞-category E is τ -filtered, so that Eep/ is also τ -filtered, and therefore weakly contractible (Lemma
5.3.1.18). It follows that i is right anodyne (Lemma 4.2.3.6), and therefore cofinal. Applying Proposition
4.1.1.3, we conclude that θ0 is cofinal if and only if q is cofinal. We now observe that that q is τ -cofinal
(Example 5.4.5.9) and therefore cofinal (Lemma 5.4.5.12).

Corollary 5.4.5.16. Let C be an accessible ∞-category, and let p : K → C be a diagram indexed by a small
simplicial set K. Then Cp/ is accessible.

Proof. Choose appropriate cardinals τ � κ and apply Proposition 5.4.5.15.

5.4.6 Accessibility of Fiber Products

Our goal in this section is to prove that the class of accessible ∞-categories is stable under (homotopy) fiber
products (Proposition 5.4.6.6). The strategy of proof should now be familiar from §5.4.4 and §5.4.5. Suppose
given a homotopy Cartesian diagram

X′
q′ //

p′

��

X

p

��
Y′

q // Y

of ∞-categories, where X, Y′, and Y are accessible ∞-categories, and the functors p and q are likewise
accessible. If κ is a sufficiently large regular cardinal, then we can use Lemma 5.4.5.7 to produce a good
supply of κ-compact objects of X′. Our problem is then to prove that these objects generate X′ under
κ-filtered colimits. This requires some rather delicate cofinality arguments.

Lemma 5.4.6.1. Let τ � κ be regular cardinals, let f : C → D be a τ -continuous functor between τ -
accessible ∞-categories which carries τ -compact objects of C to τ -compact objects of D. Let C be an object of
C, Cτ/C the full subcategory of C/C spanned by those objects C ′ → C where C ′ is τ -compact, and Dτ

/f(C) the
full subcategory spanned by those objects D → f(C) where D ∈ D is τ -compact. Then f induces a κ-cofinal
functor f ′ : Cτ/C → Dτ

/f(C).
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Proof. Let p̃ : K → Cτ/C be a diagram indexed by a τ -small, weakly contractible simplicial set K, and let
p : K → C be the underlying map. We need to show that the induced functor (Cτ/C)ep/ → (Dτ

/f(C))f ′ep/ is
weakly cofinal. Using Proposition 5.4.5.15, we may replace C by Cp/ and D by Dfp/, and thereby reduce
to the problem of showing that f is weakly cofinal. Let φ : D → f(C) be an object of Dτ

/f(C), and let
FD : D → S be the functor corepresented by D. Since D is τ -compact, the functor FD is τ -continuous, so
that FD ◦ f is τ -continuous. Consequently, the space FD(f(C)) can be obtained as a colimit of the τ -filtered
diagram

p : Cτ/C → Dτ
/f(C) → D

FD→ S .

In particular, the path component of FD(f(C)) containing φ lies in the image of p(η), for some η : C ′ → C
as above. It follows that there exists a commutative diagram

D
φ //

!!C
CC

CC
CC

C f(C)

f(C ′)

f(η)
;;wwwwwwww

in D, which can be identified with a morphism in Dτ
/f(C) having the desired properties.

Lemma 5.4.6.2. Let A = A′∪{∞} be a linearly ordered set containing a largest element ∞, and let B ⊆ A′
be a cofinal subset ( in other words, for every α ∈ A′, there exists β ∈ B such that α ≤ β ). The inclusion

φ : N(A′)
∐

N(B)

N(B ∪ {∞}) ⊆ N(A)

is a categorical equivalence.

Proof. For each β ∈ B, let φβ denote the inclusion

N({α ∈ A′ : α ≤ β})
∐

N({α∈B:α≤β})

N({α ∈ B : α ≤ β} ∪ {∞}) ⊆ N({α ∈ A′ : α ≤ β} ∪ {∞}).

Since B is cofinal in A′, φ is a filtered colimit of the inclusions φβ . Replacing A′ by {α ∈ A′ : α ≤ β} and B
by {α ∈ B : α ≤ β}, we may reduce to the case where A′ has a largest element (which we will continue to
denote by β).

We have a categorical equivalence

N(B)
∐
{β}

N({β,∞}) ⊆ N(B ∪ {∞}).

Consequently, to prove that φ is a categorical equivalence, it will suffice to show that the composition

N(A′)
∐
{β}

N({β,∞}) ⊆ N(A′)
∐

N(B)

N(B ∪ {∞}) ⊆ N(A)

is a categorical equivalence, which is clear.

Lemma 5.4.6.3. Let τ > κ be regular cardinals, and let

X
p→ Y

p′← X′

be functors between ∞-categories. Assume that:

(1) The ∞-categories X,X′, and Y are κ-filtered, and admit τ -small, κ-filtered colimits.
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(2) The functors p and p′ preserve τ -small, κ-filtered colimits.

(3) The functors p and p′ are κ-cofinal.

Then there exist objects X ∈ X, X ′ ∈ X′ such that p(X) and p′(X ′) are equivalent in Y.

Proof. For every ordinal α, we let [α] = {β : β ≤ α} and (α) = {β : β < α}. Let us say that an ordinal α
is even if it is of the form λ + n, where λ is a limit ordinal and n is an even integer; otherwise we will say
that α is odd. Let A denote the set of all even ordinals smaller than κ, and A′ the set of all odd ordinals
smaller than κ. We regard A and A′ as subsets of the linearly ordered set A ∪ A′ = (κ). We will construct
a commutative diagram

N(A) //

q

��

N(κ)

Q

��

N(A′)

q′

��

oo

X
p // Y X′ .

p′
oo

Supposing that this is possible, we choose colimits X ∈ X, X ′ ∈ X′, and Y ∈ Y for q, q′, and Q, respectively.
Since the inclusion N(A) ⊆ N(κ) is cofinal and p-preserves κ-filtered colimits, we conclude that p(X) and Y
are equivalent. Similarly, p′(X ′) and Y are equivalent, so that p(X) and p′(X ′) are equivalent, as desired.

The construction of q, q′, and Q is given by induction. Let α < κ, and suppose that q|N({β ∈ A : β < α}),
q′|N({β ∈ A′ : β < α}) and Q|N(α) have already been constructed. We will show how to extend the
definitions of q, q′, and Q to include the ordinal α. We will suppose that α is even; the case where α is odd
is similar (but easier).

Suppose first that α is a limit ordinal. In this case, define q|N({β ∈ A : β ≤ α}) to be an arbitrary
extension of q|N({β ∈ A : β < α}): such an extension exists in virtue of our assumption that X is κ-filtered.
In order to define Q|N(α) it suffices to verify that Y has the extension property with respect to the inclusion

N(α)
∐

N({β∈A:β<α})

N({β ∈ A : β ≤ α}) ⊆ N[α].

Since Y is an ∞-category, this follows immediately from Lemma 5.4.6.2.
We now treat the case where α = α′ + 1 is a successor ordinal. Let q<α = q|{β ∈ A : β < α}, and regard

Q|N({α′} ∪ {β ∈ A : β < α}) as an object of Yfq<α/. We now observe that N({β ∈ A : β < α}) is κ-small
and weakly contractible. Since p is κ-cofinal, we can construct q|{β ∈ A : β ≤ α} extending q<α and a
compatible map Q|N({α′} ∪ {β ∈ A : β ≤ α}). To complete the construction of Q, it suffices to show that
Y has the extension property with respect to the inclusion

N(α)
∐

N({β∈A:β<α}∪{α′})

N({β ∈ A : β ≤ α} ∪ {α′}) ⊆ N[α].

Once again, this follows from Lemma 5.4.6.2.

Lemma 5.4.6.4. Let κ and τ be regular cardinals, let f : I → J be a κ-cofinal functor between τ -filtered
∞-categories, and let p : K → I be a diagram indexed by a τ -small simplicial set K. Then the induced
functor

Ip/ → Jfp/

is κ-cofinal.

Proof. Let K ′ be a simplicial set which is κ-small and weakly contractible, and let q : K ? K ′ → I be a
diagram. We have a commutative diagram

Iq/ //

��

Jfq/

��
Iq|K′/

// Ifq|K′/ .
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Lemma 4.2.3.6 implies that K ′ ⊆ K ? K ′ is a right anodyne inclusion, so that the vertical maps are trivial
fibrations. Since f is κ-cofinal, the lower horizontal map is weakly cofinal; it follows that the upper horizontal
map is weakly cofinal as well.

Lemma 5.4.6.5. Let τ > κ be regular cardinals, and let

I′
q′ //

p′

��

I

p

��
J′

q // J

a diagram of ∞-categories which is homotopy Cartesian (with respect to the Joyal model structure). Suppose
that I, J, and J′ are τ -filtered ∞-categories which admit τ -small, κ-filtered colimits. Suppose further that p
and q are κ-cofinal functors which preserve τ -small, κ-filtered colimits. Then I′ is τ -filtered, and the functors
p′ and q′ are κ-cofinal.

Proof. Without loss of generality, we may suppose that p and q are categorical fibrations and that I′ = I×J J′.
To prove that I′ is τ -filtered, we must show that I′f/ is nonempty for every diagram f : K → I′ indexed by
a τ -small simplicial set K. We have a (homotopy) pullback diagram

I′f/ //

��

Iq′f/

g

��
J′p′f/

h // Jpq′f/ .

Lemma 5.3.1.19 implies that Iq′f/, J′p′f/, and Jpq′f/ are τ -filtered, and Lemma 5.4.6.4 implies that g and h

are κ-cofinal. We may therefore apply Lemma 5.4.6.3 to deduce that I′f/ is nonempty, as desired.
We now prove that q′ is κ-cofinal; the analogous assertion for p′ is proven by the same argument. We

must show that for every diagram f : K → I′, where K is κ-small and weakly contractible, the induced map
I′f/ → Iq′f/ is weakly cofinal. Replacing I′ by I′f/ as above, we may reduce to the problem of showing that
q′ itself is weakly cofinal. Let I be an object of I, let J = p(I) ∈ J, and consider the (homotopy) pullback
diagram

I′I/ //

��

II/

u

��
J′J/

v // JJ/ .

We wish to show that I′I/ is nonempty. This follows from Lemma 5.4.6.3, since u and v are τ -cofinal by
Lemmas 5.4.6.4 and 5.4.5.11, respectively.

Proposition 5.4.6.6. Let

X′
q′ //

p′

��

X

p

��
Y′

q // Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to the Joyal model structure).
Suppose further that X, Y, and Y′ are accessible, and that p and q are accessible functors. Then X′ is
accessible. Moreover, for any accessible ∞-category C and any functor f : C→ X, f is accessible if and only
if the compositions p′ ◦ f and q′ ◦ f are accessible. In particular ( taking f = idX ), the functors p′ and q′

are accessible.
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Proof. Choose a regular cardinal κ such that X, Y′, and Y are κ-accessible. Enlarging κ if necessary, we
may suppose that p and q are κ-continuous. It follows from Lemma 5.4.5.5 that X′ admits small κ-filtered
colimits, and that for any κ′ > κ, a functor f : C → X is κ′-continuous if and only if p′ ◦ f and q′ ◦ f
are κ′-continuous. This proves the second claim; it now suffices to show that X′ is accessible. For this, we
will use characterization (3) of Proposition 5.4.2.2. Without loss of generality, we may suppose that p and
q are categorical fibrations, and that X′ = X×Y Y′. It then follows easily that X′ is locally small. It will
therefore suffice to show that there exists a regular cardinal τ such that X′ is generated by a small collection
of τ -compact objects under small, τ -filtered colimits.

Since the ∞-categories of κ-compact objects of X and Y′ are essentially small, there exists τ > κ such
that p|Xκ ⊆ Yτ and q|Y′κ ⊆ Yτ . Enlarging τ if necessary, we may suppose that τ � κ. The proof of
Proposition 5.4.2.11 shows that every τ -compact object of X can be written as a τ -small, κ-filtered colimit
of objects belonging to Xκ. Since p is κ-continuous, it follows that p|Xτ ⊆ Yτ and similarly q|Y′τ ⊆ Yτ . Let
X′′ = Xτ ×Yτ Y′

τ . Then X′′ is an essentially small, full subcategory of X′. Lemma 5.4.5.7 implies that X′′

consists of τ -compact objects of X′. To complete the proof, it will suffice to show that X′′ generates X′ under
small τ -filtered colimits.

Let X ′ = (X,Y ′) be an object of X′, and let Y = pX = qY ′. We have a (homotopy) pullback diagram

X′′/X′
f ′ //

g′

��

Xτ/X

g

��
Y′
τ
/Y ′

f // Yτ/Y

of essentially small∞-categories. Lemma 5.4.6.1 asserts that f and g are κ-cofinal. We apply Lemma 5.4.6.5
to conclude that X′′/X′ is τ -filtered, and that f ′ and g′ are κ-cofinal. Now consider the diagram

(X′′/X′).

��

h

##F
FF

FF
FF

FF
// (Xτ/X).

��
X′

q′ //

p′

��

X

p

��
(Y′τ/Y ).

q // Y′ // Y .

Lemma 5.4.5.12 allows us to conclude that f ′ and g′ are cofinal, so that p′ ◦h and q′ ◦h are colimit diagrams.
Lemma 5.4.5.5 implies that h is a colimit diagram as well, so that X ′ is the colimit of an essentially small,
τ -filtered diagram taking values in X′′.

Corollary 5.4.6.7. Let C be an accessible ∞-category, and let p : K → C be a diagram indexed by a small
simplicial set K. Then the ∞-category C/p is accessible.

Proof. Since the map C/p → C/p is a categorical equivalence, it will suffice to prove that C/p is accessible.
We have a pullback diagram

C/p
//

��

Fun(K ×∆1,C)

p

��
∗ q// Fun(K × {1},C)

of∞-categories. Since p is a coCartesian fibration, Proposition 3.3.2.3 implies that this diagram is homotopy
Cartesian. According to Proposition 5.4.4.3, the ∞-categories CK×∆1

and CK×{1} are accessible. Using
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Proposition 5.1.2.2, we conclude that for every regular cardinal κ such that C admits κ-filtered colimits, p
is κ-continuous; in particular, p is accessible. Corollary 5.4.3.6 implies that ∗ is accessible and that q is an
accessible functor. Applying Proposition 5.4.6.6, we deduce that C/p is accessible.

5.4.7 Applications

In §5.4.4 through §5.4.6, we established some of the basic stability properties enjoyed by the class of accessible
∞-categories. In this section, we will reap some of the rewards for our hard work.

Lemma 5.4.7.1. Let {Cα}α∈A be a family of ∞-categories indexed by a small set A, and let C =
∐
α∈A Cα

be their coproduct. Then C is an accessible if and only if each Cα is accessible.

Proof. Immediate from the definitions.

Lemma 5.4.7.2. Let {Cα}α∈A be a family of ∞-categories indexed by a small set A, and let C =
∏
α∈A Cα

be their product. If each Cα is accessible, then C is accessible. Moreover, if D is an accessible ∞-category,
then a functor D→ C is accessible if and only if each of the compositions

D→ C→ Cα

is accessible.

Proof. Let D =
∐
α∈A Cα. By Lemma 5.4.7.1, D is accessible. Let N(A) denote the constant simplicial set

with value A. Proposition 5.4.4.3 implies that Fun(N(A),D) is accessible. We now observe that Fun(N(A),D)
can be written as a disjoint union of C with another ∞-category; applying Lemma 5.4.7.1 again, we deduce
that C is accessible. The second claim follows immediately from the definitions.

Proposition 5.4.7.3. The ∞-category Acc of accessible ∞-categories admits small limits, and the inclusion
i : Acc ⊆ Ĉat∞ preserves small limits.

Proof. By Proposition 4.4.2.6, it suffices to prove that Acc admits pullbacks and small products, and that
i preserves pullbacks and (small) products. Let Acc∆ be the (simplicial) subcategory of Ŝet∆ defined as
follows:

(1) The objects of Acc∆ are the accessible ∞-categories.

(2) If C and D are accessible ∞-categories, then MapAcc∆(C,D) is the subcategory of Fun(C,D) whose
objects are accessible functors, and whose morphisms are equivalences of functors.

The∞-category Acc is isomorphic to the simplicial nerve N(Acc∆). In view of Theorem 4.2.4.1, it will suffice
to prove that the simplicial category Acc∆ admits homotopy fiber products and (small) homotopy products,

and that the inclusion Acc∆ ⊆ (Ŝet+∆)◦ preserves homotopy fiber products and homotopy products. The
case of homotopy fiber products follows from Proposition 5.4.6.6 and the case of (small) homotopy products
follows from Lemma 5.4.7.2.

If C is an accessible ∞-category, then C is the union of full subcategories {Cτ ⊆ C}, where τ ranges over
all (small) regular cardinals. It seems reasonable to expect that if τ is sufficiently large, then the properties
of C are mirrored by properties of Cτ . The following result provides an illustration of this philosophy:

Proposition 5.4.7.4. Let C be a κ-accessible ∞-category, and let τ � κ be an uncountable regular cardinal
such that Cκ is essentially τ -small. Then the full subcategory Cτ ⊆ C is stable under all κ-small limits which
exist in C.

Before giving the proof, we will need to establish a few lemmas.
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Lemma 5.4.7.5. Let τ � κ be regular cardinals, and assume τ is uncountable. Let C be a τ -small ∞-
category, and let D be an object of Indκ(C). The following are equivalent:

(1) The object D is τ -compact in Indκ(C).

(2) For every C ∈ C, the space MapIndκ(C)(j(C), D) is essentially τ -small, where j : C→ Indκ(C) denotes
the Yoneda embedding.

Proof. Suppose first that (1) is satisfied. Using Lemma 5.1.5.3, we can write D as the colimit of the κ-filtered
diagram

C/D = C×Indκ(C) Indκ(C)/D → Indκ(C).

Since τ � κ, we also write D as a small τ -filtered colimit of objects {Dα}, where each Dα is the colimit of
a τ -small, κ-filtered diagram

C̃→ C→ Indκ(C).

Since D is τ -compact, we conclude that D is a retract of Dα. Let F : Indκ(C) → S denote the functor co-
represented by j(C). According to Proposition 5.3.5.5, F is κ-continuous. It follows that F (D) is a retract
of F (Dα), which is itself a τ -small colimit of spaces equivalent to MapIndκ(C)(j(C), j(C ′)) ' MapC(C,C ′),
which is essentially τ -small by assumption, and therefore a τ -compact object of S. It follows that D is also
τ -compact object of S.

Now assume (2). Once again, we observe that D can be obtained as the colimit of a diagram C/D →
Indκ(C). By assumption, C is τ -small and the fibers of the right fibration C/D → C are essentially τ -small.
Proposition 5.4.1.4 implies that C/D is essentially τ -small, so that D is a τ -small colimit of κ-compact objects
of Indκ(C) and therefore τ -compact.

Lemma 5.4.7.6. Let τ � κ be regular cardinals such that τ is uncountable, and let Sτ be the full subcategory
of S consisting of essentially τ -small spaces. Then Sτ is stable under κ-small limits in S.

Proof. In view of Proposition 4.4.2.6, it suffices to prove that Sτ is stable under pullbacks and κ-small prod-
ucts. Using Theorem 4.2.4.1, it will suffice to show that the full subcategory of Kan spanned by essentially
τ -small spaces is stable under κ-small products and homotopy fiber products. This follows immediately from
characterization (1) given in Proposition 5.4.1.5.

Proof of Proposition 5.4.7.4. Let K be a κ-small simplicial set and let p : K → Cτ be a diagram which
admits a limit X ∈ C. We wish to show that X is τ -compact. According to Lemma 5.4.7.5, it suffices to
prove that the space F (X) is essentially τ -small, where F : C → S denotes the functor co-represented by a
κ-compact object C ∈ C. Since F preserves limits, we note that F (X) is a limit of F ◦ p. Lemma 5.4.7.5
implies that the diagram F ◦ p takes values in Sτ ⊆ S. We now conclude by applying Lemma 5.4.7.6.

We note the following useful criterion for establishing that a functor is accessible:

Proposition 5.4.7.7. Let G : C→ C′ be a functor between accessible ∞-categories. If G admits a right or
a left adjoint, then G is accessible.

Proof. If G is a left adjoint, then G commutes with all colimits which exist in C. Therefore G is κ-continuous
for any cardinal κ having the property that C is κ-accessible. Let us therefore assume that G is a right
adjoint; choose a left adjoint F for G.

Choose a regular cardinal κ such that C′ is κ-accessible. We may suppose without loss of generality that
C′ = Indκ D, where D is a small ∞-category. Consider the composite functor

D
j→ Indκ(D) F→ C .

Since D is small, there exists a regular cardinal τ � κ such that C is τ -accessible and the essential image of
F ◦ j consists of τ -compact objects of C. We will show that G is τ -continuous.
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Since Indκ(D) ⊆ P(D) is stable under small τ -filtered colimits, it will suffice to prove that the composition

G′ : C
G→ Indκ(D)→ P(D)

is τ -continuous. For each object D ∈ D, let G′D : C→ Ŝ denote the composition of G′ with the functor given
by evaluation at D. According to Proposition 5.1.2.2, it will suffice to show that each G′D is τ -continuous.
Lemma 5.1.5.2 implies that G′D is equivalent to the composition of G with the functor C′ → Ŝ corepresented
by j(D). Since F is left adjoint to G, we may identify this with the functor corepresented by F (j(D)). Since
F (j(D)) is τ -compact by construction, this functor is τ -continuous.

Definition 5.4.7.8. Let C be an accessible category. A full subcategory D ⊆ C is an accessible subcategory
of C if D is accessible, and the inclusion of D into C is an accessible functor.

Example 5.4.7.9. Let C be an accessible ∞-category and K a simplicial set. Suppose that every diagram
K → C has a limit in C. Let D ⊆ Fun(K/,C) be the full subcategory spanned by the limit diagrams. Then D

is equivalent to Fun(K,C), and is therefore accessible (Proposition 5.4.4.3). The inclusion D ⊆ Fun(K/,C)
is a right adjoint, and therefore accessible (Proposition 5.4.7.7). Thus D is an accessible subcategory of
Fun(K/,C). Similarly, if every diagram K → C has a colimit, then the full subcategory D′ ⊆ Fun(K.,C)
spanned by the colimit diagrams in an accessible subcategory of Fun(K.,C).

Proposition 5.4.7.10. Let C be an accessible category, and let {Dα ⊆ C}α∈A be a (small) collection of
accessible subcategories of C. Then

⋂
α∈A Dα is an accessible subcategory of C.

Proof. We have a homotopy Cartesian diagram

⋂
α∈A Dα

i′ //

��

C

f

��∏
α∈A Dα

i //
CA .

Lemma 5.4.7.2 implies that
∏
α∈A Dα and CA are accessible, and it is easy to see that f and i are accessible

functors. Applying Proposition 5.4.6.6, we conclude that
⋂
α∈A Dα is accessible, and that i′ is an accessible

functor, as desired.

We conclude this chapter by establishing a generalization of Proposition 5.4.4.3.

Proposition 5.4.7.11. Let p : X → S be a map of simplicial sets which is a coCartesian fibration (or a
Cartesian fibration). Assume that:

(1) The simplicial set S is small.

(2) For each vertex s of S, the ∞-category Xs = X ×S {s} is accessible.

(3) For each edge e : s→ s′ of S, the associated functor Xs → Xs′ (or Xs′ → Xs ) is accessible.

Then MapS(S,X) is an accessible ∞-category. Moreover, if C is accessible, then a functor

C→ MapS(S,X)

is accessible if and only if, for every vertex s of S, the induced map C→ Xs is accessible.

The proof makes use of the following observation:
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Lemma 5.4.7.12. Let p : M → ∆1 be a coCartesian fibration, classifying a functor F : C → D, where
C = p−1{0} and D = p−1{1}. Let X = Map∆1(∆1,M) be the ∞-category of sections of p. Then X can be
identified with a homotopy limit of the diagram

C
F→ Fun({0},D)← Fun(∆1,D).

Proof. We first replace the diagram in question by a fibrant one. Let C′ denote the∞-category of coCartesian
sections of p. Then the evaluation map e : C′ → C is a trivial fibration of simplicial sets. Moreover, since F
is associated to the correspondence M, the map e admits a section s such that the composition

C
s→ C′ → D

coincides with F . It follows that we have a weak equivalence of diagrams

C
F//

s

��

Fun({0},D) Fun(∆1,D)oo

C′
F ′// Fun({0},D) Fun(∆1,D)oo

where F ′ is given by evaluation at {1}, and is a categorical fibration. Let X′ denote the pullback of the lower
diagram, which we can identify with the full subcategory of Map∆1(Λ2

1,M) spanned by those functors which
carry the first edge of Λ2

1 to a coCartesian edge of M.
Regard ∆2 as an object of (Set∆)/∆1 via the unique retraction r : ∆2 → ∆1 onto the simplicial subset

∆{0,1} ⊆ ∆{0,1,2}. Let X′′ denote the full subcategory of Map∆1(∆2,M) spanned by those maps ∆2 → M

which carry the initial edge of ∆2 to a p-coCartesian edge of M.
Let T denote the marked simplicial set whose underlying simplicial set is ∆2, whose sole nondegenerate

marked edge is ∆1 ⊆ ∆2, and let T ′ = T ×(∆2)] (Λ2
1)
]. Since the opposites of the inclusions T ′ ⊆ T ,

(∆{0,2})[ ⊆ T are marked anodyne, we conclude that the evaluation maps

X← X′′ → X′

are trivial fibrations of simplicial sets. It follows that X and X′ are (canonically) homotopy equivalent, as
desired.

Proof of Proposition 5.4.7.11. We will give the proof in the case where p is a coCartesian fibration; the proof
in the other case is the same. Let skn S denote the n-skeleton of S. We observe that MapS(S,X) coincides
with the (homotopy) inverse limit

lim←−{MapS(skn S,X)}.
In view of Proposition 5.4.7.3, it will suffice to prove that each MapS(skn S,X) is accessible. In other words,
we may reduce to the case where S is n-dimensional. We now work by induction on n, and observe that
there is a homotopy pushout diagram of simplicial sets

Sn × ∂∆n � � //

��

Sn ×∆n

��
skn−1 S

� � // S.

We therefore obtain a homotopy pullback diagram of ∞-categories

MapS(S,X) //

��

MapS(skn−1 S,X)

��
MapS(Sn ×∆n, X) // MapS(Sn × ∂∆n, X).
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Using Proposition 5.4.6.6 and the inductive hypothesis, we may reduce to proving that MapS(Sn ×∆n, X)
is accessible. We may write this latter simplicial set as a product of ∞-categories MapS(∆n, X). Using
Lemma 5.4.7.2, we may reduce to the case S = ∆n. If n = 0, there is nothing to prove. If n > 1, then we
have a trivial fibration

MapS(S,X)→ MapS(Λn1 , X).

Since the horn Λn1 is of dimension < n, we may conclude by applying the inductive hypothesis. We are
therefore reduced to the case S = ∆1.

According to Lemma 5.4.7.12, the ∞-category Map∆1(∆1, X) can be identified with a homotopy limit of
the diagram

X{0}
F→ X{1} ← X∆1

{1}.

According to Proposition 5.4.6.6, it will suffice to prove that all of the∞-categories and functors in the above
diagram are accessible. For the ∞-categories, this follows from assumption (2) and Proposition 5.4.4.3. For
the functors, we apply assumption (3) and Proposition 5.1.2.2.

Remark 5.4.7.13. Proposition 5.4.7.11 admits the following generalization. Suppose that C is a subcategory
of Ĉat∞ satisfying the following conditions:

(i) The ∞-category C admits small limits.

(ii) The inclusion C ⊆ Ĉat∞ preserves small limits.

(iii) If X is an ∞-category which belongs to C, and K is a small simplicial set, then XK belongs to C.

(iv) If X and K are as in (iii), and k is a vertex of K, then the evaluation map XK → X{k} ' X is a
morphism of C.

(v) Let X and K be as in (iii), let Y be an arbitrary ∞-category which belongs to C, and let f : Y → XK

be a functor. Suppose that, for every vertex k of K, the composition Y
f→ XK → X{k} ' X is a

morphism of C. Then f is a morphism of C.

Let p : X → S be a coCartesian (Cartesian) fibration of simplicial sets, classified by a map S → Ĉat∞
(Sop → Ĉat∞) which factors through C. Then the ∞-category MapS(S,X) of sections of p belongs to C.
Moreover, if Y is an arbitrary ∞-category which belongs to C, and f : Y → MapS(S,X) is a functor with
the property that for every vertex s of S, the composite map Y → MapS(S,X) → Xs is a morphism of C,
then f is a morphism of C.
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5.5 Presentable ∞-Categories

Our final object of study in this chapter is the theory of presentable ∞-categories.

Definition 5.5.0.14. An ∞-category C is presentable if C is accessible and admits small colimits.

We will begin in §5.5.1 by giving a number of equivalent reformulations of Definition 5.5.0.14. The main
result, Theorem 5.5.1.1, is due to Carlos Simpson: an ∞-category C is presentable if and only if it arises as
an (accessible) localization of an ∞-category of presheaves.

Let C be an ∞-category, and let F : C → Sop be a functor. If F is representable by an object of C,
then F preserves colimits (Proposition 5.1.3.2). In §5.5.2, we will prove that the converse holds when C is
presentable. This representability criterion has a number of consequences: it implies that C admits (small)
limits (Corollary 5.5.2.4), and leads to an ∞-categorical analogue of the adjoint functor theorem (Corollary
5.5.2.9).

In §5.5.3, we will see that the collection of all presentable ∞-categories can be organized into an ∞-
category PrL. Moreover, we will explain how to compute limits and colimits in PrL. In the course of doing
so, we will prove that the class of presentable ∞-categories is stable under most of the basic constructions
of higher category theory.

In view of Theorem 5.5.1.1, the theory of localizations plays a central role in the study of presentable
∞-categories. In §5.5.4, we will show that the collection of all (accessible) localizations of a presentable
∞-category C can be parametrized in a very simple way. Moreover, there is a good supply of localizations of
C: given any (small) collection of morphisms S of C, one can construct a corresponding localization functor

C
L→ S−1 C ⊆ C,

where S−1 C is a the full subcategory of C spanned by the S-local objects. These ideas are due to Bousfield,
who works in the setting of model categories; we will give an exposition here in the language of∞-categories.

Let C be an ∞-category, and let C ∈ C be an object. We will say that C ∈ C is discrete if, for every
D ∈ C, the nonzero homotopy groups of the mapping space MapC(D,C) vanish. If we let τ≤0 C denote the
full subcategory of C spanned by the discrete objects, then τ≤0 C is (equivalent to) an ordinary category. If
C is the ∞-category of spaces, then we can identify the discrete objects of C with the ordinary category of
sets. Moreover, the inclusion τ≤0 S ⊆ S has a left adjoint, given by

X 7→ π0X.

In §5.5.5, we will show that the preceding remark generalizes to an arbitrary presentable ∞-category C:
the discrete objects of C constitute an (accessible) localization of C. We will also consider a more general
condition of k-truncatedness (which specializes to the condition of discreteness when k = 0). The truncation
functors which we construct will play an important role throughout §6.

In §5.5.6, we will study the theory of compactly generated∞-categories: ∞-categories which are generated
(under colimits) by their compact objects. This class of ∞-categories includes some of the most important
examples, such as S and Cat∞.

Remark 5.5.0.15. We refer the reader to [1] for a study of presentability in the setting of ordinary category
theory. Note that [1] uses the term locally presentable categories for what we have chosen to call presentable
categories.

5.5.1 Presentability

Our main goal in this section is to establish the following characterization of presentable ∞-categories:

Theorem 5.5.1.1 (Simpson [45]). Let C be an ∞-category. The following conditions are equivalent:

(1) The ∞-category C is presentable.
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(2) The ∞-category C is accessible, and for every regular cardinal κ, the full subcategory Cκ admits κ-small
colimits.

(3) There exists a regular cardinal κ such C is κ-accessible and Cκ admits κ-small colimits.

(4) There exists a regular cardinal κ, a small ∞-category D which admits κ-small colimits, and an equiv-
alence Indκ D→ C.

(5) There exists a small ∞-category D such that C is an accessible localization of P(D).

(6) The ∞-category C is locally small, admits small colimits, and there exists a regular cardinal κ and a
(small) set S of κ-compact objects of C such that every object of C is a colimit of a small diagram
taking values in the full subcategory of C spanned by S.

Before giving the proof, we need a few preliminaries remarks. We first observe that condition (5) is poten-
tially ambiguous: it is unclear whether the accessibility hypothesis is on C or on the associated localization
functor L : P(D)→ P(D). The distinction turns out to be irrelevant, by virtue of the following:

Proposition 5.5.1.2. Let C be an accessible ∞-category, and let L : C → C be a functor satisfying the
equivalent conditions of Proposition 5.2.6.3. The following conditions are equivalent:

(1) The essential image LC of L is accessible.

(2) There exists a localization f : C→ D, where D is accessible, and an equivalence L ' g ◦ f .

(3) The functor L is accessible (when regarded as a functor from C to itself).

Proof. Suppose (1) is satisfied. Then we may take D = LC, f = L, and g to be the inclusion LC ⊆ C; this
proves (2). If (2) is satisfied, then Proposition 5.4.7.7 shows that f and g are accessible functors, so their
composite g ◦ f ' L is also accessible; this proves (3). Now suppose that (3) is satisfied. Choose a regular
cardinal κ such that C is κ-accessible and L is κ-continuous. The full subcategory Cκ consisting of κ-compact
objects of C is essentially small, so there exists a regular cardinal τ � κ such that LC is τ -compact for every
C ∈ Cκ. Let C′ denote the full subcategory of C spanned by the colimits of all τ -small, κ-filtered diagrams
in Cκ, and let LC′ denote the essential image of C′ under L. We note that LC′ is essentially small. Since L
is κ-continuous, LC is stable under small κ-filtered colimits in C. It follows that any τ -compact object of C

which belongs to LC is also τ -compact when viewed as an object of LC, so that LC′ consists of τ -compact
objects of LC. According to Proposition 5.4.2.2, to complete the proof that LC is accessible it will suffice
to show that LC′ generates LC under small, τ -filtered colimits.

Let X be an object of C. Then X can be written as a small κ-filtered colimit of objects of Cκ. The proof
of Proposition 5.4.2.11 shows that we can also write X as the colimit of a small τ -filtered diagram in C′.
Since L is preserves colimits, it follows that LX can be obtaines as the colimit of a small τ -filtered diagram
in LC′.

The proof of Theorem 5.5.1.1 will require a few easy lemmas:

Lemma 5.5.1.3. Let f : C→ D be a functor between small ∞-category which exhibits D as an idempotent
completion of C, and let κ be a regular cardinal. Then Indκ(f) : Indκ(C) → Indκ(D) is an equivalence of
∞-categories.

Proof. We first apply Proposition 5.3.5.11 to conclude that Indκ(f) is fully faithful. To prove that Indκ(f) is
an equivalence, we must show that it generates Indκ(D) under κ-filtered colimits. Since Indκ(D) is generated
under κ-filtered colimits by the essential image of the Yoneda embedding jD : D → Indκ(D). Let D be an
object of D. Then D is a retract of f(C) for some object C ∈ C. Then jD(D) is a retract of (Indκ(f)◦jC)(C).
Since Indκ(C) is idempotent complete (Corollary 4.4.5.16), we conclude that jD(D) belongs to the essential
image of Indκ(f).
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Lemma 5.5.1.4. Let F : C → D be a functor between ∞-categories which admit small, κ-filtered colimits,
and let G be a right adjoint to F . Suppose that G is κ-continuous. Then F carries κ-compact objects of C

to κ-compact objects of D.

Proof. Let C be a κ-compact object of C, eC : C→ Ŝ the functor corepresented by C, and eF (C) : D→ Ŝ the
functor corepresented by F (C). Since G is a right adjoint to F , we have an equivalence eF (C) = eC ◦G. Since
eC and G are both κ-continuous, eFC is κ-continuous. It follows that F (C) is κ-compact, as desired.

Proof of Theorem 5.5.1.1. Corollary 5.3.4.15 asserts that the full subcategory Cκ is stable under all κ-small
colimits which exist in C. This proves that (1) implies (2). The implications (2) ⇒ (3) ⇒ (4) are obvious.
We next prove that (4) implies (5). According to Lemma 5.5.1.3, we may suppose without loss of generality
that D is idempotent complete. Let Pκ(D) denote the full subcategory of P(D) spanned by the κ-compact
objects, let D′ be a minimal model for Pκ(D), and let g denote the composition

D
j→ Pκ(D)→ D′

where the second map is a homotopy inverse to the inclusion D′ ⊆ Pκ(D). Proposition 5.1.3.1 implies that g
is fully faithful and Proposition 5.3.4.18 implies that g admits a left adjoint f . It follows that F = Indκ(f)
and G = Indκ(g) are adjoint functors, and Proposition 5.3.5.11 implies that G is fully faithful. Moreover,
Proposition 5.3.5.12 implies that Indκ D′ is equivalent to P(D), so that C is equivalent to an accessible
localization of P(D′).

We now prove that (5) implies (6). Let D be a small ∞-category and L : P(D) → C an accessible
localization. Remark 5.2.6.4 implies that C admits small colimits and that C is generated under colimits by
the essential image of the composition

T : D
j→ P(D) L→ C .

To complete the proof of (6), it will suffice to show that there exists a regular cardinal κ such that the
essential image of T consists of κ-compact objects. Let G denote a left adjoint to L. By assumption, G
is an accessible functor so that there exists a regular cardinal κ such that G is κ-continuous. For each
object D ∈ D, the Yoneda image j(D) is a completely compact object of P(D), and in particular κ-compact.
Lemma 5.5.1.4 implies that T (D) is a κ-compact object of C.

We now complete the proof by showing that (6)⇒ (1). Assume that there exists a regular cardinal κ and
a set S of κ-compact objects of C such that every object of C is a colimit of objects in S. Let C′ ⊆ C be the
full subcategory of C spanned by S, and let C′′ ⊆ C be the full subcategory of C spanned by the colimits of
all κ-small diagrams with values in C′′. Since C′ is essentially small, there is only a bounded number of such
diagrams up to equivalence, so that C′′ is essentially small. Moreover, since every object of C is a colimit of
a small diagram with values in C′, the proof of Corollary 4.2.3.11 shows that every object of C can also be
obtained as the colimit of a small κ-filtered diagram with values in C′′. Corollary 5.3.4.15 implies that C′′

consists of κ-compact objects of C (a slightly more refined argument shows that, if κ > ω, then C′′ consists
of precisely the κ-compact objects of C). We may therefore apply Proposition 5.4.2.2 to deduce that C is
accessible.

Remark 5.5.1.5. The characterization of presentable∞-categories as localizations of presheaf∞-categories
was established by Simpson in [45] (using a somewhat different language). The theory of presentable ∞-
categories is essentially equivalent to the theory of combinatorial model categories ( see [45] and also [13] ).
Since most of the∞-categories we will meet are presentable, our study could also be phrased in the language
of model categories. However, we will try to avoid this language, since for many purposes the restriction to
presentable ∞-categories seems unnatural and is often technically inconvenient.

Remark 5.5.1.6. Let C be a presentable ∞-category, and let D be an accessible localization of C. Then D

is presentable: this follows immediately from characterization (5) of Proposition 5.5.1.1.
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Remark 5.5.1.7. Let C be a presentable∞-category. Since C admits arbitrary colimits, it is “tensored over
spaces”, as we explained in §4.4.4. In particular, the homotopy category of C is naturally tensored over the
homotopy category H: for each object C of C and every simplicial set S, there exists an object C ⊗ S of C,
well defined up to equivalence, equipped with isomorphisms

MapC(C ⊗ S,C ′) ' MapC(C,C ′)S

in the homotopy category H.

Example 5.5.1.8. The ∞-category S of spaces is presentable. This follows from characterization (1) of
Theorem 5.5.1.1, since S is accessible (Example 5.4.2.7) and admits (small) colimits by Corollary 4.2.4.6.

According to Theorem 5.5.1.1, if C is κ-accessible, then C admits small colimits if and only if the full
subcategory Cκ ⊆ C admits κ-small colimits. Roughly speaking, this is because arbitrary colimits in C can
be rewritten in terms of κ-filtered colimits and κ-small colimits of κ-compact objects. Our next result is
another variation on this idea; it may also be regarded as an analogue of Theorem 5.5.1.1 (which describes
functors, rather than ∞-categories):

Proposition 5.5.1.9. Let f : C → D be a functor between presentable ∞-categories. Suppose that C is
κ-accessible. The following conditions are equivalent:

(1) The functor f preserves small colimits.

(2) The functor f is κ-continuous, and the restriction f |Cκ preserves κ-small colimits.

Proof. Without loss of generality, we may suppose C = Indκ(C′), where C′ is a small, idempotent complete
∞-category which admits κ-small colimits. The proof of Theorem 5.5.1.1 shows that the inclusion Indκ(C′) ⊆
P(C′) admits a left adjoint L. Let α : idP(C′) → L be a unit for the adjunction, and let f ′ : C′ → D denote
the composition of f with the Yoneda embedding j : Indκ(C′). According to Theorem 5.1.5.6, there exists a
colimit-preserving functor F : P(C′) → D and an equivalence of f ′ with F ◦ j. Proposition 5.3.5.10 implies
that f and F | Indκ(C) are equivalent; we may therefore assume without loss of generality that f = F | Indκ(C).
Let F ′ = f ◦ L, so that α induces a natural transformation β : F → F ′ of functors from P(C′) to D. We
will show that β is an equivalence. Consequently, we deduce that the functor F ′ is colimit preserving. It
then follows that f is colimit preserving. To see this, we consider an arbitrary diagram p : K → Indκ(C′)
and choose a colimit p : K. → P(C′). Then q = L ◦ p is a colimit diagram in Indκ(C′), and f ◦ q = F ′ ◦ p is
a colimit diagram in D. Since q = q|K is equivalent (via α) to the original diagram p, we conclude that f
preserves the colimit of p in Indκ(C′), as well.

It remains to prove that β is an equivalence of functors. Let E ⊆ P(C′) denote the full subcategory
spanned by those objects X ∈ P(C′) for which β(X) : F (X) → F ′(X) is an equivalence in D. We wish to
prove that E = P(C′). Since F and F ′ are both κ-continuous functors, E is stable under κ-filtered colimits
in P(C′). It will therefore suffice to prove that E contains Pκ(C′).

It is clear that E contains Indκ(C′); in particular, E contains the essential image E′ of the Yoneda
embedding j : C′ → P(C′). According to Proposition 5.3.4.17, every object of Pκ(C′) is a retract of the
colimit of a κ-small diagram p : K → E′. Since C′ is idempotent complete, we may identify E′ with the full
subcategory of Indκ(C′) consisting of κ-compact objects. In particular, E′ is stable under κ-small colimits
and retracts in Indκ(C′). It follows that L restricts to a functor

L′ : Pκ(C)→ E′

which preserves κ-small colimits.
To complete the proof that Pκ(C′) ⊆ E, it will suffice to prove that F ′|Pκ(C) preserves κ-small colimits.

To see this, we write F |Pκ(C′) as a composition

Pκ(C′) L′→ E′
F |E′→ C,

where L′ preserves κ-small colimits (as noted above) and F |E′ = f |Cκ preserves κ-small colimits by assump-
tion.
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5.5.2 Representable Functors and the Adjoint Functor Theorem

An object F of the ∞-category P(C) of presheaves on C is representable if it lies in the essential image of the
Yoneda embedding j : C→ P(C). If F : Cop → S is representable, then F preserves limits: this follows from
the fact that F is equivalent to the composite map

Cop
j→ P(Cop)→ S

where j denotes the Yoneda embedding for Cop (which is limit-preserving by Proposition 5.1.3.2) and the
right map is given by evaluation at C (which is limit-preserving by Proposition 5.1.2.2). If C is presentable,
then the converse holds.

Lemma 5.5.2.1. Let S be a small simplicial set, let f : S → S be an object of P(Sop), and let F : P(Sop)→ Ŝ

be the functor corepresented by f . Then the composition

S
j→ P(Sop) F→ Ŝ

is equivalent to f .

Proof. According to Corollary A.3.6.2, we may can choose a (small) fibrant simplicial category C and a
categorical equivalence φ : S → N(Cop) such that f is equivalent to the composition of ψop with the nerve
of a simplicial functor f ′ : C→ Kan. Without loss of generality, we may suppose that f ′ ∈ SetC

∆ is strongly
cofibrant. Using Proposition A.3.6.1, we have an equivalence of ∞-categories

ψ : N(SetC
∆)◦)→ P(S).

We observe that the composition F ◦ψ can be identified with the simplicial nerve of the functor G : (SetC
∆)◦ →

Kan corepresented by f ′. The Yoneda embedding factors through ψ, via the adjoint of the composition

j′ : C[S]→ Cop → (SetC
∆)◦.

It follows that F ◦ j can be identified with the adjoint of the composition

C[S]
j′→ (SetC

∆)◦ G→ Kan .

This composition is equal to the functor f ′, so its simplicial nerve coincides with the original functor f .

Proposition 5.5.2.2. Let C be a presentable ∞-category, and let F : Cop → S be a functor. The following
are equivalent:

(1) The functor F is representable by an object C ∈ C.

(2) The functor F preserves small limits.

Proof. The implication (1) ⇒ (2) was proven above (for an arbitrary ∞-category C). For the converse, we
first treat the case where C = P(D), for some small ∞-category D. Let f : Dop → S denote the composition
of F with the (opposite) Yoneda embedding jop : Dop → P(D)op, and let F ′ : P(D)op → Ŝ denote the
functor represented by f ∈ P(D). We will prove that F and F ′ are equivalent. We observe that F and
F ′ both preserve small limits; consequently, according to Theorem 5.1.5.6, it will suffice to show that the
compositions f = F ◦ jop and f ′ = F ′ ◦ jop are equivalent. This follows immediately from Lemma 5.5.2.1.

We now consider the case where C is an arbitrary presentable∞-category. According to Theorem 5.5.1.1,
we may suppose that C is an accessible localization of a presentable∞-category C′ which has the form P(D),
so that the assertion for C′ has already been established. Let L : C′ → C denote the localization functor. The
functor F ◦ Lop : (C′)op → S preserves small limits, and is therefore representable by an object C ∈ C′. Let
S denote the set of all morphisms φ in C′ such that L(φ) is an equivalence in C. Without loss of generality,
we may identify C with the full subcategory of C′ consisting of S-local objects. By construction, C ∈ C′ is
S-local and therefore belongs to C. It follows that C represents the functor (F ◦Lop)|C, which is equivalent
to F .
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The representability criterion of Proposition 5.5.2.2 has many consequences, as now explain.

Lemma 5.5.2.3. Let X and Y be simplicial sets, let C be an ∞-category, and let p : X. × Y . → C be a
diagram. Suppose that:

(1) For every vertex x of X., the associated map px : Y . → C is a colimit diagram.

(2) For every vertex y of Y , the associated map py : X. → C is a colimit diagram.

Let ∞ denote the cone point of Y .. Then the restriction p∞ : X. → C is a colimit diagram.

Proof. Without loss of generality, we can suppose that X and Y are ∞-categories. Since the inclusion
X × {∞} ⊆ X × Y . is cofinal, it will suffice to show that the restriction p|(X × Y .). is a colimit diagram.
According to Proposition 4.3.2.9 p|(X × Y .) is a left Kan extension of p|(X × Y ). By transitivity, it suffices
to show that p|(X × Y ). is a colimit diagram. For this, it will suffice to prove the stronger assertion that
p|(X.×Y ). is a left Kan extension of p|(X ×Y ). Since Proposition 4.3.2.9 also implies that p|(X.×Y ) is a
left Kan extension of p|(X ×Y ), we may again apply transitivity and reduce to the problem of showing that
p|(X.×Y ). is a colimit diagram. Let∞′ denote the cone point of X.. Since the inclusion {∞′}×Y ⊆ X.×Y
is cofinal, we are reduced to proving that p∞′ : Y . → C is a colimit diagram, which follows from (1).

Corollary 5.5.2.4. A presentable ∞-category C admits all (small) limits.

Proof. Let P̂(C) = Fun(Cop, Ŝ), where Ŝ denotes the ∞-category of spaces which are not necessarily small,
and let j : C → P̂(C) be the Yoneda embedding. Since j is fully faithful, it will suffice to show that the
essential image of j admits small limits. The ∞-category P̂(C) admits all small limits (in fact, even limits
which are not necessarily small); it therefore suffices to show that the essential image of j is stable under
small limits. This follows immediately from Proposition 5.5.2.2 and Lemma 5.5.2.3.

Remark 5.5.2.5. Let A be a (small) partially ordered set. The ∞-category N(A) is presentable if and only
if every subset of A has a least upper bound. Corollary 5.5.2.4 can then be regarded as a generalization of
the following classical observation: if every subset of A has a least upper bound, then every subset of A has
a greatest lower bound (namely, a least upper bound for the collection of all lower bounds).

Remark 5.5.2.6. Now that we know that every presentable∞-category C has arbitrary limits, we can apply
an argument dual to that of Remark 5.5.1.7 to show that C is cotensored over S. In other words, for any
C ∈ C and every simplicial set X, there exists an object CX ∈ C (well defined up to equivalence) together
with a collection of natural isomorphisms

MapC(C ′, CX) ' MapC(C ′, C)X

in the homotopy category H.

We can now formulate a “dual” version of Proposition 5.5.2.2, which requires a slightly stronger hypoth-
esis.

Proposition 5.5.2.7. Let C be a presentable ∞-category, and let F : C → S be a functor. Then F is
corepresentable by an object of C if and only if F is accessible and preserves small limits.

Proof. The “only if” direction is clear, since every object of C is κ-compact for κ � 0. We will prove the
converse. Without loss of generality we may suppose that C is minimal (this assumption is a technical
convenience which will guarantee that various constructions below stay in the world of small ∞-categories).
Let C̃→ C denote the left fibration represented by F . Choose a regular cardinal κ such that C is κ-accessible
and F is κ-continuous, and let C̃

κ
denote the fiber product C̃×CCκ, where Cκ ⊆ C denotes the full subcategory

spanned by the κ-compact objects of C. The∞-category C̃
κ

is small (since C is assumed minimal). Corollary
5.5.2.4 implies that the diagram p : C̃

κ
→ C admits a limit p : (C̃

κ
)/ → C. Since the functor F preserves
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small limits, Corollary 3.3.4.3 implies that there exists a map q : (C̃
κ
)/ → C̃ which extends the inclusion

q : C̃
κ
⊆ C̃ and covers p. Let X̃0 ∈ C̃ denote the image of the cone point under q and X0 its image in C.

Then X̃0 determines a connected component of the space F (X0). Since C is κ-accessible, we can write X0

as a κ-filtered colimit of κ-compact objects {Xα} of C. Since F is κ-continuous, there exists a κ-compact
object X ∈ C such that the induced map F (X)→ F (X0) has nontrivial image in the connected component
classified by X̃0. It follows that there exists an object X̃ ∈ C̃ lying over Xα, and a morphism f : X̃ → X̃0

in C̃. Since C̃/q → C̃ is a right fibration, we can pull q back to obtain a map q′ : (C̃
κ
)/ → C̃ which extends q

and carries the cone point to X̃. It follows that q′ factors through C̃
κ
. We have a commutative diagram

C̃

��=
==

==
==

=

{X̃}

>>~~~~~~~~
i //

C̃
/

where i denotes the inclusion of the cone point. The map i is left anodyne, and therefore a covariant
equivalence in (Set∆)/C. It follows that C̃

κ
is a retract of {X} in the homotopy category of the covariant

model category (Set∆)/Cκ . Proposition 5.1.1.1 implies that F |Cκ is a retract of the Yoneda image j(X) in
P(Cκ). Since the ∞-category Cκ is idempotent complete and the Yoneda embedding j : Cκ → P(Cκ) is fully
faithful, we deduce that F |Cκ is equivalent to j(X ′), where X ′ ∈ Cκ is a retract of X. Let F ′ : C → S

denote the functor co-represented by X ′. We note that F |Cκ and F ′|Cκ are equivalent, and that both F
and F ′ are κ-continuous. Since C is equivalent to Indκ(Cκ), Proposition 5.3.5.10 guarantees that F and F ′

are equivalent, so that F is representable by X ′.

Remark 5.5.2.8. It is not difficult to adapt our proof of Proposition 5.5.2.7 to obtain an alternative proof
of Proposition 5.5.2.2.

From Propositions 5.5.2.2 and 5.5.2.7 we can deduce a version of the adjoint functor theorem:

Corollary 5.5.2.9 (Adjoint Functor Theorem). Let F : C→ D be functor between presentable∞-categories.

(1) The functor F has a right adjoint if and only if it preserves small colimits.

(2) The functor F has a left adjoint if and only if it is accessible and preserves small limits.

Proof. The “only if” directions follow from Propositions 5.2.3.5 and 5.4.7.7. We now prove the converse
direction of (2); the proof of (1) is similar but easier. Suppose that F is accessible and preserves small
limits. Let F ′ : D → S be a corepresentable functor. Then F ′ is accessible and preserves small limits, by
Proposition 5.5.2.7. It follows that the composition F ′ ◦ F : C → S is accessible and preserves small limits.
Invoking Proposition 5.5.2.7 again, we deduce that F ′ ◦F is representable. We now apply Proposition 5.2.4.2
to deduce that F has a left adjoint.

Remark 5.5.2.10. The proof of (1) in Corollary 5.5.2.9 works even if we do not assume that D is presentable.

5.5.3 Limits and Colimits of Presentable ∞-Categories

In this section, we will introduce an ∞-category whose objects are presentable ∞-categories, and study its
properties. In fact, we will introduce two such ∞-categories, which are (canonically) anti-equivalent to one
another. The basic observation is the following: given a pair of presentable∞-categories C and D, the proper
notion of “morphism” between them is a pair of adjoint functors

C
F // D
G
oo

Of course, either one of F and G determines the other up to canonical equivalence. We may therefore think
of either one as encoding the data of a morphism.
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Definition 5.5.3.1. Let Ĉat∞ denote the ∞-category of (not necessarily small) ∞-categories. We define
subcategories PrR,PrL ⊆ Ĉat∞ as follows:

(1) The objects of both PrR and PrL are the presentable ∞-categories.

(2) A functor F : C→ D between presentable∞-categories is a morphism in PrL if and only if F preserves
small colimits.

(3) A functor G : C → D between presentable ∞-categories is a morphism in PrR if and only if G is
accessible and preserves small limits.

As indicated above, the ∞-categories PrR and PrL are anti-equivalent to one another. To prove this, it
is convenient to introduce the following definition:

Definition 5.5.3.2. A map of simplicial sets p : X → S is a presentable fibration if it is both a Cartesian
fibration and a coCartesian fibration, and each fiber Xs = X ×S {s} is a presentable ∞-category.

The following result is simply a reformulation of Corollary 5.5.2.9:

Proposition 5.5.3.3. (1) Let p : X → S be a Cartesian fibration of simplicial sets, classified by a map
χ : Sop → Ĉat∞. Then p is a presentable fibration if and only if χ factors through PrR ⊆ Ĉat∞.

(2) Let p : X → S be a coCartesian fibration of simplicial sets, classified by a map χ : S → Ĉat∞. Then p

is a presentable fibration if and only if χ factors through PrL ⊆ Ĉat∞.

Corollary 5.5.3.4. For every simplicial set S, there is a canonical bijection

[S,PrL] ' [Sop,PrR]

where [S,C] denotes the collection of equivalence classes of objects of Fun(S,C). In particular, there is a
canonical isomorphism PrL ' (PrR)op in the homotopy category of ∞-categories.

Proof. According to Proposition 5.5.3.3, both [S,PrL] and [Sop,PrR] can be identified with the collection of
equivalence classes of presentable fibrations X → S.

We now commence our study of the ∞-category PrL (or, equivalently, the anti-equivalent ∞-category
PrR). The next few results express the idea that PrL ⊆ Ĉat∞ is stable under a variety of categorical
constructions.

Proposition 5.5.3.5. Let {Cα}α∈A be a family of ∞-categories indexed by a small set A, and let C =∏
α∈A Cα be their product. If each Cα is presentable, then C is presentable.

Proof. It follows from Lemma 5.4.7.2 that C is accessible. Let p : K → C be a diagram indexed by a small
simplicial set K, corresponding to a family of diagrams {pα : K → Cα}α∈A. Since each Cα is presentable,
each pα has a colimit pα : K. → Cα. These colimits determine a map p : K. → C which is a colimit of p.

Proposition 5.5.3.6. Let C be an presentable ∞-category, and let K be a small simplicial set. Then
Fun(K,C) is presentable.

Proof. According to Proposition 5.4.4.3, Fun(K,C) is accessible. It follows from Proposition 5.1.2.2 that if
C admits small colimits, then Fun(K,C) admits small colimits.

Remark 5.5.3.7. Let S be a (small) simplicial set. It follows from Example 5.4.2.7 and Corollary 5.1.2.3
that P(S) is a presentable ∞-category. Moreover, Theorem 5.1.5.6 has a natural interpretation in the
language of presentable ∞-categories: informally speaking, it asserts that the construction

S 7→ P(S)

is left adjoint to the inclusion functor from presentable ∞-categories to all ∞-categories.
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The following is a variant on Proposition 5.5.3.6:

Proposition 5.5.3.8. Let C and D be presentable ∞-categories. The ∞-category FunL(C,D) is presentable.

Proof. Since D admits small colimits, the∞-category Fun(C,D) admits small colimits (Proposition 5.1.2.2).
Using Lemma 5.5.2.3, we conclude that FunL(C,D) ⊆ Fun(C,D) is stable under small colimits. To complete
the proof, it will suffice to show that FunL(C,D) is accessible.

Choose a regular cardinal κ such that C is κ-accessible, and let Cκ be the full subcategory of C spanned
by the κ-compact objects. Propositions 5.5.1.9 and 5.3.5.10 imply that the restriction functor

FunL(C,D)→ Fun(Cκ,D)

is fully faithful, and its essential image is the full subcategory E ⊆ Fun(Cκ,D) spanned by those functors
which preserve κ-small colimits.

Since Cκ is essentially small. the ∞-category Fun(Cκ,D) is accessible (Proposition 5.4.4.3). To complete
the proof, we will show that E is an accessible subcategory of Fun(Cκ,D). For each κ-small diagram p : K →
Cκ, let E(p) denote the full subcategory of Fun(Cκ,D) which preserve the colimit of p. Then E =

⋂
p E(p),

where the intersection is taken over a set of representatives for all equivalence classes of κ-small diagrams in
Cκ. According to Proposition 5.4.7.10, it will suffice to show that each E(p) is an accessible subcategory of
Fun(Cκ,D). We now observe that there is a (homotopy) pullback diagram of ∞-categories

E(p)� _

��

// E′(p)� _

��
Fun(Cκ,D) // Fun(K.,D)

where E′ denotes the full subcategory of Fun(K.,D) spanned by the colimit diagrams. According to Propo-
sition 5.4.4.3, it will suffice to prove that E′(p) is an accessible subcategory of Fun(K.,D), which follows
from Example 5.4.7.9.

Remark 5.5.3.9. In the situation of Proposition 5.5.3.8, the presentable ∞-category FunL(C,D) can be
regarded as an internal mapping object in PrL. For every presentable ∞-category C′, a colimit-preserving
functor C′ → FunL(C,D) can be identified with a bifunctor C×C′ → D, which is colimit-preserving separately
in each variable. There exists a universal recipient for such a bifunctor: a presentable category which we
may denote by C⊗C′. The operation ⊗ endows PrL with the structure of a symmetric monoidal ∞-category.
Proposition 5.5.3.8 can be interpreted as asserting that this monoidal structure is closed.

Proposition 5.5.3.10. Let C be an ∞-category, and let p : K → C be a diagram in C indexed by a (small)
simplicial set K. If C is presentable, then the ∞-category C/p is also presentable.

Proof. According to Corollary 5.4.6.7, C/p is accessible. The existence of small colimits in C/p follows from
Proposition 1.2.13.8.

Proposition 5.5.3.11. Let C be an ∞-category, and let p : K → C be a diagram in C indexed by a small
simplicial set K. If C is presentable, then the ∞-category Cp/ is also presentable.

Proof. It follows from Corollary 5.4.5.16 that Cp/ is accessible. It therefore suffices to prove that every
diagram q : K ′ → Cp/ has a colimit in C. We now observe that (Cp/)q/ ' Cq′/ where q′ : K ?K ′ → C is the
map classified by q. Since C admits small colimits, Cq′/ has an initial object.

Proposition 5.5.3.12. Let

X′
q′ //

p′

��

X

p

��
Y′

q // Y
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be a diagram of ∞-categories which is homotopy Cartesian (with respect to the Joyal model structure).
Suppose further that X, Y, and Y′ are presentable, and that p and q are presentable functors. Then X′ is
presentable. Moreover, for any presentable ∞-category C and any functor f : C→ X, f is presentable if and
only if the compositions p′ ◦ f and q′ ◦ f are presentable. In particular ( taking f = idX ), p′ and q′ are
presentable functors.

Proof. Proposition 5.4.6.6 implies that X′ is accessible. It therefore suffices to prove that any diagram
f : K → X′ indexed by a small simplicial set K has a colimit in X′. Without loss of generality, we may
suppose that p and q are categorical fibrations, and that X′ = X×Y Y′. Let X be an initial object of Xq′◦f/
and let Y ′ be an initial object of Y′p′f/. Since p and q preserve colimits, the images p(X) and q(Y ′) are
initial objects in Ypq′f/, and therefore equivalent to one another. Choose an equivalence η : p(X) → q(Y ′).
Since q is a categorical fibration, η lifts to an equivalence η : Y → Y ′ in Y′p′f/ such that q(η) = η. Replacing
Y ′ by Y , we may suppose that p(X) = q(Y ) so that the pair (X,Y ) may be considered as an object of
X′f/ = Y′p′f/×Ypqf/

Xqf/. According to Lemma 5.4.5.2, it is an initial object of X′f/, so that f has a colimit
in X′. This completes the proof that X′ is accessible. The second assertion follows immediately from Lemma
5.4.5.5.

Proposition 5.5.3.13. The ∞-category PrL admits all small limits, and the inclusion functor PrL ⊆ Ĉat∞
preserves all small limits.

Proof. The proof of Proposition 4.4.2.6 shows that it will suffice to consider the case of pullbacks and small
products. The desired result now follows by combining Propositions 5.5.3.12 and 5.5.3.5.

Corollary 5.5.3.14. Let p : X → S be a presentable fibration of simplicial sets, where S is small. Then the
∞-category C of coCartesian sections of p is presentable.

Proof. According to Proposition 5.5.3.3, p is classified by a functor χ : S → PrL. Using Proposition 5.5.3.13,
we deduce that the limit of the composite diagram

S → PrL → Ĉat∞

is presentable. Corollary 3.3.4.2 allows us to identify this limit with the ∞-category C.

Our goal, in the remainder of this section, is to prove the analogue of Proposition 5.5.3.13 for the ∞-
category PrR (which will show that PrL is equipped with all small colimits as well as all small limits). The
main step is to prove that for every small diagram S → PrR, the limit of the composite functor

S → PrR → Ĉat∞

is presentable. As in the proof of Corollary 5.5.3.14, this is equivalent to the assertion that for any presentable
fibration p : X → S, the ∞-category C of Cartesian sections of p is presentable. To prove this, we will show
that the ∞-category MapS(S,X) is presentable, and that C is an accessible localization of MapS(S,X).

Lemma 5.5.3.15. Let p : M → ∆1 be a Cartesian fibration, let C denote the ∞-category of sections of p,
and let e : X → Y and e′ : X ′ → Y ′ be objects of C. If e′ is p-Cartesian, then the evaluation map

MapC(e, e′)→ MapM(Y, Y ′)

is a homotopy equivalence.

Proof. There is a homotopy pullback diagram of simplicial sets, whose image in the homotopy category H

is isomorphic to
MapC(e, e′) //

��

MapM(Y, Y ′)

��
MapM(X,X ′) // MapM(X,Y ′).
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If e′ is p-Cartesian, then the lower horizonal map is a homotopy equivalence, so the upper horizonal map is
a homotopy equivalence as well.

Lemma 5.5.3.16. Let p : M→ ∆1 be a Cartesian fibration. Let C denote the ∞-category of sections of p,
and C′ ⊆ C the full subcategory spanned by Cartesian sections of p. Then C′ is a reflective subcategory of C.

Proof. Let e : X → Y be an arbitrary section of p, and choose a Cartesian section e′ : X ′ → Y with the
same target. Since e′ is Cartesian, there exists a diagram

X //

��

Y

idY

��
X ′ // Y

in M, which we may regard as a morphism φ from e ∈ C to e′ ∈ C′. In view of Proposition 5.2.6.7, it
will suffice to show that φ exhibits e′ as a C′-localization of C. In other words, we must show that for any
Cartesian section e′′ : X ′′ → Y ′′, composition with φ induces a homotopy equivalence

MapC(e′, e′′)→ MapC(e, e′′).

This follows immediately from Lemma 5.5.3.15.

Proposition 5.5.3.17. Let p : X → S be a presentable fibration, where S is a small simplicial set. Then:

(1) The ∞-category C = MapS(S,X) of sections of p is presentable.

(2) The full subcategory C′ ⊆ C spanned by Cartesian sections of p is an accessible localization of C.

Proof. The accessibility of C follows from Proposition 5.4.7.11. Since p is a Cartesian fibration and the fibers
of p admit small colimits, C admits small colimits by Proposition 5.1.2.2. This proves (1).

For each edge e of S, let C(e) denote the full subcategory of C spanned by those maps S → X which
carry e to a p-Cartesian edge of X. By definition, C′ =

⋂
C(e). According to Lemma 5.5.4.21, it will suffice

to show that each C(e) is an accessible localization of C. Consider the map

θe : C→ MapS(∆1, X).

Proposition 5.1.2.2 implies that θe preserves all limits and colimits. Moreover, C(e) = θ−1
e Map′S(∆1, X),

where Map′S(∆1, X) denotes the full subcategory of MapS(∆1, X) spanned by p-Cartesian edges. According
to Lemma 5.5.4.20, it will suffice to show that Map′S(∆1, X) ⊆ MapS(∆1, X) is an accessible localization of
MapS(∆1, X). In other words, we may suppose S = ∆1. It then follows that evaluation at {1} induces a
trivial fibration C′ → X ×S {1}, so that C′ is presentable. It therefore suffices to show that C′ is a reflective
subcategory of C, which follows from Lemma 5.5.3.16.

Theorem 5.5.3.18. The ∞-category PrR admits small limits, and the inclusion functor PrR ⊆ Ĉat∞
preserves small limits.

Proof. Let χ : Sop → PrR be a small diagram, and let

χ : (S.)op → Ĉat∞

be a limit of χ in Cat∞. We will show that χ factors through PrR ⊆ Ĉat∞ and that χ is a limit when
regarded as a diagram in PrR.

We first show that χ carries each vertex to a presentable ∞-category. This is clear with the exception of
the cone point of (S.)op. Let p : X → S be a presentable fibration classified by χ. According to Corollary
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3.3.4.2, we may identify the image of the cone point under χ with the ∞-category C of Cartesian sections of
p. Proposition 5.5.3.17 implies that this ∞-category is presentable.

We next show that χ carries each edge of (S.)op to an accessible, limit-preserving functor. This is clear
for edges which are degenerate or belong to Sop. The remaining edges are in bijection with the vertices
of s, and connect those vertices to the cone point. The corresponding functors can be identified with the
composition

C ⊆ MapS(S,X)→ Xs,

where the second functor is given by evaluation at s. Proposition 5.5.3.17 implies that the inclusion i : C ⊆
MapS(S,X) is accessible and preserves small limits, and Proposition 5.1.2.2 implies that the evaluation map
MapS(S,X)→ Xs preserves all limits and colimits. This completes the proof that χ factors through PrR.

We now show that χ is a limit diagram in PrR. Since PrR is a subcategory of Ĉat∞ and χ is already a
limit diagram in Ĉat∞, it will suffice to verify the following assertion:

• If D is a presentable ∞-category, and F : D→ C has the property that each of the composite functors

D
F→ C

i
⊆ MapS(S,X)→ Xs

is accessible and limit-preserving, then F is accessible and limit-preserving.

Applying Proposition 5.5.3.17, we see that F is accessible and limit preserving if and only if i ◦ F is
accessible and limit preserving. We now conclude by applying Proposition 5.1.2.2.

5.5.4 Local Objects

According to Theorem 5.5.1.1, every presentable ∞-category arises as an (accessible) localization of some
presheaf ∞-category P(X). Consequently, understanding the process of localization is of paramount impor-
tance in the study of presentable ∞-categories. In this section, we will classify the accessible localizations of
an arbitrary presentable ∞-category C. The basic observation is that a localization functor L : C→ C is de-
termined, up to equivalence, by the collection S of all morphisms f such that Lf is an equivalence. Moreover,
a collection of morphisms S arises from an accessible localization functor if and only if S is strongly saturated
(Definition 5.5.4.5) and of small generation (Remark 5.5.4.8). Given any small collection of morphisms S in
C, there is a smallest saturated collection containing S: this permits us to define a localization S−1 C ⊆ C.
The ideas presented in this section go back (at least) to Bousfield; we refer the reader to [9] for a discussion
in a more classical setting.

Definition 5.5.4.1. Let C be an∞-category and S a collection of morphisms of C. We say that an object Z
of C is S-local if, for every morphism s : X → Y belonging to S, composition with s induces an isomorphism

MapC(Y, Z)→ MapC(X,Z)

in the homotopy category H of spaces.
A morphism f : X → Y of C is an S-equivalence if, for every S-local object Z, composition with f induces

a homotopy equivalence
MapC(Y, Z)→ MapC(X,Z)

is an isomorphism in H.

The following result provides a dictionary for relating localization functors to classes of morphisms:

Proposition 5.5.4.2. Let C be an ∞-category, and let L : C → C be a localization functor. Let S denote
the collection of all morphisms f in C such that Lf is an equivalence. Then:

(1) An object C of C is S-local if and only if it belongs to LC.
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(2) Every S-equivalence in C belongs to S.

(3) Suppose that C is accessible. The following conditions are equivalent:

(i) The ∞-category LC is accessible.

(ii) The functor L : C→ C is accessible.

(iii) There exists a (small) subset S0 ⊆ S such that every S0-local object is S-local.

Proof of (1) and (2). By assumption, L is left adjoint to the inclusion LC ⊆ C; let α : idC → L be a unit
map for the adjunction. We begin by proving (1). Suppose that X ∈ LC. Let f : Y → Z belong to S. Then
we have a commutative diagram

MapC(LZ,X) //

��

MapC(LY,X)

��
MapC(Z,X) // MapC(Y,X)

in the homotopy category H, where the vertical maps are given by composition with α and are homotopy
equivalences by assumption. Since Lf is an equivalence, the top horizontal map is also a homotopy equiva-
lence. It follows that the bottom horizontal map is a homotopy equivalence, so that X is S-local. Conversely,
suppose that X is S-local. According to Proposition 5.2.6.3, the map α(X) : X → LX belongs to S, so
that composition with α(X) induces a homotopy equivalence MapC(LX,X)→ MapC(X,X). In particular,
there exists a map LX → X whose composition with α(X) is homotopic to idX . Thus X is a retract of LX.
Since α(LX) is an equivalence, we conclude that α(X) is an equivalence, so that X ' LX and therefore X
belongs to the essential image of L, as desired. This proves (1).

Suppose that f : X → Y is an S-equivalence. We have a commutative diagram

X
f //

α(X)

��

Y

α(Y )

��
LX

Lf // LY

where the vertical maps are S-equivalences (by Proposition 5.2.6.3), so that Lf is also an S-equivalence.
Therefore LX and LY corepresent the same functor on the homotopy category hLC. Yoneda’s lemma implies
that Lf is an equivalence, so that f ∈ S. This proves (2).

The proof of (3) is somewhat more involved, and will require a few preliminaries.

Lemma 5.5.4.3. Let τ � κ be regular cardinals, and suppose that τ is uncountable. Let A be a κ-filtered
partially ordered set, A′ ⊆ A a τ -small subset, and

{fγ : Xγ → Yγ}γ∈C

a τ -small collection of natural transformations of diagrams in KanA. Suppose that for each α ∈ A, γ ∈ C,
the Kan complexes Xγ(α) and Yγ(α) are essentially τ -small. Suppose further that, for each γ ∈ C, the map
of Kan complexes lim−→A

fγ is a homotopy equivalence. Then there exists a τ -small, κ-filtered subset A′′ ⊆ A

such that A′ ⊆ A′′, and lim−→A′′
fγ |A′′ is a homotopy equivalence for each γ ∈ C.

Proof. Replacing each fγ by an equivalent transformation if necessary, we may suppose for each γ ∈ C,
α ∈ A, the map fγ(α) is a Kan fibration.
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Let α ∈ A, γ ∈ C, and let σ(α, γ) be a diagram

∂∆n //
� _

��

Xγ(α)

��
∆n // Yγ(α).

We will say that α′ ≥ α trivializes σ(α, γ) if the lifting problem depicted in the induced diagram

∂∆n //
� _

��

Xγ(α′)

��
∆n //

;;v
v

v
v

v
Yγ′(α).

admits a solution. Observe that, if B ⊆ A is filtered, then lim−→B
fγ |B is a Kan fibration, which is trivial if

and only if for every diagram σ(α, γ) as above, where α ∈ B, there exists α′ ∈ B such that α′ ≥ α, and
α′ trivializes σ(α, γ). In particular, since lim−→A

fγ is a homotopy equivalence, every such diagram σ(α, γ) is
trivialized by some α′ ≥ α.

We now define a sequence of τ -small subsets A(λ) ⊆ A, indexed by ordinals λ ≤ κ. Let A(0) = A′, and
let A(λ) =

⋃
λ′<λA(λ′) when λ is a limit ordinal. Supposing that λ < κ and that A(λ) has been defined, we

choose a set of representatives Σ = {σ(α, γ)} for all homotopy classes of diagrams as above, where α ∈ A(λ)
and γ ∈ C. Since the Kan complexes Xγ(α), Yγ(α) are essentially τ -small, we may choose the set Σ to be
τ -small. Each σ ∈ Σ is trivialized by some α′σ ∈ A; let B = {α′σ}σ∈Σ. Then B is τ -small. Now choose
a τ -small, κ-filtered subset A(λ + 1) ⊆ A containing A(λ) ∪ B (the existence of A(λ + 1) is guaranteed by
Lemma 5.4.2.10).

We now define A′′ to be A(κ); it is easy to see that A′′ has the desired properties.

Lemma 5.5.4.4. Let τ � κ be regular cardinals, and suppose that τ is uncountable. Let A be a κ-filtered
partially ordered set, and for every subset B ⊆ A, let

lim−→B
: Fun(N(B), S)→ S

denote a left adjoint to the diagonal functor. Let A′ ⊆ A be a τ -small subset and {fγ : Xγ → Yγ}γ∈C a
τ -small collection of morphisms in the ∞-category Fun(N(A), Sτ ) of diagrams N(A) → Sτ . Suppose that
lim−→A

(fγ) is an equivalence, for each γ ∈ C. Then there exists a τ -small, κ-filtered subset A′′ ⊆ A which
contains A′, such that each of the morphisms lim−→A′′

(fγ |N(A′′)) is an equivalence in S.

Proof. Using Proposition A.3.6.1, we may assume without loss of generality that each fγ is the simplicial
nerve of a natural transformation of functors from A to Kan. According to Theorem 4.2.4.1, we can identify
lim−→B

(Xγ |N(B)) and lim−→B
(Yγ |N(B)) with homotopy colimits in Kan. If B is filtered, then these homotopy

colimits reduce to ordinary colimits (since the class of weak homotopy equivalences in Kan is stable under
filtered colimits), and we may apply Lemma 5.5.4.3.

Proof of part (3) of Proposition 5.5.4.2. If LC is accessible, then Proposition 5.4.7.7 implies that both the
inclusion LC → C and L : C → LC are accessible functors, so that their composition is accessible. Thus
(i) ⇒ (ii). Suppose next that (ii) is satisfied. Let α : idC → L denote a unit for the adjunction between
L and the inclusion LC ⊆ C, and let κ be a regular cardinal such that C is κ-accessible and L is κ-
continuous. Without loss of generality, we may suppose that C is minimal, so that Cκ is a small ∞-
category. Let S0 = {α(X) : X ∈ Cκ}, and let Y ∈ C be S0-local. We wish to prove that Y is S-local. Let
FY : C→ Sop denote the functor represented by Y . Then α induces a natural transformation FY → FY ◦L.
The functors FY and FY ◦L are both κ-continuous, and by assumption α induces an equivalence of functors
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FY |Cκ → (FY ◦L)|Cκ when both sides are restricted to κ-compact objects. Proposition 5.3.5.10 now implies
that FY and FY ◦ L are equivalent, so that Y is S-local. This proves (iii).

We complete the proof by showing that (iii) implies (i). Let κ be a regular cardinal such that C is
κ-accessible and S0 is a set of morphisms between κ-compact objects of C. We claim that LC is stable
under κ-filtered colimits in C. To prove this, let p : K. → C be a colimit diagram, where K is small and
κ-filtered, and p = p|K factors through LC ⊆ C. Let s : X → Y be a morphism which belongs to S0,
and let s′ : FX → FY be the corresponding map of co-representable functors C → Ŝ. Since X and Y are
κ-compact by assumption, both pX : FX ◦ p and pY : FY ◦ p are colimit diagrams in Ŝ. The map s′ induces
a transformation pX → pY , which is an equivalence when restricted to K, and is therefore an equivalence
in general. It follows that MapC(Y, p(∞)) ' MapC(X, p(∞)), where ∞ denotes the cone point of K.. Thus
p(∞) is S0-local as desired.

Now choose an uncountable regular cardinal τ � κ such that Cκ is essentially τ -small. According to
Proposition 5.4.2.2, to complete the proof that C is accessible it will suffice to show that LC is generated by
τ -compact objects under τ -filtered colimits. Let X be an object of LC. Lemma 5.1.5.3 implies that X can
be written as the colimit of a small diagram p : I → Cκ, where I is κ-filtered. Using Proposition 5.3.1.16,
we may suppose that I is the nerve of a κ-filtered partially ordered set A. Let B denote the collection of all
κ-filtered, τ -small subsets Aβ ⊆ A for which the colimit of p|N(Aβ) is S0-local. Lemma 5.5.4.4 asserts that
every τ -small subset of A is contained in Aβ , for some β ∈ B. It follows that B is τ -filtered, when regarded
as partially ordered by inclusion, and that A =

⋃
β∈B Aβ . Using Proposition 4.2.3.8 and Corollary 4.2.3.10,

we can obtain X as the colimit of a diagram q : N(B) → C, where each q(β) is a colimit Xβ of p|N(Aβ).
The objects {Xβ}β∈B are S0-local and τ -compact by construction.

According to Proposition 5.5.4.2, every localization L of an∞-category C is determined by the class S of
morphisms f such that Lf is an equivalence. This raises the question: which classes of morphisms S arise
in this way? To answer this question, we will begin by isolating some of the most obvious properties enjoyed
by S.

Definition 5.5.4.5. Let C be a ∞-category which admits small colimits, and let S be a collection of
morphisms of C. We will say that S is strongly saturated if it satisfies the following conditions:

(1) Given a pushout diagram

C
f //

��

D

��
C ′

f ′ //// D′

in C, if f belongs to S, then so does f ′.

(2) The full subcategory of Fun(∆1,C) spanned by S is stable under small colimits.

(3) Suppose given a 2-simplex of C, corresponding to a diagram

X
f //

g

  A
AA

AA
AA

A Y
h

~~}}
}}

}}
}

Z.

If any two of f , g, and h belong to S, then so does the third.

Remark 5.5.4.6. We use the term strongly saturated, rather than simply saturated, to avoid confusion with
the rather closely related condition introduced in Definition A.1.2.2.
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Remark 5.5.4.7. Let C be an ∞-category which admits (small) colimits, and let S be a strongly saturated
class of morphisms of C. Let ∅ be an initial object of C. Condition (2) of Definition 5.5.4.5 implies that
id∅ : ∅ → ∅ belongs to S, since it is an initial object of Fun(∆1,C). Any equivalence in C is a pushout of
id∅, so condition (1) implies that S contains all equivalences in C. It also follows from condition (1) that if
f : C → D belongs to S and f ′ : C → D is homotopic to f , then f ′ belongs to S (since f ′ is a pushout of
f). Note also that condition (2) implies that S is stable under retracts, since any retract of a morphism f
can be written as a colimit of copies of f (Proposition 4.4.5.12).

Remark 5.5.4.8. Let C be an∞-category which admits colimits. Given any collection {Sα}α∈A of strongly
saturated classes of morphisms of C, the intersection S =

⋂
α∈A Sα is also strongly saturated. It follows that

any collection S0 of morphisms in C is contained in a smallest strongly saturated class of morphisms S. In
this case we will also write S = S0; we refer to it as the strongly saturated class of morphisms generated by
S0. We will say that S is of small generation if S = S0, where S0 ⊆ S is small.

Remark 5.5.4.9. Let C be an∞-category which admits (small) colimits. Let S be a strongly saturated class
of morphisms of C. If f : X → Y lies in S and K is a simplicial set, then the induced map X ⊗K → Y ⊗K
(which is well-defined up to equivalence) lies in S. This follows from the closure of S under colimits. We
will use this observation in the proof of Proposition 5.5.4.18, in the case where K = ∂∆n is a (simplicial)
sphere.

Example 5.5.4.10. Let C be an ∞-category which admits (small) colimits, and let S denote the class of
all equivalences in C. Then S is strongly saturated; it is clearly the smallest strongly saturated class of
morphisms of C.

Remark 5.5.4.11. Let F : C′ → C be a functor between∞-categories. Suppose that C and C′ admit (small)
colimits, and that F preserves (small) colimits. Let S be a strongly saturated class of morphisms in C′. Then
F−1S is a strongly saturated class of morphisms of C. In particular, the collection of all morphisms f of C′

such that F (f) is an equivalence is strongly saturated.

Lemma 5.5.4.12. Let C be an ∞-category which admits small colimits, let S0 be a class of morphisms in
C, and let S denote the collection of all S-equivalences. Then S is strongly saturated.

Proof. For each object X ∈ C, let FX : C→ Sop denote the functor represented by X, and let S(X) denote
the collection of all morphisms f such that FX(f) is an equivalence. Since FX preserves small colimits,
Remark 5.5.4.11 implies that S(X) is strongly saturated. We now observe that S is the intersection

⋂
S(X),

where X ranges over the class of all S0-local objects of C.

Lemma 5.5.4.13. Let C be an∞-category which admits small colimits, let S be a strongly saturated collection
of morphisms of C, and let C ∈ C be an object. Let D ⊆ CC/ be the full subcategory of CC/ spanned by those
objects C → C ′ which belong to S. Then D is stable under small colimits in CC/.

Proof. The proofs of Corollary 4.2.3.11 and 4.4.2.4 show that it will suffice to prove that D is stable under
filtered colimits, pushouts, and contains the initial objects of CC/. The last condition is equivalent to
the requirement that S contains all equivalences, which follows from Remark 5.5.4.7. Now suppose that
p : K. → CC/ is a colimit of p = p|K, where K is either filtered or equivalent to Λ2

0, and that p(K) ⊆ D.
We can identify p with a map P : K. ×∆1 → C such that P |K. × {0} is the constant map taking the value
C ∈ C. Since K is weakly contractible, P |K. × {0} is a colimit diagram in C. The map P |K. × {1} is the
image of a colimit diagram under the left fibration CC/ → C; since K is weakly contractible, Proposition
4.4.2.8 implies that P |K. × {1} is a colimit diagram. We now apply Proposition 5.1.2.2 to deduce that
P : K. → C∆1

is a colimit diagram. Since S is stable under colimits in C∆1
, we conclude that P carries the

cone point of K. to a morphism belonging to S, as we wished to show.

Lemma 5.5.4.14. Let C be an ∞-category which admits small filtered colimits, let κ be an uncountable
regular cardinal, let A and B be κ-filtered partially ordered sets, and let p0 : N(A0)→ Cκ and p1 : A1 → Cκ
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be two diagrams which have the same colimit. Let A′′0 ⊆ A0, A′′1 ⊆ A1 be κ-small subsets. Then there exist
κ-small, filtered subsets A′0 ⊆ A0, A′1 ⊆ A1 such that A′′0 ⊆ A′0, A

′′
1 ⊆ A′1, and the diagrams p0|N(A′0),

p1|N(A′1) have the same colimit in C.

Proof. Let p0, p1 be colimits of p0 and p1, respectively, which carry the cone points to the same object
C ∈ C. Let B = A′′0 ∪A′′1 ∪ Z≥0 ∪ {∞}, which we regard as a partially ordered set so that

N(B) ' ((N(A′′0)
∐

N(A′′1)) ?N(Z≥0))..

We will construct sequences of elements

{a0 ≤ a2 ≤ . . .} ⊆ {a ∈ A0 : (∀a′′ ∈ A′′0)[a′′ ≤ a]}

{a1 ≤ a3 ≤ . . .} ⊆ {a ∈ A1 : (∀a′′ ∈ A′′1)[a′′ ≤ a]}

and a diagram q : N(B)→ C such that

q|(N(A′′0) ∪N{0, 2, 4, . . .}). = p0|N(A′′0 ∪ {a0, a2, . . .}).

q|(N(A′′1) ∪N{1, 3, 5, . . .}). = p1|N(A′′1 ∪ {a1, a3, . . .})..

Supposing that this has been done, we take A′0 = A′′0 ∪{a0, a2, . . .}, A′1 = A′′1 ∪{a1, a3, . . .}, and observe that
the colimits of p0|N(A′0) and p1|N(A′1) are both equivalent to the colimit of q|N(Z≥0).

The construction is by recursion; let us suppose that the sequence a0, a1, . . . , an−1 and the map qn =
q|((N(A′′0)

∐
N(A′′1)) ? (N{0, . . . , n − 1}). have already been constructed (when n = 0, we observe that q0

is uniquely determined by p0 and p1). For simplicity we will treat only the case where n is even; the case
where n is odd can be handled by a similar argument.

Let qn = qn|(N(A′′0)
∐

N(A′′1)) ? N{0, . . . , n − 1} and q′n = qn|N(A′′0) ? N{0, 2, . . . , n − 2}. According to
Corollary 5.3.4.14, the left fibrations Cqn/ → C and Cq′n/ → C are κ-compact. Let A0(n) = {a ∈ A0 : (∀a′′ ∈
A′′0 ∪ {a0, . . . , an−2})[a′′ ≤ a]}, and let X = Cqn/×C N(A0(n))., X ′ = Cq′n/×C N(A0(n))., so that X and X ′

are left fibrations classified by colimit diagrams N(A0(n)). → S. Form a pullback diagram

Y //

��

X

��
N(A0(n)). // X ′

where the left vertical map is a left fibration (by Proposition 2.1.2.2) and the bottom horizontal map is
determined by p|N(A′′0 ∪ {0, . . . , n − 2}) ? N(A0(n)).. It follows that the diagram is a homotopy pullback,
so that Y → N(A0(n)). is also a left fibration classified by a colimit diagram N(A0(n)). → S. The map qn
determines a vertex v of Y lying over the cone point of N(A0(n)).. According to Proposition 3.3.5.5, the
inclusion Y ×N(A0(n)). N(A0(n)) ⊆ Y is a weak homotopy equivalence of simplicial sets. It follows that there
exists an edge e : v′ → v of Y which joins v to some vertex v′ lying over an element a ∈ A0(n). We now
define an = a, and observe that the edge e corresponds to the desired extension qn+1 of qn.

Lemma 5.5.4.15. Let C be a presentable ∞-category, let S be a strongly saturated collection of morphisms
in C, and let D ⊆ Fun(∆1,C) be the full subcategory spanned by S. The following conditions are equivalent:

(1) The ∞-category D is accessible.

(2) The ∞-category D is presentable.

(3) The strongly saturated class S is of small generation.
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Proof. We observe that D is stable under small colimits in Fun(∆1,C), and therefore admits small colimits;
thus (1)⇒ (2). To see that (2) implies (3), we choose a small collection S0 of morphisms in C which generates
D under colimits; it is then obvious that S0 generates S as a strongly saturated class of morphisms.

Now suppose that (3) is satisfied. Choose a small collection of morphisms {fβ : Xβ → Yβ} which
generates S and an uncountable regular cardinal κ such that C is κ-accessible and each of the objects Xβ ,
Yβ is κ-compact. We will prove that D is κ-accessible.

It is clear that D is locally small and admits κ-filtered colimits. Let D′ ⊆ D be the collection of all
morphisms f : X → Y such that f belongs to S, where both X and Y are κ-compact. Lemma 5.3.4.9
implies that each f ∈ D′ is a κ-compact object of Fun(∆1,C), and in particular a κ-compact object of
D. Assume for simplicity that C is a minimal ∞-category, so that D′ is small. According to Proposition
5.3.5.10, the inclusion D′ ⊆ D is equivalent to j ◦ F , where j : D′ → Indκ D′ is the Yoneda embedding and
F : Indκ D′ → D is κ-continuous. Proposition 5.3.5.11 implies that F is fully faithful; let D′′ denote its
essential image. To complete the proof, it will suffice to show that D′′ = D. Let S′′ ⊆ S denote the collection
of objects of D′′ (which we may identify with morphisms in C). By construction, S′′ contains the collection
of morphisms {fβ} which generates S. Consequently, to prove that S′′ = S, it will suffice to show that S′′

is strongly saturated.
It follows from Proposition 5.5.1.9 that D′′ ⊆ Fun(∆1,C) is stable under small colimits. We next verify

that S′′ is stable under pushouts. Let K = Λ2
0, and let p : K. → C be a colimit of p = p|K,

X
f //

��

Y

��
X ′ f ′ // Y ′

such that f belongs to S′′. The proof of Proposition 5.4.4.3 shows that we can write p as a colimit of a
diagram q : N(A)→ Fun(Λ2

0,C
κ), where A is a κ-filtered partially ordered set. For α ∈ A, we let pα denote

the corresponding diagram, which we may depict as

X ′
α ← Xα

fα→ Yα.

For each A′ ⊆ A, we let pA′ denote a colimit of q|N(A′), which we will denote by

X ′
A′ ← XA′

fA′→ YA′ .

Let B denote the collection of κ-small, filtered subsets A′ ⊆ A such that the fA′ belongs to S′′. Since f ∈ S′′,
we conclude that f can be obtained as the colimit of a κ-filtered diagram N(A′) → D′, Applying Lemma
5.5.4.14, we deduce that B is κ-filtered, and that A =

⋃
A′∈B A

′. Using Proposition 4.2.3.4 and Corollary
4.2.3.10, we deduce that p is the colimit of a diagram q′ : N(B)→ Fun(Λ2

0,C), where q′(A′) = pA′ . Replacing
A by B, we may suppose that each fα belongs to S′.

Let lim−→ : Fun(Λ2
0,C)→ Fun(∆2,C) be a colimit functor (that is, a left adjoint to the restriction functor).

Lemma 5.5.2.3 implies that we may identify p with a colimit of the diagram lim−→◦q. Consequently, the
morphism f ′ can be written as a colimit of morphisms f ′α which fit into pushout diagrams

Xα
fα //

��

Yα

��
X ′
α

f ′α // Y ′α.

Since fα ∈ S′′ ⊆ S, we conclude that f ′α ∈ S. Since X ′
α and Y ′α are κ-compact, we deduce that f ′α ∈ S′′.

Since D′′ is stable under colimits, we deduce that f ′ ∈ S′′, as desired.
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We now complete the proof by showing that S′′ has the two-out-of-three property, using the same style
of argument. Let σ : ∆2 → C be a simplex corresponding to a diagram

X
f //

g

  @
@@

@@
@@

Y

h��~~
~~

~~
~

Z

in C. We will show that if f, g ∈ S′′, then h ∈ S′′: the argument in the other two cases is the same. The
proof of Proposition 5.4.4.3 shows that we can write σ as the colimit of a diagram q : N(A)→ Fun(∆2,Cκ),
where A is a κ-filtered partially ordered set. For each α ∈ A, we will denote the corresponding diagram by

Xα
fα //

gα

!!D
DD

DD
DD

D Yα

hα}}{{
{{

{{
{{

Zα.

Arguing as above, we may assume (possibly after changing A and q) that each fα belongs to S′′. Repeating
the same argument, we may suppose that gα belongs to S′′. Since S has the two-out-of-three property, we
conclude that each hα belongs to S. Since Xα and Zα are κ-compact, we then have hα ∈ S′′. The stability
of D′′ under colimits now implies that h ∈ S′′, as desired.

Lemma 5.5.4.16. Let C be an ∞-category, and let f : C → D, g : C → E be morphisms in C. Then there
is a natural identification of MapCC/

(f, g) with the homotopy fiber of the map

MapC(D,E)→ MapC(C,E)

induced by composition with f , where the fiber is taken over the point corresponding to g.

Proof. We have a commutative diagram of simplicial sets

Cf/×CC/
{g}

φ

��

// Cf/×C{E}

φ′

��

// Cf/

φ′′

��
{g} // CC/×C{E} // CC/

where both squares are pullbacks. Proposition 2.1.2.2 asserts that φ′′ is a left fibration, so that φ′ and φ
are left fibrations as well. Since CC/×C{E} = HomL

C(C,E) is a Kan complex, the map φ′ is actually a Kan
fibration (Lemma 2.1.3.2), so that the square on the left is homotopy pullback, and identifies

Cf/×CC/
{g} ' MapCC/

(f, g)

with the homotopy fiber of φ′ over g; we conclude by observing that φ′ is a model for the map

MapC(D,E)→ MapC(C,E)

given by composition with f .

Lemma 5.5.4.17. Let

X
f //

g

��

X ′

��
Y

f ′ // Y ′
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be a pushout diagram in an ∞-category C. Then there exists an isomorphism

MapCX/
(f, g) ' MapCY/

(f ′, idY )

in the homotopy category H.

Proof. According to Corollary A.3.6.2, we can assume without loss of generality that C is the nerve of a
fibrant simplicial category D, and that the diagram in question is the nerve of a commutative diagram

X
f //

g

��

X ′

��
Y

f ′ // Y ′

in D. Theorem 4.2.4.1 implies that this diagram is homotopy coCartesian in D, so that we have a homotopy
pullback diagram

MapD(Y ′, Y )
φ //

��

MapD(Y, Y )

��
MapD(X ′, Y )

φ′ // MapD(X,Y )

of Kan complexes. Consequently, we obtain an isomorphism in H between the homotopy fiber of φ over idY
and the homotopy fiber of φ′ over g. According to Lemma 5.5.4.16, these homotopy fibers may be identified
with MapCY/

(f ′, idY ) and MapCX/
(f, g), respectively.

Proposition 5.5.4.18. Let C be a presentable ∞-category, and let S be a (small) set of morphisms of C.
Let S denote the strongly saturated class of morphisms generated by S. Let C′ ⊆ C denote the full subcategory
of C consisting of S-local objects. Then:

(1) For each object C ∈ C, there exists a morphism s : C → C ′ such that C ′ is S-local and s belongs to S.

(2) The ∞-category C′ is presentable.

(3) The inclusion C′ ⊆ C has a left adjoint L.

(4) For every morphism f of C, the following are equivalent:

(i) The morphism f is an S-equivalence.

(ii) The morphism f belongs to S.

(iii) The induced morphism Lf is an equivalence.

Proof. To prove (1), we take C to be an arbitrary object of C, let D be the full subcategory of Fun(∆1,C)
spanned by the elements of S, and form a fiber diagram

DC
//

��

D

��
{C} // Fun({0},C).

Since S is stable under pushouts, the right vertical map is a coCartesian fibration, so that the above diagram
is homotopy Cartesian by Proposition 3.3.2.3. Lemma 5.5.4.15 asserts that D is accessible, so that DC is
accessible by Proposition 5.4.6.6. Lemma 5.5.4.13 now implies that DC is presentable, so that DC has a final
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object s : C → C ′ by Corollary 5.5.2.4. The morphism s belongs to S by construction; we will complete the
proof of (1) by showing that C ′ is S-local.

Let t : X → Y be an arbitrary morphism in C which belongs to S. We wish to show that composition
with t induces a homotopy equivalence φ : MapC(Y,C ′) → MapC(X,C ′). Let g : X → C ′ be an arbitrary
morphism; using Lemma 5.5.4.16 we may identify MapCX/

(t, g) with the homotopy fiber of φ over the base
point g of MapC(X,C ′). We wish to show that this space is contractible. Form a pushout diagram

X

g

��

t // Y

��
C ′

t′ // C ′′

in the ∞-category C. Lemma 5.5.4.17 implies the existence of a homotopy equivalence MapCX/
(t, g) '

MapCC′/
(t′, idC′). It will therefore suffice to prove that MapCC′/

(t′, idC′) is contractible. Since t′ is a
pushout of t, it belongs to S. Let σ be a 2-simplex of C classifying a diagram

C ′

t′

!!C
CC

CC
CC

C

C

s

??~~~~~~~~ s′ // C ′′,

so that s′ is a composition of the morphisms s and t′ in C, and therefore also belongs to S. Applying Lemma
5.5.4.16 again, we may identify

MapCC′/
(t′, idC′) ' MapCs/

(σ, s1(s))

with the homotopy fiber of the map

MapCC/
(s′, s)→ MapCC/

(s, s).

given by composition with σ. By construction, DC is a full subcategory of CC/ which contains s and s′, and s
is a final object of DC . In view of the equivalence of CC/ with CC/, we conclude that the spaces MapCC/

(s′, s)
and MapCC/

(s, s) are contractible, so that φ is a homotopy equivalence as desired. This completes the proof
of (1).

The equivalence (1)⇔ (3) follows immediately from Proposition 5.2.6.7.
We now prove (4). Lemma 5.5.4.12 implies that the collection of S-equivalences is strongly saturated

class of morphisms containing S; it therefore contains S, so that (ii) ⇒ (i). Now suppose that f : X → Y
is such that Lf is an equivalence, and consider the diagram

X //

""E
EEEEEEE

��

Y

��
LX // LY.

Our proof of (1) shows that the vertical morphisms belong to S, and the lower horizontal arrow belongs
to S by Remark 5.5.4.7. Two applications of the two-out-of-three property now show that f ∈ S, so that
(iii) ⇒ (ii). If f is an S-equivalence, then we may again use the above diagram and the two-out-of-three
property to conclude that Lf is an equivalence. It follows that LX and LY co-represent the same functor
on the homotopy category hC′, so that Yoneda’s lemma implies that Lf is an equivalence. Thus (i)⇒ (iii)
and the proof of (4) is complete.

It remains to prove (2). Remark 5.2.6.4 implies that LC admits small colimits, so it will suffice to prove
that LC is accessible. According to Proposition 5.5.4.2, this follows from the implication (iii) ⇒ (i) of
assertion (4).
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Proposition 5.5.4.18 gives a clear picture of the collection of all accessible localizations of a presentable
∞-category C. For any (small) set of morphisms S in C, the full subcategory S−1 C ⊆ C consisting of S-local
objects is a localization of C, and every localization arises in this way. Moreover, the subcategories S−1 C

and T−1 C coincide if and only if S and T generate the same strongly saturated class of morphisms. We
will also write S−1 C for the class of S-local objects of C in the case where S is not small; however, this is
generally only a well-behaved object in the case where there is a (small) subset S0 ⊆ S which generates the
same strongly saturated class of morphisms.

Proposition 5.5.4.19. Let f : C → D be a presentable functor between presentable ∞-categories, let S be
strongly saturated class of morphisms of D which is of small generation. Then f−1S is of small generation
( as a strongly saturated class of morphisms of C ).

Proof. Replacing D by S−1 D if necessary, we may suppose that S consists of precisely the equivalences in
D. Let ED ⊆ Fun(∆1,D) denote the full subcategory spanned by those morphisms which are equivalences
in D, and let EC ⊆ Fun(∆1,C) denote the full subcategory spanned by those morphisms which belong to
f−1S. We have a homotopy Cartesian diagram of ∞-categories

EC
//

��

ED

��
Fun(∆1,C) // Fun(∆1,D).

The ∞-category ED is equivalent to D, and therefore presentable. The ∞-categories Fun(∆1,C) and
Fun(∆1,D) are presentable by Proposition 5.5.3.6. It follows from Proposition 5.5.3.12 that EC is pre-
sentable. In particular, there is a small collection of objects of EC which generates EC under colimits, as
desired.

Let C be a presentable ∞-category. We will say that a full subcategory C0 ⊆ C is strongly reflective if
it is the essential image of an accessible localization functor. Equivalently, C0 is strongly reflective if it is
presentable, stable under equivalence in C, and the inclusion C0 ⊆ C admits a left adjoint. According to
Proposition 5.5.4.18, C0 is strongly reflective if and only if there exists a (small) set S of morphisms of C

such that C0 is the full subcategory of C spanned by the S-local objects. For later use, we record a few easy
stability properties enjoyed by the collection of strongly reflective subcategories of C:

Lemma 5.5.4.20. Let f : C→ D be a presentable functor between presentable ∞-categories, and let C0 ⊆ C

be a strongly reflective subcategory. Let f∗ denote a right adjoint of f , and let D0 ⊆ D be the full subcategory
spanned by those objects D ∈ D such that f∗D ∈ C0. Then D0 is a strongly reflective subcategory of D.

Proof. Let S be a (small) set of morphisms of C such that C0 is the full subcategory of C spanned by the
S-local objects. Then D0 is the full subcategory of D spanned by the f(S)-local objects.

Lemma 5.5.4.21. Let C be a presentable ∞-category, and let {Cα}α∈A be a family of full subcategories of C

indexed by a (small) set A. Suppose that each Cα is strongly reflective. Then
⋂
α∈A Cα is strongly reflective.

Proof. For each α ∈ A, choose a (small) set S(α) of morphisms of C such that Cα is the full subcategory of C

spanned by the S(α)-local objects. Then
⋂
α∈A Cα is the full subcategory of C spanned by the

⋃
α∈A S(α)-

local objects.

Lemma 5.5.4.22. Let C be a presentable ∞-category and K a (small) simplicial set. Let D denote the full
subcategory of Fun(K/,C) spanned by those diagrams p : K/ → C which are limits of p = p|K. Then D is a
strongly reflective subcategory of C.
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Proof. The restriction functor D → Fun(K,C) is an equivalence of ∞-categories. This proves that D is
accessible. Let s : Fun(K,C)→ D be a homotopy inverse to the restriction map. Then the composition

Fun(K.,C)→ Fun(K,C) s→ D

is left adjoint to the inclusion.

We conclude this section by giving a universal property which characterizes the localization S−1 C.

Proposition 5.5.4.23. Let C be a presentable ∞-category, and D an arbitrary ∞-category. Let S be a
(small) set of morphisms of C, and L : C → S−1 C ⊆ C an associated (accessible) localization functor.
Composition with L induces a functor

η : FunL(S−1 C,D)→ FunL(C,D).

The functor η is fully faithful, and the essential image of η consists of those functors f : C → D such that
f(s) is an equivalence in D, for each s ∈ S.

Proof. Let α : idC → L be a unit for the adjunction between L and the inclusion S−1 C ⊆ C. We first observe
that every functor f0 : S−1 C → D admits a right Kan extension f : C → D. To prove this, we may first
replace f0 by the equivalent diagram g0 = f0 ◦ (L|S−1 C), and define g = f0 ◦ L. To prove that g is a right
Kan extension of g0, it suffices to show that for each object X ∈ C, the diagram

p : (S−1 C)/X/ → C
L→ S−1 C

f0→ D

exhibits f0(LX) as a limit of p = p|(S−1 C)/X). For this, we note that an S-localization map α(X) : X → LX
is an initial object of (S−1 C)X/ (Remark 5.2.6.6), and that f0(Lα(X)) is an equivalence by Proposition
5.2.6.3.

Let X denote the full subcategory of DC spanned by those functors f : C → D which are right Kan
extensions of f |S−1 C. According to Proposition 4.3.2.15, the restriction map X→ Fun(S−1 C,D) is a trivial
fibration. Let η : Fun(S−1 C,D) → Fun(C,D) be given by composition with L. The above argument shows
that η factors through X. Moreover, the composition of η with the restriction map is homotopic to the
identity on Fun(S−1 C,D). It follows that η is an equivalence of ∞-categories.

We have a commutative diagram

FunL(S−1 C,D)
η //

��

FunL(C,D)

��
Fun(S−1 C,D)

η // Fun(C,D)

where the vertical maps are inclusions of full subcategories, and the lower horizontal map is fully faithful.
It follows that η is fully faithful. To complete the proof, we must show that a functor f : C→ D belongs to
the essential image of η if and only if f(s) is an equivalence for each s ∈ S. The “only if” direction is clear,
since the functor L carries each element of S to an equivalence in C. Conversely, suppose that f carries each
s ∈ S to an equivalence. The natural transformation α gives a map of functors α(f) : f → f ◦ L; we wish
to show that α(f) is an equivalence. Equivalently, we wish to show that for each object X ∈ C, f carries
the map α(X) : X → LX to an equivalence in D. Let S′ denote the class of all morphisms φ in C such that
f(φ) is an equivalence in D. By assumption, S ⊆ S′. Lemma 5.5.4.12 implies that S′ is strongly saturated,
so that Proposition 5.5.4.18 asserts that α(X) ∈ S′, as desired.
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5.5.5 Truncated Objects

Let X be a topological space. The first step in the homotopy-theoretic analysis of the space X is to divide
X into path components. The situation can be described as follows: we associate to X a set π0X, which
we may view as a discrete topological space. There is a map f : X → π0X which collapses each component
of X to a point. If X is a sufficiently nice space (for example, a CW complex), then the path components
of X are open, so f is continuous. Moreover, f is universal among continuous maps from X into a discrete
topological space.

The next step in the analysis of X is to consider its fundamental group π1X, which (provided that X is
sufficiently nice) may be studied by means of a universal cover X̃ of X. However, it is important to realize
that neither π1X nor X̃ is invariantly associated to X: both require a choice of base point. The situation can
be described more canonically as follows: to X we can associate a fundamental groupoid π(X), and a map
φ from X to the classifying space Bπ(X). The universal cover X̃ of X can be identified (up to homotopy
equivalence) with the homotopy fibers of the map φ. The classifying space Bπ(X) can be regarded as a
“quotient” of X, obtained by killing all of the higher homotopy groups of X. Like π0X, it can be described
by a universal mapping property.

To continue the analysis, we first recall that a space Y is said to be k-truncated if the homotopy groups
of Y vanish in dimensions larger than k (see Definition 2.2.4.1). Every (sufficiently nice) topological space
X admits an essentially unique Postnikov tower

X → . . .→ τ≤nX → . . .→ τ≤−1X

where τ≤iX is i-truncated, and is universal (in a suitable homotopy-theoretic sense) among i-truncated
spaces which admit a map from X. For example, we can take τ≤0X = π0X, considered as a discrete space,
and τ≤1X = Bπ(X). Moreover, we can recover the space X (up to weak homotopy equivalence) by taking
the homotopy limit of the tower.

The objective of this section is to construct an analogous theory in the case where X is not a space, but
an object of some (abstract) ∞-category C. We begin by observing that the condition that a space X is
k-truncated can be reformulated in more categorical terms: a Kan complex X is k-truncated if and only if,
for every simplicial set S, the mapping space MapSet∆(S,X) is k-truncated. This motivates the following:

Definition 5.5.5.1. Let C be an ∞-category and k ≥ −1 an integer. We will say that an object C of C is
k-truncated if, for every object D ∈ C, the space MapC(D,C) is k-truncated. By convention, we will say that
C is (−2)-truncated if it is a final object of C. We will say that an object of C is discrete if it is 0-truncated.
We will generally let τ≤k C denote the full subcategory of C spanned by the k-truncated objects.

Notation 5.5.5.2. Let C be an ∞-category. Using Propositions 2.2.4.4 and 1.2.17.5, we conclude that the
full subcategory τ≤0 C is equivalent to the nerve of its homotopy category. We will denote this homotopy
category by Disc(C), and refer to it as the category of discrete objects of C.

Lemma 5.5.5.3. Let C be an object of an ∞-category C, and let k ≥ −2. The following conditions are
equivalent:

(1) The object C is k-truncated.

(2) For every n ≥ k + 3 and every diagram

∂∆n
� _

��

f // C

∆n

==z
z

z
z

for which f carries the final vertex of ∆n to C, there exists a dotted arrow rendering the diagram
commutative.
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Proof. Suppose first that (2) is satisfied. Then for every object D ∈ D, the Kan complex HomR
C(D,C) and

every n ≥ k + 3 has the extension property with respect to ∂∆n−1 ⊆ ∆n−1, and is therefore k-truncated.
For the converse, suppose that (1) is satisfied and choose a categorical equivalence g : C→ N D, where D is
a topological category. According to Proposition A.2.4.1, it will suffice to show that for every n ≥ k+ 3 and
every diagram

|C[∂∆n]|� _

��

F // D

|C[∆n]|

;;w
w

w
w

w

having the property that F carries the final object of |C[∆n]| to g(C), there exists a dotted arrow as indicated,
rendering the diagram commutative. Let D ∈ D denote the image of the initial object of ∂∆n under F .
Then constructing the desired extension is equivalent to extending a map ∂[0, 1]n−1 → MapD(D, g(C)) to a
map defined on all of [0, 1]n−1, which is possibly in virtue of the assumption (1).

Remark 5.5.5.4. A Kan complex X is k-truncated if and only if it is k-truncated when regarded as an
object in the ∞-category S of spaces.

Proposition 5.5.5.5. Let C be an ∞-category, and k ≥ −2 an integer. The full subcategory τ≤k C ⊆ C of
k-truncated objects is stable under all limits which exist in C.

Proof. Let j : C → P(C) be the Yoneda embedding. By definition, τ≤k C is the preimage of Fun(Cop, τ≤k S)
under j. Since j preserves all limits which exist in C, it will suffice to prove that Fun(Cop, τ≤k S) ⊆ Fun(Cop, S)
is stable under limits. Using Proposition 5.1.2.2, it suffices to prove that the inclusion i : τ≤k S ⊆ S is
stable under limits. In other words, we must show that τ≤k S admits small limits, and that i preserves
small limits. According to Propositions 4.4.2.6 and 4.4.2.7, it will suffice to show that τ≤k S ⊆ S is stable
under the formation of pullbacks and (small) products. According to Theorem 4.2.4.1, this is equivalent to
the assertion that the full subcategory of Kan spanned by the k-truncated Kan complexes is stable under
homotopy products and the formation of homotopy pullback squares. Both assertions can be verified easily
by computing homotopy groups.

Remark 5.5.5.6. Let p : C → D be a coCartesian fibration of ∞-categories. Let C and C ′ be objects
of C, let f : p(C ′) → p(C) be a morphism in C, and let f : C ′ → C ′′ be a p-coCartesian morphism
lifting f . According to Proposition 2.3.4.2, we may identify MapCp(C)

(C ′′, C) with the homotopy fiber of
MapC(C ′, C)→ MapD(p(C ′), p(C)) over the base point determined by f . By examining the associated long
exact sequences of homotopy groups (as f varies), we conclude that if C is a k-truncated object of the fiber
Cp(C) and p(C) is a k-truncated object of D, then C is a k-truncated object of C. This can be considered as
a generalization of Lemma 2.3.4.7 (which treats the case k = −2).

Remark 5.5.5.7. Let p : M → ∆1 be a coCartesian fibration of simplicial sets, which we regard as a
correspondence from the ∞-category C = p−1{0} to D = p−1{1}. Suppose that D is a k-truncated object
of D. Remark 5.5.5.6 implies that D is a k-truncated object of M. Let C,C ′ ∈ C, and let f : C → D be
a p-Cartesian morphism of M. Then composition with f induces a homotopy equivalence MapC(C ′, C) →
MapM(C ′, D); we conclude that C is a k-truncated object of M.

Definition 5.5.5.8. We will say that a map f : X → Y of Kan complexes is k-truncated if the homotopy
fibers of f (taken over any base point of Y ) are k-truncated. We will say that a morphism f : C → D in an
arbitrary ∞-category C is k-truncated if composition with f induces a k-truncated map

MapC(E,C)→ MapC(E,D)

for every object E ∈ C.
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Remark 5.5.5.9. There is an apparent potential for ambiguity in Definition 5.5.5.8 in the case where C is
an ∞-category whose objects are Kan complexes. However, there is no cause for concern: a map f : X → Y
of Kan complexes is k-truncated if and only if it is k-truncated as a morphism in the ∞-category S.

Remark 5.5.5.10. Let f : C → D and g : E → D be morphisms in an ∞-category C, and let φ :
MapC(E,C)→ MapC(E,D) be the map (in the homotopy category H) given by compostion with f . Lemma
5.5.4.16 implies that the homotopy fiber of φ over g is homotopy equivalent to MapC/D

(f, g). Consequently,
we deduce that f : C → D is k-truncated in the sense of Definition 5.5.5.8 if and only if it is k-truncated
when viewed as an object of the ∞-category D/D.

Lemma 5.5.5.11. Let p : C→ D be a right fibration of ∞-categories, and let f : X → Y be a morphism in
C. Then f is n-truncated if and only if p(f) : p(X)→ p(Y ) is n-truncated.

Proof. The map C/Y → D/p(Y ) is a trivial fibration, and therefore an equivalence of ∞-categories.

Remark 5.5.5.12. A morphism f : C → D in an∞-category C is k-truncated if and only if it is k-truncated
when regarded as an object of the ∞-category C/D (since the natural map C/D → C/D is an equivalence

of ∞-categories). We may identify C/D with p−1{D}, where p denotes the evaluation map C∆1
→ C{1}.

Corollary 2.3.7.12 implies that p is a coCartesian fibration. Consequently, Remark 5.5.5.7 translates into the
following assertion: if

C ′
f ′ //

��

D′

��
C

f // D

is a pullback diagram in C, and f is k-truncated, then f ′ is k-truncated.

Example 5.5.5.13. A morphism f : C → D in an ∞-category C is (−2)-truncated if and only if it is an
equivalence.

We will say that a morphism f : C → D is a monomorphism if it is (−1)-truncated; this is equivalent to
the assertion that the functor C/f → C/D is fully faithful.

Lemma 5.5.5.14. Let C be an ∞-category and f : X → Y a morphism in C. Suppose that Y is n-truncated.
Then X is n-truncated if and only if f is n-truncated.

Proof. Unwinding the definitions, we reduce immediately to the following statement in classical homotopy
theory: given a map f : X → Y of Kan complexes, where Y is n-truncated, X is n-truncated if and only
if the homotopy fibers of f are n-truncated. This can be established easily, by examining the long exact
sequence of homotopy groups associated to f .

The following lemma gives a recursive characterization of the class of n-truncated morphisms:

Lemma 5.5.5.15. Let C be an ∞-category which admits finite limits and let k ≥ −1 be an integer. A
morphism f : C → C ′ is k-truncated if and only if the diagonal δ : C → C ×C′ C (which is well-defined up
to homotopy) is (k − 1)-truncated.

Proof. For each object D ∈ C, let FD : C → S denote the functor co-represented by D. Then each FD
preserves finite limits, and a morphism f in C is k-truncated if and only if each FD(f) is a k-truncated
morphism in S. We may therefore reduceo to the case where C = S. Without loss of generality, we may
suppose that f : C → C ′ is a Kan fibration. Then Theorem 4.2.4.1 allows us to identify the fiber product
C ×C′ C in S with the same fiber product, formed in the ordinary category Kan. We now reduce to the
following assertion in classical homotopy theory (applied to the fibers of f): if X is a Kan complex, then X
is k-truncated if and only if the homotopy fibers of the diagonal map X → X × X are (k − 1)-truncated.
This can be proven readily by examining homotopy groups.
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We immediately deduce the following:

Proposition 5.5.5.16. Let F : C→ C′ be a left-exact functor between∞-categories which admit finite limits.
Then F carries k-truncated objects into k-truncated objects and k-truncated morphisms into k-truncated
morphisms.

Proof. An object C is k-truncated if and only if the morphism C → 1 to the final object is k-truncated.
Since F preserves final object, it suffices to prove the assertion concerning morphisms. Since F commutes
with fiber products, Lemma 5.5.5.15 allows us to use induction on k, thereby reducing to the case where
k = −2. But the (−2)-truncated morphisms are precisely the equivalences, and these are preserved by any
functor.

We now specialize to the case of a presentable∞-category C. In this setting, we can construct an analogue
of the Postnikov tower.

Lemma 5.5.5.17. Let X be a Kan complex, and let k ≥ −2. The following conditions are equivalent:

(1) The Kan complex X is k-truncated.

(2) The diagonal map δ : X → X∂∆k+2
is a homotopy equivalence.

Proof. If k = −2, then X∂∆k+2
is a point and the assertion is obvious. Assuming k > −2, we can choose

a vertex v of ∂∆k+2, which gives rise to an evaluation map e : X∂∆k+2 → X. Since e ◦ δ = idX , (2) is
equivalent to the assertion that e is a homotopy equivalence. We observe that e is a Kan fibration. For each
x, let Yx = X∂∆k+2 ×X {x} denote the fiber of e over the vertex x. Then Yx has a canonical base point,
given by the constant map δ(x). Moreover, we have a natural isomorphism

πi(Yx, δ(x)) ' πi+k+1(X,x).

Condition (1) is equivalent to the assertion that πi+k+1(X,x) vanishes for all i ≥ 0 and all x ∈ X. In view
of the above isomorphism, this is equivalent to the assertion that each Yx is contractible, which is true if and
only if the Kan fibration e is trivial.

Proposition 5.5.5.18. Let C be a presentable ∞-category, k ≥ −2. Let τ≤k C denote the full subcategory
of C consisting of k-truncated objects. Then the inclusion τ≤k C ⊆ C has an accessible left adjoint, which we
will denote by τ≤k.

Proof. Let f : ∂∆k+2 → Fun(C,C) denote the constant diagram taking the value idC. Let f : (∂∆k+2). →
Fun(C,C) be a colimit of f , and let F : C→ C be the image of the cone point under f . Informally, F is given
by the formula

C 7→ C ⊗ Sk+1,

where Sk+1 denotes the (k + 1)-sphere and we regard C as tensored over spaces (see Remark 5.5.1.7).
Let f

′
: (∂∆k+2). → CC be the constant diagram taking the value idC. It follows that there exists an

essentially unique map f → f ′ in (CC)f/, which induces a natural transformation of functors α : F → idC.
Let S = {α(C) : C ∈ C}. Since F is a colimit of functors which preserve small colimits, F itself preserves
small colimits (Lemma 5.5.2.3). Applying Proposition 5.1.2.2, we conclude that α : C → Fun(∆1,C) also
preserves small colimits. Consequently, there exists a small subset S0 ⊆ S which generates S under colimits
in Fun(∆1,C). According to Proposition 5.5.4.18, the collection of S-local objects of C is an accessible
localization of C. It therefore suffices to prove that an object X ∈ C is S-local if and only if X is k-truncated.

According to Proposition 5.1.2.2, for each C ∈ C we may identify F (C) with the colimit of the constant
diagram ∂∆k+2 → C taking the value C. Corollary 4.4.4.9 implies that we have a homotopy equivalence

MapC(F (C), X) ' MapC(C,X)∂∆k+2
.
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The map α(C) induces a map

α(C)X : MapC(C,X)→ MapC(C,X)∂∆k+2

which can be identified with the inclusion of MapC(C,X) as the space of constant maps from ∂∆k+2 into
MapC(C,X). According to Lemma 5.5.5.17, the map α(C)X is an equivalence if and only if MapC(C,X) is
k-truncated. Thus X is k-truncated if and only if X is S-local.

Remark 5.5.5.19. The notation of Proposition 5.5.5.18 is self-consistent, in the sense that the existence
of the localization functor τ≤k implies that the collection of k-truncated objects of C may be identified with
the essential image of τ≤k.

Remark 5.5.5.20. If the ∞-category C is potentially unclear in context, then we will write τC
≤k for the

truncation functor in C. Note also that τC
≤k is well-defined up to equivalence (in fact, up to a contractible

ambiguity).

Remark 5.5.5.21. It follows from Proposition 5.5.5.18 that if C is a presentable ∞-category, then the full
subcategory τ≤k C of k-truncated objects is also presentable. In particular, the ordinary category Disc(C) of
discrete objects of C is a presentable category in the sense of Definition A.1.1.2.

Recall that, if C and D are ∞-categories, then FunL(C,D) denotes the full subcategory of Fun(C,D)
spanned by those functors which are left adjoints. The following result gives a characterization of τ≤n C by
a universal mapping property:

Corollary 5.5.5.22. Let C and D be presentable ∞-categories. Suppose that D is equivalent to an (n+ 1)-
category. Then composition with τ≤n induces an equivalence

s : FunL(τ≤n C,D)→ FunL(C,D).

Proof. According to Proposition 5.5.4.23, the functor s is fully faithful. A functor f : C → D belongs to
the essential image of s if and only if f has a right adjoint g which factors through τ≤n C. Since g preserves
limits, it automatically carries D = τ≤n D into τ≤n C (Proposition 5.5.5.16).

We conclude this section with a useful compatibility property between truncation functors in different
∞-categories:

Proposition 5.5.5.23. Let C and D be presentable ∞-categories, and let F : C → D be a left-exact pre-
sentable functor. Then there is an equivalence of functors F ◦ τC

≤k ' τD
≤k ◦ F .

Proof. Since F is left exact, it restricts to a functor from τ≤k C to τ≤k D by Proposition 5.5.5.16. We therefore
have a diagram

C
F //

τC
≤k

��

D

τD
≤k

��
τ≤k C

F // τ≤k D

which we wish to prove is commutative up to homotopy. Let G denote a right adjoint to F ; then G is left
exact and so induces a functor τ≤k D→ τ≤k C. Using Proposition 5.2.2.5, we can reduce to proving that the
associated diagram of right adjoints

C D
Goo

τ≤k C

OO

τ≤k D

OO

Goo

commutes up to homotopy, which is obvious (since the diagram strictly commutes).
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5.5.6 Compactly Generated ∞-Categories

Definition 5.5.6.1. Let κ be a regular cardinal. We will say that an∞-category C is κ-compactly generated
if it is presentable and κ-accessible. When κ = ω, we will simply say that C is compactly generated.

The proof of Theorem 5.5.1.1 shows that an ∞-category C is κ-compactly generated if and only if there
exists a small∞-category D which admits κ-small colimits, and an equivalence C ' Indκ(D). In fact, we can
choose D to be (a minimal model of) the∞-category of κ-compact objects of C. We would like to assert that
this construction establishes an equivalence between two sorts of∞-categories. In order to make this precise,
we need to introduce the appropriate notion of functor between κ-compactly generated ∞-categories.

Proposition 5.5.6.2. Let κ be a regular cardinal, and let C
F // D
G
oo be a pair of adjoint functors, where C

and D admit small, κ-filtered colimits.

(1) If G is κ-continuous, then F carries κ-compact objects of C to κ-compact objects of D.

(2) Conversely, if C is κ-accessible and F preserves κ-compactness, then G is κ-continuous.

Proof. Suppose first that G is κ-continuous, and let C ∈ C be a κ-compact object. Let e : C→ Ŝ be a functor
corepresented by C. Then e ◦ G : D → Ŝ is corepresented by F (C). Since e and G are κ-continuous, so is
e ◦G; this proves (1).

Conversely, suppose that F preserves κ-compact objects and that C is κ-accessible. Without loss of
generality, we may suppose that there is a small ∞-category C′ such that C = Indκ(C′) ⊆ P(C′). We wish
to prove that G is κ-continuous. Since Indκ(C′) is stable under κ-filtered colimits in P(C′), it will suffice to
prove that the composite map

θ : D
G→ C ⊆ P(C′)

is κ-continuous. In view of Proposition 5.1.2.2, it will suffice to prove that for every object C ∈ C′, the
composition of θ with evaluation at C is a κ-continuous functor. We conclude by observing that this
functor is corepresentable by the image under F of j(C) ∈ C (here j : C′ → Indκ(C) denotes the Yoneda
embedding).

Corollary 5.5.6.3. Let C be a κ-compactly generated ∞-category, and let L : C → C be a localization
functor. The following conditions are equivalent:

(1) The functor L is κ-continuous.

(2) The full subcategory LC ⊆ C is stable under κ-filtered colimits.

Moreover, if these conditions are satisfied, then LC is also κ-compactly generated.

Proof. Suppose that (1) is satisfied. Let p : K → LC be a κ-filtered diagram. Then the natural transfor-
mation p → Lp is an equivalence. Using (1), we conclude that the induced map lim−→(p) → L lim−→(p) is an
equivalence, so that lim−→(p) ∈ LC. This proves (2).

Conversely, if (2) is satisfied, then the inclusion LC ⊆ C is κ-continuous, so that L : C → C is a
composition of κ-continuous functors

C
L→ LC→ C,

which proves (1).
Assume that (1) and (2) are satisfied. Then L is accessible, so that LC is a presentable ∞-category.

Proposition 5.5.6.2 implies that L carries κ-compact objects of C to κ-compact objects of LC. Let C ∈ LC.
Since C is κ-compactly generated, C can be written as the colimit of a κ-filtered diagram p : K → C taking
values in the κ-compact objects of C. Then C ' LC can be written as the colimit of L ◦ p, which takes
values κ-compact objects of LC.
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Corollary 5.5.6.4. Let C be a κ-compactly generated ∞-category, and let n ≥ −2. Then:

(1) The full subcategory τ≤n C is stable under κ-filtered colimits in C.

(2) The truncation functor τ≤n : C→ C is κ-continuous.

(3) The full subcategory τ≤n C is κ-compactly generated.

Proof. Corollary 5.5.6.3 shows that (1) ⇔ (2) ⇒ (3). Consequently, it will suffice to prove that (1) is
satisfied.

Let C be an object of C. We will show that C is n-truncated if and only if the space MapC(D,C) is
n-truncated, for every κ-compact object D ∈ C. The “only if” direction is obvious. For the converse, let
FC : Cop → S be the functor represented by C, and let C′ ⊆ C be the full subcategory of C spanned by those
objects D such that FC(D) is n-truncated. Since FC preserves limits, C′ is stable under colimits in C. If C′

contains every κ-compact object of C, then C′ = C (since C is κ-compactly generated).
Now suppose that D is a κ-compact object of C, let GD : C→ S be the functor co-represented by D, and

let C(D) ⊆ C be the full subcategory of C spanned by those objects C for which GD(C) is n-truncated. Then
τ≤n C =

⋂
D C(D). To complete the proof, it will suffice to show that each C(D) is stable under κ-filtered

colimits. Since GD is κ-continuous, it suffices to observe that τ≤n S is stable under κ-filtered colimits in
S.

Definition 5.5.6.5. If κ is a regular cardinal, we let PrRκ denote the full subcategory of Ĉat∞ whose objects
are κ-compactly generated ∞-categories, and whose morphisms are κ-continuous, limit-preserving functors.

Proposition 5.5.6.6. The ∞-category PrRκ admits small limits, and the inclusion PrRκ ⊆ Ĉat∞ preserves
small limits.

Proof. In view of Theorem 5.5.3.18, the only nontrivial point is to verify that if p : K → PrRκ is a diagram
of κ-compactly generated ∞-categories {Cα}, then the limit C = lim←−(p) in Ĉat∞ is κ-compactly generated.
In other words, we must show that C is generated under colimits by its κ-compact objects.

For each vertex α of K, let

Cα
Fα // C
Gα

oo

denote the corresponding adjunction. Lemma 6.3.3.8 implies that the identity functor idC can be obtained
as the colimit of a diagram q : K → Fun(C,C), where q(α) ' Fα ◦Gα. In particular, C is generated (under
small colimits) by the essential images of the functors Fα. Since each Cα is generated under colimits by
κ-compact objects, and the functors Fα preserve colimits and κ-compact objects (Proposition 5.5.6.2), we
conclude that C is generated under colimits by its κ-compact objects, as desired.

Notation 5.5.6.7. Let κ be a regular cardinal. We let PrLκ denote the full subcategory of Ĉat∞ whose
objects are κ-compactly generated ∞-categories, and whose morphisms are functors which preserve small
colimits and κ-compact objects. In view of Proposition 5.5.6.2, the equivalence PrL ' (PrR)op of Corollary
5.5.3.4 restricts to an equivalence PrLκ ' (PrRκ )op.

Let Ĉat
Rex(κ)

∞ denote the subcategory of Ĉat∞ whose objects are ∞-categories which admit κ-small

colimits, and whose morphisms are functors which preserve κ-small colimits, and let CatRex(κ)∞ = Ĉat
Rex(κ)

∞ ∩
Cat∞.

Proposition 5.5.6.8. Let κ be a regular cardinal, and let

θ : PrLκ → Ĉat
Rex(κ)

∞

be the nerve of the simplicial functor which associates to a κ-compactly generated ∞-category C the full
subcategory Cκ ⊆ C spanned by the κ-compact objects of C. Then:
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(1) The functor θ is fully faithful.

(2) The essential image of θ consists precisely of those objects of Ĉat∞ which are essentially small and
idempotent complete.

Proof. Combine Propositions 5.4.2.17 and 5.5.1.9.

Remark 5.5.6.9. If κ > ω, then Corollary 4.4.5.16 shows that the hypothesis of idempotent completeness
in (2) is superfluous.

The proof of Proposition 5.4.2.19 yields the following analogue:

Proposition 5.5.6.10. Let κ be a regular cardinal. The functor Indκ : Cat∞ → Accκ exhibits PrLκ as a
localization of CatRex(κ)∞ . If κ > ω, then Indκ induces an equivalence of ∞-categories CatRex(κ)∞ → PrLκ .

Proof. The only additional ingredient needed is the following observation: if C is an∞-category which admits
κ-small colimits, then the idempotent completion C′ of C also admits κ-small colimits. To prove this, we
observe that C′ can be identified with the collection of κ-compact objects of Indκ(C) (Lemma 5.4.2.4). Since
C admits all small colimits ( Theorem 5.5.1.1), we conclude that C′ admits κ-small colimits.

We conclude with a remark about the structure of the ∞-category CatRex(κ)∞ .

Proposition 5.5.6.11. Let κ be a regular cardinal. Then the ∞-category CatRex(κ)∞ admits small, κ-filtered
colimits, and the inclusion CatRex(κ)∞ ⊆ Cat∞ preserves small κ-filtered colimits.

Proof. Let I be a small, κ-filtered ∞-category, and let p : I→ CatRex(κ)∞ be a diagram. Let C be a colimit of
the induced diagram I→ Cat∞. To complete the proof we must prove the following:

(i) The ∞-category C admits κ-small colimits.

(ii) For each I ∈ I, the associated functor p(I)→ C preserves κ-small colimits.

(iii) Let f : C → D be an arbitrary functor. If each of the compositions p(I) → C → D preserves κ-small
colimits, then f preserves κ-small colimits.

Since I is κ-filtered, any κ-small diagram in C factors through one of the maps p(I) → C ( Proposition
5.4.1.2 ). Thus (ii) ⇒ (i) and (ii) ⇒ (iii). To prove (ii), we first use Proposition 5.3.1.16 to reduce to
the case where I ' N(A), where A is a κ-filtered partially ordered set. Using Proposition A.3.6.1, we can
reduce to the case where p is the nerve of a functor from q : A → Set∆. In view of Theorem 4.2.4.1, we
can identify C with a homotopy colimit of q. Since the collection of categorical equivalences is stable under
filtered colimits, we can assume that C is actually the filtered colimit of a family of ∞-categories {Cα}α∈A.

Let K be a κ-small simplicial set, and let gα : K. → Cα be a colimit diagram. We wish to show that the
induced map g : K. → C is a colimit diagram. Let g = g|K; we need to show that the map θ : Cg/ → Cg/
is a trivial Kan fibration. We observe that θ is a filtered colimit of maps θβ : (Cβ)gβ/

→ (Cβ)gβ/, where β
ranges over the set {β ∈ A : β ≥ α}. Using the fact that each of the associated maps Cα → Cβ preserves
κ-small colimits, we conclude that each θβ is a trivial fibration, so that θ is a trivial fibration as desired.
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Chapter 6

∞-Topoi

In this chapter, we come to the main subject of this book: the theory of ∞-topoi. Roughly speaking, an ∞-
topos is an ∞-category which “looks like” the ∞-category of spaces, just as an ordinary topos is a category
which “looks like” the category of sets. As in classical topos theory, there are various ways of making this
precise. We will begin in §6.1 by reviewing several possible definitions, and proving that they are equivalent
to one another.

The main result of §6.1 is Theorem 6.1.0.6, which asserts that an∞-category X is an∞-topos if and only
if X arises as an (accessible) left exact localization of an ∞-category of presheaves. In §6.2, we consider the
problem of constructing left exact localizations. In classical topos theory, there is a bijective correspondence
between left exact localizations of a presheaf category P(C) and Grothendieck topologies on C. In the ∞-
category categorical context, one can again use Grothendieck topologies to construct examples of left exact
localizations. Unfortunately, not every ∞-topos arises in this way. Nevertheless, the construction of an
∞-category of sheaves Shv(C) from a Grothendieck topology on C is an extremely useful construction, which
will play an important role throughout §7.

In order to understand higher topos theory, we will need to consider ∞-topoi not only individually, but
in relation to one another. In §6.3 we will introduce the notion of a geometric morphism of ∞-topoi. The
collection of all∞-topoi and geometric morphisms between them can be organized into an∞-category TopR.
We will study the problem of constructing colimits and (certain) limits in TopR. In the course of doing so,
we will show that the class of ∞-topoi is stable under various categorical constructions.

One of our goals in this book is to apply ideas from higher category theory to study more classical
mathematical objects, such as topological spaces or ordinary topoi. In order to do so, it is convenient to
work in a setting where all of these objects can be considered on the same footing. In §6.4, we will introduce
the definition of an n-topos for all 0 ≤ n ≤ ∞. When n = ∞, this will reduce to the theory introduced
in §6.1. The case n = 1 will recover classical topos theory, and the case n = 0 is almost equivalent to the
theory of topological spaces. We will study the theory of n-topoi, and introduce constructions which allow
us to pass between n-topoi and∞-topoi. In particular, we associate an∞-topos Shv(X) to every topological
space X, which will be the primary object of study in §7.

There are several different ways of thinking about what an ∞-topos X is. On the one hand, we can view
X as a generalized topological space; on the other, we can think of X as an alternative universe in which
we can do homotopy theory. In §6.5, we will reinforce the second point of view by studying the internal
homotopy theory of an ∞-topos X. Just as in classical homotopy theory, one can define homotopy groups,
Postnikov towers, Eilenberg MacLane spaces, and so forth. In §7, we will bring together these two points
of view, by showing that classical geometric properties of a topological space X are reflected in internal
homotopy of the ∞-topos Shv(X) of sheaves on X.

There are several papers on higher topos theory in the literature. The papers [48] and [8] both discuss a
notion of 2-topos (the second from an elementary point of view). However, the basic model for these 2-topoi
is the 2-category of (small) categories, rather than the 2-category of (small) groupoids. Jardine ([28]) has
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exhibited a model structure on the category of simplicial presheaves on a Grothendieck site, and the ∞-
category associated to this model category is an∞-topos in our sense. This construction is generalized from
ordinary categories with a Grothendieck topology to simplicial categories with a Grothendieck topology in
[51] (and again produces ∞-topoi). However, not every ∞-topos arises in this way: one can construct only
∞-topoi which are hypercomplete (called t-complete in [51]); we will summarize the situation in Section 6.5.2.
Our notion of an ∞-topos is essentially equivalent to the notion of a Segal topos introduced in [51], and to
Charles Rezk’s notion of a model topos. We note also that the paper [51] has considerable overlap with the
ideas discussed here.
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6.1 ∞-Topoi: Definitions and Characterizations

Before we study the∞-categorical version of topos theory, it seems appropriate to briefly review the classical
theory. Recall that a topos is a category C which behaves like the category of sets, or (more generally) the
category of sheaves of sets on a topological space. There are several (equivalent) ways of making this idea
precise. The following result is proved (in a slightly different form) in [2]:

Proposition 6.1.0.1. Let C be a category. The following conditions are equivalent:

(A) The category C is (equivalent to) the category of sheaves of sets on some Grothendieck site.

(B) The category C is (equivalent to) a left-exact localization of the category of presheaves of sets on some
small category C0.

(C) Giraud’s axioms are satisfied:

(i) The category C is presentable (that is, C has small colimits and a set of small generators).

(ii) Colimits in C are universal.

(iii) Coproducts in C are disjoint.

(iv) Equivalence relations in C are effective.

Definition 6.1.0.2. A category C is called a topos if it satisfies the equivalent conditions of Proposition
6.1.0.1.

Remark 6.1.0.3. A reader who is unfamiliar with some of the terminology used in the statement of Propo-
sition 6.1.0.1 should not worry: we will review the meaning of each condition in §6.1.1 as we search for
∞-categorical generalizations of axioms (i) through (iv).

Our goal in this section is to introduce the ∞-categorical analogue of Definition 6.1.0.2. Proposition
6.1.0.1 suggests several possible approaches. We begin with the simplest of these:

Definition 6.1.0.4. Let X be an ∞-category. We will say that X is an ∞-topos if there exists a small
∞-category C and an accessible left exact localization functor P(C)→ X.

Remark 6.1.0.5. Definition 6.1.0.4 involves an accessibility condition which was not mentioned in Proposi-
tion 6.1.0.1. This is because every left exact localization of a category of set-valued presheaves is automatically
left exact (see Proposition 6.4.3.9). We do not know if the corresponding result holds for S-valued presheaves.

Adopting Definition 6.1.0.4 amounts to selecting an extrinsic approach to higher topos theory: the class
of ∞-topoi is defined to be the smallest collection of ∞-categories which contains S and is stable under
certain constructions (left exact localizations and the formation of functor categories). The main objective
of this section is to give several reformulations of Definition 6.1.0.2 which have a more intrinsic flavor. Our
results may be summarized in the following statement (all our our terminology will be explained later in this
section):

Theorem 6.1.0.6. Let X be an ∞-category. The following conditions are equivalent:

(1) The ∞-category X is an ∞-topos.

(2) The∞-category X is presentable, and for every small simplicial set K and every natural transformation
α : p→ q of diagrams p, q : K. → X, the following condition is satisfied:

– If q is a colimit diagram and α = α|K is a Cartesian transformation, then p is a colimit diagram
if and only if α is a Cartesian transformation.

(3) The ∞-category X satisfies the following ∞-categorical analogues of Giraud’s axioms:
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(i) The ∞-category X is presentable.

(ii) Colimits in X are universal.

(iii) Coproducts in X are disjoint.

(iv) Every groupoid object of X is effective.

We will review the meanings of conditions (i) through (iv) in §6.1.1 and §6.1.2. In §6.1.3 we will give
several equivalent formulations of (2), and prove the implications (1)⇒ (2)⇒ (3). The implication (3)⇒ (1)
is the most difficult; we will give the proof in §6.1.5 after establishing a crucial technical lemma in §6.1.4.
Finally, in §6.1.6 we will establish yet another characterization of∞-topoi, based on the theory of classifying
objects.

Remark 6.1.0.7. The characterization of the class of ∞-topoi given by part (2) of Theorem 6.1.0.6 is due
to Rezk, as are many of the ideas presented in §6.1.3.

The equivalence (1)⇔ (3) of Theorem 6.1.0.6 can be viewed as an ∞-categorical analogue of the equiv-
alence (B) ⇔ (C) in Proposition 6.1.0.1. It is natural to ask if there is also some equivalent of the charac-
terization (A). To put the question another way: given a small ∞-category C, does there exist some natural
description of the class of all left-exact localizations of C? Experience with classical topos theory suggests
that we might try to characterize such localizations in terms of Grothendieck topologies on C. We will in-
troduce a theory of Grothendieck topologies on ∞-categories in §6.2.2, and show that every Grothendieck
topology on C determines a left-exact localization of P(C). However, it turns out that not every ∞-topos
arises via this construction. This raises a natural question: is it possible to give an explicit description of all
left-exact localizations of P(C), perhaps in terms of some more refined theory of Grothendieck topologies?
We will give a partial answer to this question in §6.5.

6.1.1 Giraud’s Axioms in the ∞-Categorical Setting

Our goal in this section is to formulate higher-categorical analogues of the conditions (i) through (iv) which
appear in Proposition 6.1.0.1. We consider each axiom in turn. In each case, our objective is to find an
analogous axiom which makes sense in the setting of ∞-categories, and is satisfied by the ∞-category S of
spaces.

(i) The category C is presentable.

The generalization to the case where C is a ∞-category is obvious: we should merely require C to be a
presentable ∞-category in the sense of Definition 5.5.0.14. According to Example 5.5.1.8, this condition is
satisfied when C is the ∞-category of spaces.

(ii) Colimits in C are universal.

Let us first recall the meaning of this condition in classical category theory. If the axiom (i) is satisfied,
then C is presentable and therefore admits all (small) limits and colimits. In particular, every diagram

X → S
f← T

has a limit XT = X ×S T . This construction determines a functor

f∗ : C/S → C/T

X 7→ XT ,

which is a right adjoint to the functor given by composition with f .
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We say that colimits in C are universal if the functor f∗ is colimit-preserving, for every map f : T → S
in C. (In other words, colimits are universal in C if any colimit in C remains a colimit in C after pulling back
along a morphism T → S.)

Let us now attempt to make this notion precise in the setting of an arbitrary ∞-category C. Let OC =
Fun(∆1,C), and let p : OC → C be given by evaluation at {1} ⊆ ∆1. Corollary 2.3.7.12 implies that p is a
coCartesian fibration.

Lemma 6.1.1.1. Let X be an ∞-category and let p : OX → X be defined as above. Let F be a morphism in
OX, corresponding to a diagram σ : ∆1 ×∆1 ' (Λ2

2)
/ → X, which we will denote by

X ′ f ′ //

��

Y ′

g

��
X

f // Y

Then F is p-Cartesian if and only if the above diagram is a pullback in X. In particular, p is a Cartesian
fibration if and only if the ∞-category X admits pullbacks.

Proof. For every simplicial set K, let K+ denote the full simplicial subset of (K ? {x} ? {y})×∆1 spanned
by all of the vertices except (x, 0), and define a simplicial set C by setting

Fun(K,C) = {m : K+ → X : m|({x} ? {y})× {1} = f,m|{y} ×∆1 = g}.

We observe that we have a commutative diagram

C //

��

(OX)/g

��
X/f // X/Y ′

which induces a map q : C→ (OX)/g ×X/Y ′ X/f . We first claim that q is a trivial fibration. Unwinding the
definitions, we observe that the right lifting property of q with respect to an inclusion ∂∆n ⊆ ∆n follows
from the extension property of X with respect to Λn+2

n+1, which follows in turn from our assumption that X is
an ∞-category.

The inclusion K+ ⊆ K ×∆1 induces a projection q′ : (OX)/F → C which fits into a pullback diagram

(OX)/F //

��

C

g

��
X/σ

q′′ // X/σ|Λ2
2
.

It follows that q′ is a right fibration, and that q′ is trivial if σ is a pullback diagram. Conversely, we observe
that (Λ2

2)
/ is a retract of (∆0)+, so that the map g is surjective on vertices. Consequently, if q′ is a trivial

fibration, then the fibers of q′′ are contractible, so that q′′ is a trivial fibration (Lemma 2.1.3.3) and σ is a
pullback diagram.

By definition, F is p-Cartesian if and only if the composition

q ◦ q′ : (OX)/F → (OX)/g ×X/Y ′ X/f

is a trivial fibration. Since q is a trivial fibration and q′ is a right fibration, this is also equivalent to the
assertion that q′ is a trivial fibration (Lemma 2.1.3.3).
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Now suppose that X is an∞-category which admits pullbacks, so that the projection p : OX → X is both
a Cartesian fibration and a coCartesian fibration. Let f : S → T be a morphism in X. Taking the pullback of
p along the corresponding map ∆1 → X, we obtain a correspondence from p−1(S) = X/S to p−1(T ) = X/T ,
associated to a pair of adjoint functors

f! : X/S → X/T

f∗ : X/T → X/S .

The functors f! and f∗ are well-defined up to homotopy (in fact, up to a contractible space of choices. We
may think of f! as the functor given by composition with f , and f∗ as the functor given by pullback along
f (in view of Lemma 6.1.1.1).

We can now formulate the ∞-categorical analogue of (ii):

Definition 6.1.1.2. Let C be a presentable ∞-category. We will say that colimits in C are universal if, for
any morphism f : T → S in C, the associated pullback functor

f∗ : C/S → C/T

preserves (small) colimits.

Assume that C is a presentable ∞-category, and let f : T → S be a morphism in C. By the adjoint
functor theorem, f∗ : C/S → C/T preserves all colimits if and only if it has a right adjoint f∗. Since the
existence of adjoint functors can be tested inside the enriched homotopy category, this gives a convenient
criterion which allows us to test whether or not colimits in C are universal.

Remark 6.1.1.3. Let X be an ∞-category. The assumption that colimits in X are universal can be viewed
as a kind of distributive law. We have the following table of vague analogies:

Higher Category Theory Algebra

∞-Category Set

Presentable ∞-Category Abelian Group

Colimits Sums

Limits Products

lim−→(Xα)×S T ' lim−→(Xα ×S T ) (x+ y)z = xz + yz

∞-Topos Commutative Ring

Definition 6.1.1.2 has a reformulation in the language of classifying functors (§3.3.3):

Proposition 6.1.1.4. Let X be an ∞-category which admits finite limits. The following conditions are
equivalent:

(1) The ∞-category X is presentable, and colimits in X are universal.

(2) The Cartesian fibration p : OX → X is classified by a functor Xop → PrL.

Proof. We can restate condition (2) as follows: each fiber X/U of p is presentable, and each of the pullback
functors f∗ : X/V → X/U preserves small colimits. It is clear that (1) ⇒ (2), and that (2) implies that
colimits in X are universal. Since X admits finite limits, it has a final object 1; condition (2) implies that
X ' X/1 is presentable, which proves (1).
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(iii) Coproducts in C are disjoint.

If C is an ∞-category which admits finite coproducts, then we will say that coproducts in C are disjoint
if every coCartesian diagram

∅

##G
GG

GG
GG

GG
G

{{ww
ww

ww
ww

ww

X

##F
FF

FF
FF

FF Y

||xx
xx

xx
xx

x

X
∐
Y

is also Cartesian, provided that ∅ is an initial object of C. More informally, to say that coproducts are
disjoint is to say that the intersection of X and Y inside the union X

∐
Y is empty.

We now come to the most subtle and interesting of Giraud’s axioms:

(iv) Every equivalence relation in C is effective.

Recall that if X is an object in an (ordinary) category C, then an equivalence relation R on X is an object
of C equipped with a map p : R→ X ×X such that for any S, the induced map

HomC(S,R)→ HomC(S,X)×HomC(S,X)

exhibits HomC(S,R) as an equivalence relation on HomC(S,X).
If C admits finite limits, then it is easy to construct equivalence relations in C: given any map X → Y

in C, the induced map X ×Y X → X ×X is an equivalence relation on X. If the category C admits finite
colimits, then one can attempt to invert this process: given an equivalence relation R on X, one can form the
coequalizer of the two projections R→ X to obtain an object which we will denote by X/R. In the category
of sets, one can recover R as the fiber product X ×X/R X. In general, this need not occur: one always has
R ⊆ X ×X/R X, but the inclusion may be strict (as subobjects of X ×X). If equality holds, then R is said
to be an effective equivalence relation, and the map X → X/R is said to be an effective epimorphism.

Remark 6.1.1.5. Recall that a map f : X → Y in a category C is said to be a categorical epimorphism if
the natural map HomC(Y, Z) → HomC(X,Z) is injective for every object Z ∈ C, so that we may identify
HomC(Y,Z) with a subset of HomC(X,Z). To say that f is an effective epimorphism is to say that we can
characterize this subset: it collection of all maps g : X → Z such that the diagram

X

��@
@@

@@
@@

@
g

''OOOOOOOOOOOOOO

X ×Y X

::vvvvvvvvv

$$H
HHHHHHHH Y //___ Z

X

??~~~~~~~~
g

77oooooooooooooo

commutes (which is obviously a necessary condition for the indicated dotted arrow to exist).

Using the terminology introduced above, we can neatly summarize some of the fundamental properties
of the category of sets:

Fact 6.1.1.6. In the category of sets, every equivalence relation is effective and the effective epimorphisms
are precisely the surjective maps.
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The first assertion of Fact 6.1.1.6 remains valid in any topos, and according to the axiomatic point of
view it is one of the defining features of a topos.

If C is a category with finite limits and colimits in which all equivalence relations are effective, then we
obtain a one-to-one correspondence between equivalence relations on an object X and quotients of X (that
is, isomorphism classes of effective epimorphisms X → Y ). This correspondence is extremely useful because
it allows us to make elementary descent arguments: one can deduce statements about quotients of X from
statements about X and about equivalence relations on X (which live over X). We would like to formulate
an ∞-categorical analogue of this condition which will allow us to make similar arguments.

In the ∞-category S of spaces, the situation is more complicated. The correct notion of surjection of
spaces X → Y is a map which induces a surjection on path components π0X → π0Y . However, in this case,
the (homotopy) fiber product R = X ×Y X does not give an equivalence relation on X, because the map
R→ X×X is not necessarily injective in any reasonable sense. However, it does retain some of the pleasant
features of an equivalence relation: instead of transitivity, we have a coherently associative composition law
R ×X R → R (this is perhaps most familiar in the situation where X is a point: in this case, R can be
identified with the based loop space of Y , which is endowed with a multiplication given by concatenation
of loops). In §6.1.2 we will make this idea precise, and define groupoid objects and effective groupoid objects
in an arbitrary ∞-category. Granting these notions for the moment, we have a natural candidate for the
∞-categorical generalization of condition (iv):

(iv)′ Every groupoid object of C is effective.

6.1.2 Groupoid Objects

Let C be a category which admits finite limits. A groupoid object of C is a functor F from C to the category
Cat of (small) groupoids, which has the following properties:

(1) There exists an object X0 ∈ C and a (functorial) identification of HomC(C,X0) with the set of objects
in the groupoid F (C), for each C ∈ C.

(2) There exists an object X1 ∈ C and a (functorial) identification of HomC(C,X1) with the set of mor-
phisms in groupoid F (C), for each C ∈ C.

Example 6.1.2.1. Let C be the category Set of sets. Then a groupoid object of C is simply a (small)
groupoid.

Giving a groupoid object of a category C is equivalent to giving a pair of objects X0 ∈ C (the “object
classifier”) and X1 ∈ C (the “morphism classifier”), together with a collection of maps which relate X0 to X1

and satisfy appropriate identities, which imitate the usual axiomatics of category theory. These identities
can be very efficiently encoded using the formalism of simplicial objects. For every n ≥ 0, let [n] denote the
category associated to the linearly ordered set {0, . . . , n}, and consider the functor Fn : C→ Set defined so
that

Fn(C) = HomCat([n], F (C)).

By assumption, F0 and F1 are representable by objects X0, X1 ∈ C. Since C is stable under finite limits, it
follows that

Fn = F1 ×F0 . . .×F0 F1

is representable by an object Xn = X1 ×X0 . . .×X0 X1. The objects Xn can be assembled into a simplicial
object X• of C. We can think of this construction as a generalization of the process which associates to every
groupoid D its nerve N(D) (a simplicial set). Moreover, as in the classical case, the association F 7→ X•
is fully faihtful. In other words, we can identify groupoid objects of C with the corresponding simplicial
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objects. Of course, not every simplicial object X• of C arises via this construction. This is true if and only
if certain additional conditions are met: for instance, the diagram

X2
d0 //

d2

��

X1

d1

��
X1

d0 // X0

must be Cartesian.
The purpose of this section is to generalize the notion of a groupoid object to the setting where C is an

∞-category. We begin by introducing the class of simplicial objects of C; we then define groupoid objects to
be simplicial objects which satisfy additional conditions.

Definition 6.1.2.2. Let ∆+ denote the category of finite (possibly empty) linearly ordered sets. A simplicial
object of an ∞-category C is a map of ∞-categories

U• : N(∆)op → C .

An augmented simplicial object of C is a map

U+
• : N(∆+)op → C .

We let C∆ denote the ∞-category Fun(N(∆)op,C); we will refer to C∆ as the ∞-category of simplicial
objects of C. Similarly, we will refer to Fun(N(∆+)op,C) as the ∞-category of augmented simplicial objects
of C and we will denote it by C∆+ .

If U• is an (augmented) simplicial object of C and n ≥ 0 (n ≥ −1), we will write Un for the object
U([n]) ∈ C.

Remark 6.1.2.3. In the case where C is the nerve of an ordinary category D, Definition 6.1.2.2 recovers
the usual notion of a simplicial object of D. More precisely, the ∞-category C∆ of simplicial objects of C is
naturally isomorphic to the nerve of the category of simplicial objects of D.

Lemma 6.1.2.4. Let f : X → Y be a map of simplicial sets. Suppose that:

(1) The map f induces a bijection X0 → Y0 on vertex sets.

(2) The simplicial set Y is a Kan complex.

(3) The map f has the right lifting property with respect to every horn inclusion Λni ⊆ ∆n, for n ≥ 2.

(4) The map f is a weak homotopy equivalence.

Then f is a trivial Kan fibration.

Proof. In view of condition (4), it suffices to prove that f is a Kan fibration. In other words, we must show
that p has the right lifting property with respect to every horn inclusion Λni ⊆ ∆n. If n > 1, this follows
from (3). We may therefore reduce to the case where n = 1; by symmetry, we may suppose that i = 0.

Let e : y → y′ be an edge of Y . Condition (1) implies that there is a (unique) pair of vertices x, x′ ∈ X0

with y = f(x), y′ = f(x′). Since f is a homotopy equivalence, there is a path p from x to x′ in the
topological space |X|, such that the induced path |f | ◦ p in |Y | is homotopic to e via a homotopy which
keeps the endpoints fixed. By cellular approximation we may suppose that this path is contained in the
1-skeleton of |X|. Consequently, there is a positive integer k, a sequence of vertices {z0, . . . , zk} with z0 = x,
zk = x′ such each adjacent pair (zi, zi+1) is joined by an edge pi (running in either direction), such that p is
homotopic (relative to its boundary) to the path obtained by concatenating the edges pi. Using conditions
(2) and (3), we note that X has the extension property with respect to the inclusion Λni ⊆ ∆n for each
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n ≥ 2. It follows that we may assume that pi runs from zi to zi+1: if it runs in the opposite direction, then
we can extend the map

(pi, s0zi, •) : Λ2
2 → X

to a 2-simplex σ : ∆2 → X, and then replace pi by d2σ.
Without loss of generality, we may suppose that k > 0 is chosen as small as possible. We claim that

k = 1. Otherwise, choose an extension τ : ∆2 → X of the map

(p1, •, p0) : Λ2
1 → X.

We can then replace the initial segment
z0

p0→ z1
p1→ z2

by the edge d1(τ) : z0 → z2 and obtain a shorter path from x to x′, contradicting the minimality of k.
The edges e and f(p0) are homotopic in Y relative to their endpoints. Using (3), we see that p0 is

homotopic (relative to its endpoints) to an edge e which satisfies f(e) = e. This completes the proof that f
is a Kan fibration.

Notation 6.1.2.5. Let K be a simplicial set. We let ∆/K denote the category of simplices of K defined in
§4.2.3. The objects of ∆/K are pairs (J, η) where J is an object of ∆ and η ∈ HomSet∆(∆J ,K). A morphism
from (J, η) to (J ′, η′) is a commutative diagram

∆J //

!!B
BB

BB
BB

B ∆J′

}}{{
{{

{{
{{

K.

Equivalently, we can describe ∆/K as the fiber product ∆×Set∆(Set∆)/K .
If C is an ∞-category, U : N(∆)op → C is a simplicial object of C, and K is a simplicial set, then we let

U [K] denote the composite map
N(∆/K)op → N(∆)op → C .

Proposition 6.1.2.6. Let C be an ∞-category and U : N(∆)op → C a simplicial object of C. The following
conditions are equivalent:

(1) For every weak homotopy equivalence f : K → K ′ of simplicial sets which induces a bijection K0 → K ′
0

on vertices, the induced map C/U [K′] → C/U [K] is a categorical equivalence.

(2) For every cofibration f : K → K ′ of simplicial sets which is a weak homotopy equivalence and bijective
on vertices, the induced map C/U [K′] → C/U [K] is a categorical equivalence.

(2′) For every cofibration f : K → K ′ of simplicial sets which is a weak homotopy equivalence and bijective
on vertices, the induced map C/U [K′] → C/U [K] is a trivial fibration.

(3) For every n ≥ 2 and every 0 ≤ i ≤ n, the induced map C/U [∆n] → C/U [Λn
i ] is a categorical equivalence.

(3′) For every n ≥ 2 and every 0 ≤ i ≤ n, the induced map C/U [∆n] → C/U [Λn
i ] is a trivial fibration.

(4) For every n ≥ 0 and every partition [n] = S ∪ S′ such that S ∩ S′ consists of a single element s, the
induced map C/U [∆n] → C/U [K] is a categorical equivalence, where K = ∆S

∐
{s} ∆S′ ⊆ ∆n.

(4′) For every n ≥ 0 and every partition [n] = S ∪ S′ such that S ∩ S′ consists of a single element s, the
induced map C/U [∆n] → C/U [K] is a trivial fibration, where K = ∆S

∐
{s} ∆S′ ⊆ ∆n.
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(4′′) For every n ≥ 0 and every partition [n] = S ∪ S′ such that S ∩ S′ consists of a single element s, the
diagram

U([n]) //

��

U(S)

��
U(S′) // U({s})

is a pullback square in the ∞-category C.

Proof. The dual of Proposition 2.1.2.2 implies that any monomorphism K → K ′ of simplicial sets induces
a right fibration C/U [K] → C/U [K]. By Corollary 2.3.4.6, a right fibration is a trivial fibration if and only if
it is a categorical equivalence. This proves that (2) ⇔ (2′), (3) ⇔ (3′), and (4) ⇔ (4′). The implications
(1)⇒ (2)⇒ (3) are obvious.

We now prove that (3) implies (1). Let A denote the class of all morphisms f : K ′ → K which induce
a categorical equivalence C/U [K] → C/U [K′]. Let A′ denote the class of all cofibrations which have the same
property; equivalently, A′ is the class of all cofibrations which induce a trivial fibration C/U [K] → C/U [K′].
From this characterization it is easy to see that A′ is saturated. Let A′′ be the saturated class of morphisms
generated by the inclusions Λni ⊆ ∆n for n > 1. If we assume (3), then we have the inclusions A′′ ⊆ A′ ⊆ A.

Let f : K → K ′ be an arbitrary morphism of simplicial sets. By Proposition A.1.2.5, we can choose a
map h′ : K ′ →M ′ which belongs to A′′, where M ′ has the extension property with respect to Λni ⊆ ∆n for
n > 1 and is therefore a Kan complex. Applying Proposition A.1.2.5 again, we can construct a commutative
diagram

K

f

��

h // M

g

��
K ′ h′ // M ′

where the horizontal maps belong to A′′ and g has the right lifting property with respect to every morphism
in A′′. If f is a weak homotopy equivalence which is bijective on vertices, then g has the same properties, so
that g is a trivial fibration by Lemma 6.1.2.4. It follows that g has the right lifting property with respect to
the cofibration g ◦h : K →M ′, so that g ◦h is a retract of h and therefore belongs to A′′. Since g ◦h = h′ ◦f
and h′ belong to A′′ ⊆ A, it follows that f belongs to A.

It is clear that (1) ⇒ (4). We next prove that (4′) ⇒ (3). We must show that if n > 1, then every
inclusion Λni ⊆ ∆n belongs to the class A defined above. The proof is by induction on n. Replacing i by
n− i if necessary, we may suppose that i < n. If (n, i) 6= (2, 0), we consider the composition

∆n−1
∐

{n−1}

∆{n−1,n} f
↪→ Λni

f ′

↪→ ∆n.

Here f belongs to A′ by the inductive hypothesis and f ′ ◦ f belongs to A′ by virtue of the assumption (4′);
therefore f ′ also belongs to A. If n = 2 and i = 0, then we observe that the inclusion Λ2

1 ⊆ ∆2 is of the form
∆S

∐
{s} ∆S′ ⊆ ∆2, where S = {0, 1} and S′ = {0, 2}.

To complete the proof, we show that (4) is equivalent to (4′′). Fix n ≥ 0, let S ∪ S′ = [n] be such that
S ∩ S′ = {s}, and let K = ∆S

∐
{s} ∆S′ ⊆ ∆n. Let I′ denote the full subcategory of ∆/∆n spanned by the

objects [n], S, S′, and {s}. Let I ⊆ I′ be the full subcategory obtained by omitting the object [n]. Let p′

denote the composition
N(I′)op → N(∆)op U→ C
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and let p = p′|N(I)op. Consider the diagram

C/U [∆n]
//

u

��

C/U [K]

v

��
C/p′ // C/p .

Condition (4) asserts that the upper horizontal map is a categorical equivalence, and condition (4′′) asserts
that the lower horizontal map is a categorical euivalence. To prove that (4)⇔ (4′′), it suffices to show that
the vertical maps u and v are categorical equivalences.

We have a commutative diagram

C/U [∆n]
u //

%%KKKKKKKKKK
C/p′

zzvvv
vv

vv
vv

C/U [∆n] .

Since ∆n is a final object of both ∆/∆n and I′, the unlabelled maps are trivial fibrations. It follows that u
is a categorical equivalence.

To prove that v is a categorical equivalence, it suffices to show that the inclusion g : I ⊆∆/K induces a
right anodyne map

N(g) : N(I) ⊆ N(∆/K)

of simplicial sets. We observe that the functor g has a left adjoint f , which associates to each simplex
σ : ∆m → K the smallest simplex in I which contains the image of σ. The map N(g) is a section of N(f),
and there is a (fiberwise) simplicial homotopy from idN(∆/K) to N(g) ◦ N(f). We now invoke Proposition
2.1.2.10 to deduce that N(g) is right anodyne, as desired.

Definition 6.1.2.7. Let C be an ∞-category. We will often denote simplicial objects of C by U•, and write
Un for U•([n]) ∈ C. We will say that a simplicial object U• ∈ C∆ is a groupoid object of C if it satisfies the
equivalent conditions of Proposition 6.1.2.6. We will let Gpd(C) denote the full subcategory of C∆ spanned
by the groupoid objects of C.

Remark 6.1.2.8. It follows from the proof of Proposition 6.1.2.6 that to verify that a simplicial object
X• ∈ C∆ is a groupoid object, we need only verify condition (4′′) in a small class of specific examples, but
we will not need this observation.

Proposition 6.1.2.9. Let C be a presentable ∞-category. The full subcategory Gpd(C) ⊆ C∆ is strongly
reflective.

Proof. Let n ≥ 0 and [n] = S ∪ S′ be as in the statement of (4′′) of Proposition 6.1.2.6. Let D(S, S′) ⊆ C∆

be the full subcategory consisting of those simplicial objects U ∈ C∆ for which the associated diagram

U([n]) //

��

U(S)

��
U(S′) // U({s})

is Cartesian. Lemmas 5.5.4.22 and 5.5.4.20 imply that D(S, S′) is a strongly reflective subcategory of C∆.
Let D denote the intersection of all these subcategories, taken over all n ≥ 0 and all such decompositions
[n] = S∪S′. Lemma 5.5.4.21 implies that D ⊆ C∆ is strongly reflective, and Proposition 6.1.2.6 implies that
D = Gpd(C).
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Our next step is to exhibit a large class of examples of groupoid objects. We first sketch the idea. Suppose
that C is an ∞-category which admits finite limits, and let u : U → X be a morphism in C. Using this data,
we can construct a simplicial object U• of C, where Un is given by the (n+ 1)-fold fiber power of U over X.
In order to describe this construction more precisely, we need to introduce a bit of notation.

Notation 6.1.2.10. Let ∆≤n
+ denote the full subcategory of ∆+ spanned by the objects {[k]}−1≤k≤n.

Proposition 6.1.2.11. Let C be an ∞-category, and let U+
• : N(∆+)op → C be an augmented simplicial

object of C. The following conditions are equivalent:

(1) The augmented simplicial object U+
• is a right Kan extension of U+

• |N(∆≤0
+ )op.

(2) The underlying simplicial object U• is a groupoid object of C, and the diagram U+
• |N(∆≤1

+ )op is a
pullback square

U1
//

��

U0

��
U0

// U−1

in the ∞-category C.

Proof. Suppose first that (1) is satisfied. It follows immediately from the definition of right Kan extensions
that the diagram

U1
//

��

U0

��
U0

// U−1

is a pullback. To prove that U• is a groupoid, we show that U• satisfies criterion (4′′) of Proposition 6.1.2.6.
Let S and S′ be sets with union [n] and intersection S ∩ S′ = {s}. Let I be the nerve of the category
(∆+)/∆n . For each subset J ⊆ [n], let I(J) denote the full subcategory of I spanned by the initial object
together with the inclusions {j} → ∆n, j ∈ S. By assumption, U+

• exhibits U•(S) as a limit of U+
• |N(I(S)),

U•(S′) as a limit of U+
• |N(I(S′)), U•([n]) as a limit of U+

• |N(I([n])), and U•({s}) as a limit of U+
• |N(I({s})).

It follows from Corollary 4.2.3.10 that the diagram

U•([n]) //

��

U•(S)

��
U•(S′) // U•({s})

is a pullback.
We now prove that (2) implies (1). Using the above notation, we must show that for each n ≥ −1,

U+
• exhibits U+

• ([n]) as a limit of U+
• | I([n]). For n ≤ 0, this is obvious; for n = 1 it is equivalent to the

assumption that
U1

//

��

U0

��
U0

// U−1

is a pullback diagram. We prove the general case by induction on n. Using the inductive hypothesis,
we conclude that U•(∆S) is a limit of U+

• | I(S) for all proper subsets S ⊂ [n]. Choose a decomposition
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{0, . . . , n} = S ∪ S′, where S ∩ S′ = {s}. According to Proposition 4.4.2.2, the desired result is equivalent
to the assertion that

U•([n]) //

��

U•(S)

��
U•(S′) // U•({s})

is a pullback diagram, which follows from our assumption that U• is a groupoid object of C.

We will say that augmented simplicial object U+
• in an ∞-category C is a Čech nerve if it satisfies the

equivalent conditions of Proposition 6.1.2.11. In this case, U+
• is determined up to equivalence by the map

u : U0 → U−1; we will also say that U+
• is the Čech nerve of u.

Notation 6.1.2.12. Let U• be a simplicial object in an ∞-category C. We may regard U• as a diagram in
C indexed by N(∆)op. We let |U•| : N(∆+)op → C denote a colimit for U• (if such a colimit exists). We will
refer to any such colimit as a geometric realization of U•.

Remark 6.1.2.13. Note that we are regarding |U•| as a colimit diagram in C, not as an object of C. We
also note that our notation is somewhat abusive, since |U•| is not uniquely determined by U•. However, if a
colimit of U• exists, then it is determined up to contractible ambiguity.

Definition 6.1.2.14. Let U• be a simplicial object of an ∞-category C. We will say that U• is an effective
groupoid if it has a geometric realization |X•| : N(∆+)op → C, and |X•| is a Čech nerve.

Remark 6.1.2.15. It follows immediately from characterization (3) of Proposition 6.1.2.11 that any effective
groupoid U• is a groupoid.

We can now state the ∞-categorical counterpart of Fact 6.1.1.6: every groupoid object in S is effective.
This statement is somewhat less trivial than its classical analogue. For example, a groupoid object U• in S

with U0 = ∗ can be thought of as a space U1 equipped with a coherently associative multiplication operation.
If U• is effective, then there exists a fiber diagram

U1
//

��

∗

��
∗ // U−1

so that U1 is homotopy equivalent to a loop space. This is an classical result (see, for example, [47]). We
will give a somewhat indirect proof in the next section.

6.1.3 ∞-Topoi and Descent

In this section, we will describe an elegant characterization of the notion of an∞-topos, based on the theory
of descent. We begin by explaining the idea in informal terms. Let X be an ∞-category. To each object
U of X we can associate the overcategory X/U . If X admits finite limits, then this construction gives a
contravariant functor from X to the ∞-category Ĉat∞ of (not necessarily small) ∞-categories. If X is an
∞-topos, then this functor carries colimits in X to limits of ∞-categories. In other words, if an object
X ∈ X is obtained as the colimit of some diagram {Xα} in X, then giving a morphism Y → X is equivalent
to a suitably compatible diagram of morphisms {Yα → Xα}. Moreover, we will eventually show that this
property characterizes the class of ∞-topoi. The ideas presented in this section are due to Charles Rezk.

Definition 6.1.3.1. Let X be an ∞-category, K a simplicial set, and p, q : K → X two diagrams. We will
say that a natural transformation α : p → q is Cartesian if, for each edge φ : x → y in K, the associated
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diagram

p(x)
p(φ) //

α(x)

��

p(y)

α(y)

��
q(x)

q(φ) // q(y)

is a pullback in X.

Lemma 6.1.3.2. Let X be an ∞-category, and let α : p → q be a natural transformation of diagrams
p, q : K �∆0 → X. Suppose that, for every vertex x of K, the associated transformation

p|{x} �∆0 → q|{x} �∆0

is Cartesian. Then α is Cartesian.

Proof. Let z be the “cone point” of K �∆0. We note that to every edge e : x→ y in K �∆0 we can associate
a diagram

x

e

��

//
g

  @
@@

@@
@@

@ z

idz

��
y // z.

The transformation α restricts to a Cartesian transformation on the horizontal edges and the right vertical
edge, either by assumption or because they are degenerate. Applying Lemma 4.4.2.1, we deduce first that
α(g) is a Cartesian transformation, then that α(e) is a Cartesian transformation.

The condition that an ∞-category has universal colimits can be formulated in the language of Cartesian
transformations:

Lemma 6.1.3.3. Let X be a presentable ∞-category. The following conditions are equivalent:

(1) Colimits in X are universal.

(2) Let p, q : (K. � ∆0) → X be diagrams which carry ∆0 to vertices X,Y ∈ X, and let α : p → q be a
Cartesian transformation. If the map q′ : K. → X/Y associated to q is a colimit diagram, then the
map p′ : K. → X/X associated to p is a colimit diagram.

(3) Let p, q : K ? ∆1 → X be diagrams which carry {1} to vertices X,Y ∈ X, and let α : p → q be a
Cartesian transformation. If the map K. → X/Y associated to q is a colimit diagram, then the map
K. → X/X associated to p is a colimit diagram.

(4) Let p, q : K ? ∆1 → X be diagrams which carry {1} to vertices X,Y ∈ X, and let α : p → q be a
Cartesian transformation. If q|K ? {0} is a colimit diagram, then p|K ? {0} is a colimit diagram.

(5) Let α : p→ q be a Cartesian transformation of diagrams K. → X. If q is a colimit diagram, then p is
a colimit diagram.

Proof. Assume that (1) is satisfied; we will prove (2). The transformation α induces a map f : X → Y .
Consider the map

φ : Fun(K.,OX)→ Fun(K.,X)

given by evaluation at the final vertex of ∆1. Let δ(f) denote the image of f under the diagonal map
δ : X → Fun(K.,X). Then we may identify α with an edge e of Fun(K.,OX) which covers δ(f). Since
α is Cartesian, we can apply Lemma 6.1.1.1 and Proposition 3.1.2.1 to deduce that e is φ-Cartesian. The
composition f∗ ◦ q′ is the origin of a φ-Cartesian edge e′ : f∗ ◦ q′ → q′ of Fun(K.,OX) covering δ(f), so we
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conclude that f∗ ◦ q′ and p′ are equivalent in Fun(K.,X/X). Since q′ is a colimit diagram and f∗ preserves
colimits, f∗ ◦ q′ is a colimit diagram. It follows that p′ is a colimit diagram, as desired.

We now prove that (2)⇒ (1). Let f : X → Y be a morphism in X, and let q′ : K. → X/Y be a colimit
diagram. Choose a φ-Cartesian edge e′ : f∗ ◦ q′ → q′ as above, corresponding to a natural transformation
α : p → q of diagrams p, q : (K. �∆0) → X. Since e is φ-Cartesian, we may invoke Proposition 3.1.2.1 and
Lemma 6.1.1.1 to deduce that α restricts to a Cartesian transformation p|({x}�∆0)→ q|({x}�∆0) for every
vertex x of K.. It follows from Lemma 6.1.3.2 that α is Cartesian. Invoking (2), we conclude that f∗ ◦ q′ is
a colimit diagram, as desired.

The equivalence (2) ⇔ (3) follows from Proposition 4.2.1.2, and the equivalence (3) ⇔ (4) follows from
Proposition 1.2.13.8. The implication (5)⇒ (4) is obvious. The converse implication (4)⇒ (5) follows from
the observation that K ? {0} is a retract of K ?∆1.

Notation 6.1.3.4. Let X be an ∞-category which admits pullbacks, and let S be a class of morphisms in
X. We will say that S is stable under pullback if for any pullback diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

in X such that f belongs to S, f ′ also belongs to S. We let OSX denote the full subcategory of OX spanned by
S, and O

(S)
X the subcategory of OX whose objects are are elements of S, and whose morphisms are pullback

diagrams as above. We observe that evaluation at {1} ⊆ ∆1 induces a Cartesian fibration OSX → X, which
restricts to a right fibration O

(S)
X → X (Corollary 2.3.2.8).

Lemma 6.1.3.5. Let X be a presentable ∞-category, and suppose that colimits in X are universal. Let S be
a class of morphisms of X which is stable under pullback, K a small simplicial set, and q : K. → X a colimit
diagram. The following conditions are equivalent:

(1) The composition f ◦ q : K. → Ĉat
op

∞ is a colimit diagram, where f : X→ Ĉat
op

∞ classifies the Cartesian
fibration OSX → X.

(2) The composition f ′ ◦ q : K. → Ŝ
op

is a colimit diagram, where f : X→ Ŝ
op

classifies the right fibration
O

(S)
X → X.

(3) For every natural transformation α : p → q of colimit diagrams K. → X, if α = α|K is a Cartesian
transformation and α(x) ∈ S for each vertex x ∈ K, then α is a Cartesian transformation and
α(∞) ∈ S, where ∞ denotes the cone point of K..

Proof. Let C = Fun(K.,X)/q and C = Fun(K,X)/q. Let C
0

denote the full subcategory of C spanned by
Cartesian natural tranformations α : p→ q with the property that α(x) belongs to S for each vertex x ∈ K.,
and let C0 be defined similarly. Finally, let C

1
denote the full subcategory of C spanned by those natural

transformations α : p → q such that p is a colimit diagram, α = α|K is a Cartesian transformation, and
α(x) belongs to S for each vertex x ∈ K. Lemma 6.1.3.3 implies that C

0 ⊆ C
1
.

Let D denote the full subcategory of Fun(K.,C) spanned by the colimit diagrams. Proposition 4.3.2.15
asserts that the restriction map D → Fun(K,C) is a trivial fibration. It follows that the associated map
D/q → Fun(K,C)/q is also a trivial fibration, and therefore restricts to a trivial fibration C

1 → C0.
According to Proposition 3.3.4.1, condition (1) is equivalent to the assertion that the projection C

0 → C0

is an equivalence of∞-categories. In view of the above argument, this is equivalent to the assertion that the
fully faithful inclusion C

0 ⊆ C
1

is essentially surjective. Since C
0

is clearly stable under equivalence in C, (1)
holds if and only if C

0
= C

1
, which is manifestly equivalent to (3). The proof that (2)⇔ (3) is similar, using
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Proposition 3.3.4.3 in place of Proposition 3.3.4.1 and the maximal Kan complexes contained in C
0
, C

1
, and

C0.

Lemma 6.1.3.6. Let X be a presentable category in which colimits are universal. Let f : X → ∅ be a
morphism in X, where ∅ is an initial object of X. Then X is also initial.

Proof. Observe that id∅ is both an initial object of X/∅ (Proposition 1.2.13.8) and a final object of X/∅. Let
f∗ : X/∅ → X/X be a pullback functor. Then f∗ preserves limits (since it is a right adjoint) and colimits (since
colimits in X are universal). Therefore f∗ id∅ is both initial and final in X/X . It follows that idX : X → X,
being another final object of X/X , is also initial. Applying Proposition 1.2.13.8, we deduce that X is an
initial object of X, as desired.

Lemma 6.1.3.7. Let X be a presentable ∞-category in which colimits are universal, and let S be a class of
morphisms in X which is stable under pullback. The following conditions are equivalent:

(1) The Cartesian fibration OSX → X is classified by a colimit-preserving functor X→ Ĉat∞.

(2) The right fibration O
(S)
X → X is classified by a colimit-preserving functor X→ Ŝ

op
.

(3) The class S is stable under (arbitrary) coproducts, and for every pushout diagram

f
α //

β

��

g

β′

��
f ′

α′ // g′

in OX, if α and β are Cartesian transformations and f, f ′, g ∈ S, then α′ and β′ are also Cartesian
transformations and g′ ∈ S.

Proof. The equivalence of (1) and (2) follows easily from Lemma 6.1.3.5. Let s : X → Ĉat
op

∞ be a functor
which classifies OX. Then (1) is equivalent to the assertion that s preserves small colimits. Supposing that
(1) is satisfied, we deduce (3) by applying Lemma 6.1.3.5 in the special cases of sums and coproducts. For
the converse, let us suppose that (3) is satisfied. Let ∅ denote an initial object of X. Since colimits in X

are universal, Lemma 6.1.3.6 implies that X/∅ is equivalent to final ∞-category ∆0. Since the morphism id∅
belongs to S (since S is stable under empty coproducts), we conclude that s(∅) is a final∞-category, so that
s preserves initial objects. It follows from Corollary 4.4.2.5 that s preserves finite coproducts. According
to Proposition 4.4.2.6, it will suffice to prove that s preserves arbitrary coproducts. To handle the case of
infinite coproducts we apply Lemma 6.1.3.5 again: we must show that if {fα}α∈A is a collection of elements of
S having a coproduct f =

∐
α∈A fα, then f ∈ S and each of the maps fα → f is a Cartesian transformation.

The first condition is true by assumption; for the second we let f ′ be a coproduct of the family {fβ}β∈A,β 6=α,
so that f ' f ′

∐
fα and f ′ ∈ S. Applying Lemma 6.1.3.5 (and the fact that s preserves finite coproducts),

we deduce that fα → f is a Cartesian transformation as desired.

Definition 6.1.3.8. Let X be a presentable∞-category in which colimits are universal, and let S be a class
of morphisms in X. We will say that S is local if it is stable under pullbacks and satisfies the equivalent
conditions of Lemma 6.1.3.7.

Theorem 6.1.3.9. Let X be a presentable ∞-category. The following conditions are equivalent:

(1) Colimits in X are universal, and for every pushout diagram

f
α //

β

��

g

β′

��
f ′

α′ // g′
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in OX, if α and β are Cartesian transformations, then α′ and β′ are also Cartesian transformations.

(2) Colimits in X are universal, and the class of all morphisms in X is local.

(3) The Cartesian fibration OX → X is classified by a limit-preserving functor Xop → PrL.

(4) Let K be a small simplicial set and α : p → q a natural transformation of diagrams p, q : K. → X.
Suppose that q is a colimit diagram, and that α = α|K is a Cartesian transformation. Then p is a
colimit diagram if and only if α is a Cartesian transformation.

Proof. The equivalences (1)⇔ (2)⇔ (3) follow from Lemma 6.1.3.7 and Proposition 6.1.1.4. The equivalence
(3)⇔ (4) follows from Lemmas 6.1.3.3 and 6.1.3.5.

We now have most of the tools required to establish the implication (1) ⇒ (2) of Theorem 6.1.0.6. In
view of Theorem 6.1.3.9, it will suffice to prove the following:

Proposition 6.1.3.10. Let X be an ∞-topos. Then:

(1) Colimits in X are universal.

(2) For every pushout diagram
f

α //

β

��

g

β′

��
f ′

α′ // g′

in OX, if α and β are Cartesian transformations, then α′ and β′ are also Cartesian transformations.

Remark 6.1.3.11. Once we have established Theorem 6.1.0.6 in its entirety, it will follow from Theorem
6.1.3.9 that the converse of Proposition 6.1.3.10 is also valid: a presentable ∞-category X is an ∞-topos if
and only if it satisfies conditions (1) and (2) as above. Condition (1) is equivalent to the requirement that
for every morphism f : X → Y in X, the pullback functor f∗ : X/Y → X/X has a right adjoint (in the case
where Y is a final object of X, this simply amounts to the requirement that every object Z ∈ X admits an
exponential ZX ; in other words, the requirement that X be Cartesian closed), and condition (2) involves
only finite diagrams in the ∞-category X. One could conceivably obtain a theory of elementary ∞-topoi by
dropping the requirement that X be presentable (or replacing it by weaker conditions which are also finite
in nature). We will not pursue this idea further.

Before giving the proof of Proposition 6.1.3.10, we need to establish a few easy lemmas.

Lemma 6.1.3.12. Let
φ

p //

q

��

ψ

q′

��
φ′

p′ // ψ′

be a coCartesian square in the category of arrows of Set∆. Suppose that p and q are homotopy Cartesian
and that q is a cofibration. Then:

(1) The maps p′ and q′ are homotopy Cartesian.

(2) Given any map of arrows r : ψ′ → θ such that r ◦ p′ and r ◦ q′ are homotopy Cartesian, the map r is
itself homotopy Cartesian.
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Proof. Let r : ψ′ → θ be as in (2). We must show that r is homotopy Cartesian if and only if r ◦ p′ and r ◦ q′
are homotopy Cartesian (taking r = idψ′ , we will deduce (1)). Without loss of generality, we may replace φ,
ψ, φ′ and θ with minimal Kan fibrations. We now observe that r, r ◦ p′, and r ◦ q′ are homotopy Cartesian
if and only if they are Cartesian; the desired result now follows immediately.

Lemma 6.1.3.13. Let A be a simplicial model category containing an object Z which is both fibrant and
cofibrant, and let A/Z be endowed with the induced model structure. Then the natural map θ : N(A◦

/Z) →
N(A◦)/Z is an equivalence of ∞-categories.

Proof. Let φ : Z ′ → Z be an object of N(A◦)/Z . Then we can choose a factorization

Z ′
i→ Z ′′

ψ→ Z

where i is a trivial cofibration and ψ is a fibration, corresponding to a fibrant-cofibrant object of A/Z . The
above diagram classifies an equivalence between φ and ψ in N(A◦)/Z , so that θ is essentially surjective.

Recall that for any simplicial category C containing a pair of objects X and Y , there is a natural
isomorphism of simplicial sets

HomR
N(C)(X,Y ) ' SingQ•(MapC(X,Y )),

where Q• is the cosimplicial object of Set∆ introduced in §1.3.2. The same calculation shows that if φ : X →
Z, ψ : Y → Z are two morphisms in C, then

HomR
N(C)/Z

(φ, ψ) ' SingQ•(P ),

where P denotes the path space

MapC(X,Y )×MapC(X,Z){0} MapC(X,Z)∆
1
×MapC(X,Z){1} {φ}.

If C is fibrant, then we may identify M with the homotopy fiber of the map

f : MapC(X,Y )
ψ→ MapC(X,Z)

over the vertex φ. Consequently, we may identify the natural map

HomR
N(C/Z)(φ, ψ)→ HomR

N(C)/Z
(φ, ψ)

with SingQ•(θ), where θ denotes the inclusion of the fiber of f into the homotopy fiber of f . Consequently, to
show that SingQ•(θ) is a homotopy equivalence, it suffices to prove that f is a Kan fibration. In the special
case where C = A◦ and ψ is a fibration, this follows from the definition of a simplicial model category.

Lemma 6.1.3.14. Let S denote the ∞-category of spaces. Then:

(1) Colimits in S are universal.

(2) For every pushout diagram
f

α //

β

��

g

β′

��
f ′

α′ // g′

in OS, if α and β are Cartesian transformations, then α′ and β′ are also Cartesian transformations.
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Proof. We first prove (1). Let f : X → Y be a morphism in S. Without loss of generality, we may suppose
that f is a Kan fibration. We wish to show that the projection

S/f → S/Y

has a right adjoint which preserves colimits. We have a commutative diagram of ∞-categories

N((Set∆)◦/X) F //

φ

��

N((Set∆)◦/Y )

ψ

��
S/f //

φ′

��

S/Y

S/X

Lemma 6.1.3.13 asserts that ψ and φ′ ◦φ are categorical equivalences, and φ′ is a trivial fibration. It follows
that φ is also a categorical equivalence. Consequently, it will suffice to show that the functor F has a
right adjoint G which preserves colimits. We note that F is the simplicial nerve of a left Quillen functor
f! : (Set∆)◦/X → (Set∆)◦/Y . According to Proposition 5.2.4.6, we may suppose that G is the simplicial nerve
of the right adjoint functor f∗. To prove that G preserves colimits, it suffices to show that it admits a right
adjoint. Using Proposition 5.2.4.6 again, we are reduced to proving that f∗ is a left Quillen functor. Clearly
f∗ preserves cofibrations; it also preserves weak equivalences, since f is a fibration and Set∆ is a right proper
model category (with its usual model structure).

To prove (2), we first apply Proposition A.3.6.1 to reduce to the case where the pushout diagram in
question arises from a strictly commutative square

f
α //

β

��

g

β′

��
f ′

α′ // g′

of morphisms in the category Kan. We now complete the proof by applying Lemma 6.1.3.12 and Theorem
4.2.4.1.

Lemma 6.1.3.15. Let X be a presentable ∞-category, and let L : X→ Y be an accessible left exact localiza-
tion. If colimits in X are universal, then colimits in Y are universal.

Proof. We will use characterization (5) of Lemma 6.1.3.2. Let G be a right adjoint to L, and let α : p→ q be
a Cartesian transformation of diagrams K. → Y. Suppose that q is a colimit of q = q|K. Choose a colimit
q′ of G ◦ q, so that there exists a morphism q′ → G ◦ q in XG◦q/ which determines a natural transformation
β : q′ → q in Fun(K.,X). Form a pullback diagram

p′
α′ //

��

q′

β

��
G ◦ p G◦α // G ◦ q.

in XK
.

. Since G is left exact, G ◦ α is a Cartesian transformation. It follows that α′, being a pullback of
G ◦ α, is also a Cartesian transformation. Since colimits in X are universal, we conclude that p′ is a colimit
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diagram. Since L is left exact, we obtain a pullback diagram

L ◦ p′ //

��

L ◦ q′

L◦β
��

L ◦G ◦ p // L ◦G ◦ q.

Since L preserves colimits, L ◦ q′ and L ◦ p′ are colimit diagrams. The diagram L ◦ G ◦ q is equivalent to
q, and therefore also a colimit diagram. We deduce that L ◦ β is an equivalence. Since the diagram is a
pullback, the left vertical arrow is an equivalence as well, so that L ◦G ◦ p is a colimit diagram. We finally
conclude that p is a colimit diagram, as desired.

We are now ready to give the proof of Proposition 6.1.3.10.

Proof of Proposition 6.1.3.10. Let us say that a presentable∞-category X is good if it satisfies conditions (1)
and (2). Lemma 6.1.3.14 asserts that S is good. Using Proposition 5.1.2.2, it is easy to see that if X is good
then so is Fun(K,X), for every small simplicial set K. It follows that every ∞-category P(C) of presheaves
is good. To complete the proof, it will suffice to show that if X is good and L : X → Y is an accessible left
exact localization functor, then Y is good. Lemma 6.1.3.15 shows that colimits in Y are universal. Consider
a diagram σ : Λ2

0 → OY, denoted by

g
α← f

β→ h

where α and β are Cartesian transformations. We wish to show that if σ is a colimit of σ in OY, then σ
carries each edge to a Cartesian transformation. Without loss of generality, we may suppose that σ = L ◦ σ′
for some σ′ : Λ2

0 → OX which is equivalent to G ◦ σ. Since G is left exact, G(α) and G(β) are Cartesian
transformations. Because X satisfies (2), there exists a colimit σ′ of σ′ which carries each edge to a Cartesian
transformation. Then L ◦ σ′ is a colimit of σ. Since L is left exact, L ◦ σ′ carries each edge to a Cartesian
transformation in OY.

Our final objective in this section is to prove the implication (2)⇒ (3) of Theorem 6.1.0.6 (Proposition
6.1.3.19 below).

Lemma 6.1.3.16. Let X be an ∞-category and U+
• : N(∆+)op → X an augmented simplicial object of X.

Let ∆∞ denote the category whose objects are finite, linearly ordered sets J , where Hom∆∞(J, J ′) is the
collection of all order-preserving maps J ∪ {∞} → J ′ ∪ {∞} which carry ∞ to ∞ ( here ∞ is regarded as
a maximal element of J ∪ {∞} and J ′ ∪ {∞} ). Suppose that U+

• extends to a functor F : N(∆∞)op → X.
Then U+

• is a colimit diagram in X.

Proof. Let C denote the category whose objects are triples (J, J+), where J is a finite, linearly ordered set,
and J+ is an upward-closed subset of J . We define HomC((J, J+), (J ′, J ′+) to be the set of all order-preserving
maps from J into J ′ that carry J+ into J ′+. Observe that we have a functor C→∆∞, given by

(J, J+) 7→ J − J+.

Let F ′ denote the composite functor

N(C)op → N(∆∞)op → X .

Let C be the full subcategory of C spanned by those pairs (J, J+) where J 6= ∅. Let C
0

denote the
full subcategory spanned by those pairs (J, J+) where J+ = ∅, and let C0 = C

0 ∩ C. We observe that C
0

can be identified with ∆+ and that C0 can be identified with ∆, in such a way that U+
• is identified with

F ′|N(C
0
)op.
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Our first claim is that the inclusion N(C0)op ⊆ N(C)op is cofinal. According to Theorem 4.1.3.1, it will
suffice to show that for every object X = (J, J+) of C, the category C0

/X has a contractible nerve. This is
clear, since the relevant category has a final object: namely, the map (J, ∅)→ (J, J+). As a consequence, we
conclude that U+

• is a colimit diagram if and only if F ′ is a colimit diagram.
We now define C1 to be the full subcategory of C spanned by those pairs (J, J+) such that J+ is nonempty.

We claim that F ′|N(C)op is a left Kan extension of F ′|N(C1)op. To prove this, we must show that for every
(J, ∅) ∈ C0, the induced map

(N(C1
(J,∅)/)

op). → N(C)op → X

is a colimit diagram. Let D denote the full subcategory of C1
(J,∅)/ spanned by those morphisms (J, ∅) →

(J ′, J ′+) which induce isomorphisms J ' J ′ − J ′+. We claim that the inclusion N(D)op ⊆ N(C1
(J,∅)/)

op is
cofinal. To prove this, we once again invoke Theorem 4.1.3.1, to reduce to the following assertion: for every
morphism φ : (J, ∅)→ (J ′′, J ′′+), if J ′′+ 6= ∅, then the category D/φ of all factorizations

(J, ∅)→ (J ′, J ′+)→ (J ′′, J ′′+)

such that J ′+ 6= ∅ and J ' J ′− J ′+, has weakly contractible nerve. This is clear, since D/φ has a final object
(J

∐
J ′′′+ , J

′′′
+ ), where J ′′′+ = {j ∈ J ′′+ : (∀i ∈ J)[j ≥ φ(i)]}. Consequently, it will suffice to prove that the

induced functor
N(Dop). → X

is a colimit diagram. This diagram can be identified with the constant diagram

N(∆+)op → X

taking the value U•(J), and is a colimit diagram because the category ∆ has weakly contractible nerve
(Corollary 4.4.4.10).

We now apply Lemma 4.3.2.7, which asserts that F ′ is a colimit diagram if and only if F ′|(N(C1)op). is
a colimit diagram. Let C2 ⊆ C1 be the full subcategory spanned by those objects (J, J+) such that J = J+.
We claim that the inclusion N(C2)op ⊆ N(C1)op is cofinal. According to Theorem 4.1.3.1, it will suffice to
show that, for every object (J, J+) ∈ C1, the category C2

/(J,J+) has weakly contractible nerve. This is clear,

since the map (J+, J+) → (J, J+) is a final object of the category C
(2)
/(J,J+). Consequently, to prove that

F ′|(N(C1)op). is a colimit diagram, it will suffice to prove that F ′|(N(C2)op). is a colimit diagram. But this
diagram can be identified with the constant map N(∆+)op → X taking the value U•(∆−1), which is a colimit
diagram because the simplicial set N(∆)op is weakly contractible (Corollary 4.4.4.10).

Lemma 6.1.3.17. Let X be an ∞-category, and let U• : N(∆)op → X be a simplicial object of X. Let U ′• be
the augmented simplicial object given by composing U• with the functor

∆+ →∆

J → J
∐
{∞}.

Then:

(1) The augmented simplicial object U ′• is a colimit diagram.

(2) If U• is a groupoid object of X, then the evident natural transformation of simplicial objects α :
U ′•|N(∆)op → U• is Cartesian.

Proof. Assertion (1) follows immediately from Lemma 6.1.3.16. To prove (2), let us consider the collection
S of all morphisms f : J → J ′ in ∆ such that α(f) is a pullback square

U ′•(J
′) //

��

U•(J ′)

��
U ′•(J) // U•(J)
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in X. We wish to prove that every morphism of ∆ belongs to S. Using Lemma 4.4.2.1, we deduce that if
f ′ ∈ S, then f ∈ S ⇔ (f ◦f ′ ∈ S). Consequently, it will suffice to prove that every inclusion {j} ⊆ J belongs
to S. Unwinding the definition, this amounts the the requirement that the diagram

U•(J ∪ {∞})

��

// U•(J)

��
U•({j,∞}) // U•({j})

is Cartesian, which follows immediately from Criterion (4′′) of Proposition 6.1.2.6.

Remark 6.1.3.18. Assertion (2) of Lemma 6.1.3.17 has a converse: if α is a Cartesian transformation, then
U• is a groupoid object of X. This can be deduced easily by examining the proof of Proposition 6.1.2.6, but
we will not have need of it.

Proposition 6.1.3.19. Let X be an ∞-category satisfying the equivalent conditions of Theorem 6.1.3.9.
Then X satisfies the ∞-categorical Giraud axioms:

(i) The ∞-category X is presentable.

(ii) Colimits in X are universal.

(iii) Coproducts in X are disjoint.

(iv) Every groupoid object of X is effective.

Proof. Axioms (i) and (ii) are obvious. To prove (iii), let us consider an arbitrary pair of objects X,Y ∈ X,
and let ∅ denote an initial object of X. Let f : ∅ → X be a morphism (unique up to homotopy, since ∅ is
initial). We observe that id∅ is an initial object of OX. Form a pushout diagram

id∅
α //

β

��

idY

β′

��
f

α′ // g

in OX. It is clear that α is a Cartesian transformation, and Lemma 6.1.3.6 implies that β is Cartesian as
well. Invoking condition (2) of Theorem 6.1.3.9, we deduce that α′ is a Cartesian transformation. But α′

can be identified with a pushout diagram

∅ //

��

Y

��
X // X

∐
Y.

It remains to prove that every groupoid object in X is effective. Let U• be a groupoid object of X, and
let U• : N(∆+)op → X be a colimit of U•. Let U ′• : N(∆+)op → X be the result of composing U• with the
“shift” functor

∆+ →∆+

J 7→ J
∐
{∞}.

(In other words, U ′• is the shifted simplicial object given by U ′n = Un+1.) Lemma 6.1.3.17 implies that U ′•
is a colimit diagram in X. We have a transformation α : U ′• → U•. Since U• is a groupoid, α = α|N(∆)op
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is a Cartesian transformation (Lemma 6.1.3.17 again). Applying (4), we deduce that α is a Cartesian
transformation. In particular, we conclude that

U ′0 //

��

U ′−1

��
U0

// U−1

is a pullback diagram in X. But this diagram can be identified with

U1
//

��

U0

��
U0

// U−1,

so that U• is effective by Proposition 6.1.2.11.

Corollary 6.1.3.20. Every groupoid object of S is effective.

6.1.4 Free Groupoids

Let X be an ∞-category which satisfies the ∞-categorical Giraud axioms (i)− (iv) of Theorem 6.1.0.6. We
wish to prove that X is an ∞-topos. It is clear that any proof will need to make use of the full strength of
axioms (i) through (iv); in particular, we will need to apply (iv) to a class of groupoid objects of X which are
not obviously effective. The purpose of this section is to describe a construction which will yields nontrivial
examples of groupoid objects, and to deduce a consequence (Proposition 6.1.4.2) which we will use in the
proof of Theorem 6.1.0.6.

Definition 6.1.4.1. Let f : X→ Y be a functor between ∞-categories which admit finite limits. Let Z be
an object of X. We will say that f is left exact at Z if, for every pullback square

W //

��

Y

��
X // Z

in X, the induced square
f(W ) //

��

f(Y )

��
f(X) // f(Z)

is a pullback in Y.

We can now state the main result of this section:

Proposition 6.1.4.2. Let X and Y be presentable ∞-categories, and let f : X → Y be a functor which
preserves small colimits. Suppose that every groupoid object in either X or Y is effective. Let

U1
//// U0

s // U−1.
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be a coequalizer diagram in X, and let
X //

��

U0

s

��
U0

s // U−1

be a pullback diagram in X. Suppose that f is left exact at U0. Then the associated diagram

f(X) //

��

f(U0)

s

��
f(U0)

s // f(U−1)

is a pullback square in Y.

Before giving the proof, we must establish some preliminary results.

Lemma 6.1.4.3. Let X and Y be ∞-categories which admit finite limits, let f : X→ Y be a functor, and let
U• be a groupoid object of X. Suppose that f is left exact at U0. Then f ◦ U• is a groupoid object of Y.

Proof. This follows immediately from characterization (4′′) given in Proposition 6.1.2.6.

Let X be a presentable ∞-category. We define a simplicial resolution in X to be an augmented simplicial
object U+

• : N(∆+)op → X which is a colimit of the underlying simplicial object U• = U+
• |N(∆)op. We

let Res(X) denote the full subcategory of X∆+ spanned by the simplicial resolutions. Note that since every
simplicial object of X has a colimit, the restriction functor Res(X)→ X∆ is a trivial fibration, and therefore
an equivalence of ∞-categories. We will say that a simplicial resolution U+

• is a groupoid resolution if the
underlying simplicial object U• is a groupoid object of X.

We will say that a map f : U+
• → V +

• of simplicial resolutions exhibits V +
• as the groupoid resolution

generated by U+
• if V +

• is a groupoid resolution and the induced map

MapRes(X)(V
+
• ,W

+
• )→ MapRes(X)(U

+
• ,W

+
• )

is a homotopy equivalence for every groupoid resolution W+
• ∈ Res(X).

Lemma 6.1.4.4. Let X be a presentable ∞-category and let f : U+
• → V +

• be a map of simplicial resolutions
which exhibits V +

• as the groupoid resolution generated by U+
• . Let W+

• be an augmented simplicial object of
X such that the underlying simplicial object W• ∈ X∆ is a groupoid. Composition with f induces a homotopy
equivalence

MapX∆+
(V +
• ,W

+
• )→ MapX∆+

(U+
• ,W

+
• ).

Proof. Let |W•| be a colimit of W•. Then we have a commutative diagram

MapX∆+
(V +
• , |W•|) //

��

MapX∆+
(U+

• , |W•|)

��
MapX∆+

(V +
• ,W

+
• ) // MapX∆+

(U+
• ,W

+
• )

where the vertical maps are homotopy equivalences (since U+
• and V +

• are resolutions) and the upper hori-
zontal map is a homotopy equivalence (since |W•| is a groupoid resolution).

Lemma 6.1.4.5. Let X be a presentable ∞-category. Suppose that f : U+
• → V +

• be a map in Res(X)
which exhibits V +

• as the groupoid resolution generated by U+
• . Then f induces equivalences U−1 → V−1 and

U0 → V0.
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Proof. Let ∆≤0
+ be the full subcategory of ∆+ spanned by the objects ∆−1 and ∆0. Let j : ∆≤0

+ → ∆+

denote the inclusion functor, let j∗ : X∆+ → OX be the associated restriction functor. We wish to show that
j∗(f) is an equivalence. Equivalently, we show that for every W ∈ OX, composition with j∗(f) induces a
homotopy equivalence

MapOX
(j∗V +

• ,W )→ MapOX
(j∗U+

• ,W ).

Let j∗ be a right adjoint to j∗ (a right Kan extension functor). It will suffice to prove that composition
with f induces a homotopy equivalence

MapX∆+
(V +
• , j∗W )→ MapX∆+

(U+
• , j∗W ).

The augmented simplicial object j∗W is a Čech nerve, so that the underlying simplicial object of j∗W is a
groupoid by Proposition 6.1.2.11. We now conclude by applying Lemma 6.1.4.4.

Let I denote the subcategory of ∆+ spanned by the objects ∅, [0], and [1], where the morphisms are
given by injective maps of linearly ordered sets. This category may be depicted as follows:

∅ // [0] //// [1]

We let I0 denote the full subcategory of I spanned by the objects [0] and [1]. We will say that a diagram
N(I)op → X is a coequalizer diagram if it is a colimit of its restriction to N(I0)op → X.

Let i denote the inclusion I ⊆∆+, and let i∗ denote the restriction functor X∆+ → Fun(N(I)op,X). If X

is a presentable ∞-category, then i∗ has a left adjoint i! (a left Kan extension).

Lemma 6.1.4.6. Let X be a presentable ∞-category. The left Kan extension i! : Fun(N(I)op,X) → X∆+

carries coequalizer diagrams to simplicial resolutions.

Proof. We have a commutative diagram of inclusions of subcategories

I0
j′ //

i′

��

I

i

��
∆

j // ∆+

which gives rise to a homotopy commutative diagram of ∞-categories

Fun(N(I0)op,X)
j′! //

i′!

��

Fun(N(I)op,X)

i!

��
X∆

j! // X∆+

in which the morphisms are given by left Kan extensions. An object U ∈ Fun(N(I)op X) is a coequalizer
diagram if and only if it lies in the essential image of j′! . In this case, i!U lies in the essential image of
i! ◦ j′! ' j! ◦ i′!, which is contained in the essential image of j!: namely, the resolutions.

Lemma 6.1.4.7. Let X be a presentable ∞-category and suppose given a diagram U : N(I)op → C, which
we may depict as

U1
//// U0

// U−1.

Let V• = i!U ∈ X∆+ be a left Kan extension of U along i : N(J)op → ∆op
+ . Then the augmentation maps

V0 → V−1 and U0 → U−1 are equivalent in the ∞-category OX.

Proof. This follows from Proposition 4.3.3.8, since HomI(∆i, •) ' Hom∆+(∆i, •) for i ≤ 0.
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Proof of Proposition 6.1.4.2. Let U : N(I)op → C be a coequalizer diagram in X, which we denote by

U1
//// U0

s // U−1,

and form a pullback square
X //

��

U0

s

��
U0

s // U−1.

Let V• = i!U ∈ X∆+ be a left Kan extension of U . According to Lemma 6.1.4.6, V• is a simplicial
resolution. We may therefore choose a map V• →W• which exhibits W• as the groupoid resolution generated
by V•. Since every groupoid object in X is effective, W• is a Čech nerve. It follows from the characterization
given in Proposition 6.1.2.11 that there is a pullback diagram

W1
//

��

W0

��
W0

// W−1

in X. Using Lemma 6.1.4.7 and Lemma 6.1.4.5, we see that this diagram is equivalent to the pullback
diagram

X //

��

U0

s

��
U0

s // U−1.

It therefore suffices to prove that the induced diagram

f(W1) //

��

f(W0)

��
f(W0) // f(W−1)

is a pullback. We make a slightly stronger claim: the augmented simplicial object f ◦W• is a Čech nerve.
Since every groupoid object in Y is effective, it will suffice to prove that f ◦W• is a groupoid resolution.
Since f preserves colimits, it is clear that f ◦W• is a simplicial resolution. It follows from Lemma 6.1.4.3
that the underlying simplicial object of f ◦W• is a groupoid.

6.1.5 Giraud’s Theorem for ∞-Topoi

In this section, we will complete the proof of Theorem 6.1.0.6 by showing that every ∞-category X which
satisfies the∞-categorical Giraud axioms (i) through (iv) arises as a left exact localization of an∞-category
of presheaves. Our strategy is simple: we choose a small category C equipped with a functor f : C → X.
According to Theorem 5.1.5.6, we obtain a colimit-preserving functor F : P(C) → X which extends f , up
to homotopy. We will apply Proposition 6.1.4.2 to show that, under suitable hypotheses, F is a left exact
localization functor (Proposition 6.1.5.2).

Lemma 6.1.5.1. Let X be a presentable ∞-category in which colimits are universal and coproducts are
disjoint.
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Let {φi : Zi → Z}i∈I be a family of morphisms in X which exhibit Z as a coproduct of the family of
objects {Zi}i∈I . Let

W
α //

��

Zi

φi

��
Zj

φj // Z

be a square diagram in X. Then:

(1) If i 6= j, then the diagram is a pullback square if and only if W is an initial object of X.

(2) If i = j, then the diagram is a pullback square if and only if α is an equivalence.

Proof. Let Z∨i be a coproduct for the objects {Zk}k∈I,k 6=i, and let ψ : Z∨i → Z be a morphism such that
each of the compositions

Zk → Z∨i
ψ→ Z

is equivalent to Z. Then there is a pushout square

∅
β //

��

Zi

φi

��
Z∨i

ψ // Z

where ∅ denotes an initial object of X. Since coproducts in X are disjoint, this pushout square is also a
pullback.

Let φ∗i : X/Z → X/Zi denote a pullback functor. The above argument shows that φ∗i (ψ) is an initial object
of X/Zi . If j 6= i, then there is a map of arrows φj → ψ in X/Z , and therefore a map φ∗i (φj)→ φ∗i (ψ) in X/Zi .
Consequently, if α ' φ∗i (φj), then W admits a map to an initial object of X, and is therefore itself initial
by Lemma 6.1.3.6. This proves the “only if” direction of (1). The converse follows from the uniqueness of
initial objects.

Now suppose that i = j. We observe that id/Z is a coproduct of φi and ψ in the ∞-category X/Z . Since
φ∗i preserves coproducts, we deduce that idZi is a coproduct of φ∗(φj) : X → Zi and β : ∅ → Zi in X/Zi .
Since β is an initial object of X/Zi , we see that φ∗(φj) is an equivalence. The natural map γ : α → φ∗i (φi)
corresponds to a commutative diagram

W
α //

γ0

��

Zi

idZi

�� ��
X

φ∗i (φi) // Zi

in the ∞-category X. Consequently, α is an equivalence if and only if γ0 is an equivalence, if and only if γ
is an equivalence in X/Zi . This proves (2).

Proposition 6.1.5.2. Let C be a small ∞-category which admits finite limits, and let X be an ∞-category
which satisfies the ∞-categorical Giraud axioms (i) − (iv) of Theorem 6.1.0.6. Let F : P(C) → X be a
colimit-preserving functor. Suppose that the composition F ◦ j : C → X is left exact, where j : C → P(C)
denotes the Yoneda embedding. Then F is left exact.

Proof. According to Corollary 4.4.2.5, to prove that F is left exact, it will suffice to prove that F preserves
pullbacks and final objects. Since all final objects are equivalent, to prove that F preserves final objects it
suffices to exhibit a single final object Z of P(C) such that FY ∈ X is final. Let z be a final object of C

(which exists in virtue of our assumption that C admits finite limits). Then Z = j(z) is a final object of
P(C), since j preserves limits by Proposition 5.1.3.2. Consequently F (Z) = f(z) is final, since f is left-exact.
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Let α : Y → Z be a morphism in P(C). We will say that α is good if for every pullback square

W //

��

Y

α

��
X // Z

in P(C), the induced square
F (W ) //

��

F (Y )

F (α)

��
F (X)

β // F (Z)

is a pullback in X. Note that Lemma 4.4.2.1 implies that the class of good morphisms in P(C) is stable under
composition.

We rephrase this condition that a morphism α be good in terms of the pullback functors α∗ : P(C)/Z →
P(C)/Y , F (α)∗ : X/F (Z) → P(C)/F (Y ). Application of the functor F gives a map

t : F ◦ α∗ → F (α)∗ ◦ F

in the ∞-category of functors from P(C)/Z to X/F (Z), and α is good if and only if t is an equivalence. Note
that t is a natural transformation of colimit-preserving functors. Since the image of the Yoneda embedding
j : C → P(C) generates P(C) under colimits, it will suffice to prove that t is an equivalence when evaluated
on objects of the form β : j(x)→ Z, where x is an object of C.

Let us say that an object Z ∈ P(C) is good if every morphism α : Y → Z is good. In other words, an
object Z ∈ P(C) is good if F is left exact at Z in the sense of Definition 6.1.4.1. By repeating the above
argument, we deduce that Z is good if and only if every morphism of the form α : j(y) → Z is good for
y ∈ C.

We next claim that for every object z ∈ C, the Yoneda image j(z) ∈ P(C) is good. In other words, we
must show that for every pullback square

W //

��

j(y)

α

��
j(x)

β // j(z)

in P(C), the induced square
F (W ) //

��

f(x)

��
f(y) // f(z)

is a pullback in X. Since the Yoneda embedding is fully faithful, we may suppose that α and β are the
Yoneda images of morphisms x → z, y → z. Since j preserves limits, we may reduce to the case where
the first diagram is the Yoneda image of a pullback diagram in C. The desired result then follows from the
assumption that f is left exact.

To complete the proof that F is left exact, it will suffice to prove that every object of P(C) is good.
Because the Yoneda embedding j : C→ P(C) generates P(C) under colimits, it will suffice to prove that the
collection of good objects of P(C) is stable under colimits. According to Proposition 4.4.3.3, it will suffice to
prove that the collection of good objects of P(C) is stable under coequalizers and small coproducts.
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We first consider the case of coproducts. Let {Zi}i∈I be a family of good objects of P(C) indexed by a
(small) set I, and {φi : Zi → Z}i∈I be a family of morphisms which exhibit Z as a coproduct of the family
{Zi}i∈I . Suppose given a pullback diagram

W //

��

j(y)

α

��
j(x)

β // Z

in P(C). According to Proposition 5.1.2.2, evaluation at the object y induces a colimit-preserving functor
P(C)→ S. Consequently, we have a homotopy equivalence

MapP(C)(j(y), Z) '
∐
i∈I

MapP(C)(j(y), Zi)

in the homotopy category H. Therefore we may assume that α factors as a composition

j(y) α′→ Zi
φi→ Z

for some i ∈ I. By assumption, the morphism α′ is good; it therefore suffices to prove that φi is good. By
a similar argument, we can replace β by a map φj : Zj → Z, for some j ∈ I. We are now required to show
that if

W ′ //

��

Zi

φi

��
Zj

φj // Z

is a pullback diagram in P(C), then
F (W ′) //

��

F (Zi)

φi

��
Zj

φj // Z

is a pullback diagram in X. Since F preserves initial objects, this follows immediately from Lemma 6.1.5.1.
We now complete the proof by showing that the collection of good objects of P(C) is stable under the

formation of coequalizers. Let
Z1

//// Z0
s // Z−1.

be a coequalizer diagram in P(C), and suppose that Z0 and Z1 are good. We must show that any pullback
diagram

W //

��

j(y)

α

��
j(x)

β // Z−1

remains a pullback diagram after applying the functor F . The functor

P(C)→ N(Set)

T 7→ HomhP(C)(j(x), T )

can be written as a composition
P(C)→ S

π0→ N(Set)
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where the first functor is given by evaluation at x. Both of these functors commute with colimits. Conse-
quently, we have a coequalizer diagram

HomhP(C)(j(x), Z1) // // HomhP(C)(j(x), Z0) // HomhP(C)(j(x), Z−1).

in the category of sets. In particular, the map β factors as a composition

j(x)
β′→ Z0

s→ Z−1.

Since we have already assumed that β′ is good, we can replace β by the map s : Z0 → Z−1 in the above
diagram. By a similar argument, we can replace α : Y → Z−1 by the map s : Z0 → Z−1. We now obtain
the desired result by applying Proposition 6.1.4.2.

We are now ready to complete the proof of Theorem 6.1.0.6:

Proposition 6.1.5.3. Let X be an ∞-category. Suppose that X satisfies the ∞-categorical Giraud axioms:

(i) The ∞-category X is presentable.

(ii) Colimits in X are universal.

(iii) Coproducts in X are disjoint.

(iv) Every groupoid object of X is effective.

Then there exists a small ∞-category C which admits finite limits, and an accessible left exact localization
functor P(C)→ X. In particular, X is an ∞-topos.

Proof. Let X be an ∞-topos. According to Proposition 5.4.7.4, there exists a regular cardinal τ such that
X is accessible, and the full subcategory Xτ spanned by the τ -compact objects of X is stable under finite
limits. Let C be a minimal model for Xτ , so that there is an equivalence Indτ (C)→ X. The proof of Theorem
5.5.1.1 shows that the inclusion Indτ (C) ⊆ P(C) has a left adjoint L. The composition of L with the Yoneda
embedding C → P(C) can be identified with the Yoneda embedding C → Indτ (C), therefore preserves all
limits which exist in C (Proposition 5.1.3.2). Applying Proposition 6.1.5.2, we deduce that L is left exact, so
that Indτ (C) is a left exact localization (automatically accessible) of P(C). Since X is equivalent to Indτ (C),
we conclude that X is also an accessible left exact localization of P(C).

6.1.6 ∞-Topoi and Classifying Objects

Let X be an ordinary category, and let X be an object of X. Let Sub(X) denote the partially ordered
collection of subobjects of X: an object of Sub(X) is an equivalence class of monomorphisms Y → X. If C is
accessible, then Sub(X) is actually a set. If X admits finite limits, then Sub(X) is contravariantly functorial
in X: given a subobject Y → X and any map X ′ → X, the fiber product Y ′ = X ′ ×X Y is a subobject
of X ′. A subobject classifier is an object Ω of X which represents the functor Sub. In other words, Ω has a
universal subobject Ω0 ⊆ Ω such that every monomorphism Y → X fits into a unique Cartesian diagram

Y //
� _

��

Ω0� _

��
X // Ω.

(In this case, Ω0 is automatically a final object of C.)
Every topos has a subobject classifier. In fact, in the theory of elementary topoi, the existence of a

subobject classifier is taken as one of the axioms. Thus, the existence of a subobject classifier is one of the
defining characteristics of a topos. We would like to discuss the appropriate ∞-categorical generalization of
the theory of subobject classifiers. The ideas presented here are due to Charles Rezk.
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Definition 6.1.6.1. Let X be an ∞-category which admits pullbacks, and S a collection of morphisms of X

which is stable under pullback. We will say that a morphism f : X → Y classifies S if it is a final object of
O

(S)
X (see Notation 6.1.3.4). In this situation, we will also say that the object Y ∈ X classifies S. A subobject

classifier for X is an object which classifies the collection of all monomorphisms in X.

Example 6.1.6.2. The ∞-category S of spaces has a subobject classifier: namely, the discrete space {0, 1}
with two elements.

The following result provides a necessary and sufficient condition for the existence of a classifying object
for S:

Proposition 6.1.6.3. Let X be a presentable ∞-category in which colimits are universal, and let S be a
class of morphisms in X which is stable under pullbacks. There exists a classifying object for S if and only
if the following conditions are satisfied:

(1) The class S is local ( Definition 6.1.3.8 ).

(2) For every object X ∈ X, the full subcategory of X/X spanned by the elements of S is essentially small.

Proof. Let s : Xop → Ŝ be a functor which classifies the right fibration O
(S)
X → X. Then S has a classifying

object if and only if s is a representable functor. According to the representability criterion of Proposition
5.5.2.2, this is equivalent to the assertion that s preserves small limits, and the essential image of s consists
of essentially small spaces. According to Lemma 6.1.3.7, s preserves small limits if and only if (1) is satisfied.
It now suffices to observe that for each X ∈ X, the space s(X) is essentially small if and only if the full
subcategory of X/X spanned by S is essentially small.

Using Proposition 6.1.6.3, one can show that every ∞-topos has a subobject classifier. However, in the
∞-categorical context, the emphasis on subobjects misses the point. To see why, let us return to considering
an ordinary category X with a subobject classifier Ω. By definition, for every object X ∈ X, we may identify
maps X → Ω with subobjects of X: that is, isomorphism classes of maps Y → X which happen to be
monomorphisms. Even better would be an object classifier: that is, an object Ω̃ such that HomX(X, Ω̃)
could be identified with arbitrary maps Y → X. But this is an unreasonable demand: if Y → X is not
an monomorphism, then there may be automorphisms of Y as an object of X/X . It would be unnatural to
ignore these automorphisms. However, it is also not possible to take them into account, since HomX(X, Ω̃)
must be a set rather than a groupoid.

If we allow X to be an∞-category, this objection loses its force. Informally speaking, we can consider the
functor which associates to each X ∈ X the maximal ∞-groupoid contained in X/X (this is contravariantly
functorial in X, provided that X has finite limits). We might hope that this functor is representable by some
Ω∞ ∈ X, which we would then call an object classifier.

Unfortunately, a new problem arises: it is generally unreasonable to ask for the collection of all morphisms
in X to be classified by an object of X, since this would require each slice X/X to be essentially small
(Proposition 6.1.6.3). This is essentially a technical difficulty, which we will circumvent by introducing a
cardinality bound.

Definition 6.1.6.4. Let X be a presentable ∞-category. We will say that a morphism f : X → Y is
relatively κ-compact if, for every pullback diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

such that Y ′ is κ-compact, X ′ is also κ-compact.
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Lemma 6.1.6.5. Let X be a presentable ∞-category, κ a regular cardinal, J a κ-filtered ∞-category, and
p : J. → X a colimit diagram. Let f : X → Y be a morphism in X, where Y is the image under p of the
cone point of J.. For each α in J, let Yα = p(α) and form a pullback diagram

Xα
//

fα

��

X

f

��
Yα

gα // Y.

Suppose that each fα is relatively κ-compact. Then f is relatively κ-compact.

Proof. Let Z be a κ-compact object of X, and g : Z → Y a morphism. Since Z is κ-compact and J is
κ-filtered, there exists a 2-simplex of X, corresponding to a diagram

Yα
gα

  A
AA

AA
AA

A

Z

>>}}}}}}} g // Y.

Form a Cartesian rectangle ∆2 ×∆1 → X, which we will depict as

Z ′ //

f ′

��

Xα
//

fα

��

X

f

��
Z // Yα // Y.

Since f ′ is a pullback of fα, we conclude that Z ′ is κ-compact. Lemma 4.4.2.1 implies that f ′ is also a
pullback of f along g, so that f is relatively κ-compact as desired.

Lemma 6.1.6.6. Let X be a presentable ∞-category in which colimits are universal. Let τ > κ be regular
cardinals such that X is κ-accessible and the full subcategory Xτ consisting of τ -compact objects of X is
stable under pullbacks in X. Let α : σ → σ′ be a Cartesian transformation between pushout squares σ, σ′ :
∆1 ×∆1 → X, which we may view as a pushout square

f
α //

β

��

g

β′

��
f ′

α′ // g′

in Fun(∆1,X). Suppose that f , g, and f ′ are relatively τ -compact. Then g′ is relatively τ -compact.

Proof. Let C denote the full subcategory of Fun(∆1 × ∆1,X) spanned by the pushout squares, and let
Cτ = C∩Fun(∆1 ×∆1,Xτ ). Since the class of τ -compact objects of X is stable under pushouts (Corollary
5.3.4.15), we have a commutative diagram

Cτ //

��

Fun(Λ2
0,X

τ )

��
C // Fun(Λ2

0,X)

where the horizontal arrows are trivial fibrations (Proposition 4.3.2.15). The proof of Proposition 5.4.4.3
shows that every object of Fun(Λ2

0,X) can be written as the colimit of a τ -filtered diagram in Fun(Λ2
0,X

τ ).
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It follows that σ′ ∈ C can be obtained as the colimit of a τ -filtered diagram in Cτ . Since colimits in X are
universal, we conclude that the natural transformation α can be obtained as a τ -filtered colimit of natural
transformations αi : σi → σ′i in Cτ . Lemma 5.5.2.3 implies that the inclusion C ⊆ Fun(∆1 × ∆1,X) is
colimit-preserving. Consequently, we deduce that g′ can be written as a τ -filtered colimit of morphisms {g′i}
determined by restricting {αi}. According to Lemma 6.1.6.6, it will suffice to prove that each morphism g′i
is relatively τ -compact. In other words, we may replace σ′ by σ′i and thereby reduce to the case where σ′

belongs to Cτ . Since f, g, and f ′ are relatively τ -compact, we conclude that σ|Λ2
0 takes values in Xτ . Since

σ is a pushout diagram, Corollary 5.3.4.15 implies that σ takes values in Xτ . Now we observe that g′ is
a morphism between τ -compact objects of X, and therefore automatically relatively τ -compact in virtue of
our assumption that Xτ is stable under pullbacks in X.

Proposition 6.1.6.7. Let X be a presentable ∞-category in which colimits are universal, and let S be a
local class of morphisms in X. For each regular cardinal κ, let Sκ denote the collection of all morphisms f
which belong to S and are relatively κ-compact. If κ is sufficiently large, then Sκ has a classifying object.

Proof. Choose κ′ such that X is κ′-accessible. The restriction functor r : Fun((Λ2
2)
/,X) → Fun(Λ2

2,X)
is accessible: in fact, it preserves all colimits (Proposition 5.1.2.2). Let g be a right adjoint to r (a limit
functor); Proposition 5.4.7.7 implies that g is also accessible. Choose a regular cardinal κ′′ > κ′ such that g is
κ′′-continuous, and choose κ ≥ κ′′ such that g carries κ′′-compact objects of Fun(Λ2

2,X) into Fun((Λ2
2)
/,Xκ).

It follows that the class of κ-compact objects of X is stable under pullbacks. We will show that Sκ has a
classifying object.

We will verify the hypotheses of Proposition 6.1.6.3. First, we must show that Sκ is local. For this, we will
verify condition (3) of Lemma 6.1.3.7. We begin by showing that Sκ is stable under small coproducts. Let
{fα : Xα → Yα}α∈A be a small collection of morphisms belonging to Sκ, and let f : X → Y be a coproduct∐
α∈A fα in Fun(∆1,X). We wish to show that f ∈ Sκ. Since S is local, we conclude that f ∈ S (using

Lemma 6.1.3.7). It therefore suffices to show that f is relatively κ-compact. Suppose given a κ-compact
object Z ∈ X and a morphism g : Z → Y . Using Proposition 4.2.3.4 and Corollary 4.2.3.10, we conclude
that Y can be obtained as a κ-filtered colimit of objects YA0 =

∐
α∈A0

Yα, where A0 ranges over the κ-small
subsets of A. Since Z is κ-compact, we conclude that there exists a factorization

Z
g′→ YA0

g′′→ Y

of g. Form a Cartesian rectangle ∆2 ×∆1 → X,

Z ′ //

��

XA0
//

��

X

��
Z // YA0

// Y.

Since S is local, we can identify XA0 with the coproduct
∐
α∈A0

Xα. Since colimits are universal, we conclude
that Z ′ is a coproduct of objects Z ′α = Xα ×Yα Z, where α ranges over A0. Since each fα is relatively κ-
compact, we conclude that each Z ′α is κ-compact. Thus Z ′, as a κ-small colimit of κ-compact objects, is also
κ-compact (Corollary 5.3.4.15).

We must now show that for every pushout diagram

f
α //

β

��

g

β′

��
f ′

α′ // g′

in OX, if α and β are Cartesian transformations and f, f ′, g ∈ Sκ, then α′ and β′ are also Cartesian
transformations and g′ ∈ Sκ. The first assertion follows immediately from Lemma 6.1.3.7 (since S is local),
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and we deduce also that g′ ∈ S. It therefore suffices to show that g is relatively κ-compact, which follows
from Lemma 6.1.6.6.

It remains to show that, for each X ∈ X, the full subcategory of X/X spanned by the elements of S is
essentially small. Equivalently, we must show that the right fibration p : O

(S)
X → X has essentially small

fibers. Let F : Xop → Ŝ classify p. Since S is local, F preserves limits. The full subcategory of Ŝ spanned by
the essentially small Kan complexes is stable under small limits, and X is generated by Xκ under small (κ-
filtered) colimits. Consequently, it will suffice to show that F (X) is essentially small, when X is κ-compact.
In other words, we must show that there are only a bounded number equivalence classes of morphisms
f : Y → X such that f ∈ Sκ. We now observe that if f ∈ Sκ, then f is relatively κ-compact, so that Y also
belongs to Xκ. We now conclude by observing that the ∞-category Xκ is essentially small.

We now give a characterization of ∞-topoi based on the existence of subobject classifiers.

Theorem 6.1.6.8 (Rezk). Let X be a presentable ∞-category. Then X is an ∞-topos if and only if the
following conditions are satisfied:

(1) Colimits in X are universal.

(2) For all sufficiently large regular cardinals κ, there exists a classifying object for the class of all relatively
κ-compact morphisms in X.

Proof. Assume that colimits in X are universal. According to Theorems 6.1.0.6 and 6.1.3.9, X is an∞-topos
if and only if the class S consisting of all morphisms of X is local. This clearly implies (2), in view of
Proposition 6.1.6.7. Conversely, suppose that (2) is satisfied, and let Sκ be defined as in the statement of
Proposition 6.1.6.7. Proposition 6.1.6.3 ensures that Sκ is local for all sufficiently large regular cardinals κ.
We note that S =

⋃
Sκ. It follows from Criterion (3) of Lemma 6.1.3.7 that S is also local, so that X is an

∞-topos.
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6.2 Constructions of ∞-Topoi

According to Definition 6.1.0.4, an ∞-category X is an ∞-topos if and only if X arises as an (accessible)
left exact localization of a presheaf ∞-category P(C). To complete the analogy with classical topos theory,
we would like to have some concrete description of the collection of left exact localizations of P(C). In
§6.2.1, we will study left exact localization functors in general, and single out a special class which we call
topological localizations. In §6.2.2, we will study topological localizations of P(C), and show that they are in
bijection with Grothendieck topologies on the ∞-category C, in exact analogy with classical topos theory. In
particular, given a Grothendieck topology on C, one can define an ∞-topos Shv(C) ⊆ P(C) of sheaves on C.
In §6.2.3, we will characterize Shv(C) by a universal mapping property. Unfortunately, not every ∞-topos
X can be obtained as topological localization of an ∞-category of presheaves. Nevertheless, in §6.2.4 we will
construct ∞-categories of sheaves which closely approximate X, using the formalism of canonical topologies.
These ideas will be applied in §6.4, to obtain a classification theorem for n-topoi.

6.2.1 Left Exact Localizations

Let X be an ∞-category. Up to equivalence, a localization L : X → Y is determined by the collection S of
all morphisms f : X → Y in X such that Lf is an equivalence in Y (Proposition 5.5.4.2). Our first result
provides a useful criterion for testing the left-exactness of L.

Proposition 6.2.1.1. Let L : X→ Y be a localization of ∞-categories. Suppose that X admits finite limits.
The following conditions are equivalent:

(1) The functor L is left exact.

(2) For every pullback diagram
X ′ //

f ′

��

X

f

��
Y ′ // Y

in X such that Lf is an equivalence in Y, Lf ′ is also an equivalence in Y.

Proof. It is clear that (1) implies (2). Suppose that (2) is satisfied. We wish to show that L is left exact.
Let S be the collection of morphisms f in X such that Lf is an equivalence. Without loss of generality, we
may identify D with the full subcategory of C spanned by the S-local objects. Since the final object 1 ∈ X is
obviously S-local, we have L1 ' 1. Thus it will suffice to show that L commutes with pullbacks. We observe
that given any diagram X → Y ← Z, the pullback LX×LY LZ is a limit of S-local objects of X, and therefore
S-local. To complete the proof, it will suffice to show that the natural map f : X ×Y Z → LX ×LY LZ
belongs to S. We can write f as a composition of maps

X ×Y Z → X ×LY Z → LX ×LY Z → LX ×LY LZ.

The last two maps are obtained from X → LX and Z → LZ by base change. Assumption (2) implies that
they belong to S. Thus, it will suffice to show that f ′ : X ×Y Z → X ×LY Z belongs to S. This map is a
pullback of the diagonal f ′′ : Y → Y ×LY Y , so it will suffice to prove that f ′′ ∈ S. Projection to the first
factor gives a section s : Y ×LY Y → Y of f ′′, so it suffices to prove that s ∈ S. But s is a base change of
the morphism Y → LY .

Proposition 6.2.1.2. Let X be a presentable ∞-category in which colimits are universal. Let S be a class
of morphisms in X, and let S be the strongly saturated class of morphisms generated by S. Suppose that S
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has the following property: for every pullback diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

in X, if f ∈ S, then f ′ ∈ S. Then S is stable under pullbacks.

Proof. Let S′ be the set of all morphisms f in X with the property that for any pullback diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y,

the morphism f ′ belongs to S. By assumption, S ⊆ S′. Using the fact that colimits are universal, we deduce
that S′ is strongly saturated. Consequently S ⊆ S′, as desired.

Recall that a morphism f : Y → Z in an ∞-category X is a monomorphism if it a (−1)-truncated object
of the ∞-category X/Z . Equivalently, f is a monomorphism if for every object X ∈ X, the induced map

MapX(X,Y )→ MapX(X,Z)

exhibits MapX(X,Y ) ∈ H as a summand of MapX(X,Z) in the homotopy category H. If we fix Z ∈ X,
then the collection of equivalence classes of monomorphisms Y → Z are partially ordered under inclusion.
We will denote this partially ordered collection by Sub(Z).

Proposition 6.2.1.3. Let X be a presentable ∞-category, and let X be an object of X. Then Sub(X) is a
(small) partially ordered set.

Proof. By definition, the partially ordered set Sub(X) is characterized by the existence of an equivalence

τ≤−1 X/X → N(Sub(X)).

Propositions 5.5.3.10 and 5.5.5.18 imply that N(Sub(X)) is presentable. Consequently, there exists a small
subset S ⊆ Sub(X) which generates N(Sub(X)) under colimits. It follows that every element of Sub(X) can
be written as the supremum of a subset of S, so that Sub(X) is also small.

Definition 6.2.1.4. Let X be a presentable∞-category, and let S be a strongly saturated class of morphisms
of X. We will say that S is topological if the following conditions are satisfied:

(1) There exists S ⊆ S consisting of monomorphisms such that S generates S as a strongly saturated class
of morphisms.

(2) Given a pullback diagram
X ′ //

f ′

��

X

f

��
Y ′ // Y

in X such that f belongs to S, the morphism f ′ also belongs to S.

We will say that a localization L : X→ Y is topological if the collection S of all morphisms f : X → Y in
X such that Lf is an equivalence is topological.
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Proposition 6.2.1.5. Let X be a presentable ∞-category in which colimits are universal, and let S be a
strongly saturated class of morphisms of X which is topological. Then there exists a (small) subset S0 ⊆ S
which consists of monomorphisms and generates S as a strongly saturated class of morphisms.

Proof. For every object U ∈ X, let Sub′(U) ⊆ Sub(U) denote the collection of equivalence classes of monomor-
phisms U ′ → U which belong to S. Choose a small collection of objects {Uα}α∈A which generates X un-
der colimits. For each α ∈ A and each element α̃ ∈ Sub′(Uα), choose a representative monomorphism
feα : Veα → Uα which belongs to S. Let

S0 = {feα|α ∈ A, α̃ ∈ Sub′(Uα)}.

It follows from Proposition 6.2.1.3 that S0 is a (small) set. Let S0 denote the saturated class of morphisms
generated by S0. We will show that S0 = S.

Let X0 be the full subcategory of X spanned by objects U with the following property: if f : V → U
is a monomorphism and f ∈ S, then f ∈ S0. By construction, for each α ∈ A, Uα ∈ X0. Since colimits
in X are universal, it is easy to see that X0 is stable under colimits in X. It follows that X0 = X, so that
every monomorphism which belongs to S also belongs to S0. Since S is generated by monomorphisms, we
conclude that S = S0, as desired.

Corollary 6.2.1.6. Let X be a presentable ∞-category. Every topological localization L : X→ Y is accessible
and left exact.

6.2.2 Grothendieck Topologies and Sheaves in Higher Category Theory

Every ordinary topos arises is equivalent to the category of sheaves on some Grothendieck site. This can be
deduced from the following pair of statements:

(i) Every topos is equivalent to a left exact localization of the some presheaf category SetCop

.

(ii) There is a bijective correspondence between left exact localizations of SetCop

and Grothendieck topolo-
gies on C.

In §6.1, we proved the ∞-categorical analogue of assertion (i). Unfortunately, (ii) is not quite true in the
∞-categorical setting. In this section, we will establish a slightly weaker statement: for every ∞-category
C, there is a bijective correspondence between Grothendieck topologies on C and topological localizations of
P(C) (Proposition 6.2.2.9). Our first step is to introduce the ∞-categorical analogue of a Grothendieck site.
The following definition is taken from [51]:

Definition 6.2.2.1. Let C be a ∞-category. A sieve on C is a full subcategory of C(0) ⊆ C having the
property that if f : C → D is a morphism in C, and D belongs to C(0), then C also belongs to C(0).

Observe that if f : C → D is a functor between ∞-categories and D(0) ⊆ D is a sieve on D, then
f−1 D(0) = D(0)×D C is a sieve on C. Moreover, if f is an equivalence, then f−1 induces a bijection between
sieves on D and sieves on C.

If C ∈ C is an object, then a sieve on C is a sieve on the ∞-category C/C . Given a morphism f : D → C

and a sieve C
(0)
/C on C, we let f∗ C

(0)
/C denote the unique sieve on D such that f∗ C

(0)
/C ⊆ C/D and C

(0)
/C determine

same sieve on C/f .
A Grothendieck topology on an ∞-category C consists of a specification, for each object C of C, of a

collection of sieves on C, which we will refer to as covering sieves. The collections of covering sieves are
required to possess the following properties:

(1) If C is an object of C, then the sieve C/C ⊆ C/C on C is a covering sieve.

(2) If f : C → D is a morphism in C, and C
(0)
/D is a covering sieve on D, then f∗ C

(0)
/C is a covering sieve on

C.
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(3) Let C be an object of C, C
(0)
/C a covering sieve on C, and C

(1)
/C an arbitrary sieve on C. Suppose that,

for each f : D → C belonging to the sieve C
(0)
/C , the pullback f∗ C

(1)
/C is a covering sieve on D. Then

C
(1)
/C is a covering sieve on C.

Example 6.2.2.2. Any ∞-category C may be equipped with the trivial topology, in which a sieve C
(0)
/C on

an object C of C is covering if and only if C
(0)
/C = C/C .

Remark 6.2.2.3. In the case where C is (the nerve of) an ordinary category, the definition given above
reduces to the usual notion of a Grothendieck topology on C. Even in the general case, a Grothendieck
topology on C is just a Grothendieck topology on the homotopy category hC. This is not completely
obvious, since for an object C of C, the functor

η : h(C/C )→ (hC)/C

is usually not an equivalence of categories. A morphism from on the left hand side corresponds to a com-
mutative triangle

D //

��@
@@

@@
@@

D′

~~}}
}}

}}
}}

C

given by a specified 2-simplex σ : ∆2 → C (taken modulo homotopy), while on the right hand side one
requires only that the above diagram commutes up to homotopy: this amounts to requiring the existence of
σ, but σ itself is not taken as part of the data.

Although η need not be an equivalence of categories, η∗ does induce a bijection from the set of sieves on
(hC)/C to the set of sieves on h(C/C ): for this, it suffices to observe that η induces surjective maps

Homh( C/C )(D,D′)→ Hom(hC)/C
(D,D′)

on morphism sets, which is obvious from the description given above.

The main objective of this section is to prove that for any (small) ∞-category C, there is a bijective
correspondence between Grothendieck topologies on C and (equivalence classes of) topological localizations
of P(C). We begin by establishing a correspondence between sieves on C and (−1)-truncated objects of P(C).
For each object U ∈ P(C), let C(0)(U) ⊆ C be the full subcategory spanned by those objects C ∈ C such that
U(C) 6= ∅. It is easy to see that C(0)(U) is a sieve on C. Conversely, given a sieve C(0) ⊆ C, there is a unique
map C→ ∆1 such that C(0) is the preimage of {0}. This construction determines a bijection between sieves
on C and functors f : C → ∆1, and we may identify ∆1 with the full subcategory of Sop spanned by the
objects ∅,∆0 ∈ Kan. Since every (−1)-truncated Kan complex is equivalent to either ∅ or ∆0, we conclude:

Lemma 6.2.2.4. For every small ∞-category C, the construction U 7→ C(0)(U) determines a bijection
between the set of equivalence classes of (−1)-truncated objects of P(C) and the set of all sieves on C.

We now introduce a relative version of the above construction. Let C be a small ∞-category as above,
and let j : C → P(C) be the Yoneda embedding. Let C ∈ C be an object, and let i : U → j(C) be a
monomorphism in P(C). Let C/C(U) denote the full subcategory of C spanned by those objects f : D → C
of C/C such that there exists a commutative triangle

j(D)
j(f) //

!!C
CC

CC
CC

C
j(C)

U

i
=={{{{{{{{
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It is easy to see that C/C(U) is a sieve on C. Moreover, it clear that if i : U → j(C) and i′ : U ′ → j(C) are
equivalent subobjects of j(C), then C/C(U) = C/C(U ′).

Proposition 6.2.2.5. Let C be a ( small ) ∞-category containing an object C, and let j : C→ P(C) be the
Yoneda embedding. The construction described above yields a bijection

(i : U → j(C)) 7→ C/C(U)

from Sub(j(C)) to the set of all sieves on C.

Proof. Use Corollary 5.1.6.12 to reduce to Lemmas 6.2.2.4.

Definition 6.2.2.6. Let C be a ( small ) ∞-category equipped with a Grothendieck topology. Let S be
the collection of all monomorphisms U → j(C) which correspond to covering sieves C

(0)
/C ⊆ C/C . An object

F ∈ P(C) is a sheaf if it is S-local. We let Shv(C) denote the full subcategory of P(C) spanned by S-local
objects.

Lemma 6.2.2.7. Let C be a ( small ) ∞-category equipped with a Grothendieck topology. Then Shv(C) is a
topological localization of P(C). In particular, Shv(C) is an ∞-topos.

Proof. By definition, Shv(C) = S−1 P(C), where S is the class of all monomorphisms i : U → j(C) which
correspond to covering sieves on C ∈ C. Let S be the strongly saturated class of morphisms generated by S;
we wish to show that S is stable under pullback.

Let S′ denote the collection of all morphisms f : X → Y such that for any pullback diagram σ : ∆1×∆1 →
P(C) depicted as follows:

X ′

f ′

��

// X

f

��
Y ′

g // Y,

the morphism f ′ belongs to S. Since colimits in P(C) are universal, it is easy to prove that S′ is strongly
saturated. We wish to prove that S ⊆ S′. Since S is the smallest saturated class containing S, it will
suffice to prove that S ⊆ S′. We may therefore suppose that Y = j(C) in the diagram above, and that
f : X → j(C) is the monomorphism corresponding to a covering sieve C

(0)
/C on C.

Since P(C)/j(C) ' P(C/C) is generated under colimits by the Yoneda embedding, there exists a diagram
p : K → C/C such that the composite map j ◦ p : K → P(C)/j(C) has g : Y ′ → j(C) as a colimit. Because
colimits in P(C) are universal, we can extend j ◦ p to a diagram P : K → (P(C)∆

1
)/f which carries each

vertex k ∈ K to a pullback diagram,
Xk

fk

��

// X

��
j(Dk)

j(gk) // j(C)

such that σ is a colimit of P . Each fk is a monomorphism associated to the covering sieve g∗k C
(0)
/C , and

therefore belongs to S ⊆ S. It follows that f ′ is a colimit in P(C)∆
1

of morphisms belonging to S, and
therefore itself belongs to S.

The next lemma ensures us that we can recover a Grothendieck topology on C from its ∞-category of
sheaves Shv(C) ⊆ P(C).

Lemma 6.2.2.8. Let C be a (small ) ∞-category equipped with a Grothendieck topology, and let L : P(C)→
Shv(C) denote a left adjoint to the inclusion. Let j : C → P(C) denote the Yoneda embedding, and let
i : U → j(C) be a monomorphism corresponding to a sieve C

(0)
/C on C. Then Li is an equivalence if and only

if C
(0)
/C is a covering sieve.
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Proof. It is clear that if C
(0)
/C is a covering sieve, then Li is an equivalence. Conversely, suppose that Li is an

equivalence. Then τ≤0(Li) is an equivalence. In view of Proposition 5.5.5.23, we can identify τ≤0(Li) with
L(τ≤0i). The morphism τ≤0i can be identified with a monomorphism η : F ⊆ HomhC(•, C) in the ordinary
category of presheaves of sets on hC, where

F(D) = {f ∈ HomhC(D,C) : f ∈ C
(0)
/C}.

If η becomes an equivalence after sheafification, then the identity map idC : C → C belongs to F(C) locally;
in other words, there exists a collection of morphisms {fα : Cα → C} which generated a covering sieve on C
such that each fα belongs to F(Cα), and therefore to C

(0)
/C . It follows that C

(0)
/C contains a covering sieve on

C and is therefore itself covering.

We may summarize the results of this section as follows:

Proposition 6.2.2.9. Let C be a small∞-category. There is a bijective correspondence between Grothendieck
topologies on C and (equivalence classes of) topological localizations of P(C).

Proof. According to Lemma 6.2.2.7, every Grothendieck topology on C determines a topological localization
Shv(C) ⊆ P(C). Lemma 6.2.2.8 shows that two Grothendieck topologies which determine the same ∞-
categories of sheaves must coincide. To complete the proof, it will suffice to show that every topological
localization of P(C) arises in this way. Let S be a strongly saturated collection of morphisms in P(C), and
suppose that S is topological. Let S ⊆ S be the collection of all monomorphisms U → j(C) which belong to
S, where j : C → P(C) denotes the Yoneda embedding. Since the objects {j(C)}C∈C generate P(C) under
colimits, and colimits in P(C) are universal, we conclude that every monomorphism in S is a colimit of
elements of S. Since S is generated by monomorphisms, we conclude that S is generated by S.

Let us say that a sieve C
(0)
/C ⊆ C/C on an object C ∈ C is covering if the corresponding monomorphism

U → j(C) belongs to S. We will show that the collection of covering sieves determines a Grothendieck
topology on C. Granting this, we observe that S

−1
P(C) is the ∞-category Shv(C) ⊆ P(C) of sheaves with

respect to this Grothendieck topology, which will complete the proof.
We now verify the axioms (1) through (3) of Definition 6.2.2.1:

(1) Every sieve of the form C/C ⊆ C/C is covering, since every identity map idj(C) : j(C)→ j(C) belongs
to S.

(2) Let f : C → D be a morphism in C, and let C
(0)
/D ⊆ C/D be a covering sieve, corresponding to a

monomorphism i : U → j(D) which belongs to S. Then f∗ C
(0)
/C ⊆ C/C corresponds to a monomorphism

u : U ′ → j(C) which is a pullback of i along j(f), and therefore belongs to S (since S is stable under
pullbacks).

(3) Let C be an object of C, C
(0)
/C a covering sieve on C corresponding to a monomorphism i : U → j(C)

which belongs to S, and C
(1)
/C an arbitrary sieve on C corresponding to a monomorphism v : U ′ → j(C).

Suppose that, for each f : D → C belonging to the sieve C
(0)
/C , the pullback f∗ C

(1)
/C is a covering sieve on

D. Since j′ : C/C → P(C)/j(C) is a fully faithful embedding which generates P(C)/j(C) under colimits
(see the proof of Corollary 5.1.6.12), we conclude there is a diagram K → C/C such that j′ ◦ K has
colimit i′. Since colimits in P(C) are universal, we conclude that the map v′ : U ×j(C) U

′ → U is a
colimit of morphisms of the form j(D)×j(C) U

′ → j(D), which belong to S by assumption. Since S is
stable under colimits, we conclude that i′′ belongs to S. We now have a pullback diagram

U ×j(C) U
′ v′ //

u′

��

U

u

��
U ′

v // j(C).
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By assumption, u ∈ S. Thus v ◦ u′ ∼ u ◦ v′ ∈ S. Since u′ is a pullback of u, we conclude that u′ ∈ S,
so that v ∈ S. This implies that C

(1)
/C ⊆ C/C is a covering sieve, as we wished to prove.

For later use, we record the following characterization of initial objects in ∞-categories of sheaves:

Proposition 6.2.2.10. Let C be a small ∞-category equipped with a Grothendieck topology, and let C′ ⊆ C

denote the full subcategory spanned by those objects C ∈ C such that ∅ ⊆ C/C is a covering sieve on C. An
object F ∈ Shv(C) is initial if and only if it satisfies the following conditions:

(1) If C ∈ C′, then F(C) is contractible.

(2) If C /∈ C′, then F(C) is empty.

Proof. Let L : P(C) → Shv(C) be a left adjoint to the inclusion, and let ∅ be an initial object of P(C).
Then L∅ is an initial object of Shv(C). Since L is left exact, it preserves (−1)-truncated objects, as does
the inclusion Shv(C) ⊆ P(C). Thus L∅ is (−1)-truncated, and corresponds to some sieve C(0) ⊆ C (Lemma
6.2.2.4). As we saw in the proof of Lemma 6.2.2.8, a sieve C(0) classifies an object of Shv(C) is and only if C(0)

is saturated. An initial object of Shv(C) is an initial object of τ≤−1 Shv(C), and must therefore correspond
to the smallest saturated sieve on C. An easy argument shows that this sieve is C′, and that F ∈ P(C) is a
(−1)-truncated object classified by C′ if and only if conditions (1) and (2) are satisfied.

6.2.3 Effective Epimorphisms

In classical topos theory, the assumption that every equivalence relation is effective leads to a bijective
correspondence between equivalence relations on an object X and effective epimorphisms X → Y . The
purpose of this section is to generalize the notion of an effective epimorphism to the ∞-categorical setting.

Our primary interest is studying the class of effective epimorphisms in an ∞-topos X. However, we will
later need to employ the same ideas when X is an n-topos, for n <∞. It is therefore convenient to work in
a slightly more general setting.

Definition 6.2.3.1. An ∞-category X is a semitopos if it satisfies the following conditions:

(1) The ∞-category X is presentable.

(2) Colimits in X are universal.

(3) For every morphism f : U → X, the underlying groupoid of the Čech nerve Č(f) is effective (see
§6.1.2).

Remark 6.2.3.2. Every ∞-topos is a semitopos; this follows immediately from Theorem 6.1.0.6.

Remark 6.2.3.3. If X is a semitopos, then so is X/X for every object X ∈ X.

Proposition 6.2.3.4. Let X be a semitopos. Let p : U → X be a morphism in X, let U• be the underlying
simplicial object of the Čech nerve Č(p), let V ∈ X be a colimit of U•. The induced diagram

U //

p

  @
@@

@@
@@

V

p′~~~~
~~

~~
~

X

identifies p′ with a (−1)-truncation of p in X/X .
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Proof. We first show that U is (−1)-truncated. It suffices to show that the diagonal map V → V ×X V is
an equivalence. We may identify V with V ×V V . Since colimits in X are universal, it will suffice to prove
that for each m,n ≥ 0, the natural map

pn.m : Um ×V Un → Um ×X Un

is an equivalence. We next observe that each pn,m is a pullback of

p0,0 : U ×V U → U ×X U.

Because U• is an effective groupoid, both sides may be identified with U1.
To complete the proof, it suffices to show that the natural map MapX/X

(p′, q) → MapX/X
(p, q) is an

equivalence whenever q : E → X is a monomorphism. Note that both sides are either empty or contractible.
We must show that if MapX/X

(p, q) is nonempty, then so is MapX/X
(p′, q). We observe that the map

X/q → X/X is fully faithful, and that its essential image is a sieve on X/X . If that sieve contains p, then it
contains the entire groupoid U• (viewed as a groupoid in X/X). We conclude that there exists a groupoid
object W• : N(∆)op → X/q lifting U•. Let Ṽ ∈ X/q be a colimit of V•. According to Proposition 1.2.13.8, the
image of Ṽ in X/X can be identified with the map p′ : V → X. The existence of Ṽ proves that MapX /X(p′, q)
is nonempty, as desired.

Corollary 6.2.3.5. Let X be a semitopos, and let f : U → X be a morphism in X. The following conditions
are equivalent:

(1) If we regard f as an object of the ∞-category X/X , then τ≤−1(f) is a final object of X/X .

(2) The Čech nerve Č(f) is a simplicial resolution of X.

We will say that a morphism f : U → X in an semitopos X is an effective epimorphism if it satisfies the
equivalent conditions of Corollary 6.2.3.5. There is a one-to-one correspondence between effective epimor-
phisms and effective groupoids. More precisely, let ResEff(X) denote the full subcategory of the ∞-category
X∆+ spanned by those augmented simplicial objects U• which are both Čech nerves and simplicial resolutions.
The restriction functors

X∆+

%%KKKKKKKKKK

}}{{
{{

{{
{{

X∆ Fun(∆1,X)

induce equivalences of ∞-categories from ResEff(X) to the full subcategory of X∆ spanned by the effective
groupoids, and from ResEff(X) to the full subcategory of Fun(∆1,X) spanned by the effective epimorphisms.

Remark 6.2.3.6. Let f∗ : X → Y be a geometric morphism of ∞-topoi, and let u : U → Y be an effective
epimorphism in Y. Then f∗(u) is an effective epimorphism in X. To see this, choose a Čech nerve U• of u.
Since u is an effective epimorphism, U• is a colimit diagram. The left exactness of f∗ implies that f∗ ◦U• is
a Čech nerve of f∗(u). Since f∗ is a left adjoint, we conclude that f∗ ◦U• is a colimit diagram so that f∗(u)
is an effective epimorphism.

The following result summarizes a few basic properties of effective epimorphisms:

Proposition 6.2.3.7. Let X be a semitopos.

(1) Any equivalence X → Y in X is an effective epimorphism.

(2) If f, g : X → Y are homotopic morphisms in X, then f is an effective epimorphism if and only if g is
an effective epimorphism.
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(3) If F : Y → X is a left exact presentable functor between semitopoi, and f : U → X is an effective
epimorphism in X, then F (f) is an effective epimorphism in Y.

Proof. Assertions (1) and (2) are obvious. To prove (3), we observe that f is an effective epimorphism if and
only if it can be extended to an augmented simplicial object U• which is both a simplicial resolution and a
Čech nerve. Since F is left exact, it preserves the property of being a Čech nerve; since F preserves colimits,
it preserves the property of being a simplicial resolution.

Remark 6.2.3.8. Let X be a semitopos, and let f : X → T be an effective epimorphism in X Applying part
(3) of Proposition 6.2.3.7 to the geometric morphism f : X/S → X/T induced by a morphism S → T in X,
we deduce that any base change X ×T S → X of f is also an effective epimorphism.

In order to verify other basic properties of the class of effective epimorphisms, such as stability under
composition, we will need to reformulate the property of surjectivity in terms of subobjects. Let X be
presentable ∞-category. For each X ∈ X, the ∞-category τ≤−1 X/X of subobjects of X is equivalent to the
nerve of a partially ordered set which we will denote by Sub(X); we may identify Sub(X) with the set of
equivalence classes of monomorphisms U → X. A morphism f : X → Y in X induces a left exact pullback
functor X/X → X/Y . This functor preserves (−1)-truncated objects by Proposition 5.5.5.16, and therefore
induces a map f∗ : Sub(Y )→ Sub(X) of partially ordered sets.

Remark 6.2.3.9. Let X be a presentable ∞-category in which colimits are universal. Then any monomor-
phism u : U →

∐
Xα can be obtained as a coproduct of maps uα : Uα → Xα, where each uα is a pullback

of u and therefore also a monomorphism. It follows that the natural map

θ : Sub(
∐

Xα)→
∏

Sub(Xα)

is a monomorphism of partially ordered sets. If coproducts in X are disjoint, then θ is bijective.

Proposition 6.2.3.10. Let X be a semitopos. A morphism f : U → X in X is an effective epimorphism if
and only if f∗ : Sub(X)→ Sub(U) is injective.

Proof. Suppose first that f∗ is injective. Let U• be the underlying groupoid of a Čech nerve of f , let V be
a colimit of U•, let u : V → X be the corresponding monomorphism, and let [V ] denote the corresponding
element of Sub(X). Since f factors through u, we conclude that f∗[V ] = f∗[X] = [U ] ∈ Sub(U). Invoking
the injectivity of f∗, we conclude that [V ] = [X] so that u is an equivalence.

For the converse, let us suppose that f is an effective epimorphism. Let [V ] and [V ′] be elements of
Sub(X), represented by monomorphisms u : V → X and u′ : V ′ → X, and suppose that f∗[V ] = f∗[V ′].
We wish to prove that [V ] = [V ′]. Since f∗ is a left exact functor, we have f∗([V ] ∩ [V ′]) = f∗[V ×X V ′].
It will suffice to prove that [V ′] = [V ×X V ′]; the same argument will then establish that [V ] = [V ×X V ′]
and the proof will be complete. In other words, we may assume without loss of generality that [V ] ⊆ [V ′] so
that there is a commutative diagram

V0

u

  B
BB

BB
BB

B
g // V ′

u′~~||
||

||
||

X.

We wish to show that g is an equivalence. The map g induces a natural transformation of augmented
simplicial objects

α• : u∗ ◦ Č(f)→ u′
∗ ◦ Č(f).

We observe that g can be identified with α−1. Since f is an effective epimorphism, Č(f) is a colimit diagram.
Since colimits in X are universal, we conclude that α−1 is a colimit of α|N(∆)op. Consequently, to prove
that α−1 is an equivalence, it will suffice to prove that αn is an equivalence for n ≥ 0. Since each αn is a
pullback of α0, it will suffice to prove that α0 is an equivalence. But this is simply a reformulation of the
condition that f∗[V ] = f∗[V ′].
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From this we immediately deduce some corollaries.

Corollary 6.2.3.11. Let X be a semitopos, and let {fα : Xα → Yα} be a (small) collection of effective
epimorphisms in X. Then the induced map

f :
∐
α

Xα →
∐
α

Yα

is an effective epimorphism.

Proof. Combine Proposition 6.2.3.10 with Remark 6.2.3.9.

Corollary 6.2.3.12. Let X be a semitopos containing a (commutative) diagram

Y
g

  A
AA

AA
AA

X

f
>>~~~~~~~ h // Z.

(1) If f and g are effective epimorphisms, then so is h.

(2) If h is an effective epimorphism, then so is g.

Proof. This follows immediately from Proposition 6.2.3.10, and the observation that we have an equality
f∗ ◦ g∗ = h∗ of functions Sub(Z)→ Sub(X).

The theory of effective epimorphism is a mechanism for proving theorems by descent.

Lemma 6.2.3.13. Let X be a semitopos, let p : K. → X be a colimit diagram, let ∞ denote the cone point
of K.. Then the associated map ∐

x∈K0

p(x)→ p(∞)

(which is well-defined up to homotopy) is an effective epimorphism.

Proof. For each vertex x of K., let Zx = p(x), and if x belongs to K we will denote the corresponding map
Zx → Z∞ by fx. Let E′′ ⊆ E′ ∈ Sub(Z∞) be such that f∗xE

′′ = f∗xE
′ for each vertex x of K; we wish to

show that E′′ = E′. We can represent E′′ and E′ by a 2-simplex σ∞ : ∆2 → X, which we depict as

Z ′∞

!!D
DD

DD
DD

D

Z ′′∞

=={{{{{{{{
// Z∞.

Lift the above diagram to a 2-simplex σ : ∆2 → Fun(K.,X)

p′

g′′

��=
==

==
==

=

p′′

g′
??������� g // p

where g, g′, and g′′ are Cartesian transformations. Our assumption guarantees that the restriction of g′

induces an equivalence p′′|K → p′|K. Since colimits in X are universal, g′ is itself an equivalence, so that
E′′ = E′ as desired.

403



Proposition 6.2.3.14. Let X be an ∞-topos, and let S be a collection of morphisms of X which is stable
under pullbacks and coproducts. The following conditions are equivalent:

(1) The class S is local (Definition 6.1.3.8).

(2) Given a pullback diagram
X ′ //

f ′

��

X

f

��
Y ′

g // Y

where g is an effective epimorphism and f ′ ∈ S, we have f ∈ S.

Proof. We first show that (1) ⇒ (2). Let Y• : N(∆+)op → X be a Čech nerve of the map g, and choose
a Cartesian transformation f• : X• → Y• of augmented simplicial objects which extends f . Then we can
identify f ′ with f0 : X0 → Y0. Each fn is a pullback of f0, and therefore belongs to S. Applying Lemma
6.1.3.5, we deduce that f belongs to S as well.

Conversely, suppose that (2) is satisfied. We will show that S satisfies criterion (3) of Lemma 6.1.3.7.
Let

u
α //

β

��

v

β′

��
u′

α′ // v′

be a pushout diagram in OX, where α and β are Cartesian and u, v, u′ ∈ S. Since X is an ∞-topos, we
conclude that α′ and β′ are also Cartesian. To complete the proof, it will suffice to show that v′ ∈ S. For
this, we observe that there is a pullback diagram

X
∐
X ′

v
‘
u′

��

// X ′′

v′

��
Y

∐
Y ′

g // Y ′′

where g is an effective epimorphism (Lemma 6.2.3.13) and apply hypothesis (2).

Proposition 6.2.3.15. Let X be a semitopos, and suppose given a pullback square

X ′ g′ //

f ′

��

X

f

��
S′

g // S

in X. If f is an effective epimorphism, then so is f ′. The converse holds if g is an effective epimorphism.

Proof. Let g∗ : X/S → X/S
′
be a pullback functor. Without loss of generality we may suppose that f ′ = g∗f .

Let U• : N(∆+)op → X be a Čech nerve of f . Since g∗ is left exact (being a right adjoint), we conclude that
g∗ ◦U• is a Čech nerve of f ′. If f is an effective epimorphism, then U• is a colimit diagram. Because colimits
in X are universal, g∗ ◦ U• is also a colimit diagram, so that f ′ is an effective epimorphism.

Conversely, suppose that f ′ and g are effective epimorphisms. Corollary 6.2.3.12 implies that g ◦ f ′ is an
effective epimorphism. The commutativity of the diagram implies that f ◦ g′ is an effective epimorphism, so
that f is an effective epimorphism (Corollary 6.2.3.12 again).
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Lemma 6.2.3.16. Let X be a semitopos, and suppose given a pullback square

X ′ g′ //

f ′

��

X

f

��
S′

g // S

in X. Suppose that f ′ is an equivalence that g is an effective epimorphism. Then f is an equivalence.

Proof. Let U• be a Čech nerve of g′, and let V• be a Čech nerve of g. The above diagram induces a trans-
formation α• : U• → V•. The map α0 can be identified with f ′, and is therefore an equivalence. For n ≥ 0,
αn : Un → Vn is a pullback of α0, and therefore also an equivalence. Since g is an effective epimorphism,
V• is a colimit diagram. Applying Proposition 6.2.3.15, we conclude that g′ is also an effective epimorphism
so that U• is a colimit diagram. It follows that f = α−1 is a colimit of equivalences, and is therefore an
equivalence.

Proposition 6.2.3.17. Let X be a semitopos, and suppose given a pullback square

X ′ //

f ′

��

X

f

��
S′

g // S

in X. If f is n-truncated, then so is f ′. The converse holds if g is an effective epimorphism.

Proof. Let g∗ : X/S → X/S
′

be a pullback functor. The first part of (1) asserts that g∗ carries n-truncated
objects to n-truncated objects. This follows immediately from Proposition 5.5.5.16, since g∗ is a right adjoint
and therefore left exact. We will prove the converse in a slightly stronger form: if i : U → V is a morphism
in X/S such that then g∗(i) is an n-truncated morphism in X/S

′
, then i is n-truncated. The proof is by

induction on n. If n ≥ −1, we can use Lemma 5.5.5.15 to reduce to the problem of showing that the diagonal
map δ : U → U ×V U is (n − 1)-truncated. Since g∗ is left exact, we can identify g∗(δ) with the diagonal
map g∗U → g∗U ×g∗V g∗U , which is (n− 1)-truncated according to Lemma 5.5.5.15; the desired result then
follows from the inductive hypothesis. In the case n = −2, we have a pullback diagram

g∗U //

g∗i

��

U

i

��
g∗V

g′ //

��

V

��
S′

g // S.

Proposition 6.2.3.15 implies that g′ is an effective epimorphism, and g∗i is an equivalence, so that i is also
an equivalence by Lemma 6.2.3.16.

Let C be a small ∞-category equipped with a Grothendieck topology. Our final goal in this section is to
use the language of effective epimorphisms to characterize the ∞-topos Shv(C) by a universal property.

Lemma 6.2.3.18. Let C be a ( small ) ∞-category containing an object C, let {fα : Cα → C}α∈A be a
collection of morphisms indexed by a set A and let C

(0)
/C ⊆ C/C be the sieve on C that they generate. Let

j : C → P(C) denote the Yoneda embedding and i : U → j(C) a monomorphism corresponding to the sieve
C

(0)
/C . Then i can be identified with a (−1)-truncation of the induced map

∐
α∈A j(Cα)→ j(C) in the ∞-topos

P(C)/C .
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Proof. Using Proposition 6.2.2.5, we can identify the equivalence classes of (−1)-truncated object U ∈
P(C)/j(C) with sieves C

(0)
/C ⊆ C/C . It is not difficult to see that j(fα) factors through U if and only if

fα ∈ C
(0)
/C . Consequently, the (−1)-truncation of

∐
α∈A j(Cα) → j(C) is associated to the smallest sieve on

C which contains each fα.

Lemma 6.2.3.19. Let X be an ∞-topos, C a small ∞-category equipped with a Grothendieck topology, and
f∗ : X→ P(C) a functor with a left exact left adjoint f∗ : P(C)→ X.

The following conditions are equivalent:

(1) The functor f∗ factors through Shv(C) ⊆ P(C).

(2) For every collection of morphisms {vα : Cα → C} which generate a covering sieve in C, the induced
map ∐

f∗(j(Cα))→ f∗(j(C))

is an effective epimorphism in X, where j : C→ P(C) denotes the Yoneda embedding.

Proof. Suppose first that (1) is satisfied, and let {vα : Cα → C} be a collection of morphisms as in the
statement of (2). Let L : P(C)→ Shv(C) be a left adjoint to the inclusion. Then we have an equivalence of
functors f∗ ' (f∗|Shv(C)) ◦ L. Applying Remark 6.2.3.6, we are reduced to showing that if

u :
∐

j(Cα)→ j(C)

is the natural map, then Lu is an effective epimorphism in P(C). Factor u as a composition∐
j(Cα) u′→ U

u′′→ j(C)

where u′ is an effective epimorphism and u′′ is a monomorphism. We wish to show that Lu′′ is an equivalence.
Lemma 6.2.3.18 allows us to identify u′′ with the monomorphism associated to the sieve C

(0)
/C on C generated

by the maps vα. By assumption, this is a covering sieve, so that Lu′′ is an equivalence in Shv(C) by
construction.

Conversely, suppose that (2) is satisfied. Let C ∈ C and let C
(0)
/C ⊆ C/C be a covering sieve on C associated

to a monomorphism u′′ : U → j(C). We wish to show that f∗u′′ is an equivalence. According to Lemma
6.2.3.18, we have a factorization ∐

α

j(Cα) u′→ U
u′′→ j(C),

where the maps vα : Cα → C are chosen to generate the sieve C
(0)
/C , and u′ is an effective epimorphism. Let u

be a composition of u′ and u′′. Then f∗u′ is an effective epimorphism (Remark 6.2.3.6), and f∗u is an effective
epimorphism by assumption (2). Corollary 6.2.3.12 now shows that f∗u′′ is an effective epimorphism. Since
f∗u′′ is also a monomorphism, we conclude that f∗u′′ is an equivalence as desired.

Proposition 6.2.3.20. Let X be an ∞-topos, and let C be a small ∞-category equipped with a Grothendieck
topology. Let L : P(C) → Shv(C) denote a left adjoint to the inclusion, and j : C → P(C) the Yoneda
embedding. Let FunL

G(Shv(C),X) denote the∞-category of left exact, colimit-preserving functors from Shv(C)
to X. The composition

J : FunL
G(Shv(C),X) L→ FunL

G(P(C),X)
j→ Fun(C,X)

is fully faithful. Suppose furthermore that C admits finite limits. Then a functor f : C → X belongs to the
essential image of J if and only if the following conditions are satisfied:

(1) The functor f is left exact.
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(2) For every collection of morphisms {Cα → C}α∈A which generate a covering sieve on C, the associated
morphism ∐

α∈A
f(Cα)→ f(C)

is an effective epimorphism in X.

Proof. If the topology on C is trivial, then Theorem 5.1.5.6 implies that J is fully faithful, and the description
of the essential image of J follows from Proposition 6.1.5.2. In the general case, Proposition 5.5.4.23 implies
that composition with L induces a fully faithful embedding

J ′ : FunL
G(Shv(C),X)→ FunL

G(P(C),X),

so that J is a composition of J ′ with a fully faithful functor

J ′′ : FunL
G(P(C),X)→ Fun(C,X).

Suppose that C admits finite limits and that f satisfies (1), so that f is equivalent to J ′′(u∗) for some left
exact, colimit preserving u∗ : P(C) → X. The functor u∗ is unique up to equivalence, and Lemma 6.2.3.19
ensures that u∗ belongs to the essential image of J ′ if and only if condition (2) is satisfied.

Remark 6.2.3.21. It is possible to formulate a generalization of Proposition 6.2.3.20 which describes the
essential image of J even when C does not admit finite limits. The present version will be sufficient for the
applications in this book.

6.2.4 Canonical Topologies

Let X be an ∞-topos. Suppose that we wish to identify X with an ∞-category of sheaves. The first step is
to choose a pair of adjoint functors

P(C)
F // X
G
oo

where F is left exact. According to Theorem 5.1.5.6, F is determined up to equivalence by the composition

f : C
j→ P(C) F→ X .

We might then try to choose a topology on C such that G factors as a composition

X
G′→ Shv(C) ⊆ P(C).

Though it is not always possible to guarantee that G′ is an equivalence, we will show that for an appropriately
chosen topology (Definition 6.2.4.1), the∞-topos Shv(C) is a close approximation to X (Proposition 6.2.4.6).

Definition 6.2.4.1. Let X be a semitopos, C a small ∞-category which admits finite limits, and f : C→ X

a left exact functor. We will say that a sieve C
(0)
/C ⊆ C/C on an object C ∈ C is a canonical covering relative

to f if there exists a collection of morphisms {uα : Cα → C} belonging to C
(0)
/C such that the induced map∐

f(Cα)→ f(C) is an effective epimorphism in X.

Our first goal is to verify that the canonical topology is actually a Grothendieck topology on C.

Proposition 6.2.4.2. Let f : C → X be as in Definition 6.2.4.1. The collection of canonical coverings
relative to f determine a Grothendieck topology on C.
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Proof. Since any identity map idf(C) : f(C) → f(C) is an effective epimorphism, it is clear that the sieve
C/C is a canonical covering of C for every C ∈ C. Suppose that C

(0)
/C ⊆ C/C is a canonical covering of C,

and that g : D → C is a morphism in C. We wish to prove that the induced sieve g∗ C
(0)
/C is a canonical

covering. Choose a collection of objects uα : Cα → C of C
(0)
/C such that the induced map

∐
α f(Cα)→ f(C)

is an effective epimorphism, and form pullback diagrams

Dα
vα //

��

D

g

��
Cα

uα // C

in C. Using the fact that f is left exact and that colimits in X are universal, we conclude that the diagram∐
f(Dα) //

��

f(D)

��∐
f(Cα) // f(C)

is a pullback, so that the upper horizontal map is an effective epimorphism by Proposition 6.2.3.15. Since
each vα belongs to g∗ C

(0)
/C , it follows that g∗ C

(0)
/C is a canonical covering.

Now suppose that C
(0)
/C and C

(1)
/C are sieves on C ∈ C, where C

(0)
/C is a canonical covering, and for each

g : D → C in C
(0)
/C , the covering g∗ C

(1)
/C is a canonical covering of D. Choose a collection of morphisms

gα : Dα → C belonging to C
(0)
/C with the property that

∐
f(Dα) → f(C) is an effective epimorphism.

For each Dα, choose a collection of morphisms hα,β : Eα,β → Dα belonging to g∗α C
(1)
/C such that the map∐

β f(Eα,β)→ f(Dα) is an effective epimorphism. Using Corollary 6.2.3.11, we conclude that the map∐
α,β

f(Eα,β)→
∐
α

f(Dα)

is an effective epimorphism. Since effective epimorphisms are stable under composition (Corollary 6.2.3.12),
we have an effective epimorphism

∐
α,β f(Eα,β)→ f(C), induced by the collection of compositions gα◦hα,β :

Eα,β → C. Each of these compositions belong to C
(1)
/C , so that C

(1)
/C is a canonical covering of C.

For later use, we record a few features of the canonical topology:

Lemma 6.2.4.3. Let f : C → X be as in Definition 6.2.4.1, and regard C as endowed with the canonical
topology relative to f . Let j : C → P(C) denote the Yoneda embedding and let L : P(C) → Shv(C) be a left
adjoint to the inclusion. Suppose that C ∈ C is such that f(C) is an initial object of X. Then Lj(C) is an
initial object of Shv(C).

Proof. If f(C) is an initial object of X, then the empty sieve ∅ ⊆ C/C is a covering sieve with respect to the
canonical topology. By construction, the associated monomorphism ∅ → j(C) becomes an equivalence after
applying L, so that Lj(C) is initial in Shv(C).

Lemma 6.2.4.4. Let f : C → X be as in Definition 6.2.4.1. Suppose that f is fully faithful, coproducts in
X are disjoint, and let {uα : Cα → C} be a ( small ) collection of morphisms in C such that the morphisms
f(uα) exhibit f(C) as a coproduct of the family {f(Cα)}. Let F : Cop → S be a sheaf on C ( with respect to
the canonical topology induced by f ). Then the morphisms {F(uα)} exhibit F(C) as a product of {F(Cα)}
in S.
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Proof. We wish to show that the natural map F(C) →
∏

F(Cα) is an isomorphism in the homotopy
category H. We may identify the left hand side with MapP(C)(j(C),F), and the right hand side with
MapP(C)(

∐
j(Cα),F). Consequently, it will suffice to show that the natural map

v :
∐

j(Cα)→ j(C)

becomes an equivalence after applying the localization functor L : P(C) → Shv(C). Choose a factorization
of v as a composite ∐

j(Cα) v′→ U
v′′→ j(C)

where v′ is an effective epimorphism, and v′′ is a monomorphism. We observe that v′′ is the monomorphism
associated to the sieve C

(0)
/C → C generated by the morphisms uα. This is clearly a covering sieve with respect

to the canonical topology, so that Lv′′ is an equivalence in Shv(C). It follows that Lv is equivalent to Lv′,
and is therefore an effective epimorphism (Remark 6.2.3.6). Form a pullback diagram

V
v //

��

∐
j(Cβ)

v

��∐
j(Cα) v // j(C)

We wish to prove that Lv is an equivalence. According to Lemma 6.2.3.16, it will suffice to show that Lv is
an equivalence. Since colimits in P(C) are universal, we may identify v with a coproduct of morphisms

vβ : Vβ → j(Cβ),

where Vβ can be written as a coproduct
∐
α j(Cα×CCβ). Using Lemma 6.1.5.1, we can identify the summand

j(Cβ ×C Cβ) of Vβ with j(Cβ), and the restriction of vβ to this summand is an equivalence. To complete
the proof, it will suffice to show that for every other summand Dα,β = j(Cα ×C Cβ), the localization LD is
an initial object of Shv(C). To prove this, we observe Lemma 6.1.5.1 implies that f(Cα ×C Cβ) is an initial
object of X, and apply Lemma 6.2.4.3.

Lemma 6.2.4.5. Let C be a small ∞-category equipped with a Grothendieck topology, and let u : F′ → F

be a morphism in Shv(C). Suppose that, for each C ∈ C and each η ∈ π0 F(C), there exists a collection of
morphisms {Cα → C} which generates a covering sieve on C and a collection of ηα ∈ π0 F′(Cα) such that η
and ηα have the same image in π0 F(Cα). Then u is an effective epimorphism.

Proof. Replacing F by its image in F′ if necessary, we may suppose that u is a monomorphism. Let L :
P(C)→ Shv(C) be a left adjoint to the inclusion, and let D be the full subcategory of P(C) spanned by those
objects G such that, for every pullback diagram

G′
u′ //

��

G

��
F′

u // F

in P(C), Lu′ is an equivalence in Shv(C). To prove that u is an equivalence, it will suffice to show that the
equivalent morphism Lu is an equivalence. For this, it will suffice to prove that F ∈ D. We will in fact prove
that D = P(C). We first observe that, since colimits in P(C) are universal and L commutes with colimits,
D is stable under colimits in P(C). Since P(C) is generated under colimits by the image of the Yoneda
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embedding, it will suffice to prove that j(C) ∈ D, for each C ∈ C. Choose a map j(C)→ F, classified up to
homotopy by η ∈ π0 F(C), and form a pullback diagram

U
u′ //

��

j(C)

��
F′

u // F

as above. Then u′ is a monomorphism; according to Proposition 6.2.2.5 it is classified by a sieve C
(0)
/C on C.

Our hypothesis guarantees that C
(0)
/C contains a collection of morphisms {Cα → C} which generate a covering

sieve, so that C
(0)
/C is itself covering. It follows immediately from the construction of Shv(C) that Lu′ is an

equivalence.

We close with the following result, which implies that any ∞-topos is closely approximated by an ∞-
category of sheaves.

Proposition 6.2.4.6. Let X be a semitopos, C a small ∞-category which admits finite limits, and

P(C)
F // X
G
oo

a pair of adjoint functors. Suppose that the composition

f : C
j→ P(C) F→ X

is left exact, and regard C as endowed with the canonical topology relative to f . Then:

(1) The functor G factors through Shv(C).

(2) Suppose that f is fully faithful and generates X under colimits. Then G carries effective epimorphisms
in X to effective epimorphisms in Shv(C).

Proof. In view of the definition of the canonical topology, (1) is equivalent to the following assertion: given
a collection of morphisms {uα : Cα → C} in C such that the induced map u :

∐
α Cα → C is an effective

epimorphism in X, if i : U → j(C) is the monomorphism in P(C) corresponding to the sieve C
(0)
/C ⊆ C/C

generated by the collection {uα}, then F (i) is an equivalence in X. Let u′ :
∐
α j(Cα) → j(C) be the

coproduct of the family {j(uα)}, and let V• : ∆op
+ → P(C) be a Čech nerve of u′. Then i can be identified

with the induced map from the colimit of V•|N(∆)op to V−1. Since F preserves colimits, to show that F (i)
is an equivalence, it will suffice to show that F ◦V• is a colimit diagram. Since u is an effective epimorphism,
it suffices to observe that F ◦ V• is equivalent to the Čech nerve of u.

We now prove (2). Suppose that u : Y → Z is an effective epimorphism in X. We wish to prove that Gu
is an effective epimorphism in Shv(C). We will show that the criterion of Lemma 6.2.4.5 is satisfied. Choose
an object C ∈ C and a point η ∈ π0 MapP(C)(j(C), GZ) ' π0 MapX(f(C), Z). Form a pullback diagram

Y ′
u′ //

s

��

f(C)

��
Y

u // Z

so that u′ is an effective epimorphism. Since f(C) generates X under colimits, there exists an effective
epimorphism u′′ :

∐
α f(Cα)→ Y . The composition u′ ◦ u′′ is an effective epimorphism, and corresponds to

410



a family of maps wα : f(Cα) → f(C) in X. Since f is fully faithful, we may suppose that each wα = fvα
for some map vα : Cα → C in C. It follows that the collection of maps {vα} generate a covering sieve on C
with respect to the canonical topology. Moreover, each of the compositions

f(Cα)→
∐
α

f(Cα)→ Y

gives rise to a point ηα ∈ π0 MapX(f(Cα), Y ) ' π0 MapP(C)(j(Cα), G(Y )) with the desired properties.
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6.3 The ∞-Category of ∞-Topoi

In this section, we will show that the collection of all∞-topoi can be organized into an∞-category TopR. The
objects of TopR are ∞-topoi, and the morphisms are called geometric morphisms; we will give a definition
in §6.3.1. In §6.3.2, we will show that TopR admits (small) colimits, and in §6.3.3, we will show that TopR

admits (small) filtered limits.
Let X be an ∞-topos containing an object U . In §6.3.4, we will show that the ∞-category X/U is an

∞-topos. Moreover, this ∞-topos is equipped with a canonical geometric morphism X/U → X. Geometric
morphisms which arise via this construction are said to be étale . In §6.3.5, we will define a more general
notion of pro-étale morphism between ∞-topoi. We will also prove a structure theorem which implies that,
under certain hypotheses, every ∞-topos X admits an pro-étale morphism to an ∞-category of sheaves on a
2-category.

6.3.1 Geometric Morphisms

In classical topos theory, the correct notion of morphism between two topoi is an adjunction

X
f∗ // Y
f∗

oo

where the functor f∗ is left exact. We will introduce the same ideas in the ∞-categorical setting.

Definition 6.3.1.1. Let X and Y be ∞-topoi. A geometric morphism from X to Y is a functor f∗ : X → Y

which admits a left exact left adjoint (which we will typically denote by f∗).

Remark 6.3.1.2. Let f∗ : X → Y be a geometric morphism from an ∞-topos X to another ∞-topos Y, so
that f∗ admits a left adjoint f∗. Either functor f∗ and f∗ determines the other up to equivalence (in fact,
up to contractible ambiguity). We will often abuse terminology by referring to f∗ as a geometric morphism
from X to Y. We will always indicate in our notation whether the left or right adjoint is being considered: a
superscripted asterisk indicates a left adjoint (pullback functor), and a subscripted asterisk indicates a right
adjoint (pushforward functor).

Remark 6.3.1.3. Any equivalence of ∞-topoi is a geometric morphism. If f∗, g∗ : X → Y are homotopic,
then f∗ is a geometric morphism if and only if g∗ is a geometric morphism (because we can identify left
adjoints of f∗ with left adjoints of g∗).

Remark 6.3.1.4. Let f∗ : X→ Y and g∗ : Y→ Z be geometric morphisms. Then f∗ and g∗ admit left exact
left adjoints, which we will denote by f∗ and g∗, respectively. The composite functor f∗ ◦ g∗ is left exact,
and is a left adjoint to g∗ ◦ f∗ by Proposition 5.2.2.5. We conclude that g∗ ◦ f∗ is a geometric morphism, so
the class of geometric morphisms is stable under composition.

Definition 6.3.1.5. Let Ĉat∞ denote the ∞-category of (not necessarily small) ∞-categories. We define
subcategories TopL,TopR ⊆ Ĉat∞ as follows:

(1) The objects of TopL and TopR are the ∞-topoi.

(2) A functor f∗ : X→ Y between ∞-topoi belongs to TopL if and only if f∗ preserves small colimits and
finite limits.

(3) A functor f∗ : X→ Y between ∞-topoi belongs to TopR if and only if f∗ has a left adjoint which is left
exact.

The∞-categories TopL and TopR are canonically anti-equivalent. To prove this, we will use the argument
of Corollary 5.5.3.4. First, we need a definition.
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Definition 6.3.1.6. A map p : X → S of simplicial sets is a topos fibration if the following conditions are
satisfied:

(1) The map p is both a Cartesian fibration and a coCartesian fibration.

(2) For every vertex s of S, the corresponding fiber Xs = X ×S {s} is an ∞-topos.

(3) For every edge e : s→ s′ in S, the associated functor Xs → Xs′ is left exact.

The following analogue of Proposition 5.5.3.3 follows immediately from the definitions:

Proposition 6.3.1.7. (1) Let p : X → S be a Cartesian fibration of simplicial sets, classified by a map
χ : Sop → Ĉat∞. Then p is a topos fibration if and only if χ factors through TopR ⊆ Ĉat∞.

(2) Let p : X → S be a coCartesian fibration of simplicial sets, classified by a map χ : S → Ĉat∞. Then p
is a topos fibration if and only if χ factors through PrL ⊆ TopL.

Corollary 6.3.1.8. For every simplicial set S, there is a canonical bijection

[S,TopL] ' [Sop,TopR]

where [K,C] denotes the collection of equivalence classes of objects of Fun(K,C). In particular, TopL and
TopRop are canonically isomorphic in the homotopy category of ∞-categories.

Proof. According to Proposition 6.3.1.7, both [S,TopL] and [Sop,TopR] can be identified with the collection
of equivalence classes of topos fibrations X → S.

The following proposition is a simple reformulation of some of the results of §5.5.5.

Proposition 6.3.1.9. Let f∗ : X → Y be a geometric morphism between ∞-topoi, having a left adjoint f∗.
Then f∗ and f∗ carry k-truncated objects to k-truncated objects and k-truncated morphisms to k-truncated
morphisms, for any integer k ≥ −2. Moreover, there is a ( canonical ) equivalence of functors f∗τY

≤k ' τX
≤kf

∗.

Proof. The first assertion follows immediately from Lemma 5.5.5.15, since f∗ and f∗ are both left-exact.
The second follows from Proposition 5.5.5.23.

Definition 6.3.1.10. Let X and Y be ∞-topoi. We let FunR
G(X,Y) denote the full subcategory of Fun(X,Y)

spanned by geometric morphisms f∗ : X→ Y, and FunL
G(Y,X) the full subcategory of Fun(Y,X) spanned by

their left adjoints.

Remark 6.3.1.11. According to Proposition 5.2.5.2, the ∞-categories FunR
G(X,Y) and FunL

G(Y,X) are
canonically anti-equivalent to one another.

Warning 6.3.1.12. If X and Y are∞-topoi, then the∞-category FunR
G(X,Y) of geometric morphisms from

X to Y is not necessarily small, or even equivalent to a small ∞-category. This phenomenon is familiar in
classical topos theory. For example, there is a classifying topos A for abelian groups, having the property
that for any topos X, the category C of geometric morphisms X→ A is equivalent to the category of abelian
group objects of X. This category is almost never small (for example, when X is the topos of sets, C is
equivalent to the category of abelian groups).

In spite of Warning 6.3.1.12, the ∞-category of geometric morphisms between two ∞-topoi can be
reasonably controlled:

Proposition 6.3.1.13. Let X and Y be ∞-topoi. Then the ∞-category FunL
G(Y,X) of geometric morphisms

from X to Y is accessible.
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Proof. For each regular cardinal κ, let Yκ denote the full subcategory of Y spanned by κ-compact objects.
Choose a regular cardinal κ such that Y is κ-accessible and Yκ is stable under finite limits in Y. We may
therefore identify Y with Indκ(C), where C is a minimal model for Yκ. According to Proposition 5.3.5.10,
composition with the Yoneda embedding j : C → Y induces an equivalence from the ∞-category of κ-
continuous functors Funκ(Y,X) to the ∞-category Fun(C,X). We now make the following observations:

(1) A functor F : Y→ X preserves all small colimits if and only if F ◦ j : C→ X preserves κ-small colimits
(Proposition 5.5.1.9).

(2) A colimit-preserving functor F : Y→ X is left exact if and only if the composition F ◦ j : C→ X is left
exact (Proposition 6.1.5.2).

Invoking Proposition 5.2.5.2, we deduce that the ∞-category FunL
G(Y,X) is equivalent to the full subcat-

egory M ⊆ XC consisting of functors which preserve κ-small colimits and finite limits. Proposition 5.4.4.3
implies that Fun(C,X) is accessible. For every κ-small (finite) diagram p : K → C, the full subcategory of
Fun(C,X) which preserve colimits (limits) of p is an accessible subcategory of Fun(C,X) (Example 5.4.7.9).
Up to isomorphism, there are only a bounded number of κ-small (finite) diagrams in C. Consequently, M

is an intersection of a bounded number of accessible subcategories of Fun(C,X), and therefore accessible by
(Proposition 5.4.7.10).

6.3.2 Colimits of ∞-Topoi

Our goal in this section is to construct colimits in the ∞-category TopR of ∞-topoi. According to Corollary
6.3.1.8, it will suffice construct limits in the ∞-category TopL.

Proposition 6.3.2.1. Let {Xα}α∈A be a collection of ∞-topoi, parametrized by a ( small ) set A. Then
the product X =

∏
α∈A Xα is an ∞-topos. Moreover, each projection π∗α : X → Xα is left exact and colimit

preserving. The corresponding geometric morphisms exhibit X as a product of the family {Xα}α∈A in the
∞-category TopL.

Proof. Proposition 5.5.3.5 implies that X is presentable. It is clear that a diagram p : K. → X is a colimit if
and only if each composition π∗α ◦ p : K. → Xα is a colimit diagram in Xα. Similarly, a diagram q : K/ → X

is a limit if and only if each composition π∗α ◦ q : K/ → Xα is a limit diagram in Xα. Using criterion (2) of
Theorem 6.1.0.6, we deduce that X is an ∞-topos, and that each π∗α preserves all limits and colimits that
exist in X. Choose a right adjoint πα∗ : Xα → X to each π∗α.

According to Theorem 4.2.4.1, the ∞-category X is a product of the family {Xα}α∈A in the ∞-category
Ĉat∞. Since TopL is a subcategory of Ĉat∞, it will suffice to prove the following assertion:

• For every ∞-topos Y and every functor f∗ : Y → X such that each of the composite functors Y → Xα
is left exact and colimit preserving, f∗ is itself left exact and colimit preserving.

This follows immediately from the fact that limits and colimits are computed pointwise.

Proposition 6.3.2.2. Let

X′
q′∗ //

p′∗

��

X

p∗

��
Y′

q∗ // Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to the Joyal model structure).
Suppose further that X, Y, and Y′ are ∞-topoi, and that p∗ and q∗ are left exact and colimit preserving.
Then X′ is an ∞-topos. Moreover, for any ∞-topos Z and any functor f∗ : Z → X, f∗ is left exact and
colimit preserving if and only if the compositions p′∗ ◦ f∗ and q′∗ ◦ f∗ are left exact and colimit preserving.
In particular ( taking f∗ = idX ), the functors p′∗ and q′∗ are left exact and colimit preserving.
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Proof. The second claim follows immediately from Lemma 5.4.5.5 and the dual result concerning limits. To
prove the first, we observe that X′ is presentable by Proposition 5.5.3.12. To show that X is an ∞-topos, it
will suffice to show that it satisfies criterion (2) of Theorem 6.1.0.6. This follows immediately from Lemma
5.4.5.5, given that X and Y′ satisfy criterion (2) of Theorem 6.1.0.6.

Proposition 6.3.2.3. The ∞-category TopL admits small limits, and the inclusion functor TopL ⊆ Ĉat∞
preserves small limits.

Proof. According to Proposition 4.4.2.6, it suffices to prove this result for pullbacks and small products. In
the case of products, we apply Proposition 6.3.2.1. For pullbacks, we use Proposition 6.3.2.2 and Theorem
4.2.4.1.

6.3.3 Filtered Limits of ∞-Topoi

In this section, we will discuss the problem of constructing limits in the ∞-category TopR of ∞-topoi. This
is quite a bit more difficult than the analogous problem for colimits, which was solved in §6.3.2. The reason
is that the inclusion functor TopR ⊆ Ĉat∞ does not commute with limits in general. In fact, this functor
does not even preserve final objects:

Proposition 6.3.3.1. Let X be an ∞-topos. Then FunL
G(S,X) is a contractible Kan complex. In particular,

S is a final object in the ∞-category TopR of ∞-topoi.

Proof. We observe that S ' Shv(∆0) where the ∞-category ∆0 is endowed with the “discrete” topology (so
that the empty sieve does not constitute a cover of the unique object). According to Proposition 6.2.3.20,
the∞-category FunL

G(S,X) is equivalent to the full subcategory of X ' Fun(∆0,X) spanned by those objects
X ∈ X which correspond to left exact functors ∆0 → X. It is clear that these are precisely the final objects
of X, which form a contractible Kan complex (Proposition 1.2.12.9).

Fortunately, the inclusion functor TopR ⊆ Ĉat∞ does commute with filtered limits:

Theorem 6.3.3.2. The ∞-category TopR admits small filtered limits (that is, limits indexed by diagrams
Cop → TopR where C is a small, filtered ∞-category). Moreover, the inclusion TopR ⊆ Ĉat∞ preserves small,
filtered limits.

Remark 6.3.3.3. The ∞-category TopR actually admits all small limits. Using Corollaries 4.2.3.11 and
4.4.2.4, this is equivalent to the assertion that TopR admits filtered limits (Theorem 6.3.3.2), a final object
(Proposition 6.3.3.1), and pullbacks. The construction of pullbacks in TopR is quite different from the proof
of Theorem 6.3.3.2. We will encounter a special case of this construction in §7.3.3. The general case requires
some new ideas, and will not be discussed in this book.

The remainder of this section is devoted to the proof of Theorem 6.3.3.2. Our basic strategy is to mimic
the proof of Theorem 5.5.3.18. Our first step is to show that the limit (in Ĉat∞) of a filtered diagram of
∞-topoi is itself an ∞-topos. This is equivalent to a more concrete assertion: if p : X → S is a topos
fibration, and Sop is a small, filtered ∞-category, then the ∞-category C of Cartesian sections of p is an
∞-topos. We saw in Proposition 5.5.3.17 that C is an accessible localization of the ∞-category MapS(S,X)
spanned by all sections of p. Our first step will be to show that MapS(S,X) is an ∞-topos. For this, the
hypothesis that Sop is filtered is irrelevant.

Lemma 6.3.3.4. Let p : X → S be a topos fibration, where S is a small simplicial set. The ∞-category
MapS(S,X) of sections of p is an ∞-topos.
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Proof. We will follow the proof of Proposition 5.4.7.11. First, we note that for any diagram

T //

��?
??

??
??

T ′

~~~~
~~

~~
~

S,

the associated pullback functor MapS(T ′, X) → MapS(T,X) preserves all small limits and colimits, by
Proposition 5.1.2.2. The simplicial set MapS(S,X) is isomorphic to the (homotopy) inverse limit of the
tower {MapS(skn S,X)}n≥0. If each term in the tower is an ∞-topos, then the limit is an ∞-topos by
Proposition 6.3.2.3. In other words, we may reduce to the case where S is of finite dimension n.

If S is empty there is nothing to prove. Otherwise, we may assume n ≥ 0 so that there is a pushout
digram of simplicial sets

Sn × ∂∆n //

��

Sn ×∆n

��
skn−1 S // S.

We therefore therefore a homotopy pullback diagram of ∞-categories

MapS(S,X) //

��

MapS(skn−1 S,X)

��
MapS(Sn ×∆n, X) // MapS(Sn × ∂∆n, X).

Using Proposition 6.3.2.2 and the inductive hypothesis, we may reduce to proving that MapS(Sn ×∆n, X)
is accessible. We may write this latter simplicial set as a product of ∞-categories MapS(∆n, X). Using
Lemma 6.3.2.1, we may reduce to the case S = ∆n. If n = 0, then MapS(∆n, X) is a fiber of p, which is an
∞-topos by assumption. If n > 1, then we have a trivial fibration

MapS(S,X)→ MapS(Λn1 , X).

Since the horn Λn1 is of dimension < n, we may conclude by applying the inductive hypothesis. We are
therefore reduced to the case S = ∆1.

According to Lemma 5.4.7.12, the ∞-category Map∆1(∆1, X) can be identified with a homotopy limit of
the diagram

X{0}
F→ X{1} ← Fun(∆1, X{1}),

where F : X{0} → X{1} is the associated functor. Since p is a topos fibration, F preserves colimits and finite
limits. We now conclude by applying Proposition 6.3.2.2.

Proposition 6.3.3.5. Let A be a ( small ) filtered partially ordered set, and let p : X → N(A) be a topos
fibration. Let C = MapN(A)(N(A), X) be the∞-category of sections of p, and let C′ ⊆ C be the full subcategory
of C spanned by the Cartesian sections of p. Then C′ is a topological localization of C.

Proof. Let us say that a subset A′ ⊆ A is dense if there exists α ∈ A such that

{β ∈ A : β ≥ α} ⊆ A′.

For each morphism f in C, let A(f) ⊆ A be the collection of all α ∈ A such that the image of f in Xα is an
equivalence. Let S be the collection of all monomorphisms f in C such that A(f) is dense. It is clear that
S is stable under pullbacks, so that S−1 C is a topological localization of C. To complete the proof, it will
suffice to show that C′ = S−1 C.
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We first claim that each object of C′ is S-local. Let f : C → C ′ belong to S, and let D ∈ C′. Choose α0

such that A(f) contains A′ = {β ∈ A : β ≥ α0}, and let R∗ denote a right adjoint to the restriction functor

R : MapN(A)(N(A), X)→ MapN(A)(N(A′), X).

According to Proposition 4.3.2.17, the essential image of R∗ consists of those functors E : N(A)→ X which
are p-right Kan extensions of E|N(A′). We claim that D satisfies this condition. In other words, we claim
that for each α ∈ A, the map

q : N(A′′)/ → N(A) D→ X

is a p-limit, where A′′ = {β ∈ A : β ≥ α, β ≥ α0}. Since q carries each edge of N(A′′)/ to a p-Cartesian edge
of X, it suffices to verify that the simplicial set N(A′′) is weakly contractible (Proposition 4.3.1.12). This
follows immediately from the observation that A′′ is a filtered partially ordered set.

We may therefore suppose that D = R∗D, where D = D|N(A′) is a Cartesian section of the induced map
p′ : X ×N(A) N(A′)→ N(A′). We wish to prove that composition with f induces a homotopy equivalence

MapC(C ′, R∗D)→ MapC(C,R∗D).

This follows immediately from the fact that R and R∗ are adjoint, since R(f) is an equivalence.
We now show that every S-local object of C belongs to C′. Let C ∈ C be a section of p which is S-local.

Choose α ≤ β in A, and let

Xα
F //Xβ
G
oo

denote the (adjoint) functors associated to the (co)Cartesian fibration p : X → N(A). The section C gives
rise to a pair of objects Cα ∈ Xα, Cβ ∈ Xβ , and a morphism φ : Cα → Cβ in the ∞-category X. The map
φ induces a morphism u : Cα → GCβ in Xα, which is well-defined up to equivalence. We wish to show that
φ is p-Cartesian, which is equivalent to the assertion that u is an equivalence in Xα. Equivalently, we wish
to show that for each object P ∈ Xα, composition with u induces a homotopy equivalence

MapXα
(P,Cα)→ MapXα

(P,GCβ).

We may identify P with a diagram

{α} P //
� _

��

X

��
N(A)

D

;;w
w

w
w

w
N(A).

Using Corollary 4.3.2.14, choose an extension D as indicated in the diagram above, so that D is a left Kan
extension of D|{α} over N(A). Similarly, we have a diagram

{β}
F (P ) //

� _

��

X

��
N(A)

D′
;;w

w
w

w
w

N(A).

and we can choose D′ to be a p-left Kan extension of D′|{β}.
Proposition 4.3.2.17 implies that for every object E ∈ C, the restriction maps

MapC(D,E)→ MapXα
(P,E(α))

MapC(D′, E)→ MapXβ
(F (P ), E(β))
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are equivalences. In particular, the equivalence between D(β) and F (P ) induces a morphism θ : D′ → D.
We have a commutative diagram in the homotopy category H:

MapC(D,C) ◦θ //

��

MapC(D′, C)

��
MapXα

(P,Cα) ◦u // MapXα
(P,G(Cβ)) MapXβ

(F (P ), Cβ).oo

The vertical maps are homotopy equivalences, and the the horizontal map on the lower right is a homotopy
equivalence because F and G are adjoint. To complete the proof, it will suffice to show that the upper
horizontal map is an equivalence. Since C is S-local, it will suffice to show that θ ∈ S.

Let β ≤ β′, and consider the diagram

D′(β) w′ //

θ(β)

��

D′(β′)

θ(β′)

��
D(α) v // D(β) w // D(β′).

in the ∞-category X. Since D′ is a p-left Kan extension of D′|{β}, we conclude that w′ is p-coCartesian.
Similarly, since D is a p-left Kan extension of D|{α}, we conclude that v and w ◦ v are p-coCartesian. It
follows that w is p-coCartesian as well (Proposition 2.3.1.7). Since θ(β) is an equivalence by construction,
we conclude that θ(β′) is an equivalence. Thus A(θ) ⊆ A is dense.

It remains only to show that θ is a monomorphism. For this, it suffices to show that θ(γ) is an monomor-
phism in Xγ for each γ ∈ A. If γ ≥ β, this follows from the above argument. Suppose γ � β. Since D′ is a
p-left Kan extension of D′|{β} over N(A), we conclude that D′(γ) is a p-colimit of the empty diagram, and
therefore an initial object of Xγ . It follows that any map D′(γ)→ D(γ) is a monomorphism.

Proposition 6.3.3.6. Let A be a ( small ) filtered partially ordered set, let p : X → N(A)op, and let
Y ⊆ MapN(A)(N(A), X) be the full subcategory spanned by the Cartesian sections of p. For each α ∈ A, the
evaluation map π∗ : Y→ Xα is a geometric morphism of ∞-topoi.

Proof. Let A′ = {β ∈ A : α ≤ β}. Using Theorem 4.1.3.1, we conclude that the inclusion N(A′) ⊆ N(A) is
cofinal. Corollary 3.3.4.2 implies that the restriction map

MapN(A)(N(A), X)→ MapN(A)(N(A′), X)

induces an equivalence on the full subcategories spanned by Cartesian sections. Consequently, we are free
to replace A by A′ and thereby assume that α is a least element of A.

The functor π∗ factors as a composition

Y
φ∗→ MapN(A)(N(A), X)

ψ∗→ Xα

where φ∗ denotes the inclusion functor and ψ∗ the evaluation functor. Proposition 6.3.3.5 implies that φ∗ is
a geometric morphism; it therefore suffices to show that ψ∗ is a geometric morphism as well.

Let ψ∗ be a left adjoint to ψ∗ (the existence of ψ∗ follows from Proposition 4.3.2.17, as indicated below).
We wish to show that ψ∗ is left exact. According to Proposition 5.1.2.2, it will suffice to show that the
composition

θ : Xα
ψ∗→ MapN(A)(N(A), X)

eβ→ Xβ ,

is left exact, where eβ denotes the functor given by evaluation at β.
Let f : ∆1 → N(A) be the edge joining α to β, let C be the ∞-category of coCartesian sections of p, and

let C′ be the∞-category of coCartesian sections of the induced map p′ : X×N(A) ∆1 → ∆1. We observe that
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C consists precisely of those sections s : N(A)→ X of p which are p-left Kan extensions of s|{α}. Applying
Proposition 4.3.2.15, we conclude that the evaluation map eα : C → Xα is a trivial fibration, and that (by
Proposition 4.3.2.17) we may identify ψ∗ with the composition

Xα
q→ C ⊆ MapN(A)(N(A), X),

where q is a section of eα|C. Let q′ : Xα → C′ be the composition of q with the restriction map C → C′.
Then θ can be identified with the composition

Xα
q′→ C′

eβ→ Xβ ,

which is the functor Xα → Xβ associated to f : α → β by the coCartesian fibration p. Since p is a topos
fibration, θ is left exact as desired.

Let G be a profinite group and let X be a set with a continuous action of G. Then we can recover X as
the direct limit of the fixed point sets XU , where U ranges over the collection of open subgroups of G. Our
next result is an ∞-categorical analogue of this observation.

Lemma 6.3.3.7. Let p : X → S. be a Cartesian fibration of simplicial sets, which is classified by a colimit
diagram S. → Catop∞, and let s : S. → X be a Cartesian section of p. Then s is a p-colimit diagram.

Proof. In virtue of Corollary 3.3.2.2, we may suppose that S is an∞-category. Unwinding the definitions, we
must show that the map Xs/ → Xs/ induces an equivalence of ∞-categories when restricted to the inverse
image of the cone point of S.. Fix an object x ∈ X lying over the cone point of S.. Let f : S. → X be
the constant map with value x, and let f = f |S. To complete the proof, it will suffice to show that the
restriction map

θ : MapFun(S.,X)(s, f)→ MapFun(S,X)(s, f)

is a homotopy equivalence. To prove this, choose a p-Cartesian transformation α : g → f , where g : S. → X is
a section of p (automatically Cartesian). Let g = g|S and let α : g → f be the associated transformation. Let
C be the full subcategory of MapS.(S., X) spanned by the Cartesian sections of p, and let C ⊆ MapS.(S,X)
be defined similarly. We have a commutative diagram in the homotopy category H

MapC(s, g) θ′ //

α

��

MapC(s, g)

α

��
MapFun(S.,X)(s, f) θ // MapFun(S,X)(s, f).

Proposition 2.3.4.2 implies that the vertical maps are homotopy equivalences, and Proposition 3.3.4.1 implies
that θ′ is a homotopy equivalence (since the restriction map C → C is an equivalence of ∞-categories). It
follows that θ is a homotopy equivalence as well.

Lemma 6.3.3.8. Let p : X → S be a presentable fibration, let C be the full subcategory of MapS(S,X)
spanned by the Cartesian sections of p. For each vertex s of S, let ψ(s)∗ : C → Xs be the functor given by
evaluation at s, and let ψ(s)∗ be a left adjoint to ψ(s)∗. There exists a diagram θ : S → Fun(C,C) with the
following properties:

(1) For each vertex s of S, θ(s) is equivalent to the composition ψ(s)∗ ◦ ψ(s)∗.

(2) The identity functor idC is a colimit of θ in the ∞-category of functors Fun(C,C).
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Proof. Without loss of generality, we may suppose that p extends to a presentable fibration p : X → S.,
which is classified by colimit diagram S. → PrL (and therefore by a colimit diagram S. → Catop∞, in virtue
of Theorem 5.5.3.18). Let C be the ∞-category of Cartesian sections of p, so that we have trivial fibrations

C← C→ X∞,

where X∞ = X×S. {∞}, and∞ denotes the cone point of S.. For each vertex s of S., we let ψ(s)∗ : C→ Xs

be the functor given by evaluation at s, and ψ(s)∗ a left adjoint to ψ(s)∗. To complete the proof, it will
suffice to construct a map θ′ : S → Fun(C, X∞) with the following properties:

(1′) For each vertex s of S, θ′(s) is equivalent to the composition ψ(∞)∗ ◦ ψ(s)∗ ◦ ψ(s)∗.

(2′) The functor ψ(∞)∗ is a colimit of θ′.

Let e : C × S. → X be the evaluation map. Choose an p-coCartesian natural transformation e → e′,
where e′ is a map from C × S. to X∞. Lemma 6.3.3.7 implies that for each object X ∈ C, the restriction
e|{X} × S. is an p-colimit diagram in X. Applying Proposition 4.3.1.9, we deduce that e′|{X} × S. is a
colimit diagram in X∞. According to Proposition 5.1.2.2, e′ determines a colimit diagram S. → Fun(C, X∞).
Let θ′ be the restriction of this diagram to S. Then the colimit of θ′ can be identified with e′|C × {∞},
which is equivalent to e|C × {∞} = ψ(∞)∗. This proves (2′). To verify (1′), we observe that e′|C × {s}
can be identified with the composition of ψ(s)∗ = e|C × {s} with the functor Xs → X∞ associated to the
coCartesian fibration p, which can in turn be identified with ψ(∞)∗ ◦ ψ(s)∗ (both are left adjoints to the
pullback functor X∞ → Xs associated to p).

Proposition 6.3.3.9. Let A be a (small) filtered partially ordered set, let p : X → N(A), and let Y ⊆
MapN(A)(N(A), X) be the full subcategory spanned by the Cartesian sections of p. Let Z be an ∞-topos, and
π∗ : Z→ Y an arbitrary functor. Suppose that, for each α ∈ A, the composition

Z
π∗→ Y→ Xα

is a geometric morphism of ∞-topoi. Then π∗ is a geometric morphism of ∞-topoi.

Proof. Let π∗ denote a left adjoint to π∗. Since π∗ commutes with colimits, Lemma 6.3.3.8 implies that π∗

can be written as the colimit of a diagram q : N(A) → ZY having the property that for each α ∈ A, q(α)
is equivalent to π∗ψ(α)∗ψ(α)∗, where ψ(α)∗ denotes the evaluation functor at α and ψ(α)∗ its left adjoint.
Each composition π∗ψ(α)∗ is left adjoint to the geometric morphism ψ(α)∗π∗, and therefore left exact. It
follows that q(α) is left exact. Since filtered colimits in Z are left exact (Example 7.3.4.7), we conclude that
the functor π∗ is left exact, as desired.

Proof of Theorem 6.3.3.2. Let C be a small, filtered ∞-category, and let q : Cop → TopR be an arbitrary
diagram. Choose a limit q : (C.)op → Ĉat∞ of q in the ∞-category Ĉat∞. We must show that q factors
through TopR, and is a limit diagram in TopR.

Using Proposition 5.3.1.16, we may assume without loss of generality that C is the nerve of a filtered
partially ordered set A. Let p : X → N(A)op be the topos fibration classified by q (Proposition 6.3.1.7).
Then the image of the cone point of (C.)op under q is equivalent to the ∞-category X of Cartesian sections
of p (Corollary 3.3.4.2). It follows from Proposition 6.3.3.5 that X is an ∞-topos. Moreover, Proposition
6.3.3.6 ensures that for each α ∈ A, the evaluation map X→ Xα is a geometric morphism. This proves that
q factors through TopR. To complete the proof, we must show that q is a limit diagram in TopR. Since TopR

is a subcategory of Ĉat∞, and q is a limit diagram in Ĉat∞, this reduces immediately to the statement of
Proposition 6.3.3.9.
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6.3.4 Étale Morphisms

Let X be an ∞-topos and let p : K → X be a small diagram. The undercategory Xp/ is usually not an
∞-topos: for example, coproducts in Xp/ need not be disjoint. On the other hand, X/p is an ∞-topos. To
prove this, we first observe that we might as well assume that K is a point: in the general case, the diagram
p admits a limit p : K/ → X, and we have trivial fibrations of simplicial sets

X/p ← X/p → X/U ,

where U denote the image under p of the cone point of K/.

Proposition 6.3.4.1. Let X be an ∞-topos, and let U be an object of X.

(1) The ∞-category X/U is an ∞-topos.

(2) The projection π! : X/U → X has a right adjoint π∗ which commutes with colimits. Consequently, π∗

itself has a right adjoint π∗ : X/U → X, which is a geometric morphism of ∞-topoi.

Proof. The existence of a right adjoint π∗ to the projection π! : X/U → X follows from the assumption that
X admits finite limits. Moreover, the assertion that π∗ preserves colimits is a special case of the assumption
that colimits in X are universal. This proves (2).

To prove (1), we will show that X/U satisfies criterion (2) of Theorem 6.1.0.6. We first observe that
X/U is presentable (Proposition 5.5.3.10). Let K be a small simplicial set, and let α : p → q be a natural
transformation of diagrams p, q : K. → X/U . Suppose that q is a colimit diagram, and that α = α|K is a
Cartesian transformation. The projection π! preserves all colimits (since it is a left adjoint), so that π! ◦ q
is a colimit diagram in X. Since π! preserves pullback squares (Proposition 4.4.2.8), π! ◦ α is a Cartesian
transformation. By assumption, X is an ∞-topos, so that Theorem 6.1.0.6 implies that π! ◦ p is a colimit
diagram if and only if π! ◦ α is a Cartesian transformation. Using Propositions 4.4.2.8 and 1.2.13.8, we
conclude that p is a colimit diagram if and only if α is a Cartesian transformation, as desired.

A geometric morphism f∗ : X → Y of ∞-topoi is said to be étale if it arises via the construction of
Proposition 6.3.4.1; that is, if f admits a factorization

X
f ′∗→ Y/U

f ′′∗→ Y

where U is an object of Y, f ′∗ is a categorical equivalence, and f ′′∗ is a right adjoint to the right adjoint of
the projection f ′′! : Y→ Y/U . We note that in this case, f∗ has a left adjoint f! = f ′′! ◦ f ′∗. Consequently, f∗

preserves all limits, not just finite limits.

Remark 6.3.4.2. Given an étale geometric morphism f : X/U → X of ∞-topoi, the description of the
pushforward functor f∗ is slightly more complicated than that of f! (which is merely the forgetful functor)
or f∗ (which is given by taking products with U). Given an object p : X → U of X/U , the pushforward f∗X
is an object of X which represents the functor “sections of p”.

6.3.5 Structure Theory for ∞-Topoi

In this section we will analyze the following question: given a geometric morphism f : X → Y of ∞-topoi,
when is f an equivalence? Clearly, this is true if and only if the pullback functor f∗ is both fully faithful
and essentially surjective. It is useful to isolate and study these conditions individually.

Definition 6.3.5.1. Let f : X → Y be a geometric morphism of ∞-topoi. The image of f is defined to be
the smallest full subcategory of X which contains f∗ Y and is stable under small colimits and finite limits.
We will say that f is pro-étale if the image of f coincides with X.

Our first goal is to prove that the image of a geometric morphism is itself an ∞-topos.
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Proposition 6.3.5.2. Let f : X → Z be a geometric morphism of ∞-topoi, and let Y be the image of f .
Then Y is an ∞-topos. Moreover, the inclusion Y ⊆ X is left exact and colimit-preserving, so we have obtain
a factorization of f as a composition of geometric morphisms

X
g→ Y

h→ Z

where h is pro-étale and g∗ is fully faithful.

Proof. We will show that Y satisfies the ∞-categorical versions of Giraud’s axioms (see Theorem 6.1.0.6).
Axioms (ii), (iii), and (iv) are concerned with the interaction between colimits and finite limits. Since X

satisfies these axioms, and Y ⊆ X is stable under the relevant constructions, Y automatically satisfies these
axioms as well. The only nontrivial point is to verify (i), which asserts that Y is presentable.

Choose a small collection of objects {Zα} which generate Z under colimits. Now choose an uncountable
regular cardinal τ with the following properties:

(1) Each f∗(Zα) is a τ -compact object of X.

(2) The final object 1X is τ -compact.

(3) The limits functor Fun(Λ2
2,X) → X (a right adjoint to the diagonal functor) is τ -continuous and

preserves τ -compact objects.

Let Y′ be the collection of all objects of Y which are τ -compact when considered as objects of X. Clearly,
each object of Y′ is also τ -compact when regarded as an object of Y. Moreover, because X is accessible, Y′

is essentially small. It will therefore suffice to prove that Y′ generates Y under colimits.
Choose a minimal model Y′0 for Y. Since X is accessible, the full subcategory Xκ spanned by the κ-

compact objects is essentially small, so that Y′0 is small. According to Proposition 5.3.5.10, there exists a
τ -continuous functor F : Indτ (Y′0)→ X whose composition with the Yoneda embedding is equivalent to the
inclusion Y′0 ⊆ X. Since Y′0 admits τ -small colimits, Indτ (Y′0) is presentable. Proposition 5.3.5.11 implies
that F is fully faithful; let Y′′ be its essential image. To complete the proof, it will suffice to show that
Y′′ = Y.

Since Y is stable under colimits in X, we have Y′′ ⊆ Y. According to Proposition 5.5.1.9, F preserves small
colimits, so that Y′′ is stable under small colimits in X. By construction, Y′′ contains each f∗(Zα). Since
f∗ preserves colimits, we conclude that Y′′ contains f∗ Z. By definition Y is the smallest full subcategory of
X which contains f∗ Z and is stable under small colimits and finite limits. It remains only to show that Y′′

is stable under finite limits. Assumption (2) guarantees that Y′′ contains the final object of X, so we need
only show that Y′′ is stable under pullbacks. Consider a diagram p : Λ2

2 → Y′′. The proof of Proposition
5.4.4.3 (applied with K = Λ2

2 and κ = ω) shows that p can be written as a τ -filtered colimit of diagrams
pα : Λ2

2 → Y′′. Since filtered colimits in X are left exact (Example 7.3.4.7), we conclude that the limit of p
can be obtained as a τ -filtered colimit of limits of the diagrams pβ . In view of assumption (3), each of these
limits lies in Y′, so that the limit of p lies in Y′′ as desired.

Remark 6.3.5.3. The factorization of Proposition 6.3.5.2 is unique up to (canonical) equivalence.

The terminology of Definition 6.3.5.1 is partially justified by the following observations:

Proposition 6.3.5.4. (1) Every étale geometric morphism between ∞-topoi is pro-étale .

(2) The collection of pro-étale geometric morphisms of ∞-topoi is stable under filtered limits ( in TopR ).

Proof. We first prove (1). Let X be an ∞-topos, let U be an object of X, let π! : X/U → X be the projection
functor, and let π∗ be a left adjoint to π!. Let f : X → U be an object of X/U , and let F : f → idU be a
morphism in X/U (uniquely determined up to equivalence; for example, we can take F to be the composition
of f with a retraction ∆1 × ∆1 → ∆1). Let g : F → π∗π!F be the unit map for the adjunction between
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π∗ and π!. We claim that g is a pullback square in X/U . According to Proposition 4.4.2.8, it will suffice to
verify that the image of g under π! is a pullback square in X. But this square can be identified with

X //

��

X × U

��
U

δ // U × U,

which is easily shown to be Cartesian. It follows that, in X/U , f can be obtained as a fiber product of the
final object with objects that lie in the essential image of π∗. It follows that π∗ X generates X/U under finite
limits, so that π is pro-étale .

To prove (2), we consider a geometric morphism f : X→ Y which is a filtered limit of pro-étale geometric
morphisms {fα : Xα → Yα} in the ∞-category Fun(∆1,TopR). Let X′ ⊆ X be a full subcategory which is
stable under finite limits, small colimits, and contains f∗ Y. We wish to prove that X′ = X. For each α, we
have a diagram of ∞-topoi

X
f //

ψ(α)

��

Y

��
Xα

fα // Yα .

Let X′α be the preimage of X′ under ψ(α)∗. Then X′α ⊆ Xα is stable under finite limits, small colimits, and
contains the essential image of f∗α. Since fα is pro-étale , we conclude that X′α = Xα. In other words, X′

contains the essential image of each ψ(α)∗. Lemma 6.3.3.8 implies that every object of X can be realized as
a filtered colimit of objects, each of which belongs to the essential image of f∗α for α appropriately chosen.
Since X′ is stable under small colimits, we conclude that X′ = X. It follows that f is pro-étale , as desired.

Remark 6.3.5.5. It is possible to formulate a converse to Proposition 6.3.5.4. Namely, one can char-
acterize the class of pro-étale morphisms as the smallest class of geometric morphisms which contains all
étale morphisms and is stable under certain kinds of filtered limits. However, it is necessarily to allow limits
which are parametrized not just by filtered ∞-categories, but filtered stacks over ∞-topoi. The precise
statement requires ideas which lie outside the scope of this book.

Having achieved a rudimentary understanding of the class of pro-étale geometric morphisms, we now turn
our attention to the opposite extreme: namely, geometric morphisms f : X→ Y where f∗ is fully faithful.

Proposition 6.3.5.6. Let f : X→ Y be a geometric morphism of ∞-topoi. Suppose that f∗ is fully faithful
and essentially surjective on 1-truncated objects. Then f∗ is essentially surjective on n-truncated objects for
all n.

The proof uses ideas which will be introduced in §6.5.1 and §7.2.2.

Proof. Without loss of generality, we may identify Y with the essential image of f∗. We use induction on
n. The result is obvious for n = 1. Assume that n > 1, and let X be an n-truncated object of X. By the
inductive hypothesis, U = τ≤n−1X belongs to Y. Replacing X and Y by X/U and Y/U , we may suppose that
X is (n− 1)-connected.

We observe that πnX is an abelian group object of the ordinary topos Disc(X/X). Since X is 1-connected,
Proposition 7.2.1.20 implies that the pullback functor Disc(X)→ Disc(X/X) is an equivalence of categories.
We may therefore identify πnX with an abelian group object A ∈ Disc(X). Since A is discrete, it belongs to
Y. It follows that the Eilenberg-MacLane object K(A,n+ 1) belongs to Y. Since X is an n-gerb banded by
A, Theorem 7.2.2.26 implies the existence of a pullback diagram

X //

��

1X

��
1X

// K(A,n+ 1).
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Since Y is stable under pullbacks in X, we conclude that X ∈ Y as desired.

Corollary 6.3.5.7. Let f : X→ Y be a geometric morphism of∞-topoi. Suppose that f∗ is fully faithful and
essentially surjective on 1-truncated objects, and that X is n-localic ( see §6.4.5 ). Then f is an equivalence
of ∞-topoi.

Remark 6.3.5.8. In the situation of Corollary 6.3.5.7, one can eliminate the hypothesis that X is n-localic
in the presence of suitable finite-dimensionality assumptions on X and Y; see §7.2.1.

Remark 6.3.5.9. Let X be an n-localic ∞-topos, and let Y be the 2-localic ∞-topos associated to the
2-topos τ≤1 X, so that we have a geometric morphism f : X → Y. It follows from Corollary 6.3.5.7 that f
is pro-étale . Roughly speaking, this tells us that there is only a very superficial interaction between the
theory of k-categories and “topology”, for k > 2. On the other hand, this statement fails dramatically if
k = 1: the relationship between an ordinary topos and its underlying locale is typically very complicated,
and not pro-étale in any reasonable sense. It is natural to ask what happens when k = 2. In other words,
does Proposition 6.3.5.6 remain valid if f∗ is only assumed to be essentially surjective on discrete objects?
An affirmative answer would indicate that our theory of∞-topoi is a relatively modest extension of classical
topos theory. A counterexample could be equally interesting, if it were to illustrate a nontrivial interaction
between higher category theory and geometry.
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6.4 n-Topoi

Roughly speaking, an ordinary topos is a category which resembles the category of sheaves of sets on a
topological space X. In §6.1, we introduced the definition of an ∞-topos. In the same rough terms, we
can think of an ∞-topos as an ∞-category which resembles the ∞-category of sheaves of ∞-groupoids on
a topological space X. Phrased in this way, it is natural to guess that these two notions have a common
generalization. In §6.4.1, we will introduce the notion of an n-topos, for every 0 ≤ n ≤ ∞. The idea is
that an n-topos should be an n-category which resembles the n-category of sheaves of (n − 1)-groupoids
on a topological space X. Of course, there are many approaches to making this idea precise. Our main
result, Theorem 6.4.1.5, asserts that several candidate definitions are equivalent to one another. The proof
of Theorem 6.4.1.5 will occupy our attention for most of this section. In §6.4.3, we study an axiomatization of
the class of n-topoi in the spirit of Giraud’s theorem, and in §6.4.4 we will give a characterization of n-topoi
based on their descent properties. The case of n = 0 is somewhat exceptional, and merits special treatement.
In §6.4.2 we will show that a 0-topos is essentially the same thing as a locale (a mild generalization of the
notion of a topological space).

Our main motivation for introducing the definition of an n-topos is that it allows us to study∞-topoi and
topological spaces (or, more generally, 0-topoi) in the same setting. In §6.4.5, we will introduce constructions
which allow us to pass back and forth between m-topoi and n-topoi, for any 0 ≤ m ≤ n ≤ ∞. We introduce
an ∞-category TopR

n of n-topoi, for each n ≤ 0, and show that each TopR
n can be regarded as a localization

of the ∞-category TopR. In other words, the study of n-topoi for n < ∞ can be regarded as a special case
of the theory of ∞-topoi.

6.4.1 Characterizations of n-Topoi

In this section, we will introduce the definition of n-topos for 0 ≤ n <∞. In view of Theorem 6.1.0.6, there
are several reasonable approaches to the subject. We will begin with extrinsic approach.

Definition 6.4.1.1. Let 0 ≤ n < ∞. An ∞-category X is an n-topos if there exists a small ∞-category C

and an (accessible) left exact localization

L : P≤n−1(C)→ X,

where P≤n−1(C) denotes the full subcategory of P(C) spanned by the (n− 1)-truncated objects.

Remark 6.4.1.2. The accessibility condition on the localization functor L : P≤n−1(C) → X of Definition
6.4.1.1 is superfluous: we will show that such left exact localization of P≤n−1(C) is automatically accessible
(combine Proposition 6.4.3.9 with Corollary 6.2.1.6).

Remark 6.4.1.3. An ∞-category X is a 1-topos if and only if it is equivalent to the nerve of an ordinary
(Grothendieck) topos; this follows immediately from characterization (B) of Proposition 6.1.0.1.

Remark 6.4.1.4. Definition 6.4.1.1 makes sense also in the case n = −1, but is not very interesting. Up to
equivalence, there is precisely one (−1)-topos: the final ∞-category ∗.

Our main goal is to prove the following result:

Theorem 6.4.1.5. Let X be a presentable ∞-category and let 0 ≤ n < ∞. The following conditions are
equivalent:

(1) There exists a small n-category C which admits finite limits, a Grothendieck topology on C, and an
equivalence of X with the full subcategory of Shv≤n−1(C) ⊆ Shv(C) consisting of (n − 1)-truncated
objects of Shv(C).

(2) There exists an ∞-topos Y and an equivalence X→ τ≤n−1 Y.
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(3) The ∞-category X is an n-topos.

(4) Colimits in X are universal, X is equivalent to an n-category, and the class of (n− 2)-truncated mor-
phisms in X is local ( see §6.1.3 ).

(5) Colimits in X are universal, X is equivalent to an n-category, and for all sufficiently large regular
cardinals κ, there exists an object of X which classifies (n−2)-truncated, relatively κ-compact morphisms
in X.

(6) The ∞-category X satisfies the following n-categorical versions of Giraud’s axioms:

(i) The ∞-category X is equivalent to a presentable n-category.

(ii) Colimits in X are universal.

(iii) If n > 0, then coproducts in X are disjoint.

(iv) Every n-efficient (see §6.4.3) groupoid object of X is effective.

Proof. The case n = 0 will be analyzed very explicitly in §6.4.2; let us therefore restrict our attention to the
case n > 0. The implication (1)⇒ (2) is obvious (take Y = Shv(C)). Suppose that (2) is satisfied. Without
loss of generality, we may suppose that Y is an (accessible) left exact localization of P(C) for some small
∞-category C. Then X is a left-exact localization of P≤n−1(C), which proves (3).

We next prove the converse (3)⇒ (2). We first observe that P≤n−1(C) = Fun(Cop, τ≤n−1 S). Let hn C be
the underlying n-category of C, as in Proposition 1.2.17.12. Since τ≤n−1 S is equivalent to an n-category, we
conclude that composition with the projection C → hnC induces an equivalence P≤n−1(hnC) → P≤n−1(C).
Consequently, we may assume without loss of generality (replacing C by hnC if necessary) that there is an
accessible left exact localization L : P≤n−1(C) → X, where C is an n-category. Let S be the collection of
all morphisms u in P≤n−1(C) such that Lu is an equivalence, so that S is of small generation. Let S be
the strongly saturated class of morphisms in P(C) generated by S. We observe that τ−1

≤n−1(S) is a strongly
saturated class of morphisms containing S, so that S ⊆ τ−1

≤n−1(S). It follows that S−1 P≤n−1(C) is contained

in Y = S
−1

P(C), and may therefore be identified with the collection of (n − 1)-truncated objects of Y. To
complete the proof, it will suffice to show that Y is an ∞-topos. For this, it will suffice to show that S is
stable under pullbacks. Let T be the collection of all morphisms f : X → Y in P(C) such that for every
pullback diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

the morphism f ′ belongs to S. It is easy to see that T is strongly saturated; we wish to show that T ⊆ S.
It will therefore suffice to prove that S ⊆ T . Let us therefore fix f : X → Y belonging to S, and let D be
the full subcategory of P(C) spanned by those objects Y ′ such that for any pullback diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y,

f ′ belongs to S. Since colimits in P(C) are universal and S is stable under colimits, we conclude that D is
stable under colimits in P(C). Since P(C) is generated under colimits by the essential image of the Yoneda
embedding j : C → P(C), it will suffice to show that j(C) ∈ D for each C ∈ C. We now observe that
P≤n−1(C) ⊆ D (since S is stable under pullbacks in P≤n−1(C)), and that j(C) ∈ P≤n−1(C) in virtue of our
assumption that C is an n-category.
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The implication (2) ⇒ (4) will be established in §6.4.4 (Propositions 6.4.4.6 and 6.4.4.7). The proof
of Theorem 6.1.6.8 adapts without change to show that (4) ⇔ (5). The implication (4) ⇒ (6) will be
proven in §6.4.4 (Proposition 6.4.4.9). Finally, the “difficult” implication (6)⇒ (1) will be proven in §6.4.3
(Proposition 6.4.3.6), using an inductive argument quite similar to the proof of Giraud’s original result.

Remark 6.4.1.6. Theorem 6.4.1.5 is slightly stronger than its ∞-categorical analogue, Theorem 6.1.0.6:
it asserts that every n-topos arises as an n-category of sheaves on some n-category C equipped with a
Grothendieck topology.

Remark 6.4.1.7. Let X be a presentable ∞-category in which colimits are universal. Then there exists a
regular cardinal κ such that every monomorphism is relatively κ-compact. In this case, characterization (5)
of Theorem 6.4.1.5 recovers a classical description of ordinary topos theory: a category X is a topos if and
only if it is presentable, colimits in X are universal, and X has a subobject classifier.

6.4.2 0-Topoi and Locales

Our goal in this section is to prove Theorem 6.4.1.5 in the special case n = 0. A byproduct of our proof is
a classification result (Corollary 6.4.2.6), which identifies the theory of 0-topoi with the classical theory of
locales (Definition 6.4.2.3).

We begin by observing that when n = 0, a morphism in an∞-category X is (n−2)-truncated if and only
if it is an equivalence. Consequently, any final object of X is an (n− 2)-truncated morphism classifier, and
the class of (n−2)-truncated morphisms is automatically local (in the sense of Definition 6.1.3.8). Moreover,
if X is a 0-category then every groupoid object in X is equivalent to a constant groupoid, and therefore
automatically effective. Consequently, characterizations (4) through (6) in Theorem 6.4.1.5 all reduce to the
same condition on X, and we may restate the desired result as follows:

Theorem 6.4.2.1. Let X be a presentable 0-category. The following conditions are equivalent:

(1) There exists a small 0-category C which admits finite limits, a Grothendieck topology on C, and an
equivalence X→ Shv≤−1(C).

(2) There exists an ∞-topos Y and an equivalence X→ τ≤−1 Y.

(3) The ∞-category X is a 0-topos.

(4) Colimits in X are universal.

Before giving a proof of Theorem 6.4.2.1, it is convenient to reformulate condition (4). Recall that any
0-category X is equivalent to N(U), where U is a partially ordered set which is well-defined up to canonical
isomorphism (see Example 1.2.17.3). The presentability of X is equivalent to the assertion that U is a
complete lattice: that is, every subset of U has a least upper bound in U (this condition formally implies the
existence of greater lower bounds, as well).

Remark 6.4.2.2. If n = 0, then every presentable n-category is essentially small. This is typically not true
for n > 0.

We note that the condition that colimits in X be universal can also be formulated in terms of the partially
ordered set U: it is equivalent to the assertion that meets in U commute with infinite joins in the following
sense:

Definition 6.4.2.3. Let U be a partially ordered set. We will say that U is a locale if the following conditions
are satisfied:

(1) Every subset {Uα} of elements of U has a least upper bound
⋃
α Uα in U.
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(2) The formation of least upper bounds commutes with meets, in the sense that⋃
(Uα ∩ V ) = (

⋃
Uα) ∩ V.

(Here (U ∩V ) denotes the greatest lower bound of U and V , which exists in virtue of assumption (1).)

Example 6.4.2.4. For every topological space X, the collection U(X) of open subsets of X forms a locale.
Conversely, if U is a locale, then there is a natural topology on the collection of prime filters of U which
allows us to extract from U a topological space. These two constructions are adjoint to one another, and in
good cases they are actually inverse equivalences. More precisely, the adjunction gives rise to an equivalence
between the category of spatial locales and the category of sober topological spaces. In general, a locale can
be regarded as a sort of generalized topological space, in which one may speak of open sets but one does not
generally have a sufficient supply of points. We refer the reader to [29] for details.

We can summarize the above discussion as follows:

Proposition 6.4.2.5. Let X be a presentable 0-category. Then colimits in X are universal if and only if X

is equivalent to N(U), where U is a locale.

We are now ready to give the proof of Theorem 6.4.2.1.

Proof. The implications (1) ⇒ (2) ⇒ (3) are easy. Suppose that (3) is satisfied, so that X is a left-exact
localization of P≤−1(C), for some small ∞-category C. Up to equivalence, there are precisely two (−1)-
truncated spaces: ∅ and ∗. Consequently, τ≤−1 S is equivalent to the two-object ∞-category ∆1. It follows
that P≤−1(C) is equivalent to Fun(Cop,∆1).

Let X̃ denote the collection of sieves on C, ordered by inclusion. Then, identifying a a functor f : C→ ∆1

with the sieve f−1{0} ⊆ C, we deduce that Fun(C,∆1) is isomorphic to the nerve N(X̃).
Without loss of generality, we may identify X with the essential image of a localization functor L : N(X̃)→

N(X̃). The map L may be identified with a map of partially ordered sets from X̃ to itself. Unwinding the
definitions, we find that the condition that L be a left exact localization is equivalent to the following three
properties:

(A) The map L : X̃ → X̃ is idempotent.

(B) For each U ∈ X̃, U ⊆ L(U).

(C) The map L : X̃ → X̃ preserves finite intersections (since X is a left exact localization of N(X̃).)

Let U = {U ∈ X̃ : LU = U}. Then it is easy to see that X is equivalent to the nerve N(U), and that the
partially ordered set X satisfies conditions (1) and (2) of Definition 6.4.2.3. Therefore U is a locale, so that
colimits in N(U) are universal by Proposition 6.4.2.5. This proves that (3)⇒ (4).

Now suppose that (4) is satisfied. Using Proposition 6.4.2.5, we may suppose without loss of generality
that X = N(U), where U is a locale. We observe that X is itself small. Let us say that a sieve {Uα → U} on
an object U ∈ X is covering if

U =
⋃
α

Uα

in U. Using the assumption that U is a locale, it is easy to see that the collection of covering sieves determines
a Grothendieck topology on X. The ∞-category P≤−1(X) can be identified with the nerve of the partially
ordered set of all downward-closed subsets U0 ⊆ U. Moreover, an object of P≤−1(X) belongs to Shv≤−1(X)
if and only if the corresponding subset U0 ⊆ U is stable under joins. Every such subset U0 ⊆ U has a largest
element U ∈ U, and we then have an identification U0 = {V ∈ U : V ≤ U}. It follows that Shv≤−1(X)
is equivalent to the nerve of the partially ordered set U, which is X. This proves (1), and concludes the
argument.
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We may summarize the results of this section as follows:

Corollary 6.4.2.6. An ∞-category X is a 0-topos if and only if it is equivalent to N(U), where U is a locale.

Remark 6.4.2.7. Coproducts in a 0-topos are typically not disjoint.

In classical topos theory, there are functorial constructions for passing back and forth between topoi and
locales. Given a locale U (such as the locale U(X) of open subsets of a topological space X), one may define
a topos X of sheaves ( of sets ) on U. The original locale U may then be recovered as the partially ordered
set of subobjects of the final object of X. In fact, for any topos X, the partially ordered set U of subobjects
of the final object forms a locale. In general, X cannot be recovered as the category of sheaves on U; this is
true if and only if X is a localic topos: that is, if and only if X is generated under colimits by the collection
of subobjects of the final object 1X. In §6.3 we will discuss a generalization of this picture, which will allow
us to pass between m-topoi and n-topoi for any m ≤ n.

6.4.3 Giraud’s Axioms for n-Topoi

In §6.1.1, we sketched an axiomatic approach to the theory of ∞-topoi. The axioms we introduced were
closely parallel to Giraud’s axioms for ordinary topoi, with one important difference. If X is an ∞-topos,
then every groupoid object of X is effective. If X is an ordinary topos, then a groupoid U• is effective only
if the diagram

U1
//// U0

exhibits U1 as an equivalence relation on U0. Our first goal in this section is to formulate an analogue of
this condition, which will lead us to an axiomatic description of n-topoi for all 0 ≤ n ≤ ∞.

Definition 6.4.3.1. Let X be an ∞-category and U• a groupoid object of X. We will say that U• is
n-efficient if the natural map

U1 → U0 × U0

(which is well-defined up to equivalence) is (n− 2)-truncated.

Remark 6.4.3.2. By convention, we regard every groupoid object as ∞-efficient.

Example 6.4.3.3. If C is (the nerve of) an ordinary category, then giving a 1-efficient groupoid object U•
of C is equivalent to giving an object U0 of C and an equivalence relation U1 on U0.

Proposition 6.4.3.4. An ∞-category X is equivalent to an n-category if and only if every effective groupoid
in X is n-efficient.

Proof. Suppose first that C is equivalent to an n-category. Let U• be an effective groupoid in X. Then U•
has a colimit U−1. The existence of a pullback diagram

U1
//

��

U0

��
U0

// U−1

implies that the map f ′ : U1 → U0 × U0 is a pullback of the diagonal map f : U−1 → U−1 × U−1. We wish
to show that f ′ is (n− 2)-truncated. By Lemma 5.5.5.12 it suffices to show that f is (n− 2)-truncated. By
Lemma 5.5.5.15, this is equivalent to the assertion that U−1 is (n − 1)-truncated. Since C is equivalent to
an n-category, every object of C is (n− 1)-truncated.

Now suppose that every effective groupoid in X is n-efficient. Let U ∈ X be an object; we wish to show
that U is (n − 1)-truncated. The constant simplicial object U• taking the value U is an effective groupoid,
and therefore n-efficient. It follows that the diagonal map U → U ×U is (n− 2)-truncated. Lemma 5.5.5.15
implies that U is (n− 1)-truncated as desired.
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We are now almost ready to supply the “hard” step in the proof of Theorem 6.4.1.5 (namely, the im-
plication (6) ⇒ (1)). We first need a slightly technical lemma, whose proof requires routine cardinality
estimates.

Lemma 6.4.3.5. Let X be a presentable ∞-category in which colimits are universal. There exists a regular
cardinal τ such that X is τ -accessible, and the full subcategory of Xτ ⊆ X spanned by the τ -compact objects
is stable under the formation of subobjects and finite limits.

Proof. Choose a regular cardinal κ such that X is κ-accessible. We observe that, up to equivalence, there are
a bounded number of κ-compact objects of X, and therefore a bounded number of subobjects of κ-compact
objects of X. Now choose an uncountable regular cardinal τ � κ such that:

(1) The ∞-category Xκ is essentially τ -small.

(2) For each X ∈ Xκ and each monomorphism i : U → X, U is τ -compact.

It is clear that X is τ -accessible, and Xτ is stable under finite limits (in fact, κ-small limits) by Proposition
5.4.7.4. To complete the proof, we must show that Xτ is stable under the formation of subobjects. Let
i : U → X be a monomorphism, where X is τ -compact. Since X is κ-accessible, we can write X as the
colimit of κ-filtered diagram p : J → Xκ. Since X is τ -compact, it is a retract of the colimit X ′ of some
τ -small subdiagram p| J′. Since τ is uncountable, we can use Proposition 4.4.5.12 to write X as the colimit
of a τ -small diagram Idem → X, which carries the unique object of Idem to X ′. Since colimits in X are
universal, it follows that U can be written as a τ -small colimit of a diagram Idem→ X which takes the value
U ′ = U ×X X ′. It will therefore suffice to prove that U ′ is τ -compact. Invoking the universality of colimits
once more, we observe that U ′ is a τ -small colimit of objects of the form U ′′ = U ′ ×X′ p(J), where J is an
object of J′. We now observe that U ′′ is a subobject of p(J) ∈ Xκ, and is therefore τ -compact by assumption
(2). It follows that U ′, being a τ -small colimit of τ -compact objects of X, is also τ -compact.

Proposition 6.4.3.6. Let 0 < n <∞, and let X be an ∞-category satisfying the following conditions:

(i) The ∞-category X is presentable.

(ii) Colimits in X are universal.

(iii) Coproducts in X are disjoint.

(iv) The effective groupoid objects of X are precisely the n-efficient groupoids.

Then there exists a small n-category C which admits finite limits, a Grothendieck topology on C, and an
equivalence X→ Shv≤n−1(C).

Proof. Without loss of generality we may suppose that X is minimal. Choose a regular cardinal κ such that
X is κ-accessible, and the full subcategory C ⊆ X spanned by the κ-compact objects of X is stable under
the formation of subobjects and finite limits (Lemma 6.4.3.5). We endow C with the canonical topology
induced by the inclusion C ⊆ X. According to Theorem 5.1.5.6, there is an (essentially unique) colimit
preserving functor F : P(C) → X such that F ◦ j is equivalent to the inclusion C ⊆ X, where j : C → P(C)
denotes the Yoneda embedding. The proof of Theorem 5.5.1.1 shows that F has a fully faithful right adjoint
G : X→ P(C). We will complete the proof by showing that the essential image of G is precisely Shv≤n−1(C).

Since X is equivalent to an n-category (Proposition 6.4.3.4) and G is left exact, we conclude that G
factors through P≤n−1(C). It follows from Proposition 6.2.4.6 that G factors through Shv≤n−1(C). Let
X′ ⊆ Shv≤n−1(C) denote the essential image of G. To complete the proof, it will suffice to show that
X′ = Shv≤n−1(C). Let ∅ be an initial object of X. The space MapX(X, ∅) is contractible if X is an initial
object of X, and empty otherwise (Lemma 6.1.3.6). It follows from Proposition 6.2.2.10 that G(∅) is an
initial object of Shv≤n−1(C).
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We next claim that X′ is stable under small coproducts in Shv≤n−1(C). It will suffice to show that the
map G preserves coproducts. Let {Uα} be a small collection of objects of X and U their coproduct in X.
According to Lemma 6.1.5.1, we have a pullback diagram

Vα,β
φ //

φ′

��

Uα

��
Uβ // U,

where Vα,β is an initial object of X if α 6= β, while φ and φ′ are equivalences if α = β. The functor G
preserves all limits, so that the diagram

G(Vα,β) //

��

G(Uα)

��
G(Uβ) // G(U)

is a pullback in Shv≤n−1(C). Let U ′ denote a coproduct of the objects i(Uα) in Shv≤n−1(C), and let
g : U ′ → G(U) be the induced map. Since colimits in X are universal, we obtain a natural identification of
U ′ ×G(U) U

′ with the coproduct ∐
α,β

(G(Uα)×G(U) G(Uβ)) '
∐
α

Uα ' U ′,

where the second equivalence follows from our observation that G preserves initial objects. Applying Lemma
5.5.5.15, we deduce that g is a monomorphism.

To prove that g is an equivalence, it will suffice to show that the map

π0U
′(C)→ π0G(U)(C) = π0 MapX(C,U)

is surjective for every object C ∈ C. Since colimits in X are universal, every map h : C → U can be written
as a coproduct of maps hα : Cα → Uα. Each Cα is a subobject of C (Lemma 6.4.4.8) and therefore belongs
to C. Let h′α ∈ π0U

′(Cα) denote the homotopy class of the composition G(Cα) hα→ G(Uα) → U ′. Since
the topology on C is canonical, Lemma 6.2.4.4 implies that π0U

′(C) '
∏
α π0U

′(Cα) contains an element h′

which restricts to each h′α. It is now clear that h is the image of h′ under the map π0U
′(C)→ π0 MapX(C,U).

We will prove the following result by induction on k: if there exists a k-truncated morphism f : X → Y ,
where Y ∈ X′ and X ∈ Shv≤n−1(C), then X ∈ X′. Taking k = n−1 and Y to be a final object of Shv≤n−1(C)
(which belongs to X′ because C contains a final object), we conclude that every object of Shv≤n−1(C) belongs
to X′, which completes the proof.

If k = −2, then f is an equivalence so that X ∈ X′ as desired. Assume now that k ≥ −1. Since X′

contains the essential image of the Yoneda embedding and is stable under coproducts, there exists an effective
epimorphism p : U → X in Shv≤n−1(C), where U ∈ X′. Let U• be a Čech nerve of p in Shv≤n−1(C), and U•
the associated groupoid object. We claim that U• is a groupoid object of X′. Since X′ is stable under limits
in Shv≤n−1(C), it suffices to prove that U0 = U and U1 = U ×X U belong to X′. We now observe that there
exists a pullback diagram

U ×X U
δ′ //

��

U ×Y U

��
X

δ // X ×Y X.
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Since f is k-truncated, δ is (k − 1)-truncated (Lemma 5.5.5.15), so that δ′ is (k − 1)-truncated. Since
U ×Y U belongs to X′ (because X′ is stable under limits), our inductive hypothesis allows us to conclude
that U ×X U ∈ X′, as desired.

We observe that U• is an n-efficient groupoid object of X′. Invoking assumption (iv), we conclude that
U• is effective in X′. Let X ′ ∈ X′ be a colimit of U• in X′, so that we have a morphism u : X → X ′ in
Shv≤n−1(C)U•/. To complete the proof that X ∈ X′, it will suffice to show that u is an equivalence. Since u
induces an equivalence

U ×X U → U ×X′ U,

it is a monomorphism (Lemma 5.5.5.15). It will therefore suffice to show that u is an effective epimorphism.
We have a commutative diagram

U
p

  @
@@

@@
@@

@
p′ // X ′

X

u

>>||||||||

where p is an effective epimorphism; it therefore suffices to show that p′ is an effective epimorphism which
follows immediately from Proposition 6.2.4.6.

Remark 6.4.3.7. Proposition 6.4.3.6 is valid also for n = 0, but is almost vacuous: coproducts in a 0-topos
X are never disjoint unless X is trivial (equivalent to the final ∞-category ∗).

Remark 6.4.3.8. In a certain respect, the theory of ∞-topoi is simpler than the theory of ordinary topoi:
in an∞-topos, every groupoid object is effective; it is not necessary to impose any additional conditions like
n-efficiency. The absense of this condition gives the theory of∞-topoi a slightly different flavor than ordinary
topos theory. In an ∞-topos, we are free to form quotients of objects not only by equivalence relations, but
by arbitrary groupoid actions. In geometry, this extra flexibility allows the construction of useful objects
such as orbifolds and algebraic stacks, which are useful in a variety of mathematical situations.

One can imagine weakening the gluing conditions even further, and considering axioms having the form
“every category object is effective”. This seems like a natural approach to a theory of topos-like (∞,∞)-
categories. However, we will not pursue the matter any further here.

It follows from Proposition 6.4.3.6 (and arguments to be given in §6.4.4) that every left-exact localization
of a presheaf n-category P≤n−1(C) can also be obtained as an n-category of sheaves. According to the next
two results, this is no accident: every left exact localization of P≤n−1(C) is topological, and the topological
localizations of P≤n−1(C) correspond precisely to the Grothendieck topologies on C (provided that C is an
n-category).

Proposition 6.4.3.9. Let X be a presentable n-category, 0 ≤ n < ∞, and suppose that colimits in X are
universal. Let L : X→ Y be a left exact localization. Then L is a topological localization.

Proof. Let S denote the collection of all monomorphisms f : U → V in X such that Lf is an equivalence.
Since L is left exact, it is clear that S is stable under pullback. Let S be the strongly saturated class
of morphisms generated by S. Proposition 6.2.1.2 implies that S is stable under pullback, and therefore
topological. Proposition 6.2.1.5 implies that S is generated by a (small) set of morphisms. Let X′ ⊆ X

denote the full subcategory spanned by S-local objects. According to Proposition 5.5.4.18, X′ is an accessible
localization of X; let L′ denote the associated localization functor. Since Lf is an equivalence for each f ∈ S,
the localization L is equivalent to the composition

X
L′→ X′

L|X′

→ Y .

We may therefore replace X by X′ and thereby reduce to the case where S consists precisely of the equivalences
in X; we wish to prove that L is an equivalence.
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We now prove the following claim: if f : X → Y is a k-truncated morphism in C such that Lf is
an equivalence, then f is an equivalence. The proof goes by induction on k. If k = −1, then f is a
monomorphism, and so belongs to S, and is therefore an equivalence. Suppose that k ≥ 0. Let δ : X →
X ×Y X be the diagonal map (which is well-defined up to equivalence). According to Lemma 5.5.5.15, δ is
(k − 1)-truncated. Since L is left exact, L(δ) can be identified with a diagonal map LX → LX ×LY LX,
which is therefore an equivalence. The inductive hypothesis implies that δ is an equivalence. Applying
Lemma 5.5.5.15 again, we deduce that f is a monomorphism, so that f ∈ S and is therefore an equivalence
as noted above.

Since X is an n-category, every morphism in X is (n−1)-truncated. We conclude that for every morphism
f in X, f is an equivalence if and only if Lf is an equivalence. Since L is a localization functor, it must be
an equivalence.

6.4.4 n-Topoi and Descent

Let X be an ∞-category which admits finite limits, and let OX denote the functor ∞-category Fun(∆1,X)
equipped with the Cartesian fibration e : OX → X (given by evaluation at {1} ⊆ ∆1), as in §6.1.1. Let
F : Xop → Ĉat∞ be a functor which classifies e; informally, F associates to each object U ∈ X the ∞-
category X/U . According to Theorem 6.1.3.9, X is an ∞-topos if and only if F the functor F preserves
limits, and factors through PrL ⊆ Ĉat∞. The assumption that F preserves limits can be viewed as a descent
condition: it asserts that if X → U is a morphism of X, and U is decomposed into “pieces” Uα, then X
can be canonically reconstructed from the “pieces” X ×U Uα. The goal of this section is to obtain a similar
characterization of the class of n-topoi, for 0 ≤ n <∞.

We begin by considering the case where X is the (nerve of) the category of sets. In this case, we can
think of F as a contravariant functor from sets to categories, which carries a set U to the category Set/U .
This functor does not preserve pullbacks: given a pushout square

X

zzvvv
vv

vv
vv

v

$$H
HH

HH
HH

HH
H

Y

##G
GG

GG
GG

GG Z

{{ww
ww

ww
ww

w

Y
∐
X Z

in the category Set, there is an associated functor

θ : Set/Y ‘
X Z → Set/Y ×Set/X

Set/Z

(here the right hand side indicates a homotopy fiber product of categories). The functor θ is generally not
an equivalence of categories: for example, θ fails to be an equivalence if Y = Z = ∗, provided that X has
cardinality at least 2. However, θ is always fully faithful. Moreover, we have the following result:

Fact 6.4.4.1. The functor θ induces an isomorphism of partially ordered sets

Sub(Y
∐
X

Z)→ Sub(Y )×Sub(X) Sub(Z)

where Sub(M) denotes the partially ordered set of subsets of M .

In this section, we will show that an appropriate generalization of Fact 6.4.4.1 can be used to characterize
the class of n-topoi, for all 0 ≤ n ≤ ∞. First, we need to introduce some terminology.
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Notation 6.4.4.2. Let X be an ∞-category which admits pullbacks, and let 0 ≤ n ≤ ∞. We let OnX denote
the full subcategory of OX spanned by morphisms f : U → X which are (n − 2)-truncated, and O

(n)
X ⊆ OnX

the subcategory whose objects are (n − 2)-truncated morphisms in X, and whose morphisms are Cartesian
transformations (see Notation 6.1.3.4).

Example 6.4.4.3. Let X be an∞-category which admits pullbacks. Then O0
X is the full subcategory of OX

spanned by the final objects in each fiber of the morphism p : OX → X. Since p is a coCartesian fibration
(Corollary 2.3.7.12), Proposition 2.3.4.9 asserts that the restriction p|O0

X is a trivial fibration of simplicial
sets.

Lemma 6.4.4.4. Let X be a presentable ∞-category in which colimits are universal and coproducts are
disjoint, and let n ≥ −2. Then the class of n-truncated morphisms in X is stable under small coproducts.

Proof. The proof is by induction on n, where the case n = −2 is obvious. Suppose that the {fα : Xα → Yα}
is a family of n-truncated morphisms in X having coproduct f : X → Y . Since colimits in X are universal,
we conclude that X ×Y X can be written as a coproduct∐

α,β

(Xα ×Y Xβ) '
∐
α,β

(Xα ×Yα
(Yα ×Y Yβ)×Yβ

Xβ).

Applying Lemma 6.1.5.1, we can rewrite this coproduct as∐
α

(Xα ×Yα
Xα).

Consequently, the diagonal map δ : X → X ×Y X is a coproduct of diagonal maps {δα : Xα → Xα×Yα
Xα}.

Applying Lemma 5.5.5.15, we deduce that each δα is (n− 1)-truncated, so that δ is (n− 1)-truncated by the
inductive hypothesis. We now apply Lemma 5.5.5.15 again to deduce that f is n-truncated, as desired.

Combining Lemmas 6.1.3.3, 6.1.3.5, 6.1.3.7, and 6.4.4.4, we deduce the following analogue of Theorem
6.1.3.9.

Theorem 6.4.4.5. Let X be a presentable ∞-category in which colimits are universal and coproducts are
disjoint. The following conditions are equivalent:

(1) For every pushout diagram
f

α //

β

��

g

β′

��
f ′

α′ // g′

in OnX, if α and β are Cartesian transformations, then α′ and β′ are also Cartesian transformations.

(2) The class of (n− 2)-truncated morphisms in X is local.

(3) The Cartesian fibration OnX → X is classified by a limit-preserving functor X→ Ĉat∞

(4) The right fibration O
(n)
X → X is classified by a limit-preserving functor X→ Ŝ.

(5) Let K be a small simplicial set and α : p→ q a natural transformation of colimit diagrams p, q : K. →
X. Suppose that α = α|K is a Cartesian transformation, and that α(x) is (n− 2)-truncated for every
vertex x ∈ K. Then α is a Cartesian transformation, and α(∞) is (n−2)-truncated, where ∞ denotes
the cone point of K..

Our next goal is to establish the implication (2) ⇒ (4) of Theorem 6.4.1.5. We will deduce this from
the equivalence (2)⇔ (3) (which we have already established) together with Propositions 6.4.4.6 and 6.4.4.7
below.
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Proposition 6.4.4.6. Let X be an n-topos, 0 ≤ n ≤ ∞. Then colimits in X are universal.

Proof. Using Lemma 6.1.3.15, we may reduce to the case X = P≤n−1(C) for some small∞-category C. Using
Proposition 5.1.2.2, we may further reduce to the case where X = τ≤n−1 S.

Let f : X → Y be a map of (n−1)-truncated spaces, and let f∗ : S/Y → S/X be a pullback functor. Since
X is stable under limits in S, f∗ restricts to give a functor X/Y → X/X ; we wish to prove that this restricted
functor commutes with colimits. We observe that X/X and X/Y can be identified with the full subcategories
of S/X and S/Y spanned by the (n − 1)-truncated objects, by Lemma 5.5.5.14. Let τX : S/X → X/X and
τY : S/Y → X/Y denote left adjoints to the inclusions. The functor f∗ preserves all colimits (Lemma 6.1.3.14)
and all limits (since f∗ has a left adjoint). Consequently, Proposition 5.5.5.23 implies that τX ◦f∗ ' f∗ ◦ τY .

Let p : K. → X/Y be a colimit diagram. We wish to show that f∗ ◦ p is a colimit diagram. According
to Remark 5.2.6.4, we may assume that p = τY ◦ p′, for some colimit diagram p′ : K. → S/Y . Since colimits
in S are universal (Lemma 6.1.3.14), the composition f∗ ◦ p′ : K. → S/X is a colimit diagram. Since τX
preserves colimits, we conclude that τX ◦f∗ ◦p′ : K. → X/X is a colimit diagram, so that f∗ ◦ τY ◦p′ = f∗ ◦p
is also a colimit diagram, as desired.

Proposition 6.4.4.7. Let Y be an ∞-topos and let X = τ≤n Y, 0 ≤ n ≤ ∞. Then the class of (n − 2)-
truncated morphisms in X is local.

Proof. Combining Propositions 6.2.3.17, 6.2.3.14, and Lemma 6.4.4.4, we conclude that the class of (n− 2)-
truncated morphisms in Y is local. Consequently, the Cartesian fibration OnY → Y is classified by a colimit
preserving functor F : Y → Ĉat

op

∞. It follows that O
(n)
X → X is classified by F |X. To prove that F |X is

colimit-preserving, it will suffice to show that F is equivalent to F ◦ τ≤n; in other words, that F carries
each n-truncation Y → τ≤nY to an equivalence in Ĉat

op

∞. Replacing Y by Y/τ≤nY , we reduce to Lemma
7.2.1.20.

We conclude this section by proving the following generalization of Proposition 6.1.3.19, which also
establishes the implication (4)⇒ (6) of Theorem 6.4.1.5. We will assume n > 0; the case n = 0 was analyzed
in §6.4.2.

Lemma 6.4.4.8. Let X be a presentable ∞-category in which colimits are universal, and let f : ∅ → X be
a morphism in X, where ∅ is an initial object of X. Then f is a monomorphism.

Proof. Let Y be an arbitrary object of X, we wish to show that composition with f induces a (−1)-truncated
map

MapX(Y, ∅)→ MapX(Y,X).

If Y is an initial object of X, then both sides are contractible; otherwise the left side is empty (Lemma
6.1.3.6).

Proposition 6.4.4.9. Let 1 ≤ n ≤ ∞, and let X be a presentable n-category. Suppose that colimits in X are
universal, and that the class of (n− 2)-truncated morphisms in X is local. Then X satisfies the n-categorical
Giraud axioms:

(i) The ∞-category X is equivalent to a presentable n-category.

(ii) Colimits in X are universal.

(iii) Coproducts in X are disjoint.

(iv) Every n-efficient groupoid object of X is effective.
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Proof. Axioms (i) and (ii) hold by assumption. To show that coproducts in X are disjoint, let us consider
an arbitrary pair of objects X,Y ∈ X, and let ∅ denote an initial object of X. Let f : ∅ → X be a morphism
(unique up to homotopy, since ∅ is initial). Since colimits in X are universal, f is a monomorphism (Lemma
6.4.4.8) and therefore belongs to OnX, since n ≥ 1. We observe that id∅ is an initial object of OX, so we can
form a pushout diagram

id∅
α //

β

��

idY

β′

��
f

α′ // g

in OnX. It is clear that α is a Cartesian transformation, and Lemma 6.1.3.6 implies that β is Cartesian as
well. Invoking Theorem 6.4.4.5, we deduce that α′ is a Cartesian transformation. But α′ can be identified
with a pushout diagram

∅ //

��

Y

��
X // X

∐
Y.

This proves (iii).
Now suppose that U• is an n-efficient groupoid object of X; we wish to prove that U• is effective. Let

U• : N(∆+)op → X be a colimit of U•. Let U ′• : N(∆+)op → X be the result of composing U• with the shift
functor

∆+ →∆+

J 7→ J
∐
{∞}.

(In other words, U ′• is the shifted simplicial object given by U ′n = Un+1.) Lemma 6.1.3.17 asserts that U ′•
is a colimit diagram in X. We have a transformation α : U ′• → U•. Let V • denote the constant augmented
simplicial object of X taking the value U0, so that we have a natural transformation β : U ′• → V •. Let W •
denote a product of U• and V • in the∞-category X∆+ of augmented simplicial objects, and let γ : U ′• →W •
be the induced map. We observe that for each n ≥ 0, the map γ(∆n) : Un+1 → Wn is a pullback of
U1 → U0 × U0, and therefore (n − 2)-truncated (since U• is assumed to be n-efficient). Since U• is a
groupoid, we conclude that γ = γ|N(∆)op is a Cartesian transformation. Invoking Theorem 6.4.4.5, we
deduce that γ is also a Cartesian transformation, so that the diagram

U1
//

��

U0

��
W 0

// U0 ×W−1

is Cartesian. Combining this with the Cartesian diagram

W 0
//

��

W−1

��
U0

// U−1

we deduce that U is effective, as desired.
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6.4.5 Localic ∞-Topoi

The standard example of an ordinary topos is the category Shv(X; Set) of sheaves (of sets) on a topological
space X. Of course, not every topos is of this form: the category Shv(X; Set) is generated under colimits by
subobjects of its final object (which can be identified with open subsets of X). A topos X with this property
is said to be localic, and is determined up to equivalence by the locale Sub(1X), which we may view as a
0-topos. The objective of this section is to obtain an∞-categorical analogue of this picture, which will allow
us to relate the theory of n-topoi to that of m-topoi, for all 0 ≤ m ≤ n ≤ ∞.

Definition 6.4.5.1. Let X and Y be n-topoi, 0 ≤ n ≤ ∞ A geometric morphism from X to Y is a functor
f∗ : X→ Y which admits a left exact left adjoint (which we will typically denote by f∗).

We let FunR
G(X,Y) denote the full subcategory of the ∞-category Fun(X,Y) spanned by the geometric

morphisms, and TopR
n denote the subcategory of Ĉat∞ whose objects are n-topoi and whose morphisms are

geometric morphisms.

Remark 6.4.5.2. In the case where n = 1, the ∞-category of geometric morphisms FunR
G(X,Y) between

two 1-topoi is equivalent to (the nerve of) the category of geometric morphisms between the ordinary topoi
hX and hY.

Remark 6.4.5.3. In the case where n = 0, the ∞-category of geometric morphisms FunR
G(X,Y) between

two 0-topoi is equivalent to the nerve of the partially ordered set of homomorphisms from the underlying
locale of Y to the underlying locale of X. (A homomorphism between locales is a map of partially ordered
sets which preserve finite meets and arbitrary joins.) In the case where X and Y are associated to (sober)
topological spaces X and Y , this is simply the set of continuous maps from X to Y , partially ordered by
specialization.

If m ≤ n, then the ∞-categories TopR
m and TopR

n are related by the following observation:

Proposition 6.4.5.4. Let X be an n-topos, and let 0 ≤ m ≤ n. Then the full subcategory τ≤m−1 X spanned
by the (m− 1)-truncated objects is an m-topos.

Proof. If m = n = ∞, the result is obvious. Otherwise, it follows immediately from (2) of Theorem
6.4.1.5.

Lemma 6.4.5.5. Let C be a small n-category which admits finite limits, and let Y be an ∞-topos. Then the
restriction map

FunR
G(Y,P(C))→ FunR

G(τ≤n−1 Y,P≤n−1(C))

is an equivalence of ∞-categories.

Proof. Let M ⊆ Fun(P(C),Y) and M′ ⊆ Fun(P≤n−1(C), τ≤n−1 Y) denote the full subcategories spanned
by left exact, colimit preserving functors. In view of Proposition 5.2.5.2, it will suffice to prove that the
restriction map θ : M→M′ is an equivalence of ∞-categories.

Let M′′ denote full subcategory of Fun(P(C), τ≤n−1 Y) spanned by colimit preserving functors whose
restriction to P≤n−1(C) is left exact. Corollary 5.5.5.22 implies that the restriction map θ′ : M′′ →M′ is an
equivalence of ∞-categories.

Let j : C→ P≤n−1(C) ⊆ P(C) denote the Yoneda embedding. Composition with j yields a commutative
diagram

M
θ //

ψ

��

M′

ψ′

��
Fun(C, τ≤n−1 Y) Fun(C, τ≤n−1 Y).

Theorem 5.1.5.6 implies that ψ and ψ′ ◦ θ′ are fully faithful. Since θ′ is an equivalence of ∞-categories, we
deduce that ψ′ is fully faithful. Thus θ is fully faithful; to complete the proof, we must show that ψ and ψ′
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have the same essential image. Suppose that f : C→ τ≤n−1 Y belongs to the essential image of ψ′. Without
loss of generality, we may suppose that f is a composition

C
j→ P≤n−1(C)

g∗→ τ≤n−1 Y .

As a composition of left exact functors, f is left exact. We may now invoke Proposition 6.1.5.2 to deduce
that f belongs to the essential image of ψ.

Lemma 6.4.5.6. Let C be a small n-category which admits finite limits and is equipped with a Grothendieck
topology, and let Y be an ∞-topos. Then the restriction map

θ : FunR
G(Y,Shv(C))→ FunR

G(τ≤n−1 Y,Shv≤n−1(C))

is an equivalence of ∞-categories.

Proof. We have a commutative diagram

FunR
G(Y,Shv(C)) θ //

��

FunR
Gn

(τ≤n−1 Y,Shv≤n−1(C))

��
FunR

G(Y,P(C)) θ′ // FunR
G(τ≤n−1 Y,P≤n−1(C))

where the vertical arrows are inclusions of full subcategories, and θ′ is an equivalence of∞-categories (Lemma
6.4.5.5). To complete the proof, it will suffice to show that if f∗ : Y → P(C) is a geometric morphism such
that f∗|τ≤n−1 Y factors through Shv≤n−1(C), then f∗ factors through Shv(C).

Let f∗ be a left adjoint to f∗, and let S denote the collection of all morphisms in P(C) which localize to
equivalences in Shv(C). We must show that f∗S consists of equivalences in Y. Let S ⊆ S be the collection of
monomorphisms which belong to S. Since Shv(C) is a topological localization of P(C), it will suffice to show
that f∗S consists of equivalences in Y. Let g : X → Y belong to S. Since P(C) is generated under colimits
by the essential image of the Yoneda embedding, we can write Y as a colimit of a diagram K → P≤n−1(C).
Since colimits in P(C) are universal, we obtain a corresponding expression of g as a colimit of morphisms
{gα : Xα → Yα} which are pullbacks of g, where Yα ∈ P≤n−1(C). In this case, gα is again a monomorphism,
so that Xα is also (n − 1)-truncated. Since f∗ commutes with colimits, it will suffice to show that each
f∗(gα) is an equivalence. But this follows immediately from our assumption that f∗|τ≤n−1 Y factors through
Shv≤n−1(Y).

Proposition 6.4.5.7. Let 0 ≤ m ≤ n ≤ ∞, and let X be an m-topos. There exists an n-topos X′ and an
equivalence f∗ : X→ τ≤m−1 X′ with the following universal property: for any n-topos Z, composition with f∗
induces an equivalence of ∞-categories

θ : FunR
G(Z,X′)→ FunR

G(τ≤m−1 Z,X).

Proof. If m = ∞, then also n = ∞ and we may take X′ = X. Otherwise, we may apply Theorem 6.4.1.5
to reduce to the case where X = Shv≤m−1(C), where C is a small m-category which admits finite limits
and is equipped with a Grothendieck topology. In this case, we let X′ = Shv≤n−1(C) and define f∗ to be
the identity. Let Z be an arbitrary n-topos. According to Theorem 6.4.1.5, we may assume without loss of
generality that Z = τ≤n−1 Y. We have a commutative diagram

FunR
G(Z,X′)

θ

((RRRRRRRRRRRRR

FunR
G(Y,Shv(C))

θ′
66nnnnnnnnnnnn

θ′′ // FunR
Gm

(τ≤m−1 Z,X).

Lemma 6.4.5.6 implies that θ′ and θ′′ are equivalences of ∞-categories, so that θ is also an equivalence of
∞-categories.
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Definition 6.4.5.8. Let 0 ≤ m ≤ n ≤ ∞, and let X be an n-topos. We will say that X is m-localic if, for
any n-topos Y, the natural map

FunR
G(Y,X)→ FunR

G(τ≤m−1 Y, τ≤m−1 X)

is an equivalence of ∞-categories.

According to Proposition 6.4.5.7, every m-topos X is equivalent to the subcategory of (m− 1)-truncated
objects in an m-localic n-topos X′, and X′ is determined up to equivalence. More precisely, the truncation
functor

TopR
n

τ≤m−1→ TopR
m

induces an equivalence C→ TopR
m, where C ⊆ TopR

n is the full subcategory spanned by the m-localic n-topoi.
In other words, we may view the ∞-category of m-topoi as a localization of the ∞-category of n-topoi. In
particular, the theory of m-topoi for m <∞ can be regarded as a special case of the theory of ∞-topoi. For
this reason, we will focus our attention on the case n =∞ for most of the remainder of this book.

Proposition 6.4.5.9. Let X be an n-localic∞-topos. Then any topological localization of X is also n-localic.

Proof. The proof of Proposition 6.4.5.7 shows that X is n-localic if and only if there exists a small n-category
C which admits finite limits, a Grothendieck topology on C, and an equivalence X→ Shv(C). In other words,
X is n-localic if and only if it is equivalent to a topological localization of P(C), where C is a small n-category
which admits finite limits. It is clear that any topological localization of X has the same property.

Remark 6.4.5.10. If 0 ≤ m ≤ n < ∞, then an n-topos X is m-localic if and only if it is generated under
colimits by (m − 1)-truncated objects. If n = ∞, then this statement is no longer true, since not every
localization of a presheaf ∞-category P(C) is topological.

Let X be an ∞-topos. One should think of the ∞-categories τ≤n−1 X as “Postnikov sections” of X. The
classical 1-truncation τ≤1X of a homotopy type X remembers only the fundamental groupoid of X. It
therefore knows all about local systems of sets on X, but nothing about fibrations over X with non-discrete
fibers. The relationship between X and τ≤0 X is analogous: τ≤0 X knows about the sheaves of sets on X, but
has forgotten about sheaves with nondiscrete stalks.

Remark 6.4.5.11. In view of the above discussion, the notation τ≤0 X is unfortunate because the analogous
notation for the 1-truncation of a homotopy type X is τ≤1X. We caution the reader not to regard τ≤0 X

not as the result of applying an operation τ≤0 to X; it instead denotes the essential image of the truncation
functor τ≤0 : X→ X.
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6.5 Homotopy Theory in an ∞-Topos

In classical homotopy theory, the most important invariants of a (pointed) space X are its homotopy groups
πi(X,x). Our first objective in this section is to define analogous invariants in the case where X is an object
of an arbitrary ∞-topos X. In this setting, the homotopy groups are not ordinary groups but are instead
sheaves of groups on the underlying topos Disc(X). In §6.5.1, we will study these homotopy groups and the
closely related theory of n-connectivity. The main theme is that the internal homotopy theory of a general
∞-topos X behaves much like the classical case X = S.

One important classical fact which does not hold in general for an ∞-topos is Whitehead’s theorem. If
f : X → Y is a map of CW-complexes, then f is a homotopy equivalence if and only if f induces bijective
maps πi(X,x) → πi(Y, f(x)) for any i ≥ 0 and any base point x ∈ X. If f : X → Y is a map in an
arbitrary∞-topos X satisfying an analogous condition on (sheaves of) homotopy groups, then we say that f
is ∞-connected. We will say that an ∞-topos X is hypercomplete if every ∞-connected morphism in X is an
equivalence. Whitehead’s theorem may be interpreted as saying that the ∞-topos S is hypercomplete. An
arbitrary ∞-topos X need not be hypercomplete. We will survey the situation in §6.5.2, where we also give
some reformulations of the notion of hypercompleteness and show that every topos X has a hypercompletion
X∧. In §6.5.3, we will show that an∞-topos X is hypercomplete if and only if X satisfies a descent condition
with respect to hypercoverings (other versions of this result can be found in [14] and [51]).

Carefully distinguishing between an ∞-topos X and its hypercompletion X∧ is the key to solving the
problem described in §. The Brown-Joyal-Jardine theory of simplicial (pre)sheaves on a topological space X
is a model for the hypercomplete ∞-topos Shv(X)∧. In many respects, the ∞-topos Shv(X) of sheaves of
spaces on X is better behaved before hypercompletion. We will outline some of the advantages of Shv(X) in
§6.5.4 and in §7.

6.5.1 Homotopy Groups

Let X be an ∞-topos, and let X be an object of X. We will refer to a discrete object of X/X as a sheaf of
sets on X. Since X is presentable, it is automatically cotensored over spaces, as explained in Remark 5.5.2.6.
Consequently, for any object X of X and any simplicial set K, there exists an object XK of X equipped with
natural isomorphisms

MapX(Y,XK)→ MapH(K,MapX(Y,X))

in the homotopy category H of spaces.

Definition 6.5.1.1. Let Sn = ∂∆n+1 ∈ H denote the (simplicial) n-sphere, and fix a base point ∗ ∈ Sn.
Then evaluation at ∗ induces a morphism s : XSn → X in X. We may regard s as an object of X/X , and we
define πn(X) = τ≤0s ∈ X/X to be the associated discrete object of X/X .

We will generally identify πn(X) with its image in the underlying topos Disc(X/X) (where it is well-defined
up to canonical isomorphism). The constant map Sn → ∗ induces a map X → XSn

, which determines a
base point of πn(X).

Suppose that K and K ′ are pointed simplicial sets, and let K∨K ′ denote the coproduct K
∐
∗K

′. There
is a pullback diagram

XK∨K′

$$H
HH

HH
HH

HH

{{vvv
vv

vv
vv

XK

$$I
IIIIIIII XK′

zzuuuuuuuuu

X

in X, so that XK∨K′
may be identified with a product of XK and XK′

in the ∞-topos X/X . We now make
the following general observation:
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Lemma 6.5.1.2. Let X be an ∞-topos. The truncation functor τ≤n : X→ X preserves finite products.

Proof. We must show that for any finite collection of objects {Xα}α∈A having product X, the induced map

τ≤nX →
∏
α∈A

τ≤nXα

is an equivalence. If X is the ∞-category of spaces, then this follows from Whitehead’s theorem: simply
compute homotopy groups (and sets) on both sides. If X = P(C), then to prove that a map in X is an
equivalence, it suffices to show that it remains an equivalence after evaluation at any object C ∈ C; thus we
may reduce to the case where X = S considered above. In the general case, X is equivalent to the essential
image of a left-exact localization functor L : P(C) → P(C) for some small ∞-category C. Without loss of
generality, we may identify X with a full subcategory of P(C). Then X ⊆ X′ = P(C) is stable under limits,
so that X may be identified with a product of the family {Xα}α∈A in X′. It follows from the case treated
above that the natural map

τX′

≤nX →
∏
α∈A

τX′

≤nXα

is an equivalence. But Proposition 5.5.5.23 implies that L ◦ τX′

≤n|X is an n-truncation functor for X. The
desired result now follows by applying the functor L to both sides of the above equivalence, and invoking
the assumption that L is left-exact (here we must require the finiteness of A).

It follows from Lemma 6.5.1.2 that there is a canonical isomorphism

τ
X/X

≤0 (XK∨K′
) ' τX/X

≤0 (XK)× τX/X

≤0 (XK′
)

in the topos Disc(X/X). In particular, for n > 0, the usual comultiplication Sn → Sn ∨ Sn (a well-defined
map in the homotopy category H) induces a multiplication map πn(X)× πn(X) → πn(X). As in ordinary
homotopy theory, we conclude that πn(X) is a group object of Disc(X/X) for n > 0, which is commutative
for n > 1.

In order to work effectively with homotopy sets, it is convenient to define the homotopy sets πn(f) of a
morphism f : X → Y to be the homotopy sets of f considered as an object of the ∞-topos X/Y . In view of
the equivalences X/f → X/X , we may identify πn(f) with an object of Disc(X/X), which is again a sheaf of
groups if n ≥ 1, and abelian groups if n ≥ 2. The intuition is that the stalk of these sheaves at a point p of
X is the nth homotopy group of the homotopy fiber of f , taken with respect to the base point p.

Remark 6.5.1.3. It is useful to have the following recursive definition for homotopy groups. Let f : X → Y
be a morphism in an∞-topos X. Regarding f as an object of the topos X/Y , we may take its 0th truncation

τ
X/Y

0 f . This is a discrete object of X/Y , and by definition we have π0(f) ' f∗τ
X/Y

0 (X) ' X ×Y τ
X/Y

0 (f).

The natural map X → τ
X/Y

0 (f) gives a global section of π0(f). Note that in this case, π0(f) is the pullback
of a discrete object of X/Y : this is because the definition of π0 does not require a base point.

If n > 0, then we have a natural isomorphism πn(f) ' πn−1(δ) in Disc(X/X), where δ : X → X ×Y X is
the associated diagonal map.

Remark 6.5.1.4. Let f : X→ Y be a geometric morphism of∞-topoi, and let g : Y → Y ′ be a morphism in
Y. Then there is a canonical isomorphism f∗(πn(g)) ' πn(f∗(g)) in Disc(X/f∗Y ). This follows immediately
from Proposition 5.5.5.23.

Remark 6.5.1.5. Given a pair of composable morphisms X
f→ Y

g→ Z, there is an associated sequence of
pointed objects

. . .→ f∗πn+1(g)
δn+1→ πn(f)→ πn(g ◦ f)→ f∗πn(g)

δn→ πn−1(f)→ . . .
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in the ordinary topos Disc(X/X), with the usual exactness properties. To construct the boundary map δn,
we observe that the n-sphere Sn can be written as a (homotopy) pushout D− ∐

Sn−1 D+ of two hemispheres
along the equator. By construction, f∗πn(g) can be identified with the 0-truncation of

X ×Y Y S
n

×ZSn Z ' XD− ×Y D− Y
Sn

×ZSn Z,

which maps by restriction to
XSn−1

×Y Sn−1 Y D
+
' XSn−1

×Y Sn−1 Y.

We now observe that the 0-truncation of the latter object is naturally isomorphic to πn−1(f) ∈ Disc(X/X).
To prove the exactness of the above sequence in an ∞-topos X, we first choose an accessible left exact

localization L : P(C) → X. Without loss of generality, we may suppose that the diagram X
f→ Y

g→ Z is
the image under L of a diagram in P(C). Using Remark 6.5.1.4, we conclude that the sequence constructed
above is equivalent to the image under L of an analogous sequence in the ∞-topos P(C). Since L is left
exact, it will suffice to prove that this second sequence is exact; in other words, we may reduce to the case
X = P(C). Working componentwise, we can reduce further to the case where X = S. The desired result now
follows from classical homotopy theory. (Special care should be taken regarding the exactness of the above
sequence at π0(f): really this should be interpreted in terms of an action of the group f∗π1(g) on π0(f). We
leave the details of the construction of this action to the reader. )

Remark 6.5.1.6. If X = S, and η : ∗ → X is a pointed space, then η∗πn(X) can be identified with the nth
homotopy group of X with base point η.

We now study the implications of the vanishing of homotopy groups.

Proposition 6.5.1.7. Let f : X → Y be an n-truncated morphism in an ∞-topos X. Then πk(f) ' ∗ for
all k > n. If n ≥ 0 and πn(f) ' ∗, then f is (n− 1)-truncated.

Proof. The proof goes by induction on n. If n = −2, then f is an equivalence and there is nothing to
prove. Otherwise, the diagonal map δ : X → X ×Y X is (n− 1)-truncated (Lemma 5.5.5.15). The inductive
hypothesis and Remark 6.5.1.3 allow us to deduce that πk(f) ' πk−1(δ) ' ∗ whenever k > n and k > 0.
Similarly, if n ≥ 1 and πn(f) ' πn−1(δ) ' ∗, then δ is (n− 2)-truncated by the inductive hypothesis, so that
f is (n− 1)-truncated (Lemma 5.5.5.15).

The case of small k and n requires special attention: we must show that if f is 0-truncated, then f is
(−1)-truncated if and only if π0(f) ' ∗. Because f is 0-truncated, we have an equivalence τX/Y

≤0 (f) ' f ,
so that π0(f) ' X ×Y X. To say π0(f) ' ∗ is to assert that the diagonal map δ : X → X ×Y X is an
equivalence, which is equivalent to the assertion that f is (−1)-truncated (Lemma 5.5.5.15).

Remark 6.5.1.8. The Proposition 6.5.1.7 implies that if f is n-truncated for some n� 0, then we can test
whether or not f is m-truncated for any particular value of m by computing the homotopy groups of f . In
contrast to the classical situation, it is not possible to drop the assumption that f is n-truncated for n� 0.

Lemma 6.5.1.9. Let X be an object in an ∞-topos X, and let p : X → Y be an n-truncation of X. Then
p induces isomorphisms πk(X) ' p∗πk(Y ) for all k ≤ n.

Proof. Let φ : X → Y be a geometric morphism such that φ∗ is fully faithful. By Proposition 5.5.5.23 and
Remark 6.5.1.4, it will suffice to prove the lemma in the case where X = Y. We may therefore assume that
Y is an ∞-category of presheaves. In this case, homotopy groups and truncations are computed pointwise.
Thus we may reduce to the case X = S, where the conclusion follows from classical homotopy theory.

Definition 6.5.1.10. Let f : X → Y be a morphism in an ∞-topos X, and let −1 ≤ n ≤ ∞. We will say
that f is n-connected if it is an effective epimorphism and πk(f) = ∗ for 0 ≤ k ≤ n. We shall say that the
object X is n-connected if f : X → 1X is n-connected, where 1X denotes the final object of X.
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Warning 6.5.1.11. Our terminology does not coincide with the classical homotopy-theoretic terminology
in the case where X is the ∞-topos of spaces. A map f : X → Y of spaces is usually said to be n-connected
if the mapping cone (that is, the homotopy pushout Y

∐
X ∗) is n-connected. Definition 6.5.1.10 places this

condition instead on the mapping fibers. The notions differ only by a change of indexing: for n ≥ 0, f is
n-connected in the classical sense if and only if it is (n− 1)-connected in the sense of Definition 6.5.1.10.

Proposition 6.5.1.12. Let X be an object in an ∞-topos X. Then X is n-connected if and only if τ≤nX
is a final object of X.

Proof. The proof goes by induction on n ≥ −1. If n = −1, then the conclusion follows from Proposition
6.2.3.4. Suppose n ≥ 0. Let p : X → τnX be an n-truncation of X. If τ≤nX is a final object of X, then

πkX ' p∗πk(τnX) ' ∗

for k ≤ n by Lemma 6.5.1.9. Since the map p : X → τ≤nX ' 1X is an effective epimorphism (Proposition
7.2.1.21), it follows that X is n-connected.

Conversely, suppose that X is n-connected. Then p∗πn(τ≤nX) ' ∗. Since p is an effective epimorphism,
Lemma 6.2.3.16 implies that πn(τ≤nX) = ∗. Using Proposition 6.5.1.7, we conclude that τ≤nX is (n − 1)-
truncated, so that τ≤nX ' τ≤n−1X. Repeating this argument, we reduce to the case where n = −1 which
was handled above.

Corollary 6.5.1.13. The class of n-connected objects of an ∞-topos X is stable under finite products.

Proof. Combine Proposition 6.5.1.12 with Lemma 6.5.1.2.

Let X be an ∞-topos and X an object of X. Since MapX(X,Y ) ' MapX(τ≤nX,Y ) whenever Y is n-
truncated, we deduce that X is n-connected if and only if the natural map MapX(1X, Y )→ MapX(X,Y ) is
an equivalence for all n-truncated Y . From this, we can immediately deduce the following relative version
of Proposition 6.5.1.12:

Corollary 6.5.1.14. Let f : X → X ′ be a morphism in an ∞-topos X. Then f is n-connected if and only
if composition with f induces a homotopy equivalence

MapX/X′ (idX′ , Y )→ MapX/X′ (f, Y )

for every n-truncated object Y ∈ X/X′ .

Remark 6.5.1.15. Let L : X → Y be a left exact localization of ∞-topoi, and let f : Y → Y ′ be an n-
connected morphism in Y. Then f is equivalent (in Fun(∆1,Y)) to Lf0, where f0 is an n-connected morphism
in X. To see this, we choose a (fully faithful) right adjoint G to L, and a factorization

X
f ′′

""E
EEEEEEE

G(Y )

f ′
<<zzzzzzzz G(f0) // G(Y ′)

where f ′ is n-connected and f ′′ is n-truncated. Then Lf ′′◦Lf ′ is equivalent to f , and is therefore n-connected.
It follows that Lf ′′ is an equivalence, so that Lf ′ is equivalent to f .

We conclude by noting the following stability properties of the class of n-connected morphisms:

Proposition 6.5.1.16. Let X be an ∞-topos.

(1) Let f : X → Y be a morphism in X. If f is n-connected, then it is m-connected for all m ≤ n.
Conversely, if f is n-connected for all n <∞, then f is ∞-connected.
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(2) Any equivalence in X is ∞-connected.

(3) Let f, g : X → Y be a homotopic morphisms in X. Then f is n-connected if and only if g is n-connected.

(4) Let π∗ : X → Y be left adjoint to a geometric morphism from π∗ : Y → X, and let f : X → X ′ be an
n-connected morphism in X. Then π∗f is an n-connected morphism in Y.

(5) Suppose given a diagram
Y

g

��@
@@

@@
@@

X

f
>>~~~~~~~ h // Z

in X, where f is n-connected. Then g is n-connected if and only if h is n-connected.

(6) Suppose given a pullback diagram

X ′

f ′

��

q′ // X

f

��
Y ′

q // Y

in X. If f is n-connected, then so is f ′. The converse holds if q is an effective epimorphism.

Proof. The first three assertions are obvious. Claim (4) follows from Propositions 6.5.1.12 and 5.5.5.23. To
prove (5), we first observe that Corollary 6.2.3.12 implies that g is an effective epimorphism if and only if h
is an effective epimorphism. According to Remark 6.5.1.5, we have a long exact sequence

. . .→ f∗πi+1(g)→πi(f)→ πi(h)→ f∗πi(g)→ πi−1(f)→ . . .

of pointed objects in the topos Disc(X/X). It is then clear that if f and g are n-connected, then so is h.
Conversely, if f and h are n-connected, then f∗πi(g) ' ∗ for i ≤ n. Since f is an effective epimorphism,
Lemma 6.2.3.16 implies that πi(g) ' ∗ for i ≤ n, so that g is also n-connected.

The first assertion of (6) follows from (4), since a pullback functor q∗ : X/Y → X/Y ′ is left adjoint to
a geometric morphism. For the converse, let us suppose that q is an effective epimorphism and that f ′ is
n-connected. According to Lemma 6.2.3.15, the maps f and q′ are effective epimorphisms. Applying Remark
6.5.1.4, we conclude that there are canonical isomorphisms q′∗πk(f) ' πk(f ′) in the topos Disc(X/X′), so
that q′∗πk(f) ' ∗ for k ≤ n. Applying Lemma 6.2.3.16, we conclude that πk(f) ' ∗ for k ≤ n, so that f is
n-connected as desired.

Corollary 6.5.1.17. Let

X ′ g //

f ′

��

X

f

��
Y ′ // Y

be a pushout diagram in an ∞-topos X. Suppose that f ′ is n-connected. Then f is n-connected.

Proof. Choose an accessible, left exact localization functor L : P(C) → X. Using Remark 6.5.1.15, we can
assume without loss of generality that f ′ = Lf ′0, where f ′0 : X ′

0 → Y ′0 is a morphism in P(C). Similarly, we
may assume g = Lg0, for some morphism g0 : X ′

0 → X0. Form a pushout diagram

X ′
0

g0 //

f ′0
��

X0

f0

��
Y ′0 // Y0
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in P(C). Then the original diagram is equivalent to the image (under L) of the diagram above. In view of
Proposition 6.5.1.16, it will suffice to show that f0 is n-connected. Using Propositions 6.5.1.12 and 5.5.5.23,
we see that f0 is n-connected if and only if its image under the evaluation map P(C)→ S associated to any
object C ∈ C is n-connected. In other words, we can reduce to the case where X = S, and the result now
follows from classical homotopy theory.

We conclude by establishing a few results which will be needed in §7.2:

Proposition 6.5.1.18. Let f : X → Y be a morphism in an ∞-topos X, δ : X → X ×Y X the associated
diagonal morphism, and n ≥ 0. The following conditions are equivalent:

(1) The morphism f is n-connected.

(2) The diagonal map δ : X → X ×Y X is (n− 1)-connected, and f is an effective epimorphism.

Proof. Immediate from Definition 6.5.1.10 and Remark 6.5.1.3.

Proposition 6.5.1.19. Let X be an ∞-topos containing an object X, and let σ : ∆2 → X be a 2-simplex
corresponding to a diagram

Y

  A
AA

AA
AA

A
f // Z

g
~~}}

}}
}}

}}

X.

Then f is an n-connected morphism in X if and only if σ is an n-connected morphism in X/X .

Proof. We observe that X/g → X/Z is a trivial fibration, so that an object of X/g is n-connected if and only
if its image in X/Z is n-connected.

Proposition 6.5.1.20. Let f : X → Y be a morphism in an ∞-topos X, let s : Y → X be a section of f (so
that f ◦ s is homotopic to idY ), and let n ≥ −1. Then f is n-connected if and only if s is (n− 1)-connected
(by convention, we agree that every morphism in X is (−2)-connected).

Proof. We have a 2-simplex σ : ∆2 → X which we may depict as follows:

X
f

  A
AA

AA
AA

Y

s

>>~~~~~~~ idY // Y.

Corollary 6.2.3.12 implies that f is an effective epimorphism; this completes the proof in the case n = −1.
Suppose that n ≥ 0, and that s is (n − 1)-connected. In particular, s is an effective epimorphism. The
long exact sequence of Remark 6.5.1.5 gives an isomorphism πi(s) ' s∗πi+1(f), so that s∗πk(f) vanishes for
1 ≤ k ≤ n. Applying Lemma 6.2.3.16, we conclude that πk(f) ' ∗ for 1 ≤ k ≤ n. Moreover, since s is an
effective epimorphism it induces an effective epimorphism π0(idY )→ π0(f) in the ordinary topos Disc(X/Y ),
so that π0(f) ' ∗ as well. This proves that f is n-connected.

Conversely, if f is n-connected, then πi(s) ' ∗ for i ≤ n− 1; the only nontrivial point is to verify that s
is an effective epimorphism. According to Proposition 6.5.1.19, it will suffice to prove that σ is an effective
epimorphism when viewed as a morphism in X/Y . According to Proposition 7.2.1.21, it will suffice to show

that σ′ = τ
X/Y

≤0 (σ) is an equivalence in X/Y . This is clear, since the source and target of σ′ are both final
objects of X/Y (in virtue of our assumption that f is 0-connected).
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6.5.2 ∞-Connectedness

Let C be an ordinary category equipped with a Grothendieck topology, and let A = SetCop

∆ be the category
of simplicial presheaves on C.

Proposition 6.5.2.1 (Jardine [28]). There exists a ( perfect ) simplicial model structure on the category A,
which admits the following description:

(C) A map f : F• → G• of simplicial presheaves on C is a local cofibration if it is a weak cofibration: that
is, if and only if the induced map F•(C) → G•(C) is a cofibration of simplicial sets for each object
C ∈ C.

(W ) A map f : F• → G• of simplicial presheaves on C is a local equivalence if and only if, for any object
C ∈ C and any commutative diagram of topological spaces

Sn−1 //
� _

��

|F•(C)|

��
Dn // |G•(C)|,

there exists a collection of morphisms {Cα → C} which generate a covering sieve on C, such that in
each of the induced diagrams

Sn−1 //
� _

��

|F•(Cα)|

��
Dn //

99t
t

t
t

t
|G•(Cα)|,

one can produce a dotted arrow so that the upper triangle commutes and the lower triangle commutes
up to a homotopy which is fixed on Sn−1.

We refer the reader to [28] for a proof (one can also deduce Proposition 6.5.2.1 from Proposition A.2.9.5).
We will refer to the model structure of Proposition 6.5.2.1 as the local model structure on A.

Remark 6.5.2.2. In the case where the topos X of sheaves of sets on C has enough points, there is a
simpler description of the class (W ) of local equivalences: a map F → G of simplicial presheaves is a local
equivalence if and only if it induces weak homotopy equivalences Fx → Gx of simplicial sets, after passing
to the stalk at any point x of X. We refer the reader to [28] for details.

Let A◦ denote the full subcategory of A consisting of fibrant-cofibrant objects (with respect to the
local model structure), and let X = N(A◦) be the associated ∞-category. We observe that the local model
structure on A is a localization of the injective model structure on A. Consequently, the ∞-category X is a
localization of the∞-category associated to the injective model structure on A, which (in view of Proposition
5.1.1.1) is equivalent to P(N(C)). It is tempting to guess that X is equivalent to the left exact localization
Shv(N(C)) constructed in §6.2.2. This is not true in general; however, as we will explain below, we can
always recover X as an accessible left-exact localization of Shv(N(C)). In particular, X is itself an ∞-topos.

In general, the difference between X and Shv(N(C)) is measured by the failure of Whitehead’s theorem.
Essentially by construction, the equivalences in A are those maps which induce isomorphisms on homotopy
sheaves. In general, this assumption is not strong enough to guarantee that a morphism in Shv(N(C)) is
an equivalence. However, this is the only difference: the ∞-category X can be obtained from Shv(N(C)) by
inverting the class of∞-connected morphisms (Proposition 6.5.2.14). Before proving this, we study the class
of ∞-connected morphisms in an arbitrary ∞-topos.

Lemma 6.5.2.3. Let p : C → D be a Cartesian fibration of ∞-categories, let C′ be a full subcategory of
C, and suppose that for every p-Cartesian morphism f : C → C ′ in C, if C ′ ∈ C′, then C ∈ C′. Let D
be an object of D, and let f : C → C ′ be a morphism in the fiber CD = C×D{D} which exhibits C ′ as a
C0
D-localization of C (see Definition 5.2.6.5). Then f exhibits C ′ as a C-localization of C.
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Proof. According to Proposition 2.3.3.3, p induces a Cartesian fibration CC/ → DD/, which restricts to give
a Cartesian fibration p′ : C′C/ → DD/. We observe that f is an object of C′C/ which is an initial object of
(p′)−1{idD} (Remark 5.2.6.6), and that idD is an initial object of DD/. Lemma 2.3.4.7 implies that f is an
initial object of C′C/, so that f exhibits C ′ as C′-localization of C (Remark 5.2.6.6) as desired.

Lemma 6.5.2.4. Let p : C → D be a Cartesian fibration of ∞-categories, let C′ be a full subcategory of C,
and suppose that for every p-Cartesian morphism f : C → C ′ in C, if C ′ ∈ C′, then C ∈ C′. Suppose that
for each object D ∈ D, the fiber C′D = C′×D{D} is a reflective subcategory of CD = C×D{D} (see Remark
5.2.6.8). Then C′ is a reflective subcategory of C.

Proof. Combine Lemma 6.5.2.3 with Proposition 5.2.6.7.

Lemma 6.5.2.5. Let X be a presentable ∞-category, let C be an accessible ∞-category, and let α : F → G
be a natural transformation between accessible functors F,G : C → X. Let C(n) be the full subcategory of
C spanned by those objects C such that α(C) : F (C) → G(C) is n-truncated. Then C(n) is an accessible
subcategory of C (see Definition 5.4.7.8).

Proof. We work by induction on n. If n = −2, then we have a (homotopy) pullback diagram

C(n) //

��

C

α

��
E // Fun(∆1,X)

where E is the full subcategory of Fun(∆1,X) spanned by equivalences. The inclusion of E into Fun(∆1,X)
is equivalent to the diagonal map X→ Fun(∆1,X), and therefore accessible. Proposition 5.4.6.6 implies that
C(n) is an accessible subcategory of C, as desired.

If n ≥ −1, we apply the the inductive hypothesis to the diagonal functor δ : F → F ×G F , using Lemma
5.5.5.15.

Lemma 6.5.2.6. Let X be a presentable ∞-category, and let −2 ≤ n <∞. Let C be the full subcategory of
Fun(∆1,X) spanned by the n-truncated morphisms. Then C is a strongly reflective subcategory of Fun(∆1,X).

Proof. Applying Lemma 6.5.2.4 to the projection Fun(∆1,X)→ Fun({1},X), we conclude that C is a reflec-
tive subcategory of Fun(∆1,X). The accessibility of C follows from Lemma 6.5.2.5.

Lemma 6.5.2.7. Let X be an ∞-topos, let −1 ≤ n ≤ ∞, and let D(n) be the full subcategory of Fun(∆1,X)
spanned by the n-connected morphisms of X. Then D(n) is an accessible subcategory of X and is stable under
colimits in X.

Proof. Suppose first that n < ∞. Let C(n) ⊆ Fun(∆1,X) be the full subcategory spanned by the n-
truncated morphisms in X. According to Lemma 6.5.2.6, the inclusion C(n) ⊆ Fun(∆1,X) has a left adjoint
L : Fun(∆1,X) → C(n). Moreover, the proof of Lemma 6.5.2.3 shows that f is n-connected if and only if
Lf is an equivalence. It is easy to see that the full subcategory E ⊆ C(n) spanned by the equivalences is
stable under colimits in C(n), so that D(n) is stable under colimits in Fun(∆1,X). The accessibility of D(n)
follows from the existence of the (homotopy) pullback diagram

D(n) //

��

Fun(∆1,X)

L

��
E // C(n)

and Proposition 5.4.6.6.
If n = ∞, we observe that D(n) = ∪m<∞ D(m), which is manifestly stable under colimits, and is an

accessible subcategory of X∆1
by Proposition 5.4.7.10.
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Proposition 6.5.2.8. Let X be an ∞-topos, and let S denote the collection of ∞-connected morphisms of
X. Then S is strongly saturated and of small generation ( see Definition 5.5.4.5 ).

Proof. Lemma 6.5.2.7 implies that S is stable under colimits in Fun(∆1,X), and Corollary 6.5.1.17 shows
that S is stable under pushouts. To prove that S has the two-out-of-three property, we consider a diagram
σ : ∆2 → X, which we depict as

Y
g

  A
AA

AA
AA

X

f
>>~~~~~~~ h // Z.

If f is∞-connected, then Proposition 6.5.1.16 implies that g is∞-connected if and only if h is∞-connected.
Suppose that g and h are ∞-connected. The long exact sequence

. . .→ f∗πn+1(g)→ πn(f)→ πn(h)→ f∗πn(g)→ πn−1(f)→ . . .

of Remark 6.5.1.5 shows that πn(f) ' ∗ for all n ≥ 0. It will therefore suffice to prove that f is an effective
epimorphism. According to Proposition 6.5.1.19, it will suffice to show that σ is an effective epimorphism in
X/Z . According to Proposition 7.2.1.21, it suffices to show that τX/Z

≤0 (h) and τ
X/Z

≤0 (g) are both final objects
of X/Z , which follows from the 0-connectivity of g and h (Proposition 6.5.1.12).

To show that S is of small generation, it suffices (in view of Lemma 5.5.4.15) to show that the full
subcategory of Fun(∆1,X) spanned by S is accessible. This follows from Lemma 6.5.2.7.

Let X be an∞-topos. We will say that an object X of X is hypercomplete if it is local with respect to the
class of ∞-connected morphisms. Let X∧ denote the full subcategory of X spanned by the hypercomplete
objects of X. Combining Propositions 6.5.2.8 and 5.5.4.18, we deduce that X∧ is an accessible localization
of X. Moreover, since Proposition 6.5.1.16 implies that the class of ∞-connected morphisms is stable under
pullback, we deduce from Proposition 6.2.1.1 that X∧ is a left exact localization of X. It follows that X∧ is
itself an ∞-topos. We will show in a moment that X∧ can be described by a universal property.

Lemma 6.5.2.9. Let X be an ∞-topos, and let n <∞. Then τ≤n X ⊆ X∧.

Proof. Corollary 6.5.1.14 implies that an n-truncated object of X is local with respect to every n-connected
morphism of X, and therefore with respect to every ∞-connected morphism of X.

Lemma 6.5.2.10. Let X be an ∞-topos, let L : X→ X∧ be a left adjoint to the inclusion, and let X ∈ X be
such that LX is an ∞-connected object of X∧. Then LX is a final object of X∧.

Proof. For each n <∞, we have equivalences

1X ' τX∧

≤nLX ' LτX
≤nX ' τX

≤nX

where the first is because of our hypothesis that LX is ∞-connected, the second is given by Proposition
5.5.5.23, and the third by Lemma 6.5.2.9. It follows that X is an ∞-connected object of X, so that LX is a
final object of X∧ by construction.

We will say that an ∞-topos X is hypercomplete if X∧ = X; in other words, X is hypercomplete if every
∞-connected morphism of X is an equivalence, so that Whitehead’s theorem holds in X.

Remark 6.5.2.11. In [51], the authors use the term t-completeness to refer to the property that we have
called hypercompleteness.

Lemma 6.5.2.12. Let X be an ∞-topos. Then the ∞-topos X∧ is hypercomplete.

Proof. Let f : X → Y be an ∞-connected morphism in X∧. Applying Lemma 6.5.2.10 to the ∞-topos
(X∧)/Y ' (X/Y )∧, we deduce that f is an equivalence.
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We are now prepared to characterize X∧ by a universal property:

Proposition 6.5.2.13. Let X and Y be ∞-topoi. Suppose that Y is hypercomplete. Then composition with
the inclusion X∧ ⊆ X induces an isomorphism

FunR
G(Y,X∧)→ FunR

G(Y,X).

Proof. Let f∗ : Y → X be a geometric morphism; we wish to prove that f∗ factors through X∧. Let f∗

denote a left adjoint to f∗; it will suffice to show that f∗ carries each ∞-connected morphism u of X to
an equivalence in Y. Proposition 6.5.1.16 implies that f∗(u) is ∞-connected, and the hypothesis that Y is
hypercomplete guarantees that u is an equivalence.

The following result establishes the relationship between our theory of hypercompleteness and the Brown-
Joyal-Jardine theory of simplicial presheaves.

Proposition 6.5.2.14. Let C be a small category equipped with a Grothendieck topology, and let A denote
the category of simplicial presheaves on C, endowed with the local model structure ( see Proposition 6.5.2.1
). Let A◦ denote the full subcategory consisting of fibrant-cofibrant objects, and let A = N(A◦) be the
corresponding ∞-category. Then A is equivalent to Shv(C)∧; in particular, it is a hypercomplete ∞-topos.

Proof. Let P(C) denote the∞-category P(N(C)), and let A′ denote the (perfect) model category of simplicial
presheaves on C, endowed with the injective model structure of §A.3.3. According to Proposition A.3.6.1,
the simplicial nerve functor induces an equivalence

θ : N(A′◦)→ P(C).

We may identify N(A◦) with the full subcategory of N(A′◦) spanned by the S-local objects, where S is the
class of local equivalences.

We first claim that θ|N(A◦) factors through Shv(C). Consider an object C ∈ C and a sieve C
(0)
/C ⊆ C/C .

Let χC : C → Set be the functor D 7→ HomC(D,C) represented by C, let χ(0)
C be the subfunctor of χC

determined by the sieve C
(0)
/C , and let i : χ(0)

C → χC be the inclusion. We regard χC and χ
(0)
C as objects

of simplicial presheaves on C, which take values in the full subcategory of Set∆ spanned by the constant
simplicial sets. We observe that every simplicial presheaf on C which is valued in constant simplicial sets is
automatically fibrant, and every object of A′ is cofibrant. Consequently, we may regard i as a morphism
in the ∞-category N(A′)◦. It is easy to see that θ(i) represents the monomorphism U → j(C) classified
by the sieve C

(0)
/C . If C

(0)
/C is a covering sieve on C, then i is a local equivalence. Consequently, every object

X ∈ N(A◦) is i-local, so that θ(X) is θ(i)-local. By construction, Shv(C) is the full subcategory of P(C)
spanned by those objects which are θ(i)-local for every covering sieve C

(0)
/C on every object C ∈ C. We

conclude that θ|N(A◦) factors through Shv(C).
Let X = θ−1 Shv(C), so that N(A◦) can be identified with the collection of S′-local objects of X, where

S′ is the collection of all morphisms in X which belong to S. Then θ induces an equivalence N(A◦) →
θ(S′)−1 Shv(C). We now observe that a morphism f in X belongs to S′ if and only if θ(f) is an∞-connected
morphism in Shv(C) (since the condition of being a local equivalence can be tested on homotopy sheaves).
It follows that θ(S′)−1 Shv(C) = Shv(C)∧, as desired.

Remark 6.5.2.15. In [51], the authors discuss a generalization of Jardine’s construction, in which the
category C is replaced by a simplicial category. Proposition 6.5.2.14 holds in this more general situation as
well.

We conclude this section with a few remarks about localizations of an∞-topos X. In §6.2.1 we introduced
the class of topological localizations of X, consisting of those left exact localizations which can be obtained
by inverting monomorphisms in X. The hypercompletion X∧ is, in some sense, at the other extreme: it is
obtained by inverting the ∞-connected morphisms in X, which are never monomorphisms unless they are
already equivalences. In fact, X∧ is the maximal (left exact) localization of X which can be obtained without
inverting monomorphisms:
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Proposition 6.5.2.16. Let X and Y be ∞-topoi, and let f∗ : X → Y be a left exact, colimit preserving
functor. The following conditions are equivalent:

(1) For every monomorphism u in X, if f∗u is an equivalence in Y, then u is an equivalence in X.

(2) For every morphism u ∈ X, if f∗u is an equivalence in Y, then f is ∞-connected.

Proof. Suppose first that (2) is satisfied. If u is a monomorphism and f∗u is an equivalence in Y, then u
is ∞-connected. In particular, u is both a monomorphism and an effective epimorphism, and therefore an
equivalence in X. This proves (1). Conversely, suppose that (1) is satisfied, and let u : X → Z be an arbitrary
morphism in X such that f∗(u) is an equivalence. We will prove by induction on n that u is n-connected.

We first consider the case n = −1. Choose a factorization

Y
u′′

��@
@@

@@
@@

X

u′
>>~~~~~~~ u // Z

where u′ is an effective epimorphism, and u′′ is a monomorphism. Since f∗u is an equivalence, Corollary
6.2.3.12 implies that f∗u′′ is an effective epimorphism. Since f∗u′′ is also a monomorphism (in virtue of our
assumption that f is left exact), we conclude that f∗u′′ is an equivalence. Applying (1), we deduce that u′′

is an equivalence, so that u is an effective epimorphism as desired.
Now suppose n ≥ 0. According to Proposition 6.5.1.18, it will suffice to show that the diagonal map

δ : X → X ×Z X is (n− 1)-connected. By the inductive hypothesis, it will suffice to prove that f∗(δ) is an
equivalence in Y. We conclude by observing that f∗ is left exact, so we can identify δ with the diagonal map
associated to the equivalence f∗(u) : f∗X → f∗Z.

Definition 6.5.2.17. Let X be an ∞-topos, and let Y ⊆ X be an accessible left exact localization of X. We
will say that Y is an cotopological localization of X if the left adjoint L : X → Y to the inclusion of Y in X

satisfies the equivalent conditions of Proposition 6.5.2.16.

Remark 6.5.2.18. Let f∗ : X → Y be the left adjoint of a geometric morphism between ∞-topoi, and
suppose that the equivalent conditions of Proposition 6.5.2.16 are satisfied. Let u : X → Z be a morphism
in X, and choose a factorization

Y
u′′

��@
@@

@@
@@

X

u′
>>~~~~~~~ u // Z

where u′ is an effective epimorphism and u′′ is a monomorphism. Then u′′ is an equivalence if and only if
f∗(u′′) is an equivalence. Applying Corollary 6.2.3.12, we conclude that u is an effective epimorphism if and
only if f∗(u) is an effective epimorphism.

The hypercompletion X∧ of an∞-topos X can be characterized as the maximal cotopological localization
of X (that is, the cotopological localization which is obtained by inverting as many morphisms as possible).
According to our next result, every localization can be obtained by combining topological and cotopological
localizations:

Proposition 6.5.2.19. Let X be an ∞-topos, and let X′′ ⊆ X be an accessible, left exact localization of X.
Then there exists a topological localization X′ ⊆ X such that X′′ ⊆ X′ is a cotopological localization of X′.

Proof. Let L : X→ X′′ be a left adjoint to the inclusion, let S be the collection of all monomorphisms u in
X such that Lu is an equivalence, and let X′ = S−1 X be the collection of S-local objects of X. Since L is left
exact, S is stable under pullbacks and therefore determines a topological localization of X. By construction,
we have X′′ ⊆ X′. The restriction L|X′ exhibits X′′ as an accessible left exact localization of X′. Let u be a
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monomorphism in X′ such that Lu is an equivalence. Then u is a monomorphism in X, so that u ∈ S. Since
X′ consists of S-local objects, we conclude that u is an equivalence. It follows that X′′ is a cotopological
localization of X′, as desired.

Remark 6.5.2.20. It is easy to see that the factorization of Proposition 6.5.2.19 is essentially uniquely
determined: more precisely, X′ is unique provided that we assume that it is stable under equivalences in X.

Combining Proposition 6.5.2.19 with Remark 7.2.1.23, we see that every ∞-topos X can be obtained in
following way:

(1) Begin with the ∞-category P(C) of presheaves on some small ∞-category C.

(2) Choose a Grothendieck topology on C: this is equivalent to choosing a left exact localization of the
underlying topos Disc(P(C)) = SethCop

.

(3) Form the associated topological localization Shv(C) ⊆ P(C), which can be described as the pullback

P(C)×P(N(hC)) Shv(N(hC))

in TopR.

(4) Form a cotopological localization of Shv(C) by inverting some class of ∞-connected morphisms of
Shv(C).

6.5.3 Hypercoverings

Let X be an∞-topos. In §6.5.2, we defined the hypercompletion X∧ ⊆ X to be the left exact localization of X

obtained by inverting the ∞-connected morphisms. In this section, we will give an alternative description of
the hypercomplete objects X ∈ X∧: they are precisely those objects of X which satisfy a descent condition
with respect to hypercoverings (Theorem 6.5.3.13). We begin by reviewing the definition of a hypercovering.

Let X be a topological space, and let F be a presheaf of sets on X. To construct the sheaf associated to
F, it is natural to consider the presheaf F+, defined by

F+ = lim−→
U

lim←−
V ∈U

F(V ).

Here the direct limit is taken over all sieves U which cover U . There is an obvious map F → F+, which is an
isomorphism whenever F is a sheaf. Moreover, F+ is “closer” to being a sheaf than F is. More precisely, F+

is always a separated presheaf: two sections of F+ which agree locally automatically coincide. If F is itself
a separated presheaf, then F+ is a sheaf.

For a general presheaf F, we need to apply the above construction twice to construct the associated sheaf
(F+)+. To understand the problem, let us try to prove that F+ is a sheaf (to see where the argument breaks
down). Suppose given an open covering X =

⋃
Uα, and a collection of sections sα ∈ F+(Uα) such that

sα|Uα ∩ Uβ = sβ |Uα ∩ Uβ .

Refining the covering Uα if necessary, we may assume that each sα is the image of some section tα ∈ F(Uα).
However, the equation

tα|Uα ∩ Uβ = tβ |Uα ∩ Uβ
only holds locally on Uα ∩ Uβ , so the sections tα do not necessarily determine a global section of F+. To
summarize: the freedom to consider arbitrarily fine open covers U = {Uα} is not enough; we also need to be
able to refine the intersections Uα ∩Uβ . This leads very naturally to the notion of a hypercovering. Roughly
speaking, a hypercovering of X consists of an open covering {Uα} of X, an open covering of {Vαβγ} of each
intersection Uα∩Uβ , and analogous data associated to more complicated intersections (see Definition 6.5.3.2
for a more precise formulation).

In classical sheaf theory, there are two ways to construct the sheaf associated to a presheaf F:
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(1) One can apply the construction F 7→ F+ twice.

(2) Using the theory of hypercoverings, one can proceed directly by defining

F†(U) = lim−→
U

lim←−F(V )

where the direct limit is now taken over arbitrary hypercoverings U.

In higher category theory, the difference between these two approaches becomes more prominent. For
example, suppose that F is not a presheaf of sets, but a presheaf of groupoids on X. In this case, one can
construct the associated sheaf of groupoids using either approach. However, in the case of approach (1),
it is necessary to apply the construction F 7→ F+ three times: the first application guarantees that the
automorphism groups of sections of F are separated presheaves, the second guarantees that they are sheaves,
and the third guarantees that F itself satisfies descent. More generally, if F is a sheaf of n-truncated spaces,
then the sheafification of F via approach (1) takes place in (n+ 2)-stages.

When we pass to the case n = ∞, the situation becomes more complicated. If F is a presheaf of spaces
on X, then it is not reasonable to expect to obtain a sheaf by applying the construction F 7→ F+ any finite
number of times. In fact, it is not obvious that F+ is any closer than F to being a sheaf. Nevertheless, this
is true: we can construct the sheafification of F via a transfinite iteration of the construction F 7→ F+. More
precisely, we define a transfinite sequence of presheaves

F(0)→ F(1)→ . . .

as follows:

(i) Let F(0) = F.

(ii) For every ordinary α, let F(α+ 1) = F(α)+.

(iii) For every limit ordinal λ, let F(λ) = lim−→α
F(α), where α ranges over ordinals less than λ.

One can show that the above construction converges, in the sense that F(α) is a sheaf for α � 0 (and
therefore F(α) ' F(β) for β ≥ α). Moreover, F(α) is universal among sheaves of spaces which admits a map
from F.

Alternatively, one use the construction F 7→ F† to construct a sheaf of spaces from F in a single step.
The universal property asserted above guarantees the existence of a morphism of sheaves θ : F(α) → F†.
However, the morphism θ is generally not an equivalence. Instead, θ realizes F† as the hypercompletion
of F(α) in the ∞-topos Shv(X). We will not prove this statement directly, but will instead establish a
reformulation (Corollary 6.5.3.14) which does not make reference to the sheafification constructions outlined
above.

Before we can introduce the definition of a hypercovering, we need to review some simplicial terminology.

Notation 6.5.3.1. For each n ≥ 0, let ∆≤n denote the full subcategory of ∆ spanned by the set of objects
{[0], . . . , [n]}. If X is a presentable ∞-category, the restriction functor

skn : X∆ → Fun(N(∆≤n)op,X)

has a right adjoint, given by right Kan extension along the inclusion N(∆≤n)op ⊆ N(∆)op. Let coskn : X∆ →
X∆ be the composition of skn with its right adjoint. We will refer to coskn as the n-coskeleton functor.

Definition 6.5.3.2. Let X be an∞-topos. An simplicial object U• ∈ X∆ is a hypercovering of X if, for each
n ≥ 0, the unit map

Un → (coskn−1 U•)n

is an effective epimorphism. We will say that U• is an effective hypercovering of X if the colimit of U• is a
final object of X.
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Remark 6.5.3.3. More informally, a simplicial object U• ∈ X∆ is a hypercovering of X if each of the
associated maps

U0 → 1X

U1 → U0 × U0

U2 → . . .

is an effective epimorphism.

Lemma 6.5.3.4. Let X be an ∞-topos, and let U• be a simplicial object in X. Let L : X → X∧ be a left
adjoint to the inclusion. The following conditions are equivalent:

(1) The simplicial object U• is a hypercovering of X.

(2) The simplicial object L ◦ U• is a hypercovering of X∧.

Proof. Since L is left exact, we can identify L ◦ coskn U• with coskn(L ◦U•). The desired result now follows
from Remark 6.5.2.18.

Lemma 6.5.3.5. Let X be an ∞-topos, and let U be an ∞-connected object of X. Let U• be the constant
simplicial object with value U . Then U• is a hypercovering of X.

Proof. Using Lemma 6.5.3.4, we can reduce to the case where X is hypercomplete. Then U ' 1X, so that
U• is equivalent to the constant functor with value 1X, and is therefore a final object of X∆. For each n ≥ 0,
the coskeleton functor coskn−1 preserves small limits, so coskn−1 U• is also a final object of U•. It follows
that the unit map U• → coskn−1 U• is an equivalence.

Lemma 6.5.3.6. The diagonal map δ : N(∆)op → N(∆×∆)op is cofinal.

Proof. According to Theorem 4.1.3.1, it will suffice to prove that for every object ([m], [n]) ∈ ∆×∆, the
category

C = ∆/[m]×∆ ∆/[n]

has weakly contractible nerve. Let C0 be the full subcategory of C spanned by those objects which correspond
to monomorphisms of partially ordered sets J → [m]× [n]. The inclusion of C0 into C has a left adjoint, so
the inclusion N(C0) ⊆ N(C) is a weak homotopy equivalence. It will therefore suffice to show that N(C0) is
weakly contractible. We now observe that N(C0) can be identified with the first barycentric subdivision of
∆m ×∆n, and is therefore weakly homotopy equivalent to ∆m ×∆n and so weakly contractible.

Notation 6.5.3.7. Let ∆s be the subcategory of ∆ with the same objects, but where the morphisms are
given by injective order preserving maps between nonempty linearly ordered sets. If X is an ∞-category, we
will refer to a diagram N(∆s)op → X as a semisimplicial object of X.

Lemma 6.5.3.8. The inclusion N(∆op
s ) ⊆ N(∆op) is cofinal.

Proof. According to Theorem 4.1.3.1, it will suffice to prove that for every n ≥ 0, the category C =
∆s×∆ ∆/[n] has weakly contractible nerve. To prove this, we let F : C → C be the constant functor
taking value given by the inclusion [0] ⊆ [n], and G : C → C the functor which carries an arbitrary map
[m]→ [n] to the induced map [0]

∐
[m]→ [n]. We have natural transformations of functors

F → G← idC .

Let X be the topological space |N(C)|. The natural transformations above show that the identity map idX
is homotopic to a constant, so that X is contractible as desired.
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Consequently, if U• is a simplicial object in an ∞-category X, and Us• = U•|N(∆op
s ) is the associated

semisimplicial object, then we can identify colimits of U• with colimits of Us• .
We will say that a simplicial object U• in an ∞-category X is n-coskeletal if it is a right Kan extension

of its restriction to N(∆op
≤n). Similarly, we will say that a semisimplicial object of U• of X is n-coskeletal if

it is a right Kan extension of its restriction to N(∆op
s,≤n), where ∆s,≤n = ∆s×∆ ∆≤n.

Lemma 6.5.3.9. Let X be an ∞-category, let U• be a simplicial object of X, and let Us• = U•|N(∆op
s ) the

associated semisimplicial object. Then U• is n-coskeletal if and only if Us• is n-coskeletal.

Proof. It will suffice to show that, for each ∆m ∈∆, the nerve of the inclusion

(∆s)/[m] ×∆s
∆s,≤n ⊆∆/[m]×∆ ∆≤n

is cofinal. Let θ : [m′]→ [m] be an object of ∆/[m]×∆ ∆≤n. We let C denote the category of all factorizations

[m′] θ
′

→ [m′′] θ
′′

→ [m]

for θ such that θ′′ is a monomorphism and m′′ ≤ n. According to Theorem 4.1.3.1, it will suffice to prove
that N(C) is weakly contractible (for every choice of θ). We now simply observe that C has an initial object
(given by the unique a factorization where θ′ is an epimorphism).

Lemma 6.5.3.10 ([14]). Let X be an ∞-topos, and let U• be an n-coskeletal hypercovering of X. Then U•
is effective.

Proof. We will prove this result by induction on n. If n = 0, then U• can be identified with the underlying
groupoid of the Čech nerve of the map θ : U0 → 1X, where 1X is a final object of X. Since U• is a
hypercovering, θ is an effective epimorphism, so the Čech nerve of θ is a colimit diagram and the desired
result follows. Let us therefore assume that n > 0. Let V• = coskn−1 U•, and let f• : U• → V• be the
adjunction map. For each m ≥ 0, the map fm : Um → Vm is a composition of finitely many pullbacks of fn.
Since U• is a hypercovering, fn is an effective epimorphism, so each fm is also an effective epimorphism. We
also observe that fm is an equivalence for m < n.

Let W+ : N(∆+×∆)op → X be a Čech nerve of f• (formed in the ∞-category X∆ of simplicial objects
of X). We observe that W+|N({∅} × ∆)op can be identified with V•. Since V• is an (n − 1)-coskeletal
hypercovering of X, the inductive hypothesis implies that any colimit |V•| is a final object of X. The inclusion
N({∅}×∆)op ⊆ N(∆+×∆)op is cofinal (being a product of N(∆)op with the inclusion of a final object into
N(∆+)op ), so we may identify colimits of W+ with colimits of V•. It follows that any colimit of W+ is a
final object of X. We next observe that each of the augmented simplicial objects W+|N(∆+×{[m]})op is a
Čech nerve of fm, and therefore a colimit diagram (since fm is an effective epimorphism). Applying Lemma
4.3.3.9, we conclude that W+ is a left Kan extension of the bisimplicial object W = W+|N(∆×∆)op.
According to Lemma 4.3.2.7, we can identify colimits of W+ with colimits of W , so any colimit of W is a
final object of X.

Let D• : N(∆op) → X be the simplicial object of X obtained by composing W with the diagonal map
δ : N(∆op)→ N(∆×∆)op. According to Lemma 6.5.3.6, δ is cofinal. We may therefore identify colimits of
W with colimits of D•, so that any colimit |D•| of D• is a final object of X.

Let Us• = U•|N(∆op
s ), and let Ds

• = D•|N(∆op
s ). We will prove that Us• is a retract of Ds

• in the ∞-
category of semisimplicial objects of X. According to Lemma 6.5.3.8, we can identify colimits of Ds

• with
colimits of D•. It will follow that any colimit of Us• is a retract of a final object of X, and therefore itself
final. Applying Lemma 6.5.3.8 again, we will conclude that any colimit of U• is a final object of X, and the
proof will be complete.

We observe that Ds
• is the result of composing W with the (opposite of the nerve of the) diagonal functor

δs : ∆s →∆×∆ .
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Similarly, the semisimplicial object Us• is obtained from W via the composition

ε : ∆s ⊆∆ ' {[0]} ×∆ ⊆∆×∆ .

There is a obvious natural transformation of functors δs → ε, which yields a map of semisimplicial objects
θ : Us• → Ds

•. To complete the proof, it will suffice to show that there exists a map

θ′ : Ds
• → Us•

such that θ′ ◦ θ is homotopic to the identity on Us• .
According to Lemma 6.5.3.9, Us• is n-coskeletal as a semisimplicial object of X. Let Ds

≤n and Us≤n denote
restrictions of Ds

• and Us• to N(∆op
s,≤n), and θ≤n : Us≤n → Ds

≤n the morphism induced by θ. We have
canonical homotopy equivalences

MapFun(N(∆op
s ),X)(D

s
•, U

s
• ) ' MapFun(N(∆op

s,≤n
),X)(D

s
≤n, U

s
≤n)

MapFun(N(∆op
s ),X)(U

s
• , U

s
• ) ' MapFun(N(∆op

s,≤n
),X)(U

s
≤n, U

s
≤n).

It will therefore suffice to prove that there exists a map

θ′≤n : Ds
≤n → Us≤n

such that θ′≤n ◦ θ≤n is homotopic to the identity on Us≤n.
Consider the functors

δ
s

: ∆s,≤n →∆+×∆

ε : ∆s,≤n →∆+×∆

defined as follows:

δ
s
([m]) =

{
(∅, [m]) if m < n

([n], [n]) if m = n

ε([m]) =

{
(∅, [m]) if m < n

([0], [n]) if m = n.

We have a commutative diagram of natural transformations

δ
s //

��

δs

��
ε // ε

which gives rise to a diagram

D
s

≤n Ds
≤noo

U
s

≤n

ψ≤n

OO

Us≤n

θ≤n

OO

oo

in the ∞-category Fun(N(∆op
s,≤n),X). The vertical arrows are equivalences. Consequently, it will suffice to

produce a (homotopy) left inverse to ψ≤n.
For m ≥ 0, let V s≤m = V•|∆s,≤m. We can identify D

s

≤n and U
s

≤n with objects X,Y ∈ X/V s
≤n−1

, and ψ≤n
with a morphism f : X → Y . To complete the proof, it will suffice to produce a left inverse to f in the
∞-category X/V s

≤n−1
. We observe that, since V• is (n− 1)-coskeletal, we have a diagram of trivial fibrations

X/Vn
← X/V s

≤n
→ X/V s

≤n−1
.
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Using this diagram (and the construction of W ), we conclude that Y can be identified with a product of
(n+ 1) copies of X in X/V s

≤n−1
, and that f can be identified with the identity map. The existence of a left

homotopy inverse to f is now obvious (choose any of the (n+ 1)-projections from Y onto X).

Lemma 6.5.3.11. Let X be an ∞-topos, and let f• : U• → V• be a natural transformation between simplicial
objects of X. Suppose that, for each k ≤ n, the map fk : Uk → Vk is an equivalence. Then the induced map
|f•| : |U•| → |V•| of colimits is (n− 1)-connected.

Proof. Choose a left exact localization functor L : P(C) → X. Without loss of generality, we may suppose
that f• = L ◦ f•, where f• : U• → V • is a transformation between simplicial objects of P(C), where fk is
an equivalence for k ≤ n. Since L preserves colimits and (n− 1)-connectivity (Proposition 6.5.1.16), it will
suffice to prove that |f•| is (n − 1)-connected. Using Propositions 6.5.1.12 and 5.5.5.23, we see that |f•| is
(n− 1)-connected if and only if, for each object C ∈ C, the induced morphism in S is (n− 1)-connected. In
other words, we may assume without loss of generality that X = S.

According to Proposition A.3.6.1, we may assume that f• is obtained by taking the simplicial nerve of a
map f ′• : U ′• → V ′• between simplicial objects in the ordinary category Kan. Without loss of generality, we
may suppose that U ′• and V ′• are strongly cofibrant (as diagrams in the model category Set∆). According
to Theorem 4.2.4.1, it will suffice to prove that the induced map from the (homotopy) colimit of U ′• to the
(homotopy) colimit of V ′• has (n − 1)-connected homotopy fibers, which follows from classical homotopy
theory.

Lemma 6.5.3.12. Let X be an ∞-topos, let U• be a hypercovering of X. Then the colimit |U•| is ∞-
connected.

Proof. We will prove that θ is n-connected for every n ≥ 0. Let V• = coskn+1 U•, and let u : U• → V• be
the adjunction map. Lemma 6.5.3.11 asserts that the induced map |U•| → |V•| is n-connected, and Lemma
6.5.3.10 asserts that |V•| is a final object of X. It follows that |U•| ∈ X is n-connected, as desired.

The preceding results lead to an easy characterization of the class of hypercomplete ∞-topoi:

Theorem 6.5.3.13. Let X be an ∞-topos. The following conditions are equivalent:

(1) For every X ∈ X, every hypercovering U• of X/X is effective.

(2) The ∞-topos X is hypercomplete.

Proof. Suppose that (1) is satisfied. Let f : U → X be an ∞-connected morphism in X, and let f• be the
constant simplicial object of X/X with value f . According to Lemma 6.5.3.5, f is a hypercovering of X/X .
Invoking (1), we conclude that f ' |f•| is a final object of X/X ; in other words, f is an equivalence. This
proves that (1)⇒ (2).

Conversely, suppose that X is hypercomplete. Let X ∈ X be an object and U• a hypercovering of X/X .
Then Lemma 6.5.3.12 implies that |U•| is an ∞-connected object of X/X . Since X is hypercomplete, we
conclude that |U•| is a final object of X/X , so that U• is effective.

Corollary 6.5.3.14 (Dugger-Hollander-Isaksen [14], Toën-Vezzosi [51]). Let X be an ∞-topos. For each
X ∈ X and each hypercovering U• of X/X , let |U•| be the associated morphism of X ( which has target X ).
Let S denote the collection of all such morphisms |U•|. Then X∧ = S−1 X. In other words, an object of X is
hypercomplete if and only if it is S-local.

Remark 6.5.3.15. One can generalize Corollary 6.5.3.14 as follows: let L : X → Y be an arbitrary left
exact localization of ∞-topoi, and let S be the collection of all morphisms of the form |U•|, where U• is a
simplicial object of X/X such that L◦U• is an effective hypercovering of Y/LX . Then L induces an equivalence
S−1 X→ Y.

It follows that every∞-topos can be obtained by starting with an∞-category of presheaves P(C), selecting
a collection of augmented simplicial objects U+

• , and inverting the corresponding maps |U•| → U−1. The
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specification of the desired class of augmented simplicial objects can be viewed as a kind of “generalized
topology” on C, in which one specifies not only the covering sieves but also the collection of hypercoverings
which are to become effective after localization. It seems plausible that this notion of topology can be
described more directly in terms of the ∞-category C, but we will not pursue the matter further.

6.5.4 Descent versus Hyperdescent

Let X be a topological space, and let U(X) denote the category of open subsets of X. The category U(X)
is equipped with a Grothendieck topology in which the covering sieves on U are those sieves {Uα ⊆ U}
such that U =

⋃
α Uα. We may therefore consider the ∞-topos Shv(N(U(X))), which we will call the ∞-

topos of sheaves on X and denote by Shv(X) In §6.5.2 we discussed an alternative theory of sheaves on X,
which can be obtained either through Jardine’s model local model structure on the category of simplicial
presheaves or by passing to the hypercompletion Shv(X)∧ of Shv(X). According to Theorem 6.5.3.13,
Shv(X)∧ is distinguished from Shv(X) in that objects of Shv(X)∧ are required to satisfy a descent condition
for arbitrary hypercoverings of X, while objects of Shv(X) are required to satisfy a descent condition only
for ordinary coverings.

The ∞-topos Shv(X)∧ seems to have received more attention than Shv(X) the literature (though there
is some discussion of X in [14] and [51]). We would like to make the case that for most purposes, Shv(X)
has better properties. A large part of §7 will be devoted to justifying some of the claims made below.

(1) In §6.4.5, we saw that the construction
X 7→ Shv(X)

could be interpreted as a right adjoint to the functor which associates to every∞-topos Y the underlying
locale of subobjects of the final object of Y. In other words, Shv(X) occupies a universal position among
∞-topoi which are related to the original space X.

(2) Suppose given a Cartesian square

X ′ ψ′ //

π′

��

X

π

��
S′

ψ // S

in the category of locally compact topological spaces. In classical sheaf theory, there is a base change
transformation

ψ∗π∗ → π′∗ψ
′∗

of functors between the derived categories of (left-bounded) complexes of (abelian) sheaves on X and
on S′. The proper base change theorem asserts that this transformation is an equivalence whenever
the map π is proper.

The functors ψ∗, ψ′∗, π∗, and π′∗ can be defined on the∞-topoi Shv(X),Shv(X ′),Shv(S), and Shv(S′),
and on their hypercompletions. Moreover, one has a base change map

ψ∗π∗ → π′∗ψ′
∗

in this nonabelian situation as well.

It is natural to ask if the base change transformation is an equivalence when π is proper. It turns out
that this is false if we work with hypercomplete ∞-topoi. Let us sketch a counterexample:

Counterexample 6.5.4.1. Let Q denote the Hilbert cube [0, 1]× [0, 1]× . . .. For each i, we let Qi ' Q
denote “all but the first i” factors of Q, so that Q = [0, 1]i ×Qi.
We construct a sheaf of spaces F on X = Q× [0, 1] as follows. Begin with the empty stack. Adjoin to
it two sections, defined over the open sets [0, 1) × Q1 × [0, 1) and (0, 1] × Q1 × [0, 1). These sections
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both restrict to give sections of F over the open set (0, 1)×Q1 × [0, 1). We next adjoin paths between
these sections, defined over the smaller open sets (0, 1)× [0, 1)×Q2 × [0, 1

2 ) and (0, 1)× (0, 1]×Q2 ×
[0, 1

2 ). These paths are both defined on the smaller open set (0, 1) × (0, 1) × Q2 × [0, 1
2 ), so we next

adjoin two homotopies between these paths over the open sets (0, 1)× (0, 1)× [0, 1)×Q3 × [0, 1
3 ) and

(0, 1)× (0, 1)× (0, 1]×Q3 × [0, 1
3 ). Continuing in this way, we obtain a sheaf F. On the closed subset

Q×{0} ⊂ X, the sheaf F is ∞-connected by construction, and therefore its hypercompletion admits a
global section. However, the hypercompletion of F does not admit a global section in any neighborhood
of Q × {0}, since such a neighborhood must contain Q × [0, 1

n ) for n � 0 and the higher homotopies
required for the construction of a section are eventually not globally defined.

However, in the case where π is a proper map, the base-change map

ψ∗π∗ → π′∗ψ
′∗

is an equivalence of functors from Shv(X) to Shv(S′). One may regard this fact as a nonabelian
generalization of the classical proper-base change theorem. We refer the reader to §7.3 for a precise
statement and proof.

Remark 6.5.4.2. A similar issue arises in classical sheaf theory if one chooses to work with unbounded
complexes. In [46], Spaltenstein defines a derived category of unbounded complexes of sheaves on X,
where X is a topological space. His definition forces all quasi-isomorphisms to become invertible,
which is analogous to procedure of obtaining X∧ from X by inverting the ∞-connected morphisms.
Spaltenstein’s work shows that one can extend the definitions of all of the basic objects and functors.
However, it turns out that the theorems do not all extend: in particular, one does not have the proper
base change theorem in Spaltenstein’s setting (Counterexample 6.5.4.1 can be adapted to the setting of
complexes of abelian sheaves). The problem may be rectified by imposing weaker descent conditions,
which do not invert all quasi-isomorphisms; we will give a more detailed discussion in [34].

(3) The ∞-topos Shv(X) often better finiteness properties than Shv(X)∧. Recall that a topological space
X is coherent if the collection of compact open subsets of X is stable under finite intersections, and
forms a basis for the topology of X.

Proposition 6.5.4.3. Let X be a coherent topological space. Then the∞-category Shv(X) is compactly
generated: that is, Shv(X) is generated under filtered colimits by its compact objects.

Proof. Let Uc(X) be the partially ordered set of compact open subsets of X, let Pc(X) = P(N(Uc(X))),
and let Shvc(X) be the full subcategory of Pc(X) spanned by those presheaves F with the following
properties:

(1) The object F(∅) ∈ C is final.

(2) For every pair of compact open sets U, V ⊆ X, the associated diagram

F(U ∩ V ) //

��

F(U)

��
F(V ) // F(U ∪ V )

is a pullback.

In §7.3.5, we will prove that the restriction functor Shv(X)→ Shvc(X) is an equivalence of∞-categories
(Theorem 7.3.5.2). It will therefore suffice to prove that Shvc(X) is compactly generated.

Using Lemmas 5.5.4.22, 5.5.4.20, and 5.5.4.21, we conclude that Shvc(X) is an accessible localization
of Pc(X). Let X be a compact object of Pc(X). We observe that X and LX co-represent the same
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functor on Shvc(X). Proposition 5.3.3.3 implies that the subcategory Shvc(X) ⊆ Pc(X) is stable under
filtered colimits in Pc(X). It follows that LX is a compact object of Shv0(X). Since Pc(X) is generated
under filtered colimits by its compact objects (Proposition 5.3.5.12), we conclude that Shvc(X) has
the same property.

Remark 6.5.4.4. In the situation of Proposition 6.5.4.3, we can give an explicit description of the class
of compact objects of Shv(X). Namely, they are precisely those sheaves F whose stalks are compact
objects of S, and which are locally constant along a suitable stratification of X. In other words, we
may interpret Proposition 6.5.4.3 as asserting that there is a good theory of constructible sheaves on
X.

It is not possible to replace to Shv(X) by Shv(X)∧ in the statement of Proposition 6.5.4.3.

Counterexample 6.5.4.5. Let S = {x, y, z} be a topological space consisting of three points, with
topology generated by the open subsets S+ = {x, y} ⊂ S and S− = {x, z} ⊂ S. Let X = S × S × . . .
be a product of infinitely many copies of S. Then X is a coherent topological space. We will show
that the global sections functor Γ : Shv(X)∧ → S does not commute with filtered colimits, so that the
final object of Shv(X)∧ is not compact. A more elaborate version of the same argument shows that
Shv(X)∧ contains no compact objects other than its initial object.

To show that Γ does not commute with filtered colimits, we use a variant on the construction of
Counterexample 6.5.4.1. We define a sequence of sheaves

F0 → F1 → . . .

as follows. Let F0 be generated by sections

η0
+ ∈ F(S+ × S × . . .)

η0
− ∈ F(S− × S × . . .).

Let F1 be the sheaf obtained from F0 by adjoining paths

η1
+ : ∆1 → F({x} × S+ × S × . . .)

η1
− : ∆1 → F({x} × S− × S × . . .)

from η0
+ to η0

−. Similarly, let F2 be obtained from F1 by adjoining homotopies

η2
+ : (∆1)2 → F({x} × {x} × S+ × S × . . .)

η2
− : (∆1)2 → F({x} × {x} × S− × S × . . .),

from η1
+ to η1

−. Continuing this procedure, we obtain a sequence of sheaves

F0 → F1 → F2 → . . .

whose colimit F∞ ∈ Shv(X)∧ admits a section (since we allow descent with respect to hypercoverings).
However, none of the individual sheaves Fn admits a global section.

Remark 6.5.4.6. The analogue of Proposition 6.5.4.3 fails, in general, if we replace the coherent
topological spaceX by a coherent topos. For example, we cannot takeX to be the topos of étale sheaves
on an algebraic variety. However, it turns out that the analogue Proposition 6.5.4.3 is true for the
topos of Nisnevich sheaves on an algebraic variety; we refer the reader to [34] for details.
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Remark 6.5.4.7. A point of an ∞-topos X is a geometric morphism p∗ : S → X, where S denotes
the ∞-category of spaces (which is a final object of TopR, in virtue of Proposition 6.3.3.1). We say
that X has enough points if, for every morphism f : X → Y in X having the property that p∗(f) is an
equivalence for every point p of X, f is itself an equivalence in X. If f is∞-connected, then every stalk
p∗(f) is ∞-connected, hence an equivalence by Whitehead’s theorem. Consequently, if X has enough
points, then it is hypercomplete.

In classical topos theory, Deligne’s version of the Gödel completeness theorem (see [36]) asserts that
every coherent topos has enough points. Counterexample 6.5.4.5 shows that there exist coherent
topological spaces with Shv(X)∧ 6= Shv(X), so that Shv(X) does not necessarily have enough points.
Consequently, Deligne’s theorem does not hold in the ∞-categorical context.

(4) Let k be a field, and let C denote the category of chain complexes of k-vector spaces. Via the Dold-Kan
correspondence we may regard C as a simplicial category. We let Mod(k) = N(C) denote the simplicial
nerve. We will refer to Mod(k) as the ∞-category of k-modules; it is a presentable ∞-category which
we will discuss at greater length in [34].

Let X be a compact topological space, and choose a functorial injective resolution

F → I0(F)→ I1(F)→ . . .

on the category of sheaves F of k-vector spaces on X. For every open subset U on X, we let kU denote
the constant sheaf on U with value k, extended by zero to X. Let HBM (U) = Γ(X, I•(kU ))∨, the dual
of the complex of global sections of the injective resolution I•(kU ). Then HBM (U) is a complex of
k-vector spaces, whose homologies are precisely the Borel-Moore homology of U with coefficients in k
(in other words, they are the dual spaces of the compactly supported cohomology groups of U). The
assignment

U 7→ HBM (U)

determines a presheaf on X with values in the ∞-category Mod(k).

In view of the existence of excision exact sequences for Borel-Moore homology, it is natural to suppose
that HBM (U) is actually a sheaf on X with values in Mod(k). This is true provided that the notion of
“sheaf” is suitably interpreted: namely, HBM extends (in an essentially unique fashion) to a colimit-
preserving functor

φ : Shv(X)→ Mod(k)op.

(In other words, the functor U 7→ HBM (U) determines a Mod(k)-valued sheaf on X in the sense of
Definition 7.3.3.1.) However, the sheaf HBM is not necessarily hypercomplete, in the sense that φ does
not necessarily factor through Shv(X)∧.

Counterexample 6.5.4.8. There exists a compact Hausdorff space X and a hypercovering U• of X
such that the natural map HBM (X)→ lim←−HBM (U•) is not an equivalence. Let X be the Hilbert cube
Q = [0, 1]× [0, 1]× . . . (more generally, we could take X to be any nonempty Hilbert cube manifold).
It is proven in [10] that every point of X has arbitrarily small neighborhoods which are homeomorphic
to Q × [0, 1). Consequently, there exists a hypercovering U• of X, where each Un is a disjoint union
of open subsets of X homeomorphic to Q × [0, 1). The Borel-Moore homology of every Un vanishes;
consequently, lim←−HBM (U•) is zero. However, the (degree zero) Borel-Moore homology of X itself does
not vanish, since X is nonempty and compact.

Borel-Moore homology is a very useful tool in the study of a locally compact space X, and its descent
properties (in other words, the existence of various Mayer-Vietoris sequences) is very naturally encoded
in the statement that HBM is a k-module in the ∞-topos Shv(X) (in other words, a sheaf on X with
values in Mod(k)); however, this k-module generally does not lie in Shv(X)∧. We see from this example
that non-hypercomplete sheaves (with values in Mod(k), in this case) on X often arise naturally in the
study of infinite-dimensional spaces.
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(5) Let X be a topological space, and f : Shv(X) → Shv(∗) ' S the geometric morphism induced by
the projection X → ∗. Let K be a Kan complex, regarded as an object of S. Then π0f∗f

∗K is a
natural definition of the sheaf cohomology of X with coefficients in K. If X is paracompact, then the
cohomology set defined above is naturally isomorphic to the set [X, |K|] of homotopy classes of maps
from X into the geometric realization |K|; we will give a proof of this statement in §7.1. The analogous
statement fails if we replace Shv(X) by Shv(X)∧.

(6) Let X be a topological space. Combining Remark 6.5.2.2 with Proposition 6.5.2.14, we deduce that
Shv(X)∧ has enough points, and that Shv(X)∧ = Shv(X) if and only if Shv(X) has enough points.
The possible failure of Whitehead’s theorem in Shv(X) may be viewed either as a bug or a feature.
The existence of enough points for Shv(X) is extremely convenient; it allows us to reduce many
statements about the ∞-topos Shv(X) to statements about the ∞-topos S of spaces, where we can
apply classical homotopy theory. On the other hand, if Shv(X) does not have enough points, then
there is the possibility that it detects certain global phenomena which cannot be properly understood
by restricting to points. Let us consider an example from geometric topology. A map f : X → Y of
compact metric spaces is called cell-like if each fiber Xy = X ×Y {y} has trivial shape (see [12]). This
notion has good formal properties provided that we restrict our attention to metric spaces which are
absolute neighborhood retracts. In the general case, the theory of cell-like maps can be badly behaved:
for example, a composition of cell-like maps need not be cell-like.

The language of∞-topoi provides a convenient formalism for discussing the problem. In §7.3.6, we will
introduce the notion of a cell-like morphism p∗ : X→ Y between ∞-topoi. By definition, p∗ is cell-like
if it is proper and if the unit map u : F → p∗p

∗ F is an equivalence for each F ∈ Y. A cell-like map
p : X → Y of compact metric spaces need not give rise to a cell-like morphism p∗ : Shv(X)→ Shv(Y ).
The hypothesis that each fiber Xy has trivial shape ensures that the unit u : F → p∗p

∗ F is an
equivalence after passing to stalks at each point y ∈ Y . This implies only that u is ∞-connected, and
in general u need not be an equivalence.

Remark 6.5.4.9. It is tempting to try to evade the problem described above by working instead
with the hypercomplete ∞-topoi Shv(X)∧ and Shv(Y )∧. In this case, we can test whether or not
u : F → p∗p

∗ F is an equivalence by passing to stalks. However, since the proper base change theorem
does not hold in the hypercomplete context, the stalk (p∗p∗ F)y is not generally equivalent to the global
sections of p∗ F |Xy. Thus, we still encounter difficulties if we want to deduce global consequences from
information about the individual fibers Xy.

(7) The counterexamples described in this section have one feature in common: the underlying space X is
infinite-dimensional. In fact, this is necessary: if the space X is finite-dimensional (in a suitable sense),
then the ∞-topos Shv(X) is hypercomplete (Corollary 7.2.1.19). This finite-dimensionality condition
on X is satisfied in many of the situations to which the theory of simplicial presheaves is commonly
applied, such as the Nisnevich topology on a scheme of finite Krull dimension.
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Chapter 7

Higher Topos Theory in Topology

In this chapter, we will sketch three applications of the theory of ∞-topoi to the study classical topology.
We begin in §7.1, by showing that if X is a paracompact topological space, then the ∞-topos Shv(X) of
sheaves on X can be interpreted as a homotopy theory of topological spaces Y equipped with a map to X.
We will deduce, as an application, that if p∗ : Shv(X)→ Shv(∗) is the geometric morphism induced by the
projection X → ∗, then the composition p∗p∗ is equivalent to the functor

K 7→ KX

from (compactly generated) topological spaces to itself; this solves the problem described in the introduction
to this book.

Our second application is to the dimension theory of topological spaces. There are many different
notions of dimension for a topological space X, including the notion of covering dimension (when X is
paracompact), Krull dimension (when X is Noetherian), and cohomological dimension. We will define the
homotopy dimension of an ∞-topos X, which specializes to the covering dimension when X = Shv(X) for a
paracompact space X, and is closely related to both cohomological dimension and Krull dimension. We will
show that any ∞-topos which is (locally) finite-dimensional is hypercomplete, thereby justifying assertion
(7) of §6.5.4. We will conclude by proving a bound on the homotopy dimension of Shv(X) where X is
a Heyting space (see §7.2.4 for a definition); this may be regarded as a generalization of Grothendieck’s
vanishing theorem, which applies to non-abelian cohomology and to (certain) non-Noetherian spaces X.

Our third application is a generalization of the proper base change theorem. Suppose given a Cartesian
diagram

X ′ p′ //

q′

��

X

q

��
Y ′

p // Y

of locally compact topological spaces. There is a natural transformation

η : p∗q∗ → q′∗p
′∗

of functors from the derived category of abelian sheaves on X to the derived category of abelian sheaves on
Y ′. The proper base change theorem asserts that η is an isomorphism whenever q is a proper map. In §7.3,
we will generalize this statement to allow nonabelian coefficient systems. To give the proof, we will develop
a theory of proper morphisms between ∞-topoi, which is of some interest in itself.
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7.1 Paracompact Spaces

As we saw in §6.5.4, we can associate to every topological space X an ∞-topos Shv(X) of sheaves (of
spaces) on X. Moreover, given a continuous map p : X → Y of topological spaces, p−1 induces a map from
the category of open subsets of Y to the category of open subsets of X. Composition with p−1 induces a
geometric morphism p∗ : Shv(X)→ Shv(Y ).

Fix now a topological space X and let p : X → ∗ denote the projection from X to a point. Let K be a
Kan complex, which we may identify with an object of S ' Shv(∗). Then p∗K ∈ Shv(X) may be regarded
as the constant sheaf on X having value K, and p∗p

∗K ∈ S as the space of global sections of p∗K. Let
|K| denote the geometric realization of K (a topological space), and let [X, |K|] denote the set of homotopy
classes of maps from X into |K|. The main goal of this section is to prove the following:

Theorem 7.1.0.1. If X is paracompact, then there is a canonical bijection

φ : [X, |K|]→ π0(p∗p∗K).

Remark 7.1.0.2. In fact, the map φ exists without the assumption that X is paracompact: the construc-
tion in general can be formally reduced to the paracompact case, since the universal example X = |K| is
paracompact. However, in the case where X is not paracompact, the map φ is not necessarily bijective.

Our first step in proving Theorem 7.1.0.1 is to realize the space of maps from X into |K| as a mapping
space in an appropriate simplicial category of spaces over X. In §7.1.2, we define this category and endow
it with a (simplicial) model structure. We may therefore extract an underlying ∞-category N(Top◦/X).

Our next goal is to construct an equivalence between N(Top◦/X) and the ∞-topos Shv(X) of sheaves of
spaces on X. To prove this, we will attempt to realize N(Top◦/X) as a localization of a certain ∞-category
of presheaves. We will give an explicit description of the relevant localization in §7.1.3, and show that it
is equivalent to N(Top◦/X) in §7.1.4. In §7.1.5, we will deduce Theorem 7.1.0.1 as a corollary of this more
general comparison result. We conclude with §7.1.6, in which we apply our results to obtain a reformulation
of classical shape theory in the language of ∞-topoi.

7.1.1 Some Point-Set Topology

Let X be a paracompact topological space. In order to prove Theorem 7.1.0.1, we will need to understand
the homotopy theory of presheaves on X. We then encounter the following technical obstacle: an open
subset of a paracompact space need not be paracompact. Because we wish to deal only with paracompact
spaces, it will be convenient to restrict our attention to presheaves which are defined only with respect to
a particular basis B for X consisting of paracompact open sets. The existence of a well-behaved basis is
guaranteed by the following result:

Lemma 7.1.1.1. Let X be a paracompact topological space. There exists a collection B of open subsets of
X with the following properties:

(1) The elements of B form a basis for the topology of X.

(2) Each element of B is paracompact.

(3) The collection B is stable under finite intersections (in particular, X ∈ B).

(4) The empty set ∅ belongs to B.

Proof. If the topological space X is metrizable, then we may take B to consist of the collection of all open
subsets of X. In general, this does not work because the property of paracompactness is not inherited by
open subsets. A more general solution is to take U to consist of all open Fσ subsets of X, together with X
itself. Recall that a subset of X is called an Fσ if it is a countable union of closed subsets of X. It is then
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clear that B is stable under finite intersections. The paracompactness of each element of B follows, because
each is a countable union of paracompact spaces (see [40]). To see that B forms a basis for X, we argue
as follows. Given any x ∈ V ⊆ X, we may construct a sequence of closed subsets Ki ⊆ X with K0 = {x}
and such that Ki+1 ⊆ V contains some neighborhood of Ki (by normality). Then U =

⋃
Ki is an open Fσ

containing x and contained in V .

Remark 7.1.1.2. Condition (4) follows from (2) and (3), provided that X has more than one point.

In the sequel, we will frequently suppose some collection of open sets B has been chosen so as to have
the above properties. Then B may be viewed as a category with finite limits, and is equipped with a natural
Grothendieck topology. To simplify the notation, we will let Shv(B) denote the ∞-topos Shv(N(B)). Note
that because N(B) is the nerve of a partially ordered set, the ∞-topos Shv(B) is 0-localic. Moreover, the
corresponding locale Sub(1) of subobjects of the final object 1 ∈ Shv(B) is isomorphic to the lattice of open
subsets of X. It follows that the restriction map Shv(X)→ Shv(B) is an equivalence of ∞-topoi.

7.1.2 Spaces over X

Let X be a topological space with a specified basis B, fixed throughout this section. We wish to study the
homotopy theory of spaces over X; that is, spaces Y equipped with a map p : Y → X. We should emphasize
that we do not wish to assume that the map p is a fibration, or that p is equivalent to a fibration in any
reasonable sense: we are imagining that p encodes a sheaf of spaces on X, and we do not wish to impose
any condition of local triviality on this sheaf.

Let Top denote the category of topological spaces, and Top/X the category of topological spaces mapping
to X. For each p : Y → X and every open subset U ⊆ X, we define a simplicial set SingX(Y, U) by the
formula

SingX(Y, U)n = HomX(U × |∆n|, Y ).

Face and degeneracy maps are defined in the obvious way. We note the simplicial set SingX(Y, U) is always
a Kan complex. We will simply write SingX(Y ) to denote the simplicial presheaf on X given by

U 7→ SingX(Y,U).

Proposition 7.1.2.1. There exists a model structure on the category Top/X , uniquely determined by the
following properties:

(W ) A morphism
Y //

p

  @
@@

@@
@@

Z

q
~~~~

~~
~~

~

X

is a weak equivalence if and only if, for every U ⊆ X belonging to B, the induced map SingX(Y, U)• →
SingX(Y, U)• is a homotopy equivalence of Kan complexes.

(F ) A morphism
Y //

p

  @
@@

@@
@@

Z

q
~~~~

~~
~~

~

X

is a fibration if and only if, for every U ⊆ X belonging to B, the induced map SingX(Y, U)• →
SingX(Y, U)• is a Kan fibration.
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Proof. The proof uses the theory of cofibrantly generated model categories; we give a sketch and refer the
reader to [26] for more details. Say that a morphism Y → Z in Top/X is a cofibration if it has the left lifting
property with respect to every trivial fibration in Top/X .

We begin by observing that a map Y → Z in Top/X is a fibration if and only if it has the right lifting
property with respect to every inclusion U × Λni ⊆ U ×∆n, where 0 ≤ i ≤ n and U is in B. Let I denote
the saturated class of morphisms in Top/X generated by these inclusions. Using the small object argument,
one can show that every morphism Y → Z in Top/X admits a factorization

Y
f→ Y ′

g→ Z

where f belongs to I and g is a fibration. (Although the objects in Top/X are not generally small, one can
still apply the small object argument since they are small relative to the class I of morphisms: see [26]).

Similarly, a map Y → Z is a trivial fibration if and only if it has the right lifting property with respect to
every inclusion U × ∂∆n ⊆ U ×∆n, where U ∈ B. Let J denote the saturated class of morphisms generated
by these inclusions: then every morphism Y → Z admits a factorization

Y
f→ Y ′

g→ Z

where f belongs to J and g is a trivial fibration.
The only nontrivial point to verify is that every morphism which belongs to I is a trivial cofibration; once

this is established, the axioms for a model category follow formally. Since it is clear that I is contained in J,
and that J consists of cofibrations, it suffices to show that every morphism in I is a weak equivalence. To prove
this, let us consider the class K of all closed immersions k : Y → Z in Top/X such that there exist functions
λ : Z → [0,∞) and h : Z × [0,∞) → Z such that k(Y ) = λ−1{0}, h(z, 0) = z, and h(z, λ(z)) ∈ k(Y ). Now
we make the following observations:

(1) Every inclusion U × Λni ⊆ U ×∆n belongs to K.

(2) The class K is saturated; consequently, I ⊆ K.

(3) Every morphism k : Y → Z which belongs to K is a homotopy equivalence in Top/X , and is therefore
a weak equivalence.

The category Top/X is naturally tensored over simplicial sets, if we define Y ⊗ ∆n = Y × |∆n| for
Y ∈ Top/X . This induces a simplicial structure on Top/X , which is obviously compatible with the model
structure of Proposition 7.1.2.1.

We note that SingX is a (simplicial) functor from Top/X to the category of simplicial presheaves on B.
We regard SetBop

∆ as a simplicial model category, via the projective model structure described in §A.3.3. By
construction, SingX preserves fibrations and trivial fibrations. Moreover, the functor SingX has a left adjoint

F 7→ |F |X ;

we will refer to this left adjoint as geometric realization (in the case where X is a point, it coincides with the
usual geometric realization functor from Set∆ to the category of topological spaces). The functor |F |X is
determined by the property that |FU |X ' U if FU denotes the presheaf (of sets) represented by U , and the
requirement that geometric realization commutes with colimits and with tensor products by simplicial sets.

We may summarize the situation as follows:

Proposition 7.1.2.2. The adjoint functors (||X ,SingX) determine a ( simplicial ) Quillen adjunction be-
tween Top/X ( with the model structure of Proposition 7.1.2.1 ) and SetBop

∆ ( with the projective model
structure).
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7.1.3 The Sheaf Condition

Let X be a topological space and B a basis for the topology of X which is stable under finite intersections.
Let A denote the category of SetBop

∆ of simplicial presheaves on B; we regard A as a model category with
respect to the projective model structure defined in §A.3.3. According to Proposition 5.1.1.1, the∞-category
N(A◦) associated to A is equivalent to the ∞-category P(B) = P(N(B)) of presheaves on B. In particular,
the homotopy category hP(N(B)) is equivalent to the homotopy category hA ( the category obtained from A
by formally inverting all weak equivalences of simplicial presheaves). The ∞-category Shv(B) is a reflective
subcategory of P(N(B)). Consequently, we may identify the homotopy category h Shv(B) with a reflective
subcategory of hA. We will say that a simplicial presheaf F : Bop → Set∆ is a sheaf if it belongs to this
reflective subcategory. The purpose of this section is to obtain an explicit criterion which will allow us to
test whether or not a given simplicial presheaf F : Bop → Set∆ is a sheaf.

Warning 7.1.3.1. The condition that a simplicial presheaf F : Bop → Set∆ be a sheaf, in the sense defined
above, is generally unrelated to the condition that F be a simplicial object in the category of sheaves of sets
on X (though these two notions do agree in the special case where the simplicial presheaf F takes values in
constant simplicial sets).

Let j : N(B)→ P(B) be the Yoneda embedding. By definition, an object F ∈ P(B) belongs to Shv(B) if
and only if, for every U ∈ B and every monomorphism i : U0 → j(U) which corresponds to a covering sieve
U on U , the induced map

MapP(B)(j(U), F )→ MapP(B)(U
0, F )

is an isomorphism in the homotopy category H. In order to make this condition explicit in terms of simplicial
presheaves, we note that i : U0 → j(U) can be identified with the inclusion χU ⊆ χU of simplicial presheaves,
where

χU (V ) =

{
∗ if V ⊆ U
∅ otherwise.

χU(V ) =

{
∗ if V ∈ U

∅ otherwise.

However, we encounter a technical issue: in order to extract the correct space of maps MapP(B)(U0, F ), we
need to select a strongly cofibrant model for U0 in A. In general, the simplicial presheaf χU defined above is
not strongly cofibrant. To address this problem, we will construct a new simplicial presheaf, equivalent to
χU, which has better mapping properties.

Definition 7.1.3.2. Let U be a linearly ordered set equipped with a map s : U→ B. We define a simplicial
presheaf NU : Bop → Set∆ as follows: for each V ∈ B, let NU(V ) be the nerve of the linearly ordered set
{U ∈ U : V ⊆ s(U)}. NU may be viewed as a subobject of the constant presheaf ∆U taking the value
N(U) = ∆U.

Remark 7.1.3.3. The above notation is slightly abusive, in that NU depends not only on U, but on the
map s and on the linear ordering of U. If the map s is injective (as it will be in most applications), we will
frequently simply identify U with its image in B. In practice, U will usually be a covering sieve on some
object U ∈ B.

Remark 7.1.3.4. The linear ordering of U is unrelated to the partial ordering of B by inclusion. We will
write the former as ≤ and the latter as ⊆.

Example 7.1.3.5. Let U = ∅. Then NU = ∅.

Example 7.1.3.6. Let U = {U} for some U ∈ B, and let s : U→ B be the inclusion. Then NU ' χU .
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Proposition 7.1.3.7. Let
U

p

��

s

  @
@@

@@
@@

@

B

U′

s′
??~~~~~~~

be a commutative diagram, where p is an order-preserving injection between linearly ordered sets. Then the
induced map NU → NU′ is a strong cofibration of simplicial presheaves.

Proof. Without loss of generality, we may identify U with a linearly ordered subset of U′ via p. Choose a
transfinite sequence of simplicial subsets of N U′

K0 ⊆ K1 ⊆ . . .

where K0 = N U, Kλ =
⋃
α<λKα if λ is a nonzero limit ordinal, and Kα+1 is obtained from Kα by adjoining

a single nondegenerate simplex (if such a simplex exists). For each ordinal α, let Fα ⊆ NU′ be defined by

Fα(V ) = NU′(V ) ∩Kα ⊆ N(U′).

Then F0 = NU, Fλ = lim−→α<λ
Fα when α is a nonzero limit ordinal, and Fα ' NU′ for α � 0. It therefore

suffices to show that each map Fα → Fα+1 is a strong cofibration. If Kα = Kα+1, this is clear; otherwise, we
may suppose thatKα+1 is obtained fromKα by adjoining a single nondegenerate simplex {U0 < U1 < . . . Un}
of N(U′). Let U = s′(U0) ∩ . . . ∩ s′(Un) ∈ B.

Then there is a coCartesian square

χU ⊗ ∂∆n //

��

χU ⊗∆n

��
Fα // Fα+1,

The desired result now follows, since the upper horizontal arrow is clearly a strong cofibration.

Corollary 7.1.3.8. Let U be a linearly ordered set and s : U → B a map. Then the simplicial presheaf
NU ∈ SetBop

∆ is strongly cofibrant.

Note that NU(V ) is contractible if V ⊆ s(U) for some U ∈ U, and empty otherwise. Consequently, we
deduce:

Corollary 7.1.3.9. Let U ⊆ B be a sieve, equipped with a linear ordering. The unique map NU → χU is a
weak equivalence of simplicial presheaves.

Notation 7.1.3.10. Let U be a linearly ordered set equipped with a map s : U → B. For any simplicial
presheaf F : Bop → Set∆, we let F (U) denote the simplicial set MapA(NU, F ).

Remark 7.1.3.11. Let U ∈ B, U = {U} and s : U → B is the inclusion. Then F (U) = F (U). In general,
we can think of F (U) as a homotopy limit of F (V ) taken over V in the sieve generated by s : U → B. To
give a vertex of F (U), we must give for each U ∈ U a point of F (sU); for every pair of objects U, V ∈ U a
path between the corresponding points in F (sU ∩ sV ), and so forth.

Corollary 7.1.3.12. Let F : Bop → Kan be a ( weakly fibrant ) simplicial presheaf on B. Then F is a
sheaf if and only if, for every U ∈ B and every sieve U that covers U , there exists a linearly ordered set U0

equipped with a map U0 → U, which generates U as a sieve, such that the induced map F (U)→ F (U0) is a
weak homotopy equivalence of simplicial sets.
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Lemma 7.1.3.13. Suppose that U ⊆ X is paracompact, and let U ⊆ B be a covering of U . Choose a linear
ordering of U. Then the natural map π : |NU|X → U is a homotopy equivalence in Top/X . ( In other words,
there exists a section s : U → NU of π, such that s ◦ π is fiberwise homotopic to the identity.)

Proof. Any partition of unity subordinate to the open cover U gives rise to a section of π. To check that
s ◦ π is fiberwise homotopic to the identity, use a “straight line” homotopy.

Proposition 7.1.3.14. Let X be a topological space, B a basis for the topology of X. Assume that B is
stable under finite intersections and that each element of B is paracompact. For every continuous map of
topological spaces p : Y → X, the simplicial presheaf SingX(Y ) of sections of p is sheaf.

Proof. Let F = SingX(Y ). We note that F is a weakly fibrant simplicial presheaf on B. By Corollary
7.1.3.12, it suffices to show that for every U ∈ B, every covering U of U , and every linear ordering on U, the
natural map F (U)→ F (U) is a homotopy equivalence of simplicial sets. In other words, it suffices to show
that composition with the projection π : NU → U induces a homotopy equivalence

Map/X(U, Y )→ Map/X(|NU|X , Y )

of simplicial sets. This follows immediately from Lemma 7.1.3.13.

Remark 7.1.3.15. Under the hypotheses of Proposition 7.1.3.14, the object of Shv(X) corresponding to
the simplicial presheaf SingX(Y ) is not necessarily hypercomplete.

7.1.4 The Main Result

Suppose that X is a paracompact topological space and B is a basis for the topology of X satisfying the
conditions of Lemma 7.1.1.1. Our main goal is to show that the composition of the adjoint functors

F 7→ SingX |F |X

may be identified with a “sheafification” of F , at least in the case where F is a strongly cofibrant simplicial
presheaf on B.

In proving this, we have some flexibility regarding the choice of F : it will suffice to treat the question
after replacing F by a weakly equivalent simplicial presheaf F ′, provided that F ′ is also strongly cofibrant.
Our first step is to make a particularly convenient choice for F ′.

Lemma 7.1.4.1. Let B be a partially ordered set (via ⊆ ) with a least element ∅, and F : Bop → Set∆ be
an arbitrary simplicial presheaf such that F (∅) is weakly contractible.

There exists a ( linearly ordered ) set V and a simplicial presheaf F ′ : Bop → Set∆ with the following
properties:

(1) There exists a monomorphism F ′ → ∆V from F ′ to the (constant) simplicial presheaf ∆V on B taking
the value ∆V .

(2) For every finite subset V0 ⊆ V , there exists U ∈ B such that U ′ ⊆ U if and only if ∆V0 ⊆ F ′(U ′) ⊆ ∆V .

(3) As a simplicial presheaf on B, F ′ is strongly cofibrant.

(4) In the homotopy category of SetBop

∆ , F ′ and F are equivalent to one another.

Proof. Without loss of generality, we may suppose that F is (weakly) fibrant. We now build a “cellular
model” of F . More precisely, we construct the following data:

(A) A transfinite sequence of simplicial sets

Y0 → Y1 → . . . ,

where Yα is defined for all ordinals < α0.
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(B) For each α < α0, a subsheaf Fα of the constant presheaf on B taking the value Yα.

(C) A compatible family of maps Fα → F , so that we may regard {Fα} as a functor from the linearly
ordered set {α : α < α0} to (Set∆)Bop

/F .

(D) For each α < α0, there exists U ∈ B, n ≥ 0, and compatible pushout diagrams

∂∆n

��

� � // ∆n

��
lim−→β<α

Yβ � � // Yα,

χU × ∂∆n

��

� � // χU ×∆n

��
lim−→β<α

Fβ � � // Fα,

where

χU (W ) =

{
∗ if W ⊆ U
∅ otherwise.

(E) The canonical map lim−→β<α0
Fβ → F is a weak equivalence in SetBop

∆ .

The construction of this data is reasonably standard, and left to the reader. Let Y = lim−→β<α0
Yβ . Let Y ′′

be the second barycentric subdivision of Y , so that Y ′′ may be identified with a simplicial complex (that is,
a simplicial subset of ∆V for some linearly ordered set V . For each α, let F ′′α denote the result of applying
the second barycentric subdivision functor to Fα termwise. Let F ′′ = lim−→β<α0

F ′′β . Finally, we define F ′ by
the coCartesian square

F ′′(∅)× χ∅ //

��

∆V × χ∅

��
F ′′ // F ′.

The simplicial presheaf F ′ satisfies (1) by construction. Properties (2) and (3) are reasonably clear (in
fact, (3) is a formal consequence of (2)). Condition (4) holds for the simplicial presheaf F ′′ as a consequence
of (E), and the fact that there is a canonical weak homotopy equivalence K ′′ → K, for any simplicial set K
(see Variant 4.2.3.15). Moreover, the assumption that F (∅) is weakly contractible ensures that (4) remains
valid for the pushout F ′.

Before we can state the next lemma, let us introduce a bit of notation. Let F : Bop → Set∆ be a simplicial
presheaf. Then we let |F | denote the presheaf of topological spaces on B obtained by composing F with
the geometric realization functor; similarly, if G is a presheaf of topological spaces on B, then we let SingG
denote the presheaf of simplicial sets obtained by composing G with the functor Sing. We note that there is
a natural transformation

Sing |F | → SingX |F |X .

Lemma 7.1.4.2. Let X be a topological space, B a basis for the topology of X which satisfies the conditions
of Lemma 7.1.1.1. Let F : Bop → Set∆ be a strongly cofibrant simplicial presheaf, which is a sheaf (that is,
a fibrant model for F satisfies the criterion of Corollary 7.1.3.12). Then the unit map F → SingX |F |X is
an equivalence.
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Proof. We note that the functor F 7→ Sing |F | preserves weak equivalences in F , and the functor F 7→
SingX |F |X preserves weak equivalences between strongly cofibrant presheaves F . Consequently, by Lemma
7.1.4.1, we may suppose without loss of generality that there is a linearly ordered set V and that F is a
subsheaf of the constant simplicial presheaf taking the value ∆V , such that F (∅) = ∆V .

It will be sufficient to prove that
Sing |F | → SingX |F |X

is an equivalence: in other words, we wish to show that (Sing |F |)(U) → (SingX |F |X)(U) is a homotopy
equivalence of Kan complexes, for every U ∈ B. Replacing X by U , we can reduce to the problem of showing
that

p : (Sing |F |)(X)→ (SingX |F |X)(X)

is a homotopy equivalence. It now suffices to show that for every inclusion K ′ ⊆ K of finite simplicial sets
(that is, simplicial sets with only finitely many nondegenerate simplices), a commutative diagram

K ′ × {0}� _

��

// (Sing |F |)(X)

��
K × {0}

g // (SingX |F |X)(X)

can be expanded to a commutative diagram

(K ′ ×∆1)
∐
K′×{1}(K × {1})� _

��

// (Sing |F |)(X)

��
K ×∆1 // (SingX |F |X)(X).

(In fact, it suffices to treat the case where K ′ ⊆ K is the inclusion ∂∆n ⊆ ∆n; however, this will result in
no simplification in the following arguments.)

Now let B = {Uα}α∈A, where A is a linearly ordered set. Since F is assumed to be a sheaf on B, the
equivalent presheaf Sing |F | is also a sheaf. Consequently, for any covering U ⊆ B (and any linear ordering
of U), the natural map (Sing |F |)(X) → (Sing |F |)(U) is an equivalence. Likewise, by Proposition 7.1.3.14,
the map (SingX |F |X)(X)→ (SingX |F |X)(U) is an equivalence. Consequently, it suffices to find a covering
U ⊆ B of X and a diagram

(K ′ ×∆1)
∐
K′×{1}(K × {1})

��

// (Sing |F |)(U)

��
K ×∆1 G // (SingX |F |X)(U)

which extends g.
Since K is finite, the map g : K → (SingX |F |X)(X) may be identified with a continuous, fiber-preserving

map X×|K| → |F |X , which we will also denote by g. By assumption, F is a subsheaf of the constant presheaf
taking the value ∆V ; constantly, we may identify |F |X with a subspace of ∆V

X = X⊗∆V . ( We may identify
∆V
X with the product X×|∆V | as a set, though it generally has a finer topology.) We may represent a point

of ∆V
X by an ordered pair (x, q), where x ∈ X and q : V → [0, 1] has the property that {v ∈ V : q(v) 6= 0} is

finite and
∑
v∈V q(v) = 1. For each v ∈ V , we let ∆V

X,v denote the open subset of ∆V
X consisting of all pairs

(x, g) such that q(v) > 0; note that the sets {∆V
X,v}v∈V form an open cover of cover ∆V

X . Consequently,
the open sets {g−1∆V

X,v}v∈V form an open cover of X × |K|. Let x be a point of X. The compactness of
|K| implies that there is a finite subset V0 ⊆ V , an open neighborhood Ux of X containing x, and an open
covering {Wx,v : v ∈ V0} of |K|, such that g(Ux ×Wx,v) ⊆ ∆V

X,v. Choose a partition of unity subordinate
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to the covering {Wx,v}, thereby determining a map fx : |K| → |∆V0 |. The open sets {Ux} cover X; since X
is paracompact, this covering has a locally finite refinement. Shrinking the Ux if necessary, we may suppose
that this refinement is given by {Ux}x∈X0 , and that each Ux belongs to B. Let U = {Ux}x∈X0 , and choose
a linear ordering of U.

We now define a new map g′ : K → (Sing |F |)(U). To do so, we must give, for every finite U0 = {Ux0 <
. . . < Uxn

} ⊆ U, a map

g′A0
: |∆{x0,...,xn}| × |K| → |F (Ux0 ∩ . . . ∩ Uxn

)| ⊆ |∆V |,

which are required to satisfy some obvious compatibilities. Define g′U0
by the formula

g′U0
(
∑

λixi, z) =
∑

λifxi(z).

It is clear that g′U0
is well-defined as a map from |∆{x0,...,xn}|× |K| to |∆V |. We claim that, in fact, this map

factors through |F (Ux0 ∩ . . .U§\
)|. Let z ∈ |K|, and consider the set V ′ = {v ∈ V : (∃0 ≤ i ≤ n)[fxi

(z)(v) 6=
0]} ⊆ V . Condition (2) of Lemma 7.1.4.1 ensures that there exists U ∈ B such that ∆V ′ ⊆ F (U ′) if and
only if U ′ ⊆ U . We note that, for each y ∈ Ux0 ∩ . . .∩Uxn

, we have g(y, z)(v) 6= 0 for v ∈ V ′; it follows that
y ∈ U . Consequently, we deduce that Uα0 ∩ . . . ∩ Uαn

⊆ U , so that ∆V ′ ⊆ F (Ux0 ∩ . . . ∩ Uxn
). It follows

that g′U0
|{z} × |∆U0 | factors through |F (Ux0 ∩ . . . ∩ Uxn

)|. Since this holds for every z ∈ |K|, it follows
that g′A0

is well-defined; evidently these maps are compatible with one another and give the desired map
g′ : K → (Sing |F |)(U).

We now observe that the composite maps

K
g′→ (Sing |F |)(U)→ (SingX |F |X)(U)

K
g→ (SingX |F |X)(X)→ (SingX |F |X)(U)

are homotopic via a “straight-line” homotopy G : K × ∆1 → (SingX |F |X)(U), which has the desired
properties.

Now, the hard work is done and we are ready to enjoy the fruits of our labors.

Theorem 7.1.4.3. Let X be a paracompact topological space, and B a basis for the topology of X which
satisfies the conditions of Lemma 7.1.1.1. Then, for any strongly cofibrant F : Bop → Set∆, the natural map

F → SingX |F |X

exhibits SingX |F |X as a sheafification of F .

Proof. Let hTop/X be the homotopy category of the model category Top/X (the category obtained by
inverting all of the weak equivalences defined in Proposition 7.1.2.1) and hSetBop

∆ the homotopy category
of the category of simplicial presheaves on B. It follows from Proposition 7.1.2.2 that the adjoint functors
SingX and ||X induce adjoint functors

hSetBop

∆

||LX //hTop/X
SingX

oo

Here ||LX denotes the left-derived functor of the geometric realization (since every object of Top/X is fibrant,
SingX may be identified with its right-derived functor).

We first claim that for any Y ∈ Top/X , the counit map |SingX Y |LX → Y is a weak equivalence. To see
this, choose a strongly cofibrant model F → SingX Y for SingX Y ; we wish to show that the induced map
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|F |X → Y is a weak equivalence. By definition, this is equivalent to the assertion that SingX |F |X → SingX Y
is a weak equivalence. But we have a commutative triangle

F //

$$I
IIIIIIIII SingX Y

xxpppppppppp

SingX |F |X

where left-diagonal map is a weak equivalence by Lemma 7.1.4.2 and Proposition 7.1.3.14, and the top
horizontal map is a weak equivalence by construction; the desired result now follows from the two-out-of-
three property.

It follows that we may identify hTop/X with a full subcategory C ⊆ hSetBop

∆ . By Proposition 7.1.3.14, the
objects of this subcategory are sheaves on B; by Lemma 7.1.4.2, every sheaf on B is equivalent to SingX Y
for an appropriately chosen Y ; thus C consists of precisely the sheaves on B.

The composite functor F 7→ SingX |F |LX may be identified with a localization functor from hSetBop

∆ to
the subcategory C. In particular, when F is strongly cofibrant, the unit of the adjunction F → SingX |F |X
is a localization of F .

Corollary 7.1.4.4. The functor SingX induces an equivalence of ∞-categories

N(Top◦/X)→ Shv(X).

In particular, the ∞-category N(Top◦/X) is an ∞-topos.

Remark 7.1.4.5. In the language of model categories, we may interpret Corollary 7.1.4.4 as asserting that
SingX , ||X furnish a Quillen equivalence between Top/X (with the model structure of Proposition 7.1.2.1)
and SetBop

∆ where the latter is equipped with the following localization of the projective model structure:

(1) A map F → F ′ in SetBop

∆ is a cofibration if it is a strong cofibration (in the sense of Definition A.3.3.1).

(2) A map F → F ′ in SetBop

∆ is a weak equivalence if it induces an equivalence in the ∞-category Shv(X).

7.1.5 Base Change

With Corollary 7.1.4.4 in hand, we are almost ready to deduce Theorem 7.1.0.1. Suppose given a paracompact
space X (and a basis B for the open subsets of X satisfying the conditions of Lemma 7.1.1.1). Let p :
Shv(X)→ Shv(∗) ' S be the geometric morphism induced by the projection X → ∗.

For any simplicial set K, let FK denote the constant simplicial presheaf on B taking the value K. Then,
if we endow SetBop

∆ with the localized model structure of Remark 7.1.4.5, then FK is a model for the sheaf
p∗K. Consequently, the space p∗p∗K may be identified up to homotopy with the mapping space

MapShv(X)(F∗, FK)

which, in virtue of Corollary 7.1.4.4, is equivalent to

MapTop/X
(X,X ⊗K) = (SingX(X ⊗K))(X)

However, at this point, a technical wrinkle appears: X ⊗K agrees with X × |K| as a set, but it is equipped
with a finer topology (given by the direct limit of the product topologies X × |K0|, where K0 ⊆ K is a finite
simplicial subset). In general, we have only an inclusion of simplicial presheaves

η : SingX(X ⊗K) ⊆ SingX(X × |K|),

which need not be an isomorphism. However, we will complete the proof of Theorem 7.1.0.1 by showing that
η is an equivalence of simplicial presheaves.
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We consider a slightly more general situation. Let p : X → Y be a continuous map between paracompact
spaces. Then there exist bases BX and BY for X and Y , satisfying the conditions of Lemma 7.1.1.1, such
that p−1 maps BY to BX (this is clear if we take BX and BY to consist of all the open Fσ sets in X and
Y , as in the proof of Lemma 7.1.1.1). Define q : BY → BX by setting q(U) = p−1(U). Composition with q

induces a “pushforward” functor q∗ : SetBop
X

∆ → SetBop
Y

∆ , which has a left adjoint which we will denote by q∗.
Similarly, there is a “pullback” functor p∗ : Top/Y → Top/X ; however, p∗ generally does not possess a right
adjoint. Consider the square

SetBop
Y

∆

||Y //

q∗

��

Top/Y

p∗

��
SetBop

X

∆

||X // Top/X .

This square is “lax commutative”, in the sense that there exists a natural transformation of functors

ηF : |q∗F |X → p∗|F |Y = |F |Y ×Y X.

The map ηF is always a bijection of topological spaces, but is generally not a homeomorphism. Nevertheless,
we have the following:

Proposition 7.1.5.1. Under the hypotheses above, if F : B
op
Y → Set∆ is a strongly cofibrant simplicial

presheaf on Y , then the map ηF : |q∗F |X → |F |Y ×Y X is a weak equivalence in Top/X .

Proof. Let F → F ′ be a weak equivalence between strongly cofibrant simplicial presheaves F, F ′ : B
op
Y →

Set∆. Both q∗ and ||X are left Qullen functors, and therefore preserve weak equivalences between cofibrant
objects; it follows that |q∗F |X → |q∗F ′|X is a weak equivalence. Similarly, |F |Y → |F ′|Y is a weak equivalence
between cofibrant objects of Top/Y . Since every object of Top/Y is fibrant, we conclude that |F |Y → |F ′|Y
is a homotopy equivalence in Top/Y ; thus |F |Y ×Y X → |F ′|Y ×Y X is a homotopy equivalence in Top/X .
Consequently, we deduce that ηF is a weak equivalence if and only if ηF ′ is a weak equivalence.

Let F be an arbitrary strongly cofibrant simplicial presheaf; we wish to show that ηF is a weak equivalence.
There exists a trivial strong cofibration F → F ′, where F ′ is weakly fibrant. It now suffices to show that
ηF ′ is a weak equivalence. Replacing F by F ′, we reduce to the case where F is weakly fibrant.

Let F ′ be a simplicial presheaf on BY satisfying the conditions of Lemma 7.1.4.1. Then F ′ and F are
equivalent in the homotopy category of simplicial presheaves on BY . Since F ′ is strongly cofibrant and F
is weakly fibrant, there exists a weak equivalence F ′ → F . We may therefore once again reduce to proving
that ηF ′ is a weak equivalence. Replacing F by F ′, we may suppose that F satisfisies conditions (1) through
(3) of Lemma 7.1.4.1 for some vertex set V .

Let ∆V
Y = Y ⊗∆V and let ∆V

X = X ⊗∆V . Then |F |Y may be identified with a subspace of Z ⊆ ∆V
Y ;

likewise |q∗F |X may be identified with a subspace of Z ′ ⊆ ∆V
X . The map ηF induces a bijection

Z ′ → Z ×Y X ⊆ ∆V
Y ×Y X

which is not necessarily a homeomorphism.
We wish to show that ηF is a weak equivalence. This is equivalent to the assertion that the inclusion

SingX Z ′ ⊆ SingX(Z ×Y X) is an equivalence of simplicial presheaves on BX ; in other words, we must show
that

(SingX Z
′)(U) ⊆ (SingX(Z ×Y X))(U)

is a homotopy equivalence of Kan complexes, for each U ∈ BX . Replacing X by U , it suffices to show that
for any inclusion K ′ ⊆ K of finite simplicial sets, any map of pairs

G0 : (K,K ′)→ ((SingX(Z ×Y X))(X), (SingX Z
′)(X))
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can be extended to a map defined on the pair

G : (K ×∆1, (K ′ ×∆1)
∐

K′×{1}

(K × {1})).

We may identify the map G0 with a continuous, fiber-preserving map

g0 : |K| ×X → Z ×Y X ⊆ ∆V
Y ×Y X.

For each v ∈ ∆V
Y , let ∆V

Y,v denote the open star of the vertex v, as in the proof of Lemma 7.1.4.2; then the
open sets Uv = g−1

0 (∆V
Y,v ×Y X) form an open cover of |K| ×X. Choose a (locally finite) partition of unity

{fv} subordinate to the cover {Uv}, and define g1 : |K| ×X → X × |∆V | by the formula

g1(k, x) = (x,
∑

fv(k, x)v).

Since {fv} is locally finite, it is clear that g1 factors through ∆V
X , and by construction its image is contained

in Z ′. Now let
g : |K| × [0, 1]×X → X × |∆V |

be a “straight-line” homotopy between g0 and g1. Then g determines a map

G : (K ×∆1, (K ′ ×∆1)
∐

K′×{1}

(K × {1}))→ ((SingX(Z ×Y X))(X), (SingX Z
′)(X))

which extends G0, as desired.

Theorem 7.1.0.1 now follows immediately from Proposition 7.1.5.1, applied in the case where Y = ∗ and
F is the constant simplicial presheaf BX → Set∆ taking the value K.

Remark 7.1.5.2. There is another solution to the technical difficulty presented by the fact that the bijection
X ⊗K → X × |K| is not necessarily a homeomorphism: one can work in a suitable category of compactly
generated topological spaces, where the base change functor Z 7→ X ×Y Z has a right adjoint and therefore
automatically commutes with all colimits. This is perhaps a more conceptually satisfying approach; however,
it leads to a proof of Theorem 7.1.0.1 only in the special case where the space X is itself compactly generated.

7.1.6 Higher Topoi and Shape Theory

If X is a sufficiently nice topological space (for example, an absolute neighborhood retract), then there exists
a homotopy equivalence Y → X, where Y is a CW complex. If X is merely assumed to be paracompact,
then it is generally not possible to approximate X well by means of a CW-complex Y equipped with a map
to X. However, in view of Theorem 7.1.4.3, one can still extract a substantial amount of information by
considering maps from X to CW complexes. Shape theory is an attempt to summarize all of this information
in a single invariant, called the shape of X. In this section, we will sketch a generalization of shape theory
to the setting of ∞-topoi.

Definition 7.1.6.1. We let Pro(S) denote the full subcategory of Fun(S, S)op spanned by left exact, accessible
functors f : S→ S. We will refer to Pro(S) as the ∞-category of pro-spaces, or as the ∞-category of shapes.

Remark 7.1.6.2. If C is a small ∞-category which admits finite limits, then any functor f : C → S is
accessible and may be viewed as an object of P(Cop). The left exactness of f is then equivalent to the
condition that f belongs to Ind(Cop) = Pro(C)op. Definition 7.1.6.1 constitutes a natural extension of this
terminology to a case where C is not necessarily small; here it is convenient to add a hypothesis of accessibility
for technical reasons (which will not play any role in the discussion below).
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Definition 7.1.6.3. Let X be an ∞-topos. According to Proposition 6.3.3.1, there exists a geometric
morphism q∗ : X → S, which is unique up to homotopy. Let q∗ be a left adjoint to q∗ (also unique up to
homotopy). The composition q∗q

∗ : S → S is an accessible left-exact functor, which we will refer to as the
shape of X and denote by Sh(X) ∈ Pro(S).

Remark 7.1.6.4. Let p∗ : Y → X be a geometric morphism of ∞-topoi and p∗ a left adjoint to p∗. Let
q∗ : X→ S and q∗ be as in Definition 7.1.6.3. The unit map idX → p∗p

∗ induces a transformation

q∗q
∗ → q∗p∗p

∗q∗ ' (q ◦ p)∗(q ◦ p)∗,

which we may view as a map Sh(X) → Sh(Y) in Pro(S). Via this construction, we may view Sh as a
functor from the homotopy category hTopR of∞-topoi to the homotopy category hPro(S). We will say that
a geometric morphism p∗ : Y → X is a shape equivalence if it induces an equivalence Sh(Y) → Sh(X) of
pro-spaces.

Remark 7.1.6.5. By construction, the shape of an ∞-topos X is well-defined up to equivalence in Pro(S).
A refining the above construction, it is possible construct a shape functor from TopR to the ∞-category
Pro(S), rather than on the level of homotopy.

Remark 7.1.6.6. Our terminology does not quite conform to the usage in classical topology. Recall that if
X is a compact metric space, the shape of X is defined as a pro-object in the homotopy category of spaces.
There is a refinement of shape, known as strong shape, which takes values in the homotopy category of
pro-spaces. Definition 7.1.6.3 is a generalization of strong shape, rather than shape. We refer the reader to
[38] for a discussion of classical shape theory.

Proposition 7.1.6.7. Let p : X → Y be a continuous map of paracompact topological spaces. Then p∗ :
Shv(X)→ Shv(Y ) is a shape equivalence if and only if, for every Kan complex K, the induced map of Kan
complexes MapTop(Y, |K|)→ MapTop(X, |K|) is a homotopy equivalence.

Proof. Corollary 7.1.4.4 and Proposition 7.1.5.1 imply that for any paracompact topological space Z and
any Kan complex K, there is a natural isomorphism

Sh(Shv(Z))(K) ' MapTop(Z, |K|)

in the homotopy category H.

Example 7.1.6.8. Let X be a scheme, let X be the topos of étale sheaves on X, and let X be the associated
1-localic ∞-topos. The shape Sh(X) defined above is closely related to the étale homotopy type introduced
by Artin and Mazur (see [3]). There are three important differences:

(1) Artin and Mazur work with pro-objects in the homotopy category H, rather than with actual pro-
objects of S.

(2) The étale homotopy type of [3] is constructed by considering étale hypercoverings of X; it is therefore
more closely related to the shape of the hypercompletion X∧.

(3) Artin and Mazur generally study a certain completion of Sh(X∧) with respect to the class of truncated
spaces, which has the effect of erasing the distinction between X and X∧ and discarding a bit of
(generally irrelevant) information.

Remark 7.1.6.9. Let ∗ denote a topological space consisting of a single point. By definition, Shv(∗) is the
full subcategory of Fun(∆1, S) spanned by those morphisms f : X → Y where Y is a final object of ∆1.
We observe that Shv(∗) is equivalent to the full subcategory spanned by those morphisms f as above where
Y = ∆0 ∈ S, and that this full subcategory is isomorphic to S.

Definition 7.1.6.10. We will say that an ∞-topos X has trivial shape if Sh(X) is equivalent to the identity
functor S→ S.
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Remark 7.1.6.11. Let q∗ : X→ S be a geometric morphism. Then the unit map u : idS → q∗q
∗ induces a

map of pro-spaces Sh(X)→ idS. Since idS is a final object in Pro(S), we observe that X has trivial shape if
and only if u is an equivalence; in other words, if and only if the pullback functor q∗ is fully faithful.

We now sketch another interpretation of shape theory, based on the ∞-topoi associated to pro-spaces.
Let X = S, let π : S× S → S be the projection onto the first factor, let δ : S → S× S denote the diagonal
map, and let φ : (S× S)/δS → S be defined as in §4.2.2. Proposition 4.2.2.4 implies that φ is a coCartesian
fibration. We may identify the fiber of φ over an object X ∈ S with the∞-category S/X . For each morphism
f : X → Y in S, φ associates a functor f! : S/X → S/Y , given by composition with f . Since S admits
pullbacks, each f! admits a right adjoint f∗, so that φ is also a Cartesian fibration, associated to some
functor ψ : Sop → TopL.

Let X̂ : S → S be a pro-space. Then X̂ classifies a left fibration Mop → S, where M is a filtered
∞-category. Let θ denote the composition

Mop → S
ψop

→ (TopL)op.

Although M is generally not small, the accessibility condition on F guarantees the existence of a cofinal map
M ′ →M , where M ′ is a small, filtered ∞-category. Theorem 6.3.3.2 implies that the diagram θ has a limit,
which we will denote by

S/ bX
and refer to as the ∞-topos of local systems on X̂.

Remark 7.1.6.12. If X̂ is a pro-space, then Proposition 6.3.5.4 implies that the associated geometric
morphism S/ bX → S is pro-étale . However, the converse is false in general.

Remark 7.1.6.13. Let G be a profinite group, which we may identify with a Pro-object in the category
of finite groups. We let BG denote the corresponding Pro-object of S, obtained by applying the classifying
space functor objectwise. Then S/BG can be identified with the 1-localic∞-topos associated to the ordinary
topos of sets with a continuous G-action. It follows from the construction of filtered limits in TopR (see
§6.3.3) that we can describe objects Y ∈ S/BG informally as follows: Y associates to each open subgroup
U ⊆ G a space Y U of U -fixed points, which depends functorially on the finite G-space G/U . Moreover, if
U is a normal subgroup of V , then the natural map from Y V to the (homotopy) fixed point space (Y U )V/U

should be a homotopy equivalence.

Remark 7.1.6.14. By refining the construction above, it is possible to construct a functor

Pro(S)→ TopR

X̂ 7→ S/ bX .
This functor has a left adjoint, given by

X 7→ Sh(X).

Warning 7.1.6.15. If X̂ is a pro-space, then the shape of S/ bX is not necessarily equivalent to X̂. In general
we have only a counit morphism

Sh(S/ bX)→ X̂.
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7.2 Dimension Theory

In this section, we will discuss the dimension theory of topological spaces from the point of view of higher
topos theory. We begin in §7.2.1 by introducing the homotopy dimension of an ∞-topos. We will show that
the finiteness of the homotopy dimension of an ∞-topos X has pleasant consequences: it implies that every
object is the inverse limit of its Postnikov tower, and in particular that X is hypercomplete.

In §7.2.2, we define the cohomology groups of an ∞-topos X. These cohomology groups have a natural
interpretation in terms of the classification of higher gerbs on X. Using this interpretation, we will show that
the cohomology dimension of an ∞-topos X almost coincides with its homotopy dimension.

In §7.2.3, we review the classical theory of covering dimension for paracompact topological spaces. Using
the results of §7.1, we will show that the covering dimension of a paracompact space X coincides with the
homotopy dimension of the ∞-topos Shv(X).

We conclude in §7.2.4 by introducing a dimension theory for Heyting spaces, which generalizes the classical
theory of Krull dimension for Noetherian topological spaces. Using this theory, we will prove an upper bound
for the homotopy dimension of Shv(X), for suitable Heyting spaces X. This result can be regarded as a
generalization of Grothendieck’s vanishing theorem for the cohomology of Noetherian topological spaces.

7.2.1 Homotopy Dimension

Throughout this section, we will use the symbol 1X to denote the final object of an ∞-topos X.

Definition 7.2.1.1. Let X be an ∞-topos. We shall say that X has homotopy dimension ≤ n if every
(n − 1)-connected object U ∈ X admits a global section 1X → U . We say that X has finite homotopy
dimension if there exists n ≥ 0 such that X has homotopy dimension ≤ n.

Example 7.2.1.2. An∞-topos X is of homotopy dimension ≤ −1 if and only if X is equivalent to the trivial
∞-category ∗ (the ∞-topos of sheaves on the empty space ∅).

Example 7.2.1.3. The ∞-topos S has homotopy dimension 0. If X is a Kan complex, then S/X is of
homotopy dimension ≤ n if and only if |X| is homotopy equivalent to a CW complex having cells only in
dimensions ≤ n.

More generally, if C is an ∞-category with a final object 1C, then P(C) has homotopy dimension ≤ 0. To
see this, we first observe that the Yoneda embedding j : C → P(C) preserves limits, so that j(1C) is a final
object of P(C). To prve that P(C) has homotopy dimension ≤ 0, we need to show that the functor P(C)→ S

corepresented by j(1C) preserves effective epimorphisms. This functor can be identified with evaluation at 1C.
It therefore preserves all limits and colimits, and so carries effective epimorphisms to effective epimorphisms
by Proposition 6.2.3.7.

Remark 7.2.1.4. If X is a coproduct (in the ∞-category TopR) of ∞-topoi Xα, then X is of homotopy
dimension ≤ n if and only if each Xα is of homotopy dimension ≤ n.

It is convenient to introduce a relative version of Definition 7.2.1.1.

Definition 7.2.1.5. Let f : X→ Y be a geometric morphism of∞-topoi. We will say that f is of homotopy
dimension ≤ n if, for every k ≥ n − 1 and every k-connected morphism X → X ′ in X, the induced map
f∗X → f∗X

′ is a (k−n)-connected morphism in Y (since f∗ is well-defined up to equivalence, this condition
is independent of the choice of f∗).

Lemma 7.2.1.6. Let X be an ∞-topos, and let F∗ : X→ S be a geometric morphism (which is unique up to
equivalence). The following are equivalent:

(1) The ∞-topos X is of homotopy dimension ≤ n.

(2) The geometric morphism F∗ is of homotopy dimension ≤ n.
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Proof. Suppose first that (2) is satisfied, and let X be an (n − 1)-connected object of X. Then F∗X is a
(−1)-connected object of S: that is, it is a nonempty Kan complex. It therefore has a point 1S → F∗X. By
adjointness, we see that there exists a map 1X → X in X, where 1X = F ∗1S is a final object of X because
F ∗ is left exact. This proves (1).

Now assume (1), and let s : X → Y be an k-connected morphism in X; we wish to show that F∗s is
(k− n)-connected. The proof goes by induction on k ≥ n− 1. If k = n− 1, then are reduced to proving the
surjectivity of the horizontal maps in the diagram

π0 MapX(1X, X) // π0 MapX(1X, Y )

π0 MapS(1S, F∗X) // π0 MapS(1S, F∗Y )

of sets. Let p : 1X → Y be any morphism in X, and form a pullback diagram

Z

s′

��

// X

s

��
1X

p // Y.

The map s′ is a pullback of s, and therefore (n− 1)-connected by Proposition 6.5.1.16. Using (1), we deduce
the existence of a map 1X → Z, and a composite map

1X → Z → X

is a lifting of p up to homotopy.
We now treat the case where k ≥ n. Form a diagram

X
s′

((QQQQQQQQQQQQQQ

X ×Y X //

��

X

s

��
X

s // Y

where the square on the bottom-right is a pullback in X. According to Proposition 6.5.1.18, s′ is (k − 1)-
connected. Using the inductive hypothesis, we deduce that F∗(s′) is (k − n− 1)-connected. We now invoke
Proposition 6.5.1.18 in the ∞-topos S deduce that F∗(s) is (k − n)-connected.

Definition 7.2.1.7. Let X be an ∞-category and let Z∞≥0 = Z≥0 ∪ {∞} = {0, 1, . . . ,∞}. A tower in X is a
mapX : N(Z∞≥0)

op → X .We will say thatX is a limit tower if it it is a limit of the diagramX|N(Z≥0)op → X.
We will say that X is a Postnikov tower if each of the associated maps X(∞)→ X(n) exhibits X(n) as an
n-truncation of X(∞) in X.

We can think of a tower X : N(Z∞≥0)
op → X in an ∞-category X as a diagram

X(∞)→ . . .→ X(1)→ X(0).

Lemma 7.2.1.8. Let X be a presentable ∞-category, let Fun(N(Z∞≥0)
op,X) be the ∞-category of towers in

X, and let Xτ ⊆ Fun(N(Z∞≥0)
op,X) denote the full subcategory spanned by the Postnikov towers. Evaluation

at ∞ induces a trivial fibration of simplicial sets Xτ → X. In particular, every object X(∞) ∈ X can be
extended to a Postnikov tower

X(∞)→ . . .→ X(1)→ X(0).
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Proof. Let C be the full subcategory of X×N(Z∞≥0)
op spanned by the pairs (X,n) where X is an object of X,

n ∈ Z∞≥0, and X is n-truncated, and let p : C → X denote the natural projection. Since every m-truncated
object of X is also n-truncated for m ≥ n, it is easy to see that p is a Cartesian fibration. Proposition 5.5.5.18
implies that each of the inclusion functors τ≤m X ⊆ τ≤n X has a left adjoint, so that p is also a coCartesian
fibration (Corollary 5.2.2.4). By definition, Xτ can be identified with the simplicial set

Map[N(Z∞≥0)
(N(Z∞≥0)

], (Cop)\)op

and X itself can be identified with
Map[N(Z∞≥0)

({∞}], (Cop)\)op.

It now suffices to observe that the inclusion {∞}] ⊆ N(Z∞≥0)
] is marked anodyne.

In general, a Postnikov tower in X need not be a limit tower, even when X is an ∞-topos. However, this
is true whenever X satisfies suitable finite-dimensionality hypotheses.

Definition 7.2.1.9. Let X be an ∞-topos. We will say that a tower X : N(Z∞≥0)
op → X is highly connected

if, for each n ≥ 0, there exists k � 0 such that the map X(∞)→ X(k′) is n-connected for all k′ ≥ k.

Lemma 7.2.1.10. Let X be an ∞-topos. Then every Postnikov tower in X is highly connected.

Proof. Let
X(∞)→ . . .→ X(1)→ X(0)

be a Postnikov tower in X. By definition, the map X(∞)→ X(n) is n-connected for each n ≥ 0.

Remark 7.2.1.11. In proving the next lemma, we will make use of the following facts concerning a com-
mutative diagram

X
h //

f

  @
@@

@@
@@

Z

Y

g
??~~~~~~~

of Kan complexes:

(1) If f and g are m-connected, then so is h.

(2) If f is (m− 1)-connected and h is m-connected, then g is m-connected.

(3) If g is (m+ 1)-connected and h is m-connected, then f is m-connected.

This is a simple exercise in the use of long exact sequences of homotopy groups.

Lemma 7.2.1.12. Let X : N(Z∞≥0)
op → S be a tower in the ∞-category of spaces. If X is highly connected,

then X is a limit tower.

Proof. Let X : N(Z∞≥0)
op → S be a tower in the ∞-category of spaces. According to Proposition A.3.6.1, X

is equivalent to the tower associated to a diagram

Y (∞)→ . . .→ Y (1)→ Y (0)

in the ordinary category Kan. Replacing Y by an equivalent diagram if necessary, we may suppose that
each of the maps Y (i + 1) → Y (i) is a Kan fibration (which is equivalent to the assertion that the digram
Zop≥0 → Set∆ is strongly fibrant). Theorem 4.2.4.1 implies that X is a limit tower if and only if the map
f : Y (∞)→ lim{Y (n)}n≥0 is a homotopy equivalence. It will suffice to show that f is m-connected for each
m ≥ 0. Since X is highly connected, there exists k ≥ 0 such that for all k′ ≥ k, the map Y (∞) → Y (k′)
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is (m + 2)-connected. Using Remark 7.2.1.11, we may reduce to the problem of proving that the map
g : lim{Y (n)}n≥0 → Y (k) is (m+ 1)-connected.

The map g is a Kan fibration, and the fiber of g over a point y ∈ Y (k) can be identified with the limit
Z of the tower of Kan fibrations {Z(k′)}k′≥k, where Z(k′) = Y (k′) ×Y (k) {y}. Remark 7.2.1.11 shows that
each of the spaces Z(k′) is (m+ 2)-connected. It follows that Z is (m+ 1)-connected, as desired.

Remark 7.2.1.13. It follows from Lemma 7.2.1.12 that every Postnikov tower in S is a limit tower. This
observation plays an important role in classical homotopy theory: it allows us to reduce many problems
about an arbitrary space X(∞) to problems concerning the truncated spaces X(n) ' τ≤nX(∞), which are
often easier to analyze.

Lemma 7.2.1.14. Let f : X → Y be a geometric morphism of ∞-topoi. Suppose that f is of homotopy
dimension ≤ n. Let X : N(Z∞≥0)

op → X be a highly connected tower in X. Then f∗ ◦X is a highly connected
tower in Y.

Proof. This follows immediately from the definitions.

Definition 7.2.1.15. We will say that an ∞-topos X is locally of finite homotopy dimension if there exists
a collection {Uα} of objects of X which generate X under colimits, such that each X/Uα

is of homotopy
dimension ≤ nα for some integer nα.

Example 7.2.1.16. Let C be a small ∞-category. Then P(C) is locally of finite homotopy dimension. In
particular, S is locally of finite homotopy dimension. To prove this, we first observe that P(C) is generated
under colimits by the Yoneda embedding j : C → P(C). It therefore suffices to prove that each of the
∞-topoi P(C)/j(C) has finite homotopy dimension. According to Corollary 5.1.6.12, the ∞-topos P(C)/j(C)

is equivalent to P(C/C), which is of homotopy dimension 0 (see Example 7.2.1.3).

Proposition 7.2.1.17. Let X be an ∞-topos which is locally of finite homotopy dimension. Then every
highly connected tower in X is a limit tower.

Proof. By hypothesis, there exists a small ∞-category C and a fully faithful functor f : C → X which
generates X under colimits, with the property that X/f(C) is of finite homotopy dimension for each object
C ∈ C. According to Proposition 5.1.5.6, we may assume without loss of generality that f = F ◦ j, where
j : C → P(C) is the Yoneda embedding and F : P(C) → X is a presentable functor. Since f generates X

under colimits, the functor F admits a fully faithful right adjoint G.
Let X : N(Z∞≥0)

op → X be a highly connected tower in X. We wish to show that X is a limit tower. Since
G is fully faithful and preserves limits, it will suffice to show that G ◦X is a limit tower in P(C). According
to Proposition 5.1.2.2, it will suffice to to show for each object C ∈ C, the tower gC ◦X : N(Z∞≥0)

op → X is
a limit, where gC denotes the composition of G with evaluation at C. The functor gC is equivalent to the
composition

X
q∗→ X/f(C)

p∗→ S

where q : X/f(C) → X and p : X/f(C) → S are the natural geometric morphisms. It is clear that q∗ preserves
highly connected towers. Since X/f(C) is of finite homotopy dimension, Lemma 7.2.1.14 implies that p∗
preserves highly connected towers. We may therefore reduce to the case where X = S, which was handled in
Lemma 7.2.1.12.

Corollary 7.2.1.18. Let X be an ∞-topos which is locally of finite homotopy dimension. Then every
Postnikov tower in X is a limit tower.

Corollary 7.2.1.19. Let X be an ∞-topos which is locally of finite homotopy dimension. Then X is hyper-
complete.
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Proof. Let X(∞) be an arbitrary object of X. By Lemma 7.2.1.8 we can find a Postnikov tower

X(∞)→ . . .→ X(1)→ X(0).

Since X(n) is n-truncated, it belongs to X∧ by Corollary 6.5.1.14. By Corollary 7.2.1.18, the tower exhibits
X(∞) as a limit of objects of X∧, so that X(∞) belongs to X∧ as well since the full subcategory X∧ ⊆ X is
stable under limits.

Lemma 7.2.1.20. Let X be an ∞-topos, n ≥ 0, X an n-connected object of X, and f∗ : X → X/X a right
adjoint to the projection X/X → X. Then f∗ induces an equivalence from τ≤n−1 X to τ≤n−1 X/X .

Proof. We first prove that f∗ is fully faithful when restricted to the ∞-category of n-truncated objects of X.
Let Y, Z ∈ X be objects, where Y is n-truncated. We have a commutative diagram

MapX/X
(f∗Y, f∗Z) MapX(X × Y, Z) MapX(τ≤n(X × Y ), Z)oo

MapX(Y, Z)

OO

MapX(τ≤nY, Z)

OO

oo

in the homotopy category H, where the horizontal arrows are homotopy equivalences. Consequently, to prove
that the left vertical map is a homotopy equivalence, it suffices to show that the projection τ≤n(X × Y )→
τ≤nY is an equivalence. This follows immediately from Lemma 6.5.1.2 and our assumption that X is n-
connected.

Now suppose that Y is an (n− 1)-truncated object of X/X . We wish to show that Y lies in the essential
image of f∗|τ≤n−1 X. Let Y denote the image of Y in X, and let Y → Z exhibit Z as an (n− 1)-truncation
of Y in X. To complete the proof, it will suffice to show that the composition

u : Y u′→ f∗Y
u′′→ f∗Z

is an equivalence in X/X . Since both Y and f∗Z are (n− 1)-truncated, it suffices to prove that u is (n− 1)-
connected. According to Proposition 6.5.1.16, it suffices to prove that u′ and u′′ are (n − 1)-connected.
Proposition 5.5.5.23 implies that u′′ exhibits f∗Z as an (n− 1)-truncation of f∗Y , and is therefore (n− 1)-
connected.

We now complete the proof by showing that u′ is (n− 1)-connected. Let v′ denote the image of image of
u′ in the ∞-topos X. According to Proposition 6.5.1.19, it will suffice to show that v′ is (n− 1)-connected.
We observe that v′ is a section of the projection q : Y ×X → Y . q : Y ×X → Y . According to Proposition
6.5.1.20, it will suffice to prove that q is n-connected. Since q is a pullback of the projection X → 1X,
Proposition 6.5.1.16 allows us to conclude the proof (since X is n-connected, by assumption).

Lemma 7.2.1.20 has some pleasant consequences.

Proposition 7.2.1.21. Let X be an ∞-topos and let τ≤0 : X→ τ≤0 X denote a left adjoint to the inclusion.
A morphism φ : U → X in X is an effective epimorphism if and only if τ≤0(φ) is an effective epimorphism
in the ordinary topos h(τ≤0 X).

Proof. Suppose first that φ is an effective epimorphism. Let U• : N∆op
+ → X be a Čech nerve of φ, so that

U• is a colimit diagram. Since τ≤0 is a left adjoint, τ≤0U• is a colimit diagram in τ≤0 X. Using Proposition
6.2.3.10, we deduce easily that τ≤0φ is an effective epimorphism.

For the converse, choose a factorization of φ as a composition

U
φ′→ V

φ′′→ X

where φ′ is an effective epimorphism and φ′′ is a monomorphism. Applying Lemma 7.2.1.20 to the ∞-
topos X/τ≤0X , we conclude that φ′′ is the pullback of a monomorphism i : V → τ≤0X. Since the effective
epimorphism τ≤0(φ) factors through i, we conclude that i is an equivalence, so that φ′′ is likewise an
equivalence. It follows that φ is an effective epimorphism as desired.
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Proposition 7.2.1.21 can be regarded as a generalization of the following well-known property of the ∞-
category of spaces, which can itself be regarded as the ∞-categorical analogue of the second part of Fact
6.1.1.6:

Corollary 7.2.1.22. Let f : X → Y be a map of Kan complexes. Then f is an effective epimorphism in
the ∞-category S if and only if the induced map π0X → π0Y is surjective.

Remark 7.2.1.23. It follows from Proposition 7.2.1.21 that the class of ∞-topoi having the form Shv(C),
where C is a small ∞-category, is not substantially larger than the class of ordinary topoi. More precisely,
every topological localization of P(C) can be obtained by inverting morphisms between discrete objects of
P(C). It follows that there exists a pullback diagram of ∞-topoi

Shv(C) //

��

P(C)

��
Shv(N(hC)) // P(N(hC))

where the ∞-topoi on the bottom line are 1-localic, and therefore determined by the ordinary topoi of
presheaves of sets on the homotopy category hC and sheaves of sets on hC, respectively.

Corollary 7.2.1.24. Let X be a topological space. Suppose that Shv(X) has finite homotopy dimension.
Then Shv(X) has enough points.

Proof. Note that every point x ∈ X gives rise to a point x∗ : Shv(∗)→ Shv(X) of the ∞-topos Shv(X). Let
f : F → F′ be a morphism in Shv(X) such that x∗(f) is an equivalence in S for each x ∈ X. We wish to prove
that f is an equivalence. According to Corollary 7.2.1.19, it will suffice to prove that f is hyperconnected.
We will prove by induction on n that f is n-connected. If n ≥ 0, we simply apply the inductive hypothesis to
the diagonal morphism δ : F → F×F′ F. We may therefore reduce to the case n = −1; we wish to show that
f is an effective epimorphism. Since Shv(X) is generated under colimits by the sheaves χU associated to open
subsets U ⊆ X, we may assume without loss of generality that F′ = χU . We may now invoke Proposition
7.2.1.21 to reduce to the case where F is an object of τ≤0 Shv(X)/χU

. This ∞-category is equivalent to the
nerve of the category of sheaves of sets on U . We are therefore reduced to proving that if F is a sheaf of sets
on U whose stalk Fx is a singleton at each point x ∈ U , then F has a global section, which is clear.

7.2.2 Cohomological Dimension

In classical homotopy theory, one can analyze a space X by means of its Postnikov tower

. . . τ≤nX
φn→ τ≤n−1X → . . . .

In this diagram, the homotopy fiber F of φn (n ≥ 1) is a space which has only a single nonvanishing homotopy
group, in dimension n. The space F is determined up to homotopy equivalence by πnF : in fact F is homotopy
equivalent to an Eilenberg-MacLane space K(πnF, n) which can be functorially constructed from the group
πnF . The study of these Eilenberg-MacLane spaces is of central interest, because (according to the above
analysis) they constitute basic building blocks out of which any arbitrary space can be constructed. Our
goal in this section is to generalize the theory of Eilenberg-MacLane spaces to the setting of an arbitrary
∞-topos X.

Definition 7.2.2.1. Let X be an ∞-category. A pointed object is a morphism X∗ : 1→ X in X, where 1 is
a final object of X. We let X∗ denote the full subcategory of Fun(∆1,X) spanned by the pointed objects of
X.

A group object of X is a groupoid object U• : N∆op → X for which U0 is a final object of X. Let Grp(X)
denote the full subcategory of X∆ spanned by the group objects of X.

482



We will say that a pointed object 1→ X of an ∞-topos X is an Eilenberg-MacLane object of degree n if
X is n-truncated and (n− 1)-connected. We let EMn(X) denote the full subcategory of X∗ spanned by the
Eilenberg-MacLane objects of degree n.

Example 7.2.2.2. Let C be an ordinary category which admits finite limits. A group object of C is an object
X ∈ C which is equipped with an identity section 1C → X, an inversion map X → X, and a multiplication
m : X × X → X, which satisfy the usual group axioms. Equivalently, a group object of C is an object X
together with a group structure on each morphism space HomC(Y,X), which depends functorially on Y . We
will denote the category of group objects of C by Grp(C). The ∞-category N(Grp(C)) is equivalent to the
∞-category of group objects of N(C), in the sense of Definition 7.2.2.1. Thus, the notion of a group object of
an ∞-category can be regarded as a generalization of the notion of a group object of an ordinary category.

Remark 7.2.2.3. Let X be an ∞-topos and n ≥ 0 an integer. Then the full subcategory of Fun(∆1,X)
consisting of Eilenberg-MacLane objects p : 1→ X is stable under finite products. This is clear, since:

(1) A finite product of (n− 1)-connected objects of X is (n− 1)-connected (Corollary 6.5.1.13).

(2) Any limit of n-truncated objects of X is n-truncated (since τ≤n X is a localization of X).

Proposition 7.2.2.4. Let X be an ∞-category, and let U• be a simplicial object of X. Then U• is a group
object of X if and only if the following conditions are satisfied:

(1) The object U0 is final in X.

(2) For every decomposition [n] = S ∪ S′, where S ∩ S′ = {s}, the maps

U(S)← Un → U(S′)

exhibit Un as a product of U(S) and U(S) in X.

Proof. This follows immediately from characterization (4′′) of Proposition 6.1.2.6.

Corollary 7.2.2.5. Let X and Y be ∞-categories which admit finite products, and let f : X→ Y be a functor
which preserves finite products. Then the induced functor X∆ → Y∆ carries group objects of X to group
objects of Y.

Corollary 7.2.2.6. Let X be an ∞-category which admits finite products, and let Y ⊆ X be a full subcategory
which is stable under finite products. Let Y• be a simplicial object of Y. Then Y• is a group object of Y if
and only if it is a group object of X.

Definition 7.2.2.7. Let X be an ∞-category. A zero object of X is an object which is both initial and final.

Lemma 7.2.2.8. Let X be an ∞-category with a final object 1X. Then the inclusion i : X1X/ ⊆ X∗ is an
equivalence of ∞-categories.

Proof. Let K be the full subcategory of X spanned by the final objects, and let 1X be an object of K.
Proposition 1.2.12.9 implies that K is a contractible Kan complex, so that the inclusion {1X} ⊆ K is an
equivalence of∞-categories. Corollary 2.3.7.12 implies that the projection X∗ → K is a coCartesian fibration.
We now apply Proposition 3.3.2.3 to deduce the desired result.

Lemma 7.2.2.9. Let X be an ∞-category with a final object. Then the ∞-category X∗ has a zero object. If
X already has a zero object, then the forgetful functor X∗ → X is an equivalence of ∞-categories.

Proof. Let 1X be a final object of X, and let U = id1X
∈ X∗. We wish to show that U is a zero object of

X∗. According to Lemma 7.2.2.8, it will suffice to show that U is a zero object of X1X/. It is clear that U is
initial, and the finality of U follows from Proposition 1.2.13.8.

For the second assertion, let us suppose that 1X is also an initial object of X. We wish to show that the
forgetful functor X∗ → X is an equivalence of ∞-categories. Applying Lemma 7.2.2.8, it will suffice to show
that the projection f : X1X/ → X is an equivalence of ∞-categories. But f is a trivial fibration of simplicial
sets.
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Lemma 7.2.2.10. Let X be an ∞-category, and let f : X∗ → X be the forgetful functor ( which carries a
pointed object 1→ X to X ). Then f induces an equivalence of ∞-categories

Grp(X∗)→ Grp(X).

Proof. The functor f factors as a composition

X∗ ⊆ Fun(∆1,X)→ X

where the first map is the inclusion of a full subcategory which is stable under limits, and the second map
preserves all limits (Proposition 5.1.2.2). It follows that f preserves limits, and therefore composition with
f induces a functor F : Grp(X∗)→ Grp(X) by Corollary 7.2.2.5.

Observe that the 0-simplex ∆0 is an initial object of ∆op. Consequently, there exists a functor T :
∆1 × N(∆)op → N(∆)op, which is a natural transformation from the constant functor taking the value ∆0

to the identity functor. Composition with T induces a functor

X∆ → Fun(∆1,X)∆.

Restricting to group objects, we get a functor s : Grp(X)→ Grp(X∗). It is clear that F ◦ s is the identity.
We observe that if X has a zero object, then f is an equivalence of ∞-categories (Lemma 7.2.2.9). It

follows immediately that F is an equivalence of ∞-categories. Since s is a right inverse to F , we conclude
that s is an equivalence of ∞-categories as well.

To complete the proof in the general case, it will suffice to show that the composition s◦F is an equivalence
of ∞-categories. To prove this, we set Y = X∗, and let F ′ : Grp(Y∗) → Grp(X∗) and s′ : Grp(Y) → Grp(Y∗)
be defined as above. We then have a commutative diagram

Grp(Y) F //

s′

��

Grp(X)

s

��
Grp(Y∗)

F ′ // Grp(X∗)

so that s ◦ F = F ′ ◦ s′. Lemma 7.2.2.9 implies that Y has a zero object, so that F ′ and s′ are equivalences
of ∞-categories. Therefore F ′ ◦ s′ = s ◦ F is an equivalence of ∞-categories, and the proof is complete.

The following Proposition guarantees a good supply of Eilenberg-MacLane objects in an ∞-topos X.

Lemma 7.2.2.11. Let X be an ∞-topos containing a final object 1X and let n ≥ 1. Let p denote the
composition

Fun(∆1,X) Č→ X∆+ → X∆

which associates to each morphism U → X the underlying groupoid of its Čech nerve. Then:

(1) Let X′ denote the full subcategory of Fun(∆1,X) consisting of connected pointed objects of X. Then
the restriction of p induces an equivalence of ∞-categories from X′ to the ∞-category Grp(X).

(2) The essential image of p|EMn(X) coincides with the essential image of the composition

Grp(EMn−1(X)) ⊆ Grp(X∗)→ Grp(X).

Proof. Let X′′ be the full subcategory of Fun(∆1,X) spanned by the effective epimorphisms u : U → X.
Since X is an ∞-topos, p induces an equivalence from X′′ to the ∞-category of groupoid objects of X.
Consequently, to prove (1), it will suffice to show that if u : 1X → X is a morphism in X and 1X is a final
object, then u is an effective epimorphism if and only if X is 0-connected. We note that X is 0-connected if
and only if the map τ≤0(u) : τ≤01X → τ≤0X is an isomorphism in the ordinary topos Disc(X). According
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to Proposition 7.2.1.21, u is an effective epimorphism if and only if τ≤0(u) is an effective epimorphism. We
now observe that in any ordinary category C, an effective epimorphism u′ : 1C → X ′ whose source is a final
object of C is automatically an isomorphism, since the equivalence relation 1C×X′ 1C ⊆ 1C×1C automatically
consists of the whole of 1C × 1C ' 1C.

To prove (2), we consider an augmented simplicial object X• of X which is a Čech nerve, having the
property that X0 is a final object of X. We wish to show that the pointed object X0 → X−1 belongs to
EMn(X) if and only if each Xk is (n−1)-truncated and (n−2)-connected, for k ≥ 0. We conclude by making
the following observations:

(a) Since Xk is equivalent to a k-fold product of copies of X1, the objects Xk are (n − 1)-truncated
((n− 2)-connected) for all k ≥ 0 if and only if X1 is (n− 1)-truncated ((n− 2)-connected).

(b) We have a pullback diagram

X1
f //

��

X0

g

��
X0

g // X−1.

The object X1 is (n − 1)-truncated if and only if f is (n − 1)-truncated. Since g is an effective
epimorphism, f is (n− 1)-truncated if and only if g is (n− 1)-truncated (Proposition 6.2.3.17). Using
the long exact sequence of Remark 6.5.1.5, we conclude that this is equivalent to the vanishing of
g∗πkX−1 for k > n. Since g is an effective epimorphism, this is equivalent to the vanishing of πkX−1

for k > n; in other words, to the requirement that X−1 is n-truncated.

(c) The object X1 is (n−2)-connected if and only if f is (n−2)-connected. Arguing as above, we conclude
that f is (n− 2)-connected if and only if g is (n− 2)-connected (Proposition 6.5.1.16). Using the long
exact sequence of Remark 6.5.1.5, this is equivalent to the vanishing of the homotopy sheaf g∗πkX−1

for k < n. Since g is an effective epimorphism, this is equivalent to the vanishing of πkX−1 for k < n;
in other words, to the condition that X−1 is (n− 1)-truncated.

Proposition 7.2.2.12. Let X be an∞-topos and n ≥ 0 a nonnegative integer, and let πn : X∗ → N(Disc(X))
denote the associated homotopy group functor.

Then:

(1) If n = 0, then πn determines an equivalence from the∞-category EM0(X) to the (nerve of the) category
of pointed objects of Disc(X).

(2) If n = 1, then πn determines an equivalence from the∞-category EM1(X) to the (nerve of the) category
of group objects of Disc(X).

(3) If n ≥ 2, then πn determines an equivalence from the∞-category EMn(X) to the (nerve of the) category
of commutative group objects of Disc(X).

Proof. We use induction on n. The case n = 0 follows immediately from the definitions. The case n = 1
follow from the case n = 0, by combining Lemmas 7.2.2.11 and 7.2.2.10. If n = 2, we apply the inductive
hypothesis, together with Lemma 7.2.2.11 and the observation that if C is an ordinary category which admits
finite products, then Grp(Grp(C)) is equivalent to category Ab(C) of commutative group objects of C. The
argument in the case n > 2 makes use of the inductive hypothesis, Lemma 7.2.2.11, and the observation that
Grp(Ab(C)) is equivalent to Ab(C) for any ordinary category C which admits finite products.
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Fix an ∞-topos X, a final object 1X ∈ X, and an integer n ≥ 0. According to Proposition 7.2.2.12, there
exists a homotopy inverse to the functor π. We will denote this functor by

A 7→ (p : 1X → K(A,n))

where A is a pointed object of the topos Disc(X) if n = 0, a group object if n = 1, and an abelian group
object if n ≥ 2.

Remark 7.2.2.13. The functor A 7→ K(A,n) preserves finite products. This is clear, since the class of
Eilenberg-MacLane objects is stable under finite products (Remark 7.2.2.3) and the homotopy inverse functor
π commutes with finite products (since homotopy groups are constructed using pullback and truncation
functors, each of which commutes with finite products).

Definition 7.2.2.14. Let X be an ∞-topos, n ≥ 0 an integer, and A an abelian group object of the topos
Disc(X). We define

Hn(X;A) = π0 MapX(1X,K(A,n));

we refer to Hn(X;A) as the nth cohomology group of X with coefficients in A.

Remark 7.2.2.15. It is clear that we can also make sense of H1(X;G) when G is a sheaf of nonabelian
groups, or H0(X;E) when E is only a sheaf of (pointed) sets.

Remark 7.2.2.16. It is clear from the definition that Hn(X;A) is functorial in A. Moreover, this functor
commutes with finite products by Remark 7.2.2.13 (and the fact that products in X are products in the
homotopy category hX). If A is an abelian group, then the multiplication map A × A → A induces a
(commutative) group structure on Hn(X;A). This justifies our terminology in referring to Hn(X;A) as a
cohomology group.

Remark 7.2.2.17. Let C be a small category equipped with a Grothendieck topology, and let X be the ∞-
topos Shv(NC) of sheaves of spaces on C, so that the underlying topos Disc(X) is equivalent to the category
of sheaves of sets on C. Let A be a sheaf of abelian groups on C. Then Hn(X;A) may be identified with the
nth cohomology group of Disc(X) with coefficients in A, in the sense of ordinary sheaf theory. To see this,
choose a resolution

A→ I0 → I1 → . . .→ In−1 → J

of A by abelian group objects of Disc(X), where each Ik is injective. The complex

I0 → . . .→ J

may be identified, via the Dold-Kan correspondence, with a simplicial abelian group object C• of Disc(X).
Regard C• as a presheaf on C with values in Set∆. Then:

(1) The induced presheaf F : N(C)op → S belongs to X = Shv(N(C)) ⊆ P(N(C)) (this uses the injectivity
of the objects Ik) and is equipped with a canonical basepoint p : 1X → F .

(2) The pointed object p : 1X → F is an Eilenberg-MacLane object of X, and there is a canonical identifi-
cation A ' p∗(πnF ). We may therefore identify F with K(A,n).

(3) The set of homotopy classes of maps from 1X to F in X may be identified with the cokernel of the map
Γ(Disc(X); In−1)→ Γ(Disc(X); J), which is also the nth cohomology group of Disc(X) with coefficients
in A in the sense of classical sheaf theory.

For further discussion of this point, we refer the reader to [28].

We are ready to define the cohomological dimension of an ∞-topos.

Definition 7.2.2.18. Let X be an ∞-topos. We will say that X has cohomological dimension ≤ n if, for
any sheaf of abelian groups A on X, the cohomology group Hk(X, A) vanishes for k > n.
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Remark 7.2.2.19. For small values of n, some authors prefer to require a stronger vanishing condition which
applies also when A is a non-abelian coefficient system. The appropriate definition requires the vanishing of
cohomology for coefficient systems which are defined only up to inner automorphisms, as in [20]. With the
appropriate modifications, Theorem 7.2.2.29 below remains valid for n < 2.

The cohomological dimension of an ∞-topos X is closely related to the homotopy dimension of X. If X

has homotopy dimension ≤ n, then

Hm(X;A) = π0 MapX(1X,K(A,m)) = ∗

for m > n by Lemma 7.2.1.6, so that X is also of cohomological dimension ≤ n. We will establish a partial
converse to this result.

Definition 7.2.2.20. Let X be an ∞-topos. An n-gerb on X is an object X ∈ X which is (n− 1)-connected
and n-truncated.

Let X be an ∞-topos containing an n-gerb X, and let f : X/X → X denote the associated geometric
morphism. If X is equipped with a base point p : 1X → X, then X is canonically determined (as a pointed
object) by p∗πnX, by Proposition 7.2.2.12. We now wish to consider the case in which X is not pointed. If
n ≥ 2, then πnX can be regarded as an abelian group object in the topos Disc(X/X). Proposition 7.2.1.20
implies that πnX ' f∗A, where A is a sheaf of abelian groups on X, which is determined up to canonical
isomorphism. (In concrete terms, this boils down the observation that the 1-connectivity of X allows us to
extract higher homotopy groups without specifying a basepoint on X. ) In this situation, we will say that
X is banded by A.

Remark 7.2.2.21. For n < 2, the situation is more complicated. We refer the reader to [20] for a discussion.

Our next goal is to show that the cohomology groups of an ∞-topos X can be interpreted as classifying
equivalence classes of n-gerbs over X. Before we can prove this, we need to establish some terminology.

Notation 7.2.2.22. Let X be an ∞-topos. We define a category Band(X) as follows:

(1) The objects of Band(X) are pairs (U,A), where U is an object of X and A is an abelian group object
of the homotopy category Disc(X/U ).

(2) Morphisms from (U,A) to (U ′, A′) are given by pairs (η, f), where η ∈ π0 MapX(U,U ′) and f : A→ A′

is a map which induces an isomorphism A ' η∗A′ of abelian group objects. Composition of morphisms
is defined in the obvious way.

For n ≥ 2, let Gerbn(X) denote the subcategory of Fun(∆1,X) spanned by those objects f : X → S
which are n-gerbs in X/S and those morphisms which correspond to pullback diagrams

X ′ //

f

��

X

f

��
S′ // S.

Remark 7.2.2.23. Since the class of morphisms f : X → S which belong to X∆1
is stable under pullback,

we can apply Corollary 2.3.7.12 (which asserts that p : Fun(∆1,X)→ Fun({1},X) is a Cartesian fibration),
Lemma 6.1.1.1 (which characterizes the p-Cartesian morphisms of Fun(∆1,X)), and Corollary 2.3.2.8 to
deduce that the projection Gerbn(X)→ X is a right fibration.

If f : X → U belongs to Gerbn(X), then there exists an abelian group object A of Disc(X/U ) such that
X is banded by A. The construction

(f : X → U) 7→ (U,A)
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determines a functor
χ : Gerbn(X)→ N(Band(X)).

Let A be an abelian group object of Disc(X). We let BandA(X) be the category whose objects are triples
(X,AX , φ), where X ∈ hX, AX is an abelian group object of Disc(X/X), and φ is a map AX → A which
induces an isomorphism AX ' A×X of abelian group objects of Disc(X/X). We have forgetful functors

BandA(X)
φ→ Band(X)→ hX,

both of which are Grothendieck fibrations and whose composition is an equivalence of categories. We define
GerbAn (X) by the following pullback diagram:

GerbAn (X) //

��

Gerbn(X)

χ

��
N(BandA(X)) // N(Band(X)).

Note that since φ is a Grothendieck fibration, Nφ is a Cartesian fibration (Remark 2.3.2.2), so that the
diagram above is homotopy Cartesian ( Proposition 3.3.2.3 ). We will refer to GerbAn (X) as the sheaf of gerbs
over X banded by A.

More informally: an object of GerbAn (X) is an n-gerb f : X → U in X/U together with an isomorphism
φX : πnX ' X × A of abelian group objects of Disc(X/X). Morphisms in GerbAn are given by pullback
squares

X ′

��

f // X

��
U ′ // U

such that the associated diagram of abelian group objects of Disc(X/X′)

f∗(πnX)
f∗φX

%%LLLLLLLLLL

πnX
′

πnf
99ttttttttt φX′ // A×X ′

is commutative.

Lemma 7.2.2.24. Let X be an ∞-topos, n ≥ 1, and A an abelian group object in the topos Disc(X). Let X
be an n-gerb in X equipped with a fixed isomorphism φ : πnX ' X×A of abelian group objects of Disc(X/X),
and let u : 1X → K(A,n) be an Eilenberg-MacLane object of X classified by A. Let MapφX(K(A,n), X) be the
summand of MapX(K(A,n), X) corresponding to those maps f : K(A,n)→ X for which the composition

A×K(A,n) ' πnK(A,n)→ f∗(πnX)
f∗φ→ A×K(A,n)

is the identity ( in the category of abelian group objects of X/K(A,n) ). Then composition with u induces a
homotopy equivalence

θφ : MapφX(K(A,n), X)→ MapX(1X, X).

Proof. Let θ : MapX(K(A,n), X)→ MapX(1X, X), and let f : 1X → X be any map (which we may identify
with an Eilenberg-MacLane object of X. The homotopy fiber of θ over the point represented by f can be
identified with MapX1X/

(u, f). In view of the equivalence between X1X/ and X∗, we can identify this mapping
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space with MapX∗
(u, f). Applying Proposition 7.2.2.12, we deduce that the homotopy fiber of θ is equivalent

to the (discrete) set of all endomorphisms v : A→ A (in the category of group objects of Disc(X)). We now
observe that the homotopy fiber of θφ over f is a summand of the homotopy fiber of θ over f , corresponding
to those components for which v = idA. It follows that the homotopy fibers of θφ are contractible, so that
θφ is a homotopy equivalence as desired.

Lemma 7.2.2.25. Let X be an ∞-topos, n ≥ 1, and A an abelian group object of Disc(X). Let f :
K(A,n) × X → X be a trivial n-gerb over X banded by A, and g : Ỹ → Y any n-gerb over Y banded
by A. Then there is a canonical homotopy equivalence

MapGerbA
n
(f, g) ' MapX(X, Ỹ ).

Proof. Choose a morphism α : idX → f in X/X as depicted below:

X

��

s // X ×K(A,n)

f

��
X

idX // X

which exhibits f as an Eilenberg-MacLane object of X/X . We observe that evaluation at {0} ⊆ ∆1 induces
a trivial fibration

HomL
X∆1 (idX , g)→ HomL

X(X, Ỹ ).

Consequently, we may identify MapX(X, Ỹ ) with the Kan complex

Z = Fun(∆1,X)idX / ×Fun(∆1,X) {g}.

Similarly, the trivial fibration Fun(∆1,X)α/ → Fun(∆1,X)f/ allows us to identify MapGerbn
(f, g) with the

Kan complex
Z ′ = Fun(∆1,X)α/ ×Fun(∆1,X) {g},

and MapGerbn
(f, g) with the summand Z ′′ of Z ′ corresponding to those maps which induce the identity

isomorphism of A× (K(A,n)×X) (in the category of group objects of Disc(X/K(A,n)×X)). We now observe
that evaluation at {1} ⊆ ∆1 gives a commutative diagram

Z ′′ //

ψ′′

&&LLLLLLLLLL Z ′

ψ′

��

// Z

ψ

��
XidX /×X{Y } // XX/×X{Y }

.

where the vertical maps are Kan fibrations. If we fix a pullback square

X̃ //

g′

��

Ỹ

��
X

h // Y,

then we can identify ψ−1{h} with MapX/X (idX , g′), ψ′
−1{s0h} with MapX/X (X ×K(A,n), g′), ψ′)−1{s0h}

with the summand of MapX/X (X ×K(A,n), g′) corresponding to those maps which induce the identity on
A × (K(A,n) × X) (in the category of group objects of Disc(X/K(A,n)×X)), and θ with the map given by
composition with s. Invoking Lemma 7.2.2.24 in the∞-topos X/X , we deduce that the map θ in the diagram

Z ′′
θ //

ψ′′

��

Z

ψ

��
XidX /×X{Y } // XX/×X{Y }

489



induces homotopy equivalences from the fibers of ψ′′ to the fibers of ψ. Since the lower horizontal map is a
trivial fibration of simplicial sets, we conclude that θ is itself a homotopy equivalence, as desired.

Theorem 7.2.2.26. Let X be an ∞-topos, n ≥ 1, and A an abelian group object of Disc(X). Then:

(1) The composite map

θ : GerbAn (X)→ Gerbn(X) ⊆ Fun(∆1,X)→ Fun({1},X) ' X

is a right fibration.

(2) The right fibration θ is representable by an Eilenberg-MacLane object K(A,n+ 1).

Proof. For each object X ∈ X, we let AX denote the projection A × X → X, viewed as an abelian group
object of Disc(X/X). The functor φ : BandA(X)→ Band(X) is a fibration in groupoids, so that Nφ is a right
fibration (Proposition 2.1.1.2). The functor θ admits a factorization

GerbAn (X) θ′→ Gerbn(X) θ
′′

→ X

where θ′′ is a right fibration (Remark 7.2.2.23) and θ′ is a pullback of Nφ, and therefore also a right fibration.
It follows that θ, being a composition of right fibrations, is a right fibration; this proves (1).

To prove (2), we consider an Eilenberg-MacLane object u : 1X → K(A,n+1). Since K(A,n+1) is (n+1)-
truncated and 1X is n-truncated (in fact, (−2)-truncated), Lemma 5.5.5.14 implies that u is n-truncated.
The long exact sequence

. . .→ u∗πi+1K(A,n+ 1)→ πiu→ πi(1X)→ i∗πi(K(A,n+ 1))→ πi−1(u)→ . . .

of Remark 6.5.1.5 shows that u is (n − 1)-connected, and provides an isomorphism φ : A ' πn(u) in the
category of group objects of Disc(X), so that we may view the pair (u, φ) as an object of GerbAn (X). Since
1X is a final object of X, Lemma 7.2.2.25 implies that (u, φ) is a final object of GerbAn (X), so that the right
fibration θ is representable by θ(u, φ) = K(A,n+ 1).

Corollary 7.2.2.27. Let X be an ∞-topos, n ≥ 2, and A an abelian group object of Disc(X). There is a
canonical bijection of Hn+1(X;A) with the set of equivalence classes of n-gerbs on X banded by A.

Remark 7.2.2.28. Under the correspondence of Proposition 7.2.2.27, an n-gerb X on X admits a global
section 1X → X if and only if the associated cohomology class in Hn+1(X;A) vanishes.

Theorem 7.2.2.29. Let X be an ∞-topos and n ≥ 2. Then X has cohomological dimension ≤ n if and only
if it satisfies the following condition: any (n− 1)-connected, truncated object of X admits a global section.

Proof. Suppose that X has the property that every (n − 1)-connected, truncated object X ∈ X admits a
global section. As in the proof of Lemma 7.2.1.6, we deduce that for any truncated, n-connected object
X ∈ X, the space of global sections MapX(1, X) is connected. Let k > n, and let G be a sheaf of abelian
groups on X. Then K(G, k) is n-connected, so that Hk(X, G) = ∗. Thus X has cohomological dimension
≤ n.

For the converse, let us assume that X has cohomological dimension ≤ n and let X denote an (n − 1)-
connected, k-truncated object of X. We will show that X admits a global section by descending induction
on k. If k ≤ n − 1, then X is a final object of X, so there is nothing to prove. In the general case, choose
a truncation X → τ≤k−1X; we may assume by the inductive hypothesis that τ≤k−1X has a global section
s : 1→ τ≤k−1X. Form a pullback square

X ′ //

��

X

��
1

s // τ≤k−1X.

490



It now suffices to prove that X ′ has a global section. We note that X ′ is (k−1)-connected, where k ≥ n ≥ 2.
It follows that X ′ is a k-gerb on X; suppose it is banded by an abelian group object A ∈ Disc(X). According
to Corollary 7.2.2.27, X ′ is classified up to equivalence by an element in Hk+1(X, A), which vanishes in virtue
of the fact that k + 1 > n and the cohomological dimension of X is ≤ n. Consequently, X ′ is equivalent to
K(A, k) and therefore admits a global section.

Corollary 7.2.2.30. Let X be an ∞-topos. If X has homotopy dimension ≤ n, then X has cohomological
dimension ≤ n. The converse holds provided that X has finite homotopy dimension and n ≥ 2.

Proof. Only the last claim requires proof. Suppose that X has cohomological dimension ≤ n and homotopy
dimension ≤ k. We must show that every (n − 1)-connected object X of X has a global section. Choose a
truncation X → τ≤k−1X. Then τ≤k−1X is truncated and (n − 1)-connected, so it admits a global section
by Theorem 7.2.2.29. Form a pullback square

X ′ //

��

X

��
1 // τ≤k−1X.

It now suffices to prove that X ′ has a global section. But X ′ is (k− 1)-connected, and therefore has a global
section in virtue of the assumption that X has homotopy dimension ≤ k.

In the next two sections, we will examine classical conditions which give bounds on the cohomological
dimension of a space X, and prove that they also give bounds on the homotopy dimension of X. We do not
know if every ∞-topos of finite cohomological dimension also has finite homotopy dimension (though this
seems unlikely). In particular, we do not know if the ∞-topos of sheaves on BẐ, the classifying topos of
the profinite completion of Z, has finite homotopy dimension. This topos is known to have cohomological
dimension 2; see for example [44].

7.2.3 Covering Dimension

In this section, we will review the classical theory of covering dimension for paracompact spaces, and then
show that the covering dimension of a paracompact space X coincides with its homotopy dimension.

Definition 7.2.3.1. A paracompact topological space X has covering dimension ≤ n if the following con-
dition is satisfied: for any open covering {Uα} of X, there exists an open refinement {Vα} of X such that
each intersection Vα0 ∩ . . . ∩ Vαn+1 = ∅ provided the αi are pairwise distinct.

Remark 7.2.3.2. When X is paracompact, the condition of Definition 7.2.3.1 is equivalent to the (a priori
weaker) requirement that such a refinement exist whenever {Uα} is a finite covering of X. This weaker
condition gives a good notion whenever X is a normal topological space. Moreover, if X is normal, then
the covering dimension of X (by this second definition) coincides with the covering dimension of the Stone-
Čech compactification of X. Thus, the dimension theory of normal spaces is controlled by the dimension
theory of compact Hausdorff spaces.

Remark 7.2.3.3. Suppose that X is a compact Hausdorff space, which is written as a filtered inverse limit of
compact Hausdorff spaces {Xα}, each of which has dimension ≤ n. Then X has dimension ≤ n. Conversely,
any compact Hausdorff space of dimension ≤ n can be written as a filtered inverse limit of finite simplicial
complexes having dimension ≤ n. Thus, the dimension theory of compact Hausdorff spaces is controlled by
the (completely straightforward) dimension theory of finite simplicial complexes.

Remark 7.2.3.4. There are other approaches to classical dimension theory. For example, a topological
space X is said to have small ( large ) inductive dimension ≤ n if every point of X (every closed subset of
X) has arbitrarily small open neighborhoods U such that ∂ U has small inductive dimension ≤ n− 1. These
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notions are well-behaved for separable metric spaces, where they coincide with the covering dimension (and
with each other). In general, the covering dimension has better formal properties.

Our goal in this section is to prove that the covering dimension of a paracompact topological space X
coincides with the homotopy dimension of Shv(X). First, we need a technical lemma.

Lemma 7.2.3.5. Let X be a paracompact space, k ≥ 0, {Uα}α∈A be a covering of X. Suppose that for
every A0 ⊆ A of size k+1, we are given a covering {Vβ}β∈B(A0) of the intersection UA0 =

⋂
α∈A0

Uα. Then
there exists a covering {Wα}α∈ eA of X and a map π : Ã→ A with the following properties:

(1) For α̃ ∈ Ã with π(α̃) = α, we have Weα ⊆ Uα.
(2) Suppose that α̃0, . . . , α̃k is a collection of elements of Ã, with π(α̃i) = αi. Suppose further that A0 =
{α0, . . . , αk} has cardinality (k + 1) (in other words, the αi are all disjoint from one another). Then
there exists β ∈ B(A0) such that Weα0 ∩ . . . ∩Weαk

⊆ Vβ.

Proof. Since X is paracompact, we may find a locally finite covering {U ′α}α∈A of X, such that the each
closure U ′α is contained in Uα. Let S denote the set of all subsets A0 ⊆ A having size k+ 1. For A0 ∈ S, let
K(A0) =

⋂
α∈A0

Uα. Now set

Ã = {(α,A0, β) : α ∈ A0 ∈ S, β ∈ B(A0)} ∪A.

For α̃ = (α,A0, β) ∈ Ã, we set π(α̃) = α and

Weα = (U ′α −
⋃

α∈A′0∈S

K(A′0)) ∪ (Vβ ∩ U ′α).

If α ∈ A ⊆ Ã, we let π(α) = α and Wα = U ′α −
⋃
α∈A0∈S K(A0). The local finiteness of the cover {U ′α}

ensures that each Weα is an open set. It is now easy to check that the covering {Weα}eα∈ eA has the desired
properties.

Theorem 7.2.3.6. Let X be a paracompact topological space of covering dimension ≤ n. Then the ∞-topos
Shv(X) of sheaves on X has homotopy dimension ≤ n.

Proof. We make use of the results and notations of §7.1. Let B be a basis for X satisfying the conclusions
of Lemma 7.1.1.1, and fix a linear ordering on B. We may identify Shv(X) with the simplicial nerve of the
category of all functors F : Bop → Kan which have the property that for any U ⊆ B with U =

⋃
V ∈U V , the

natural map F (U)→ F (U) is a homotopy equivalence.
Suppose that F : Bop → Set∆ represents an (n− 1)-connected sheaf; we wish to show that the simplicial

set F (X) is nonempty. It suffices to prove that F (U) is nonempty, for some covering U of X; in other words,
it suffices to produce a map NU → F . The idea is that since X has finite covering dimension, we can choose
arbitrarily fine covers U such that NU is n-dimensional; that is, equal to its n-skeleton.

For every simplicial set K, let K(i) denote the i-skeleton of K (the union of all nondegenerate simplices
of K of dimension ≤ i). If G : Bop → Set∆ is a simplicial presheaf, we let G(i) denote the simplicial presheaf
given by the formula

G(i)(U) = (G(U))(i).

We will prove the following statement by induction on i, −1 ≤ i ≤ n:

• There exists an open cover Ui ⊆ B of X and a map ηi : N (i)
Ui
→ F .

Assume that this statement holds for i = n. Passing to a refinement, we may assume that the cover Un
has the property that no more than n + 1 of its members intersect (this is the step where we shall use the
assumption on the covering dimension of X). It follows that N (n)

Un
= NUn , and the proof will be complete.
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To begin the induction in the case i = −1, we let U−1 = {X}; the (−1)-skeleton of NU−1 is empty, so
that η−1 exists (and is unique).

Now suppose that Ui = {Uα}α∈A and ηi have been constructed, i < n. Let A0 ⊆ A have cardinality
(i+ 2), and set U(A0) =

⋂
α∈A0

Uα; then A0 determines an n-simplex of NUi
(U(A0)), so that ηi restricts to

give a map
ηi,A0 : ∂∆i+1 → F (U(A0)).

By assumption, F is (n− 1)-connected; it follows that there is an open covering

{Vβ}β∈B(A0)

of U(A0), such for each Vβ there is a commutative diagram

∂∆i+1
� _

��

// F (U(A0))

��
∆i+1 // F (Vβ).

We apply Lemma 7.2.3.5 to this data, to obtain an new open cover Ui+1 = {Weα}eα∈ eA which refines
{Uα}α∈A. Refining the cover further if necessary, we may assume that each of its members belongs to B.
By functoriality, we obtain a map

N
(i)
Ui+1

→ F.

To complete the proof, it will suffice to extend f to the (i+1)-skeleton of the nerve of {Wα}α∈ eA. Let Ã0 ⊆ Ã
have cardinality i+ 2, and let W (Ã0) =

⋂eα∈fA0
Weα; then we must solve a lifting problem

∂∆i+1
� _

��

// F (W )

∆i+1.

::u
u

u
u

u

Let π : Ã → A denote the map of Lemma 7.2.3.5. If A0 = π(Ã0) has cardinality smaller than i + 2, then
there is a canonical extension, given by applying π and using ηi. Otherwise, Lemma 7.2.3.5 guarantees that
W (Ã0) ⊆ Vβ for some β ∈ B(A0), so that the desired extension exists by construction.

Corollary 7.2.3.7. Let X be a paracompact topological space. The following conditions are equivalent:

(1) The covering dimension of X is ≤ n.

(2) The homotopy dimension of Shv(X) is ≤ n.

(3) For every closed subset A ⊆ X, every m ≥ n, and every continuous map f0 : A → Sm, there exists
f : X → Sm extending f0.

Proof. The implication (1) ⇒ (2) is Theorem 7.2.3.6. The equivalence (1) ⇔ (3) follows from classical
dimension theory (see, for example, [18]). We will complete the proof by showing that (2) ⇒ (3). Let A
be a closed subset of X, m ≥ n, and f0 : A → Sm a continuous map. Let B be a basis for the topology
of X satisfying the conditions of Lemma 7.1.1.1. We define a simplicial presheaf F : B → Kan, so that an
n-simplex of F (U) is a map f rendering the diagram

(U ∩A)× |∆n| //

��

A

f0

��
U × |∆n|

f //// Sm
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commutative. To prove (3), it will suffice to show that F (X) is nonempty. In virtue of the assumption that
Shv(X) has homotopy dimension ≤ n, it will suffice to show that F is an (n− 1)-connected sheaf on X.

We first show that F is a sheaf. Choose a linear ordering on B. We must show that for every open
covering U of U ∈ B, the natural map F(U)→ F(U) is a homotopy equivalence. The proof is similar to that
of Proposition 7.1.3.14. Let π : |NU|X → U be the projection; then we may identify F (U) with the simplicial
set parametrizing continuous maps |NU|X → Sm, whose restriction to π−1(A) is given by f0. The desired
equivalence now follows from the fact that |NU|X is fiberwise homotopy equivalent to U (Lemma 7.1.3.13).

Now we claim that F is (n − 1)-connected as an object of Shv(X). In other words, we must show that
for any U ∈ B, any k ≤ n, and any map g : ∂∆k → F (U), there is an open covering {Uα} of U and a family
of commutative diagrams

∂∆k
� _

��

g // F (U)

��
∆k

gα // F (Uα).

We may identify g with a continuous map

g : Sk−1 × U → Sm

such that g(z, a) = f0(a) for a ∈ A. Choose a point x ∈ U . Consider the map g|Sk−1 × {x}. Since
k− 1 < n ≤ m, this map is nullhomotopic; therefore it admits an extension g′x : Dk ×{x} → Sm. Moreover,
if x ∈ A, then we may choose g′x to be the constant map with value f0(x). Amalgamating g, g′x, and f0, we
obtain a continuous map

g′0 : (Sk−1 × U) ∪ (Dk × (A ∪ {x}))→ Sm.

Since (Sk−1×U)∪ (Dk× (A∪{x})) is a closed subset of the paracompact space U ×Dk, and the sphere Sm

is an absolute neighborhood retract, the map g′0 extends continuously to a map g′′ : W → Sm, where W is
an open neighborhood of (Sk−1×U)∪ (Dk × (A∪{x})) in U ×Dk. The compactness of Dk implies that W
contains Dk × Ux, where Ux ⊆ U is an open neighborhood of x. Shrinking Ux if necessary, we may suppose
that Ux belongs to B; these open sets Ux form an open cover of U , with the required extension ∆k → F (Ux)
supplied by the map g′′|Dk × Ux.

7.2.4 Heyting Dimension

For the purposes of studying paracompact topological spaces, Definition 7.2.3.1 gives a perfectly adequate
theory of dimension. However, there are other situations in which Definition 7.2.3.1 is not really appropriate.
For example, in algebraic geometry one often considers the Zariski topology on an algebraic variety X. This
topology is generally not Hausdorff, and is typically of infinite covering dimension. In this setting, there
is a better dimension theory: the theory of Krull dimension. In this section, we will introduce a mild
generalization of the theory of Krull dimension, which we will call the Heyting dimension of a topological
space X. We will then study the relationship between the Heyting dimension of X and the homotopy
dimension of the associated ∞-topos Shv(X).

Recall that a topological space X is said to be Noetherian if the collection of closed subsets of X satisfies
the descending chain condition. A closed subset K ⊆ X is said to be irreducible if it cannot be written as
a finite union of proper closed subsets of K (in particular, the empty set is not irreducible, since it can be
written as an empty union). The collection of irreducible closed subsets of X forms a well-founded partially
ordered set, therefore it has a unique ordinal rank function rk, which may be characterized as follows:

• If K is an irreducible closed subset of X, then rk(K) is the smallest ordinal which is larger than rk(K ′),
for all proper irreducible closed subsets K ′ ⊂ K.

We call rk(K) the Krull dimension of K; the Krull dimension of X is the supremum of rk(K), as K
ranges over all irreducible closed subsets of X.
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We next introduce a generalization of the Krull dimension to a suitable class of non-Noetherian spaces.
We shall say that a topological space X is a Heyting space if satisfies the following conditions:

(1) The compact open subsets of X form a basis for the topology of X.

(2) A finite intersection of compact open subsets of X is compact (in particular, X is compact).

(3) If U and V are compact open subsets of X, then the interior of U ∪ (X − V ) is compact.

Remark 7.2.4.1. Recall that a Heyting algebra is a distributive lattice L with the property that for any
x, y ∈ L, there exists a maximal element z with the property that x∧ z ⊆ y. It follows immediately from our
definition that the lattice of compact open subsets of a Heyting space forms a Heyting algebra. Conversely,
given any Heyting algebra one may form its spectrum, which is a Heyting space. This sets up a duality
between the category of sober Heyting spaces (Heyting spaces in which every irreducible closed subset has a
unique generic point) and the category of Heyting algebras. This duality is a special case of a more general
duality between coherent topological spaces and distributive lattices. We refer the reader to [29] for further
details.

Remark 7.2.4.2. Suppose that X is a Noetherian topological space. Then X is a Heyting space, since
every open subset of X is compact.

Remark 7.2.4.3. If X is a Heyting space and U ⊆ X is a compact open subset, then X and X − U are
also Heyting spaces. In this case, we say that X − U is a cocompact closed subset of X.

We next define the dimension of a Heyting space. The definition is recursive. Let α be an ordinal.
A Heyting space X has Heyting dimension ≤ α if and only if, for any compact open subset U ⊆ X, the
boundary of U has Heyting dimension < α (we note that the boundary of U is also a Heyting space); a
Heyting space has Heyting dimension < 0 if and only if it is empty.

Remark 7.2.4.4. A Heyting space has dimension ≤ 0 if and only if it is Hausdorff. The Heyting spaces of
dimension ≤ 0 are precisely the compact, totally disconnected Hausdorff spaces. In particular, they are also
paracompact spaces and their Heyting dimension coincides with their covering dimension.

Proposition 7.2.4.5. (1) Let X be a Heyting space of dimension ≤ α. Then for any compact open subset
U ⊆ X, both U and X − U have Heyting dimension ≤ α.

(2) Let X be a Heyting space which is a union of finitely many compact open subsets Uα of dimension ≤ α.
Then X has dimension ≤ α.

(3) Let X be a Heyting space which is a union of finitely many cocompact closed subsets Kα of Heyting
dimension ≤ α. Then X has Heyting dimension ≤ α.

Proof. All three assertions are proven by induction on α. The first two are easy, so we restrict our attention
to (3). Let U be a compact open subset of X, having boundary B. Then U ∩Kα is a compact open subset of
Kα, so that the boundary Bα of U ∩Kα in Kα has dimension ≤ α. We see immediately that Bα ⊆ B ∩Kα,
so that

⋃
Bα ⊆ B. Conversely, if b /∈

⋃
Bα then, for every β such that b ∈ Kβ , there exists a neighborhood

Vβ containing b such that Vβ ∩Kβ ∩U = ∅. Let V be the intersection of the Vβ , and let W = V −
⋃
b/∈Kγ

Kγ .
Then by construction, b ∈ W and W ∩ U = ∅, so that b ∈ B. Consequently, B =

⋃
Bα. Each Bα is closed

in Kα, thus in X and also in B. The hypothesis implies that Bα has dimension < α. Thus the inductive
hypothesis guarantees that B has dimension < α, as desired.

Remark 7.2.4.6. It is not necessarily true that a Heyting space which is a union of finitely many locally
closed subsets of dimension ≤ α is also of dimension ≤ α. For example, a topological space with 2 points
and a nondiscrete, nontrivial topology has Heyting dimension 1, but is a union of two locally closed subsets
of Heyting dimension 0.
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Proposition 7.2.4.7. If X is a Noetherian topological space, then the Krull dimension of X coincides with
the Heyting dimension of X.

Proof. We first prove, by induction on α, that if the Krull dimension of a Noetherian space X is ≤ α, then
the Heyting dimension of X is ≤ α. Since X is Noetherian, it is a union of finitely many closed irreducible
subspaces, each of which automatically has Krull dimension ≤ α. Using Proposition 7.2.4.5, we may reduce
to the case where X is irreducible. Consider any open subset U ⊆ X, and let Y be its boundary. We must
show that Y has Heyting dimension ≤ α. Using Proposition 7.2.4.5 again, it suffices to prove this for each
irreducible component of Y . Now we simply apply the inductive hypothesis and the definition of the Krull
dimension.

For the reverse inequality, we again use induction on α. Assume that X has Heyting dimension ≤ α. To
show that X has Krull dimension ≤ α, we must show that every irreducible closed subset of X has Krull
dimension ≤ α. Without loss of generality we may assume that X is irreducible. Now, to show that X has
Krull dimension ≤ α, it will suffice to show that any proper closed subset K ⊆ X has Krull dimension < α.
By the inductive hypothesis, it will suffice to show that K has Heyting dimension < α. By the definition of
the Heyting dimension, it will suffice to show that K is the boundary of X −K. In other words, we must
show that X −K is dense in X. This follows immediately from the irreducibility of X.

We now prepare the way for our vanishing theorem. First, we introduce a modified notion of connectivity:

Definition 7.2.4.8. Let X be a Heyting space and k any integer. Let F ∈ Shv(V ) be a sheaf of spaces
on a compact open subset V ⊆ X. We will say that F is strongly k-connected if the following condition is
satisfied: for every compact open subset U ⊆ V and every map ζ : ∂∆m → F(U), there exists a cocompact
closed subset K ⊆ U such that K ⊆ X has Heyting dimension < m− 1− k, an open cover {Uα} of U −K,
and a collection of commutative diagrams

∂∆m
ζ //

� _

��

F(U)

��
∆m

ηα //// F(Uα).

Remark 7.2.4.9. There is a slight risk of confusion with the terminology of Definition 7.2.4.8. The condition
that a sheaf F on V ⊆ X be strongly k-connected depends not only on V and F, but also on X: this is
because the Heyting dimension of a cocompact closed subset K ⊆ U can increase when we take its closure
K in X.

Remark 7.2.4.10. Strong k-connectivity is an unstable analogue of the connectivity conditions on com-
plexes of sheaves, associated to the dual of the standard perversity. For a discussion of perverse sheaves in
the abelian context we refer the reader to [5].

Remark 7.2.4.11. It is clear from the definition that a strongly k-connected sheaf F on V ⊆ X is k-
connected. Conversely, suppose that X has Heyting dimension ≤ n and that F is k-connected, then F is
strongly (k − n)-connected (if ∂∆m+1 → F(U) is any map, then we may take K = U for m > n and K = ∅
for m ≤ n).

The strong k-connectivity of a sheaf F is, by definition, a local property. The key to our vanishing result
is that this is equivalent to an apparently stronger global property.

Lemma 7.2.4.12. Let X be a Heyting space, V a compact open subset of X, and F : U(V )op → Kan a
strongly k-connected sheaf on V . Let A ⊆ B be an inclusion of finite simplicial sets of dimension ≤ m, let
U ⊆ V , and let ζ : A→ F(U) be a map of simplicial sets.
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There exists a cocompact closed subset K ⊆ U whose closure K ⊆ X has Heyting dimension < m−1−k,
an open covering {Uα} of U −K, and a collection of commutative diagrams

A� _

��

ζ // F(U)

��
B

ηα // F(Uα).

Proof. Induct on the number of simplices of B which do not belong to A, and invoke Definition 7.2.4.8.

Lemma 7.2.4.13. Let X be a Heyting space, V a compact open subset of X, let F : U(V )op → Kan be a
sheaf on X, let η : ∂∆m → F(V ) be a map, and form a pullback square

F′ //

��

F∆m

��
∗ η //

F∂∆m

.

Suppose that F is strongly k-connected. Then F′ is strongly (k −m)-connected.

Proof. Unwinding the definitions, we must show that for every compact U ⊂ V and every map

ζ : (∂∆m ×∆n)
∐

∂∆m×∂∆n

(∆m × ∂∆n)→ F(U)

whose restriction ζ| ∂∆m×∆n is given by η, there exists a cocompact closed subset K ⊆ U such that K ⊆ X
has Heyting dimension < n+m− 1− k, an open covering {Uα} of U −K, and a collection of maps

ζα : ∆m ×∆n → F(Uα)

which extend ζ. This follows immediately from Lemma 7.2.4.12.

Theorem 7.2.4.14. Let X be a Heyting space of dimension ≤ n, let W ⊆ X be a compact open set, and
let F ∈ Shv(W ). The following conditions are equivalent:

(1) For any compact open sets U ⊆ V ⊆W and any commutative diagram

∂∆m
ζ //

� _

��

F(V )

��
∆m

η // F(U),

there exists a cocompact closed subset K ⊆ V −U such that K ⊆ X has dimension < m− 1− k and a
commutative diagram

∂∆m
ζ //

� _

��

F(V )

��
∆m

η′ // F(V −K),

such that the composition ∆m η′→ F(V −K)→ F(U) is homotopic to η relative to ∂∆m.
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(2) For any compact open sets V ⊆W and any map ζ : ∂∆m → F(V ), there exists a commutative diagram

∂∆m
ζ //

� _

��

F(V )

��
∆m

η′ // F(V −K),

where K ⊆ V is a cocompact closed subset and K ⊆ X has dimension < m− k − 1.

(3) The sheaf F is strongly k-connected.

Proof. It is clear that (1) implies (2) (take U to be empty) and that (2) implies (3) (by definition). We must
show that (3) implies (1). So let F be a strongly k-connected sheaf on W and

∂∆m
ζ //

� _

��

F(V )

��
∆m

η // F(U)

a commutative diagram as above. Without loss of generality, we may replace W by V and F by F |V .
We may identify F with a functor from U(V )op into the category Kan of Kan complexes. Form a pullback

square
F′ //

��

F∆m

��
∗ ζ //

F∂∆m

in SetU(V )op

∆ . The right vertical map is a weak fibration, so that the diagram is homotopy Cartesian (with
respect to the projective model structure). It follows that F′ is also a sheaf on V , which is strongly (k−m)-
connected by Lemma 7.2.4.13. Replacing F by F′, we may reduce to the case m = 0.

The proof now proceeds by induction on k. For our base case, we take k = −n − 2, so that there is no
connectivity assumption on the stack F. We are then free to choose K = V − U (it is clear that K has
dimension ≤ n).

Now suppose that the theorem is known for strongly (k−1)-connected stacks on any compact open subset
of X; we must show that for any strongly k-connected F on V and any η ∈ F(U), there exists a closed subset
K ⊆ V −U such that K ⊆ X has Heyting dimension < −1−k, and a point η′ ∈ F(V −K) whose restriction
to U lies in the same component of F(U) as η.

Since F is strongly k-connected, we deduce that there exists an open cover {Vα} of some open subset
V −K0, where K0 has dimension < −1− k in X, together with points ψα ∈ F(Vα). Adjoining the open set
U and the point η if necessary, we may suppose that K0 ∩ U = ∅. Replacing V by V −K0 we may reduce
to the case K0 = ∅.

Since V is compact, we may assume that there exist only finitely many indices α. Proceeding by induction
on the number of indices, we may reduce to the case where V = U ∪ Vα for some α. Let η′ and ψ′ denote
the images of η and ψ in U ∩ Vα, and form a pullback diagram

F′ //

��

(F |(U ∩ Vα))∆
1

��
∗

(η′,ψ′) // (F |(U ∩ Vα))∂∆1
.
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Again, this diagram is a homotopy pullback, so that F′ is a sheaf on U∩Vα which is strongly (k−1)-connected
by Lemma 7.2.4.13. According to the inductive hypothesis, there exists a closed subset K ⊂ U ∩ Vα such
that K ⊆ X has dimension < −k, such that the images of ψα and η belong to the same component of
F((U ∩ Vα) − K). Replacing Vα by Since K has dimension < −k in X, the boundary ∂ K of K has
codimension < −k − 1 in X. Let V ′ = Vα − (Vα ∩ K). Since F is a sheaf, we have a homotopy pullback
diagram

F(V ′ ∪ U) //

��

F(U)

��
F(V ′) // F(V ′ ∩ U).

We observe that there is a path joining the images of η and ψα in F(V ′ ∩ U) = F((U ∩ Vα) −K), so that
there is a vertex η̃ ∈ F(V ′ ∪ U) whose image in F(U) lies in the same component as η. We now observe
that V ′ ∪ U = V − (V ∩ ∂ K), and that V ∩ ∂ K is contained in ∂ K and therefore has Heyting dimension
≤ −k − 1.

Corollary 7.2.4.15. Let π : X → Y be a continuous map between Heyting spaces of finite dimension.
Suppose that π has the property that for any cocompact closed subset K ⊆ X of dimension ≤ n, π(K) is
contained in a cocompact closed subset of dimension ≤ n. Then the functor π∗ : Shv(X) → Shv(Y ) carries
strongly k-connected sheaves on X to strongly k-connected sheaves on Y .

Proof. This is clear from the characterization (2) of Theorem 7.2.4.14.

Corollary 7.2.4.16. Let X be a Heyting space of finite Heyting dimension, and let F be a strongly k-
connected sheaf on X. Then F(X) is k-connected.

Proof. Apply Corollary 7.2.4.15 in the case where Y is a point.

Corollary 7.2.4.17. Let X be a Heyting space of Heyting dimension ≤ n, and let F be an (n−1)-connected
sheaf on X. Then for any compact open U ⊆ X, the map π0 F(X) → π0 F(U) is surjective. In particular,
Shv(X) has homotopy dimension ≤ n.

Proof. Suppose first that (1) is satisfied. Let F be an (n − 1)-connected sheaf on X. Then F is strongly
(−1)-connected; by characterization (2) of Theorem 7.2.4.14, we deduce that F(X) → F(U) is surjective.
The last claim follows by taking U = ∅.

Remark 7.2.4.18. Let X be a Heyting space of Heyting dimension ≤ n. Then any compact open subset
of X also has Heyting dimension ≤ n. It follows that Shv(X) is locally of homotopy dimension ≤ n, and
therefore hypercomplete by Corollary 7.2.1.19.

Remark 7.2.4.19. It is not necessarily true that a Heyting space X such that Shv(X) has homotopy
dimension ≤ n is itself of Heyting dimension ≤ n. For example, if X is the Zariski spectrum of a discrete
valuation ring (that is, a two point space with a nontrivial topology), then X has homotopy dimension zero
(see Example 7.2.1.3).

In particular, we obtain Grothendieck’s vanishing theorem (see [23] for the original, quite different proof):

Corollary 7.2.4.20. Let X be a Noetherian topological space of Krull dimension ≤ n. Then X has coho-
mological dimension ≤ n.

Proof. Combine Proposition 7.2.4.7, Corollary 7.2.4.17, and Corollary 7.2.2.30.
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Example 7.2.4.21. Let V be a real algebraic variety (defined over the real numbers, say). Then the lattice
of open subsets of V that can be defined by polynomial equations and inequalities is a Heyting algebra, and
the spectrum of this Heyting algebra is a Heyting space X having dimension at most equal to the dimension
of V . The results of this section therefore apply to X.

More generally, let T be an o-minimal theory (see for example [52]), and let Sn denote the set of complete
n-types of T . We endow Sn with the topology generated by the sets Uφ = {p : φ ∈ p}, where φ ranges over
formula with n free variables such that the openness of the set of points satisfying φ is provable in T . Then
Sn is a Heyting space of Heyting dimension ≤ n.

Remark 7.2.4.22. The methods of this section can be adapted to slightly more general situations, such
as the Nisnevich topology on a Noetherian scheme of finite Krull dimension. It follows that the ∞-topoi
associated to such sites have (locally) finite homotopy dimension and are therefore hypercomplete. We will
discuss this matter in more detail in [34].
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7.3 The Proper Base Change Theorem

Let

X ′ q′ //

p′

��

X

p

��
Y ′

q // Y

be a pullback diagram in the category of locally compact Hausdorff spaces. One has a natural isomorphism
of pushforward functors

q∗p
′
∗ ' p∗q′∗

from the category of sheaves of sets on Y to the category of sheaves of sets on X ′. This isomorphism induces
a natural transformation

η : q∗p∗ → p′∗q
′∗.

If p (and therefore also p′) is a proper map, then η is an isomorphism: this is a simple version of the classical
proper base change theorem.

The purpose of this section is to generalize the above result, allowing sheaves which take values in the
∞-category S of spaces rather than in the ordinary category of sets. Our generalization can be viewed as a
proper base change theorem for nonabelian cohomology.

We will begin in §7.3.1 by defining the notion of a proper morphism of ∞-topoi. Roughly speaking,
a geometric morphism π∗ : X → Y of ∞-topoi is proper if and only if it satisfies the conclusion of the
proper base change theorem. Using this language, our job is prove that a proper map of topological spaces
p : X → Y induces a proper morphism p∗ : Shv(X)→ Shv(Y ) of ∞-topoi. We will outline the proof of this
result in §7.3.1 by reducing to two special cases: the case where p is a closed embedding, and the case where
Y is a point. We will treat the first case in §7.3.2, after introducing a general theory of closed immersions
of ∞-topoi. This allows us to reduce to the case where Y is a point and X a compact Hausdorff space. Our
approach is now in two parts:

(1) In §7.3.3, we will show that we can identify the∞-category Shv(X ′) = Shv(X×Y ′) with an∞-category
of sheaves on X, taking values in Shv(Y ).

(2) In §7.3.4, we give an analysis of the category of sheaves on a compact Hausdorff space X, taking values
in a general ∞-category C. Combining this analysis with (1), we will deduce the desired base change
theorem.

The techniques used in §7.3.4 to analyze Shv(X) can be applied also in the (easier) setting of coherent
topological spaces, as we explain in §7.3.5. Finally, we conclude in §7.3.6 by reformulating the classical
theory of cell-like maps in the language of ∞-topoi.

7.3.1 Proper Maps of ∞-Topoi

In this section, we introduce the notion of a proper geometric morphism between ∞-topoi. Here we follow
the ideas of [39], and turn the conclusion of the proper base change theorem into a definition. First, we
require a bit of terminology.

Suppose given a diagram of categories and functors

C′
q′∗ //

p′∗
��

D′

p∗

��
C

q∗ // D
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which commutes up to a specified isomorphism η : p∗q′∗ → q∗p
′
∗. Suppose furthermore that the functors q∗

and q′∗ admit left adjoints, which we will denote by q∗ and q′∗. Consider the composition

γ : q∗p∗
u→ q∗p∗q

′
∗q
′∗ η→ q∗q∗p

′
∗q
′∗ v→ p′∗q

′∗,

where u denotes a unit for the adjunction (q′∗, q′∗) and v a counit for the adjunction (q∗, q∗). We will refer
to γ as the push-pull transformation associated to the above diagram.

Definition 7.3.1.1. A diagram of categories

C′
q′∗ //

p′∗
��

D′

p∗

��
C

q∗ // D

which commutes up to specified isomorphism is left adjointable if the functors q∗ and q′∗ admit left adjoints
q∗ and q′∗, and the associated push-pull transformation

γ : q∗p∗ → p′∗q
′∗

is an isomorphism of functors.

Definition 7.3.1.2. A diagram of ∞-categories

C′
q′∗ //

p′∗
��

D′

p∗

��
C

q∗ // D

which commutes up to (specified) homotopy is left adjointable if the associated diagram of homotopy cate-
gories is left adjointable.

Remark 7.3.1.3. Suppose given a diagram of simplicial sets

M′ P→M
f→ ∆1,

where both f and f ◦P are Cartesian fibrations. Then we may view M as a correspondence from D = f−1{0}
to C = f−1{1}, associated to some functor q∗ : C→ D. Similarly, we may view M′ as a correspondence from
D′ = (f ◦ P )−1{0} to C′ = (f ◦ P )−1{1}, associated to some functor q′∗ : C′ → D′. The map P determines
functors p′∗ : C′ → C, q′∗ : D′ → D, and (up to homotopy) a natural transformation α : p∗q′∗ → q∗p

′
∗, which

is an equivalence if and only if the map P carries (f ◦ P )-Cartesian edges of M′ to f -Cartesian edges of M.
In this case, we obtain a diagram of homotopy categories

hC′
q′∗ //

p′∗
��

hD′

p∗

��
hC

q∗ // hD

which commutes up to canonical isomorphism.
Now suppose that the functors q∗ and q′∗ admit left adjoints, which we will denote by q∗ and q′

∗,
respectively. Then the maps f and f ◦ P are coCartesian fibrations. Moreover, the associated push-pull
transformation can be described as follows. Choose an object D′ ∈ D′, and a (f ◦P )-coCartesian morphism
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φ : D′ → C ′, where C ′ ∈ C. Let D = P (D′), and choose an f -coCartesian morphism ψ : D → C in M, where
C ∈ C. Using the fact that ψ is f -coCartesian, we can choose a 2-simplex in M depicted as follows:

C

θ

""F
FFFFFFF

D

ψ
??�������� P (φ) // P (C ′).

We may then identify C with q∗p∗D
′, P (C ′) with p′∗q

′∗D′, and θ with the value of the push-pull transfor-
mation q∗p∗ → p′∗q

′∗D′ on the object D′ ∈ D′. The morphism θ is an equivalence if and only if P (φ) is
f -coCartesian. Consequently, we deduce that the original diagram

hC′
q′∗ //

p′∗
��

hD′

p∗

��
hC

q∗ // hD

is left adjointable if and only if P carries (f ◦ P )-coCartesian edges to f -coCartesian edges. We will make
use of this criterion in §7.3.4.

Definition 7.3.1.4. Let p∗ : X → Y be a geometric morphism of ∞-topoi. We will say that p∗ is proper if
the following conditions are satisfied:

(1) For every geometric morphism q∗ : Y′ → Y, there exists a pullback diagram

X′

��

// X

p∗

��
Y′

q∗ // Y

in the ∞-category TopR of ∞-topoi.

(2) For every Cartesian rectangle
X′′

��

// X′

��

// X

p∗

��
Y′′ // Y′ // Y

of ∞-topoi, the left square is left adjointable.

Remark 7.3.1.5. Condition (1) of Definition 7.3.1.4 is actually satisfied for every geometric morphism
p∗ : X → Y of ∞-topoi. However, the construction of fiber products in general requires ideas that we have
not developed in this book (higher category theory within an ∞-topos). We will discuss the case of ordinary
products in §7.3.3; this will be sufficiently general for our applications.

Remark 7.3.1.6. Let X be an ∞-topos, and let J be a small ∞-category. The diagonal functor δ : X →
Fun(J,X) preserves all (small) limits and colimits, by Proposition 5.1.2.2, and therefore admits both a left
adjoint δ! and a right adjoint δ∗. If J is filtered, then δ! is left exact (Proposition 5.3.3.3). Consequently, we
have a diagram of geometric morphisms

X
δ→ Fun(J,X) δ∗→ X .
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Now suppose that p∗ : X→ Y is a proper geometric morphism of ∞-topoi. We obtain a rectangle

X //

p∗

��

Fun(J,X)

pJ
∗
��

// X

��
Y // Fun(J,Y) // Y

which commutes up to (specified) homotopy. One can show that this is a Cartesian rectangle in TopR, so
that the square on the left is left adjointable. Unwinding the definitions, we conclude that p∗ commutes with
filtered colimits. Conversely, if p∗ : X→ Y is an arbitrary geometric morphism of ∞-topoi which commutes
with colimits indexed by filtered Y-stacks (over each object of Y), then p∗ is proper. To give a proof (or even
a precise formulation) of this statement would require ideas from relative category theory which we will not
develop in this book. We refer the reader to [39], where the analogous result is established for proper maps
between ordinary topoi.

The following properties of the class of proper morphisms follow immediately from Definition 7.3.1.4:

Proposition 7.3.1.7. (1) Every equivalence of ∞-topoi is proper.

(2) If p∗ and p′∗ are equivalent geometric morphisms from an ∞-topos X to another ∞-topos Y, then p∗ is
proper if and only if p′∗ is proper.

(3) Let
X′

p′∗
��

// X

p∗

��
Y′ // Y

be a (homotopy) pullback diagram of ∞-topoi. If p∗ is proper, then so is p′∗.

(4) Let
X

p∗→ Y
q∗→ Z

be proper geometric morphisms between ∞-topoi. Then q∗ ◦ p∗ is a proper geometric morphism.

In order to relate Definition 7.3.1.4 to the classical statement of the proper base change theorem, we
need to understand the relationship between products in the category of topological spaces and products in
the ∞-category of ∞-topoi. A basic result asserts that these are compatible, provided that a certain local
compactness condition is met.

Definition 7.3.1.8. Let X be a topological space which is not assumed to be Hausdorff. We say that X is
locally compact if, for every open set U ⊆ X and every point x ∈ U , there exists a (not necessarily closed)
compact set K ⊆ U , where K contains an open neighborhood of x.

Example 7.3.1.9. If X is Hausdorff space, then X is locally compact in the sense defined above if and only
if X is locally compact in the usual sense.

Example 7.3.1.10. Let X be a topological space for which the compact open subsets of X form a basis for
the topology of X. Then X is locally compact.

Remark 7.3.1.11. Local compactness of X is precisely the condition which is needed for function spaces
Y X , endowed with the compact-open topology, to represent the functor Z 7→ Hom(Z ×X,Y ).
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Proposition 7.3.1.12. Let X and Y be topological spaces, and assume that X is locally compact. The
diagram

Shv(X × Y ) //

��

Shv(X)

��
Shv(Y ) // Shv(∗)

is a pullback square in the ∞-category TopR of ∞-topoi.

Proof. Let C ⊆ TopR be the full subcategory spanned by the 0-localic ∞-topoi. Since C is a localization of
TopR, the inclusion C ⊆ TopR preserves limits. It therefore suffices to prove that

Shv(X × Y ) //

��

Shv(X)

��
Shv(Y ) // Shv(∗)

gives a pullback diagram in C. Note that Cop is equivalent to the (nerve of the) ordinary category of locales.
For each topological space M , let U(M) denote the locale of open subsets of M . Let

U(X)
ψX→ P

ψY← U(Y )

be a diagram which exhibits P as a coproduct of U(X) and U(Y ) in the category of locales, and let φ : P→
U(X × Y ) be the induced map. We wish to prove that φ is an isomorphism. This is a standard result in the
theory of locales; we will include a proof for completeness.

Given open subsets U ⊆ X and V ⊆ Y , let U ⊗ V = (ψXU) ∩ (ψY V ) ∈ P, so that φ(U ⊗ V ) = U × V ∈
U(X × Y ). We define a map θ : U(X × Y )→ P by the formula

θ(W ) =
⋃

U×V⊆W

U ⊗ V.

Since every open subset of X × Y can be written as a union of products U × V , where U is an open subset
of X and V an open subset of Y , it is clear that φ ◦ θ : U(X × Y )→ U(X × Y ) is the identity. To complete
the proof, it will suffice to show that θ ◦ φ : P → P is the identity. Every element of P can be written as⋃
α Uα ⊗ Vα for Uα ⊆ X and Vα ⊆ Y appropriately chosen. We therefore wish to show that⋃

U×V⊆
S

α Uα⊗Vα

U × V =
⋃
α

Uα ⊗ Vα.

It is clear that the right hand side is contained in the left hand side. The reverse containment is equivalent
to the assertion that if U × V ⊆

⋃
α Uα × Vα, then U ⊗ V ⊆

⋃
α Uα ⊗ Vα.

We now invoke the local compactness ofX. Write U =
⋃
Kβ , where eachKβ is a compact subset of U and

the interiors {K◦
β} cover U . Then U⊗V =

⋃
βK

◦
β⊗V ; it therefore suffices to prove thatK◦

β⊗V ⊆
⋃
α Uα⊗Vα.

Let v be a point of V . Then Kβ×{v} is a compact subset of
⋃
α Uα×Vα. Consequently, there exists a finite

set of indices {α1, . . . , αn} such that v ∈ Vv,β = Vα1 ∩ . . . ∩ Vαn
and Kβ ⊆ Uα1 ∪ . . . ∪ Uαn

. It follows that
K◦
β ⊗ Vv,β ⊆

⋃
α Uα ⊗ Vα. Taking a union over all v ∈ V , we deduce the desired result.

Let us now return to the subject of the proper base change theorem. We have essentially defined a proper
morphism of ∞-topoi to be one for which the proper base change theorem holds. The challenge, then, is to
produce examples of proper geometric morphisms. The following results will be proven in §7.3.2 and §7.3.4,
respectively:

(1) If p : X → Y is a closed embedding of topological spaces, then p∗ : Shv(X)→ Shv(Y ) is proper.
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(2) If X is a compact Hausdorff space, then the global sections functor Γ : Shv(X)→ Shv(∗) is proper.

Granting these statements for the moment, we can deduce the main result of this section. First, we must
recall a bit of point-set topology:

Definition 7.3.1.13. A topological space X is said to be completely regular if every point of X is closed in
X, and for every closed subset Y ⊆ X and every point x ∈ X−Y there is a continuous function f : X → [0, 1]
such that f(x) = 0 and f |Y takes the constant value 1.

Remark 7.3.1.14. A topological space X is completely regular if and only if it is homeomorphic to a
subspace of a compact Hausdorff space X (see [40]).

Definition 7.3.1.15. A map p : X → Y of (arbitrary) topological spaces is said to be proper if it is
universally closed. In other words, p is proper if and only if for every pullback diagram of topological spaces

X ′

p′

��

// X

p

��
Y ′ // Y

the map p′ is closed.

Remark 7.3.1.16. A map p : X → Y of topological spaces is proper if and only if it is closed and each of
the fibers of p is compact (though not necessarily Hausdorff).

Theorem 7.3.1.17. Let p : X → Y be a proper map of topological spaces, where X is completely regular.
Then p∗ : Shv(X)→ Shv(Y ) is proper.

Proof. Let q : X → X be an identification of X with a subspace of a compact Hausdorff space X. The map
p admits a factorization

X
q×p→ X × Y πY→ Y.

Using Proposition 7.3.1.7, we can reduce to proving that (q × p)∗ and (πY )∗ are proper.
Because q identifies X with a subspace of X, q × p identifies X with a subspace over X × Y . Moreover,

q × p factors as a composition
X → X ×X → X × Y

where the first map is a closed immersion (since X is Hausdorff) and the second map is closed (since p is
proper). It follows that q × p is a closed immersion, so that (q ◦ p)∗ is a proper geometric morphism by
Proposition 7.3.2.12.

Proposition 7.3.1.12 implies that the geometric morphism (πY )∗ is a pullback of the global sections functor
Γ : Shv(X)→ Shv(∗) in the ∞-category TopR. Using Proposition 7.3.1.7, we may reduce to proving that Γ
is proper, which follows from Corollary 7.3.4.11.

Remark 7.3.1.18. The converse to Theorem 7.3.1.17 holds as well (and does not require the assumption
that X is completely regular): if p∗ : Shv(X)→ Shv(Y ) is a proper geometric morphism, then p is a proper
map of topological spaces. This can be proven easily, using the characterization of properness described in
Remark 7.3.1.6.

Corollary 7.3.1.19 (Nonabelian Proper Base Change Theorem). Let

X ′ q′ //

p′

��

X

p

��
Y ′

q // Y

506



be a pullback diagram of locally compact Hausdorff spaces, and suppose that p is proper. Then the associated
diagram

Shv(X ′)
q′∗ //

p′∗
��

Shv(X)

p∗

��
Shv(Y ′)

q∗ // Shv(Y )

is left adjointable.

Proof. In view of Theorem 7.3.1.17, it suffices to show that

Shv(X ′)
q′∗ //

p′∗
��

Shv(X)

p∗

��
Shv(Y ′)

q∗ // Shv(Y )

is a pullback diagram of ∞-topoi. Let X denote a compactification of X (for example, the one-point
compactification) and consider the larger diagram of ∞-topoi

Shv(X ′) //

��

Shv(X)

��
Shv(X × Y ′) //

��

Shv(X × Y ) //

��

Shv(X)

��
Shv(Y ′) // Shv(Y ) // Shv(∗).

The upper square is a (homotopy) pullback by Proposition 7.3.2.12 and Corollary 7.3.2.10. The lower right
square and the lower rectangle are (homotopy) Cartesian by Proposition 7.3.1.12, so that the lower left
square is (homotopy) Cartesian as well. It follows that the vertical rectangle is also (homotopy) Cartesian,
as desired.

Remark 7.3.1.20. The classical proper base change theorem, for sheaves of abelian groups on locally
compact topological spaces, is a formal consequence of Corollary 7.3.1.19. We give a brief sketch. The usual
formulation of the proper base change theorem (see, for example, [32]) is equivalent to the statement that if

X ′ q′ //

p′

��

X

p

��
Y ′

q // Y

is a pullback diagram of locally compact topological spaces, and p is proper, then the associated diagram

D−(X ′)
q′∗ //

p′∗
��

D−(X)

p∗

��
D−(Y ′)

q∗ // D−(Y )

is left adjointable. Here D−(Z) denotes the (bounded below) derived category of abelian sheaves on a
topological space Z.
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Let A denote the category whose objects are chain complexes

. . .→ A−1 → A0 → A1 → . . .

of abelian groups. Then A admits the structure of a perfect simplicial model category, in which the weak
equivalences are given by quasi-isomorphisms. Let C = N(A◦) be the underlying ∞-category. For any
topological space Z, one can define an ∞-category Shv(Z;C) of sheaves on Z with values in C; see §7.3.3.
The homotopy category hShv(Z ;C) is an unbounded version of the derived category D−(Z); in particular, it
contains D−(Z) as a full subcategory. Consequently, we obtain a natural generalization of the proper base
change theorem where boundedness hypotheses have been removed, which asserts that the diagram

Shv(X ′;C)
q′∗ //

p′∗
��

Shv(X;C)

p∗

��
Shv(Y ′;C)

q∗ // Shv(Y ;C)

is left adjointable. Using the fact that C has enough compact objects, one can deduce this statement formally
from Corollary 7.3.1.19.

7.3.2 Closed Subtopoi

If X is a topological space and U ⊆ X is an open subset, then we may view the closed complement X−U ⊆ X
as a topological space in its own right. Moreover, the inclusion (X −U) ↪→ X is a proper map of topological
spaces (that is, a closed map whose fibers are compact). The purpose of this section is to present an analogous
construction in the case where X is an ∞-topos.

Lemma 7.3.2.1. Let X be an ∞-topos and ∅ an initial object of X. Then ∅ is (−1)-truncated.

Proof. Let X be an object of X. The space MapX(X, ∅) is contractible if X is an initial object of X, and
empty otherwise (by Lemma 6.1.3.6). In either case, MapX(X, ∅) is (−1)-truncated.

Lemma 7.3.2.2. Let X be an ∞-topos and let f : ∅ → X be a morphism in X, where ∅ is an initial object.
Then f is a monomorphism.

Proof. Apply Lemma 7.3.2.1 to the ∞-topos X/X .

Proposition 7.3.2.3. Let X be an ∞-topos and let U be an object of X. Let SU be the smallest strongly
saturated class of morphisms of X which is stable under pullbacks and contains a morphism f : ∅ → U , where
∅ is an initial object of X. Then SU is topological (in the sense of Definition 6.2.1.4).

Proof. For each morphism g : X → U in C, form a pullback square

∅′
fY //

��

Y

g

��
∅

f // U.

Let S = {fX}g:X→U and let S be the strongly saturated class of morphisms generated by S. We note that
each fX is a pullback of f , and therefore a monomorphism (by Lemma 7.3.2.2). Let S′ be the collection of
all morphisms h : V →W with the property that for every pullback diagram

V ′ //

h′

��

V

h

��
W ′ // W
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in X, the morphism h belongs to S. Since colimits in X are universal, we deduce that S′ is saturated, and
S ⊆ S′ ⊆ S by construction. Therefore S′ = S, so that S is stable under pullbacks. Since f ∈ S, we deduce
that SU ⊆ S. On the other hand, S ⊆ SU and SU is saturated, so S ⊆ SU . Therefore SU = S. Since S
consists of monomorphisms, we conclude that SU is topological.

In the situation of Proposition 7.3.2.3, we will say that a morphism of X is an equivalence away from U
if it belongs to SU .

Lemma 7.3.2.4. Let X be an ∞-topos containing a pair of objects U,X ∈ X, and let SU denote the class
of morphism in X which are equivalences away from U . The following are equivalent:

(1) The object X is SU -local.

(2) For every map Ũ → U in X, the space MapX(Ũ ,X) is contractible.

(3) There exists a morphism g : U → X such that the diagram

U

idU��~~
~~

~~
~

g

  @
@@

@@
@@

U X

exhibits U as a product of U with X in X.

Proof. Let S be the collection of all morphisms feU which come from pullback diagrams

∅′
f eU //

��

Ũ

��
∅ // U

where ∅ and therefore also ∅′ are initial objects of X. We saw in the proof of Proposition 7.3.2.3 that S
generates SU as a strongly saturated class of morphisms. Therefore, X is SU -local if and only if each feU
induces an isomorphism

MapX(Ũ ,X)→ MapX(∅′, X) ' ∗

in the homotopy category H. This proves that (1)⇔ (2).
Now suppose that (2) is satisfied. Taking Ũ = U , we deduce that there exists a morphism g : U → X.

We will prove that g and idX exhibit U as a product of U with X. As explained in §4.4.1, this is equivalent
to the assertion that for every Z ∈ X, the map

MapX(Z,U)→ MapX(Z,U)×MapX(Z,X)

is an isomorphism in H. If there are no morphisms from Z to U in X, then both sides are empty and the
result is obvious. Otherwise, we may invoke (2) to deduce that MapX(Z,X) is contractible, and the desired
result follows. This completes the proof that (2)⇒ (3).

Suppose now that (3) is satisfied for some morphism g : U → X. For any object Z ∈ X, we have a
homotopy equivalence

MapX(Z,U)→ MapX(Z,U)×MapX(Z,X).

If MapX(Z,U) is nonempty, then we may pass to the fiber over a point of MapX(Z,U) to obtain a homotopy
equivalence ∗ → MapX(Z,X), so that MapX(Z,X) is contractible. This proves (2).
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If X is an ∞-topos and U ∈ X, then we will say that an object X ∈ X is trivial on U if it satisfies the
equivalent conditions of Lemma 7.3.2.4. We let X /U denote the full subcategory of X spanned by the objects
X which are trivial on U . It follows from Proposition 7.3.2.3 that X /U is a topological localization of X,
and in particular X /U is an ∞-topos. We next show that X /U depends only on the support of U .

Lemma 7.3.2.5. Let X be an ∞-topos, and let g : U → V be a morphism in X. Then X /V ⊆ X /U .
Moreover, if g is an effective epimorphism, then X /U = X /V .

Proof. The first assertion follows immediately from Lemma 7.3.2.4. To prove the second, it will suffice
to prove that if g is strongly saturated then SV ⊆ SU . Since SU is strongly saturated and stable under
pullbacks, it will suffice to prove that SU contains a morphism f : ∅ → V , where ∅ is an initial object of X.

Form a pullback diagram σ : ∆1 ×∆1 → X:

∅′
f ′ //

��

U

g

��
∅

f // V.

We may view σ as an effective epimorphism from f ′ to f in the ∞-topos X∆1
. Let f• = Č(σ) : ∆+ → X∆1

be a Čech nerve of σ : f ′ → f . We note that for n ≥ 0, the map fn is a pullback of f ′, and therefore belongs
to SU . Since f• is a colimit diagram, we deduce that f belongs to SU as desired.

If X is an ∞-topos, we let Sub(1X) denote the partially ordered set of equivalence classes of (−1)-
truncated objects of X. We note that this set is independent of the choice of a final object 1X ∈ X, up to
canonical isomorphism. Any U ∈ Sub(1X) can be represented by a (−1)-truncated object Ũ ∈ X. We define
X /U = X /Ũ ⊆ X. It follows from Lemma 7.3.2.5 that X /U is independent of the choice of Ũ representing
U , and that for any object X ∈ X, we have X /X = X /U where U ∈ Sub(1X) is the “support” of X (namely,
the equivalence class of the truncation τ−1X).

Definition 7.3.2.6. If X is an ∞-topos and U ∈ Sub(1X), then we will refer to X /U as the closed subtopos
of X complementary to U . More generally, we will say that a geometric morphism π : Y → X is a closed
immersion if there exists U ∈ Sub(1X) such that π∗ induces an equivalence of ∞-categories from Y to X /U .

Proposition 7.3.2.7. Let X be an ∞-topos, and let U ∈ Sub(1X). Then the closed immersion

π : X /U → X

induces an isomorphism of partially ordered sets from Sub(1X /U ) to {V ∈ Sub(1X) : U ⊆ V }).

Proof. Choose a (−1)-truncated object Ũ ∈ X representing U . Since π∗ is left exact, an object X of X /U is
(−1)-truncated as an object of X /U if and only if it is (−1)-truncated as an object of X. It therefore suffices
to prove that if Ṽ is a (−1)-truncated object of X representing an element V ∈ Sub(1X), then Ṽ is SU -local
if and only if U ⊆ V . One direction is clear: if Ṽ is SU -local, then we have an isomorphism

MapX(Ũ , Ṽ )→ MapX(∅, Ṽ ) = ∗

in the homotopy category H, so that U ⊆ V . The converse follows from characterization (3) given in Lemma
7.3.2.4.

Corollary 7.3.2.8. Let X be an ∞-topos, and let U, V ∈ Sub(1X). Then SU ⊆ SV if and only if U ⊆ V .

Proof. The “if” direction follows from Lemma 7.3.2.5 and the converse from Proposition 7.3.2.7.

Corollary 7.3.2.9. Let X be a 0-localic ∞-topos, associated to the locale U, and let U ∈ U. Then X /U is
a 0-localic ∞-topos associated to the locale {V ∈ U : U ⊆ V }.
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Proof. The ∞-topos X /U is a topological localization of a 0-localic ∞-topos, and therefore also 0-localic
(Proposition 6.4.5.9). The identification of the underlying locale follows from Proposition 7.3.2.7.

Corollary 7.3.2.10. Let X be a topological space, U ⊆ X an open subset and Y = X−U . The inclusion of
Y in X induces a closed immersion of ∞-topoi Shv(Y )→ Shv(X) and an equivalence Shv(Y )→ Shv(X)/U .

Lemma 7.3.2.11. Let X and Y be ∞-topoi, and let U ∈ Y be an object. The map

FunR
G(X,Y /U)→ FunR

G(X,Y)

identifies FunR
G(X,Y /U) with the full subcategory of FunR

G(X,Y) spanned by those geometric morphisms π∗ :
X→ Y such that π∗U is an initial object of X ( here π∗ denotes a left adjoint to π∗ ).

Proof. Let π∗ : X → Y be a geometric morphism. Using the adjointness of π∗ and π∗, it is easy to see that
π∗X is SU -local if and onyl if X is π∗(SU )-local. In particular, π∗ factors through Y /U if and only if π∗(SU )
consists of equivalences in X. Choosing f ∈ SU of the form f : ∅ → U , where ∅ is an initial object of X,
we deduce that π∗f is an equivalence so that π∗U ' π∗∅ is an initial object of X. Conversely, suppose that
π∗U is an initial object of X. Then π∗f is a morphism between two initial objects of X, and therefore an
equivalence. Since π∗ is left exact and colimit-preserving, the collection of all morphisms g such that π∗g
is an equivalence is strongly saturated, stable under pullbacks, and contains f ; it therefore contains SU , so
that π∗ factors through Y /U as desired.

Proposition 7.3.2.12. Let π∗ : X → Y be a geometric morphism of ∞-topoi, and let π∗ : Sub(1X) →
Sub(1Y) denote the induced map of partially ordered sets. Let U ∈ Sub(1X). There is a commutative
diagram

X /π∗U
π∗|(X /π∗U) //

��

Y /U

��
X

π∗ // Y

of ∞-topoi and geometric morphisms, where the vertical maps are given by the natural inclusions. This
diagram is left adjointable, and exhibits X /(π∗U) as a fiber product of X and Y /U over Y in the ∞-category
TopR.

Proof. Let π∗ denote a left adjoint to π∗. Our first step is to show that the upper horizontal map π∗|(X /π∗U)
is well-defined. In other words, we must show that if X ∈ X is trivial on π∗U , then π∗X ∈ Y is trivial on
U . Suppose that Y ∈ Y has support contained in U ; we must show that MapY(Y, π∗X) is contractible. But
this space is homotopy equivalent to MapX(π∗Y,X) ' ∗, since π∗Y has support contained in π∗U and X is
trivial on π∗U .

We note also that π∗ carries Y /U into X /π∗U . This follows immediately from characterization (3) of
Lemma 7.3.2.4, since π∗ is left exact. Therefore π∗|Y /U is a left adjoint of π∗|X /π∗U . From the fact that
π∗ is left-exact we easily deduce that π∗|Y /U is left exact. It follows that π∗|X /π∗U has a left-exact left
adjoint, and is therefore a geometric morphism of ∞-topoi. Moreover, the diagram

X /π∗U

��

Y /U

��

π∗|Y /Yoo

X Y
π∗oo

is (strictly) commutative, which proves that the diagram of pushforward functors is left adjointable.
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We now claim that the diagram

X /π∗U
π∗|X /π∗U //

��

Y /U

��
X // Y

is a pullback diagram of ∞-topoi. For every pair of ∞-topoi A and B, let [A,B] denote the largest Kan
complex contained in FunR

G(A,B). According to Theorem 4.2.4.1, it will suffice to show that for any∞-topos
Z, the associated diagram of Kan complexes

[Z,X /π∗U ] //

��

[Z,Y /U ]

��
[Z,X] // [Z,Y]

is homotopy Cartesian. Lemma 7.3.2.11 implies that the vertical maps are inclusions of full simplicial subsets.
It therefore suffices to show that if φ∗ : Z → Y is a geometric morphism such that π∗ ◦ φ∗ factors through
Y /U , then φ∗ factors through X /π∗U . This follows immediately from the characterization given in Lemma
7.3.2.11.

Corollary 7.3.2.13. Let
X′

p′∗
��

// X

p∗

��
Y′ // Y

be a pullback diagram in the ∞-category TopR of ∞-topoi. If p∗ is a closed immersion, then p′∗ is a closed
immersion.

7.3.3 Products of ∞-Topoi

The∞-category TopR of∞-topoi admits fiber products. Unfortunately, the techniques required to construct
fiber products in general lie outside the scope of this book. In this section, we will embark on a somewhat
less ambitious program, which will allow us to construct fiber products in some important special cases.

Definition 7.3.3.1. Let X be a topological space, and C an∞-category. We let U(X) denote the collection
of all open subsets of X, partially ordered by inclusion. A presheaf on X with values in C is a functor
U(X)op → C.

Let F : U(X)op → C be a presheaf on X with values in C. We will say that F is a sheaf with values in C

if, for every U ⊆ X and every covering sieve U(X)(0)/U ⊆ U(X)/U , the composition

N(U(X)(0)/U ). ⊆ N(U(X)/U ). → N(U(X)) F→ Cop

is a colimit diagram.
We let P(X;C) denote the ∞-category Fun(U(X)op,C) consisting of all presheaves on X with values in

C, and Shv(X;C) the full subcategory of P(X;C) spanned by the sheaves on X with values in C.

Remark 7.3.3.2. We can phrase the sheaf condition informally as follows: a C-valued presheaf F on a
topological space X is a sheaf if, for every open subset U ⊆ X and every covering sieve {Uα ⊆ U}, the
natural map

F(U)→ lim←−
α

F(Uα)

is an equivalence in C.
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Remark 7.3.3.3. If X is a topological space, then Shv(X) = Shv(X, S), where S denotes the ∞-category
of spaces.

Lemma 7.3.3.4. Let C, D, and E be ∞-categories which admit finite limits, let C0 ⊆ C and D0 ⊆ D be
the full subcategories of C and D consisting of final objects. Let F : C×D→ E be a functor. The following
conditions are equivalent:

(1) The functor F preserves finite limits.

(2) The functors F |C0×D and F |C×D0 preserve finite limits, and for every pair of morphisms C → 1C,
D → 1D where 1C ∈ C and 1D ∈ D are final objects, the associated diagram

F (1C, D)← F (C,D)→ F (C, 1D)

exhibits F (C,D) as a product of F (1C, D) and F (C, 1D) in E.

(3) The functors F |C0×D and F |C×D0 preserve finite limits, and F is a right Kan extension of the
restriction

F 0 = F |(C×D0)
∐

C0×D0

(C0×D).

Proof. The implication (1)⇒ (2) is obvious. To see that (2)⇒ (1), we choose final objects 1C ∈ C, 1D ∈ D,
and natural transformations α : idC → 1C, β : idD → 1D (where X denotes the constant functor with value
X). Let FC : C→ E denote the composition

C ' C×{1D} ⊆ C×D
F→ E

, and define FD similarly. Then α and β induce natural transformations

FC ◦ πC ← F → FD ◦ πD.

Assumption (2) implies that the functors FC, FD preserve finite limits, and that the above diagram exhibits
F as a product of FC ◦ πC with FD ◦ πD in the ∞-category EC×D. We now apply Lemma 5.5.2.3 to deduce
that F preserves finite limits as well.

We now show that (2) ⇔ (3). Assume that F |C0×D and F |C×D0 preserve finite limits, so that in
particular F |C0×D0 takes values in the full subcategory E0 ⊆ E spanned by the final objects. Fix morphisms
u : C → 1C, v : D → 1D, where 1C ∈ C and 1D ∈ D are final obejcts. We will show that the diagram

F (1C, D)← F (C,D)→ F (C, 1D)

exhibits F (C,D) as a product of F (1C, D) and F (C, 1D) if and only if F is a right Kan extension of F 0 at
(C,D).

The morphisms u and v determine a map u× v : ∆1 ×∆1 → C×D, which we may identify with a map

w : Λ2
2 → ((C0×D)

∐
C0×D0

(C×D0))(C,D)/.

Using Theorem 4.1.3.1, it is easy to see that wop is cofinal. Consequently, F is a right Kan extension of F 0

at (C,D) if and only if the diagram

F (C,D) //

��

F (C, 1D)

��
F (1C, D) // F (1C, 1D)

is a pullback square. Since F (1C, 1D) is a final object of E, this is equivalent to assertion (2).
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Lemma 7.3.3.5. . Let C and D be small ∞-categories which admit finite limits, and let 1C ∈ C, 1D ∈ D be
final objects, and let X be an ∞-topos. The projections

P(C×{1D})
p∗← P(C×D)

q∗→ P({1C} ×D)

induce a categorical equivalence

FunR
G(X,P(C×D))→ FunR

G(X,P(C))× FunR
G(X,P(D)).

In particular, P(C×D) is a product of P(C) with P(D) in the ∞-category TopR of ∞-topoi.

Proof. For every ∞-category Y which admits finite limits, let [Y,X] denote the full subcategory of Fun(Y,X)
spanned by the left exact functors Y → X. If Y is an ∞-topos, we let [Y,X]0 denote the full subcategory of
[Y,X] spanned by the colimit-preserving left exact functors Y→ X. In view of Proposition 5.2.5.2 and Remark
5.2.5.4, it will suffice to prove that composition with the left adjoints to p∗ and q∗ induces an equivalence of
∞-categories

[P(C×D),X]0 → [P(C),X]0 × [P(D),X]0.

Applying Proposition 6.2.3.20, we may reduce to the problem of showing that the map

[C×D,X]→ [C,X]× [D,X]

is an equivalence of ∞-categories.
Let C0 ⊆ C and D0 ⊆ D denote the full subcategories consisting of final objects of C and D, respectively.

Proposition 1.2.12.9 implies that C0 and D0 are contractible. It will therefore suffice to prove that the
restriction map

φ : [C×D,X]→ [C×D0,X]×[C0×D0,X] [C0×D,X]

is a trivial fibration of simplicial sets. This follows immediately from Lemma 7.3.3.4 and Proposition 4.3.2.15.

Notation 7.3.3.6. Let X be an ∞-topos, and p∗ : S→ X a geometric morphism (essentially unique in view
of Proposition 6.3.3.1). Let πX : X× S→ X and πS : X× S→ S denote the projection functors. Let ⊗ be a
product of πX with p∗ ◦ πS in the ∞-category of functors from X× S to X. Then ⊗ is uniquely defined up
to equivalence, and we have natural transformations

X ← X ⊗ S → p∗S

which exhibit X ⊗ S as product of X with p∗S for all X ∈ X, S ∈ S. We observe that ⊗ preserves colimits
separately in each variable.

If C is a small ∞-category, we let ⊗C denote the composition

P(C;X)× P(C) ' P(C;X× S) ◦⊗→ P(C,X).

We observe that if F ∈ P(C;X) and G ∈ P(C), then F ⊗CG can be identified with a product of F with p∗ ◦G
in P(C;X).

Lemma 7.3.3.7. Let C be a small ∞-category, X an ∞-topos. Let g : X→ S a functor corepresented by an
object X ∈ X, and G : P(C;X) → P(C) the induced functor. Let X ∈ P(C;X) denote the constant functor
with the value X. Then the functor

F = X ⊗C idP(C) .

is a left adjoint to G.
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Proof. Since adjoints and ⊗C can both be computed pointwise on C, it suffices to treat the case where C = ∆0.
In this case, we deduce the existence of a left adjoint F ′ to G using Corollary 5.5.2.9 (the accessibility of G
follows from the fact that X is κ-compact for sufficiently large κ, since X is accessible). Now F and F ′ are
both colimit-preserving functors S→ X. In virtue of Theorem 5.1.5.6, to prove that F and F ′ are equivalent,
it will suffice to show that the objects F (∗), F ′(∗) ∈ X are equivalent. In other words, we must prove that
F ′(∗) ' X. By adjointness, we have natural isomorphisms

MapX(F ′(∗), Y ) ' MapH(∗, G(Y )) ' MapX(X,Y )

in H for each Y ∈ X, so that F ′(∗) and X corepresent the same functor on the homotopy category hX, and
are therefore equivalent by Yoneda’s lemma.

Lemma 7.3.3.8. Let C be a small ∞-category which admits finite limits and contains a final object 1C, let X

and Y be ∞-topoi, and let p∗ : X→ S be a geometric morphism ( essentially unique, in virtue of Proposition
6.3.3.1 ). Then the maps

P(C) P∗← P(C;X)
e1C→ X

induce equivalences of ∞-categories

FunR
G(Y,P(C;X))→ FunR

G(Y,X)× FunR
G(Y,P(C)).

In particular, P(C;X) is a product of P(C) and X in the ∞-category TopR of ∞-topoi. Here e1C
denote the

evaluation map at the object 1C ∈ C, and P∗ : P(C;X)→ P(C) is given by composition with p∗.

Proof. According to Proposition 6.1.5.3, we may assume without loss of generality that there exists a small∞-
category D such that X is the essential image of an accessible left exact localization functor L : P(D)→ P(D),
and that p∗ is given by evaluation at a final object 1D ∈ D. We have a commutative diagram

FunR
G(Y,P(C;X)) //

��

FunR
G(Y,P(C))× FunR

G(Y,X)

��
FunR

G(Y,P(C×D)) // FunR
G(Y,P(C))× FunR

G(Y,P(D))

where the vertical arrows are inclusions of full subcategories, and the bottom arrow is an equivalence of ∞-
categories by Lemma 7.3.3.5. Consequently, it will suffice to show that if q∗ : Y → P(C×D) is a geometric
morphism with the property that the composition

r∗ : Y→ P(C×D)→ P(D)

factors through X, then q∗ factors through P(C;X).
Let Y ∈ Y and C ∈ C; we wish to show that q∗(Y )(C) ∈ X. It will suffice to show that if s : D → D′ is a

morphism in P(D) such that L(s) is an equivalence in X, then q∗(Y )(C) is s-local. Let F : P(D)→ P(C×D)
be a left adjoint to the functor given by evaluation at C. We have a commutative diagram

MapP(D)(D′, q∗(Y )(C)) //

��

MapY(q∗F (D′), Y )

��
MapP(D)(D, q∗(Y )(C)) // MapY(q∗F (D), Y )

where the horizontal arrows are homotopy equivalences. Consequently, to prove that the left vertical map is
an equivalence, it will suffice to prove that q∗F (s) is an equivalence in Y. According to Lemma 7.3.3.7, the
functor F can be identified with a product of a left adjoint r∗ to the projection r∗ : P(C×D)→ P(D) with a
constant functor. Since q∗ preserves finite products, it will suffice to show that (q∗ ◦ r∗)(s) is an equivalence
in Y. This follows immediately from our assumption that r∗ ◦ q∗ : Y→ P(D) factors through X.
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The main result of this section is the following:

Theorem 7.3.3.9. Let X be a topological space, X an ∞-topos, and π∗ : X → S a geometric morphism
( which is essentially unique, in virtue of Proposition 6.3.3.1 ). Then Shv(X;X) is an ∞-topos, and the
diagram

X
Γ← Shv(X;X) π∗→ Shv(X)

exhibits Shv(X;X) as a product of Shv(X) and X in the ∞-category TopR of ∞-topoi. Here Γ denotes the
global sections functor, given by evaluation at X ∈ U(X).

Proof. We first show that Shv(X;X) is an ∞-topos. Let P(X;X) be the ∞-category Fun(N(U(X))op,X) of
X-valued presheaves on X. For each object Y ∈ X, choose a morphism eY : ∅X → Y in X, whose source is
an initial object of X. For each sieve V on X, let χYV : U(X)op → X be the composition

U(X)op → ∆1 eY→ X,

so that

χYV (U)

{
Y if U ∈ V

∅X if U /∈ V .

so that we have a natural map χYV → χYV′ if V ⊆ V′. For each open subset U ⊆ X, let χYU = χYV , where
V = {V ⊆ U}. Let S be the set of all morphisms fYV : χYV → χYU , where V is a sieve covering U , and let S
be the strongly saturated class of morphisms generated by X. We first claim that S is setwise generated.
To see this, we observe that the passage from Y to fYV is a colimit-preserving functor of Y , so it suffices to
consider a set of objects Y ∈ X which generates X under colimits.

We next claim that S is topological, in the sense of Definition 6.2.1.4. By a standard argument, it will
suffice to show that there is a class of objects Fα ∈ P(X;X) which generates P(X;X) under colimits, such
that for every pullback diagram

F ′α

f ′

��

// χYV

fY
V

��
Fα // χYU ,

the morphism f ′ belongs to S. We observe that if X is a left exact localization of P(D), then P(X;X) is
a left exact localization of P(U(X) ×D) and is therefore generated under colimits by the Yoneda image of
U(X)×D. In other words, it will suffice to consider Fα of the form χY

′

U ′ , where Y ′ ∈ X and U ′ ⊆ X. If Y ′

is an initial object of X, then g is an equivalence and there is nothing to prove. Otherwise, the existence of
the lower horizontal map implies that U ′ ⊆ U . Let V′ = {V ∈ V : V ⊆ U ′}; then it is easy to see that f ′ is
equivalent to χY

′

V′ , and therefore belongs to S.
We next claim that Shv(X;X) consists precisely of the S-local objects of P(X;X). To see this, let Y ∈ X

be an arbitrary object, and consider the functor GY : X→ S corepresented by Y . It follows from Proposition
5.1.3.2 that an arbitrary F ∈ P(X;X) is a X-valued sheaf on X if and only if, for each Y ∈ X, the composition
GY ◦ F ∈ P(X) belongs to Shv(X). This is equivalent to the assertion that, for every sieve V which covers
U ⊆ X, the presheaf GY ◦F is sV-local, where sV : χV → χU is the associated monomorphism of presheaves.
Let G∗Y denote a left adjoint to GY ; then GY ◦F is sV-local if and only if F is G∗Y (sV)-local. We now apply
Lemma 7.3.3.7 to identify G∗Y (sV) with fYV .

We now have an identification Shv(X;X) ' S−1
P(X;X), so that Shv(X;X) is a topological localization

of P(X;X) and in particular an∞-topos. We now consider an arbitrary∞-topos Y. We have a commutative
diagram

FunR
G(Y,Shv(X;X)) //

��

FunR
G(Y,Shv(X))× FunR

G(Y;X)

��
FunR

G(Y,P(X;X)) // FunR
G(Y,P(X))× FunR

G(Y,X),

516



where the vertical arrows are inclusions of full subcategories and the lower horizontal arrow is an equivalence
by Lemma 7.3.3.8. To complete the proof, it will suffice to show that the upper horizontal arrow is also
an equivalence. In other words, we must show that if g∗ : Y → P(X;X) is a geometric morphism with the
property that the composition

Y
g∗→ P(X;X) h∗→ P(X)

factors through Shv(X), then g∗ factors through Shv(X;X). Let g∗ and h∗ denote left adjoints to g∗ and h∗,
respectively. It will suffice to show that for every morphism fYV ∈ S, the pullback g∗fYV is an equivalence in
Y. We now observe that fYV is a pullback of f1X

V ; since g∗ is left exact, it will suffice to show that g∗f1X

V is an
equivalence in Y. We have an equivalence f1X

V ' h∗sV, where sV is the monomorphism in P(X) associated to
the sieve V. The composition (g∗ ◦ h∗)(sV) is an equivalence because h∗ ◦ g∗ factors through Shv(X), which
consists of sV-local objects of P(X).

Remark 7.3.3.10. It is not difficult to extend the proof of Theorem 7.3.3.9 to the case where Shv(X) is
replaced by an arbitrary ∞-topos Y. In this case, one must replace Shv(X;X) by the ∞-category of all
limit-preserving functors Yop → X. Using these ideas, one can construct the fiber product

X×Z Y

in TopR where Z = S is the final object in TopR. To give a construction which works in general, one needs
to repeat all of the above arguments in a relative setting over the∞-topos Z. We will not pursue the subject
any further in this book.

7.3.4 Sheaves on Locally Compact Spaces

By definition, a sheaf of sets F on a topological space X is determined by the sets F(U) as U ranges over the
open subsets of X. If X is a locally compact Hausdorff space, then there is an alternative collection of data
which determines X: the values F(K), where K ranges over the compact subsets of X. Here F(K) denotes
the direct limit lim−→K⊆U F(U) taken over all open neighborhoods of K (or, equivalently, the collection of
global sections of the restriction F |K). The goal of this section is to prove a generalization of this result,
where the sheaf F is allowed to take values in a more general ∞-category C.

Definition 7.3.4.1. Let X be a locally compact Hausdorff space. We let K(X) denote the collection of all
compact subsets of X. If K,K ′ ⊆ X, we write K b K ′ if there exists an open subset U ⊆ X such that
K ⊆ U ⊆ K ′. If K ∈ K(X), we let KKb(X) = {K ′ ∈ K(X) : K b K ′}.

Let F : N(K(X))op → C be a presheaf on N(K(X)) (here K(X) is viewed as a partially ordered set with
respect to inclusion) with values in C. We will say that F is a K-sheaf if the following conditions are satisfied:

(1) The object F(∅) ∈ C is final.

(2) For every pair K,K ′ ∈ K(X), the associated diagram

F(K ∪K ′) //

��

F(K)

��
F(K ′) // F(K ∩K ′)

is a pullback square in C.

(3) For each K ∈ K(X), the restriction of F exhibits F(K) as a colimit of F |N(KKb(X))op.

We let ShvK(X;C) denote the full subcategory of Fun(N(K(X))op,C) spanned by the K-sheaves. In the
case where C = S, we will write ShvK(X) instead of ShvK(X;C).
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Definition 7.3.4.2. Let C be a presentable∞-category. We will say that filtered colimits in C are left exact
if the following condition is satisfied: for every small filtered∞-category I, the colimit functor Fun(I,C)→ C

is left exact.

Example 7.3.4.3. A Grothendieck abelian category is an abelian category A whose nerve N(A) is a pre-
sentable ∞-category with left exact filtered colimits, in the sense of Definition 7.3.4.2. We refer the reader
to [23] for further discussion.

Example 7.3.4.4. Filtered colimits are left exact in the ∞-category S of spaces; this follows immediately
from Proposition 5.3.3.3. It follows that filtered colimits in τ≤n S are left exact for each n ≥ −2, since the
full subcategory τ≤n S ⊆ S is stable under filtered colimits and finite limits (in fact, under all limits).

Example 7.3.4.5. Let C be a presentable ∞-category in which filtered colimits are left exact, and let X
be an arbitrary simplicial set. Then filtered colimits are left exact in Fun(X,C). This follows immediately
from Proposition 5.1.2.2, which asserts that the relevant limits and colimits can be computed pointwise.

Example 7.3.4.6. Let C be a presentable∞-category in which filtered colimits are left exact, and let D ⊆ C

be the essential image of an (accessible) left exact localization functor L. Then filtered colimits in D are left
exact. To prove this, we consider an arbitrary filtered ∞-category I, and observe that the colimit functor
lim−→ : Fun(I,D)→ D is equivalent to the composition

Fun(I,D) ⊆ Fun(I,C)→ C
L→ D,

where the second arrow is given by the colimit functor lim−→Fun(I,C)→ C.

Example 7.3.4.7. Let X be an n-topos, 0 ≤ n ≤ ∞. Then filtered colimits in X are left exact. This follows
immediately from Examples 7.3.4.4, 7.3.4.5, and 7.3.4.6.

Our goal is to prove that if X is a locally compact Hausdorff space and C is a presentable ∞-category,
then the ∞-categories Shv(X) and ShvK(X) are equivalent. As a first step, we prove that a K-sheaf on X
is determined “locally”.

Lemma 7.3.4.8. Let X be a locally compact Hausdorff space and C a presentable ∞-category in which
filtered colimits are left exact. Let W be a collection of open subsets of X which covers X, and let KW(X) =
{K ∈ K(X) : (∃W ∈ W)[K ⊆ W ]}. Suppose that F ∈ ShvK(X;C). Then F is a right Kan extension of
F |N(KW(X))op.

Proof. Let us say that an open covering W of a locally compact Hausdorff space X is good if it satisfies the
conclusion of the Lemma. Note that W is a good covering of X if and only if, for every compact subset
K ⊆ X, the open sets {K ∩W : W ∈W} form a good covering of K. We wish to prove that every covering
W of a locally compact topological space X is good. In virtue of the preceding remarks, we can reduce to
the case where X is compact, and thereby assume that W has a finite subcover.

We will prove, by induction on n ≥ 0, that if W is collection of open subsets of a locally compact Hausdorff
space X such that there exist W1, . . . ,Wn ∈W with W1 ∪ . . .∪Wn = X, then W is a good covering of X. If
n = 0, then X = ∅. In this case, we must prove that F(∅) is final, which is part of the definition of K-sheaf.

Suppose that W ⊆ W′ are coverings of X, and that for every W ′ ∈ W′ the induced covering {W ∩W ′ :
W ∈W} is a good covering of W ′. It then follows from Proposition 4.3.2.8 that W′ is a good covering of X
if and only if W is a good covering of X.

Now suppose n > 0. Let V = W2 ∪ . . . ∪Wn, and let W′ = W∪{V }. Using the above remark and the
inductive hypothesis, it will suffice to show that W′ is a good covering of X. Now W′ contains a pair of
open sets W1 and V which cover X. We thereby reduce to the case n = 2; using the above remark we can
furthermore suppose that W = {W1,W2}.

We now wish to show that for every compact K ⊆ X, F exhibits F(K) as the limit of F |N(KW(X))op.
Let P be the collection of all pairs K1,K2 ∈ K(X) such that K1 ⊆ W1, K2 ⊆ W2, and K1 ∪K2 = K. We
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observe that P is a filtered when ordered by inclusion. For α = (K1,K2) ∈ P , let Kα = {K ′ ∈ K(X) :
(K ′ ⊆ K1) ∨ (K ′ ⊆ K2)}. We note that KW(X) =

⋃
α∈P Kα. Moreover, Theorem 4.1.3.1 implies that for

α = (K1,K2) ∈ P , the inclusion N{K1,K2,K1 ∩K2} ⊆ N(Kα) is cofinal. Since F is a K-sheaf, we deduce
that F exhibits F(K) as a limit of the diagram F |N(Kα)op for each α ∈ P . Using Proposition 4.2.3.4,
we deduce that F(K) is a limit of F |N(KW(X))op if and only if F(K) is a limit of the constant diagram
N(P )op → S taking the value F(K). This is clear, since P is filtered so that the map N(P )→ ∆0 is cofinal
by Theorem 4.1.3.1.

Theorem 7.3.4.9. Let X be a locally compact Hausdorff space and C a presentable ∞-category in which
filtered colimits are left exact. Let F : N(K(X) ∪ U(X))op → C be a presheaf on the partially ordered set
K(X) ∪ U(X). The following conditions are equivalent:

(1) The presheaf FK = F |N(K(X))op is a K-sheaf and F is a right Kan extension of FK.

(2) The presheaf FU = F |N(U(X))op is a sheaf and F is a left Kan extension of FU.

Proof. Suppose first that (1) is satisfied. We first prove that F is a left Kan extension of FU. Let K be a
compact subset of X, and let UK⊆(X) = {U ∈ U(X) : K ⊆ U}. Consider the diagram

N(UK⊆(X))op
p //

��

N(UK⊆(X) ∪KKb(X))op

��

N(KKb(X))op

��

p′oo

N(UK⊆(X)op). //

ψ

%%KKKKKKKKKKKKKKKKKKKKKKKKK
N(UK⊆(X)) ∪KKb(X))op).

��

N(Kop
Kb).

ψ′

yyttttttttttttttttttttttttt
oo

N(U(X) ∪K(X))op

F

��
C .

We wish to prove that ψ is a colimit diagram. Since FK is a K-sheaf, we deduce that ψ′ is a colimit
diagram. It therefore suffices to check that p and p′ are cofinal. According to Theorem 4.1.3.1, it suffices to
show that for every Y ∈ UK⊆(X) ∪ KKb(X), the partially ordered sets {K ′ ∈ K(X) : K b K ′ ⊆ Y } and
{U ∈ U(X) : K ⊆ U ⊆ Y } have contractible nerves. We now observe that both of these partially ordered
sets is filtered, since they are nonempty and stable under finite unions.

We now show that FU is a sheaf. Let U be an open subset of X and let W be a sieve which covers U .
Let K⊆U (X) = {K ∈ K(X) : K ⊆ U} and let KW(X) = {K ∈ K(X) : (∃W ∈ W)[K ⊆ W ]}. We wish to
prove that the diagram

N(Wop)/ → N(U(X))op FU→ S

is a limit. Using Theorem 4.1.3.1, we deduce that the inclusion N(W) ⊆ N(W∪KW(X)) is cofinal. It
therefore suffices to prove that F |(W∪KW(X) ∪ {U})op is a right Kan extension of F |(W∪KW(X))op.
Since F |(W∪KW(X))op is a right Kan extension of F |KW(X)op by assumption, it suffices to prove that
F |(W∪KW(X)∪{U})op is a right Kan extension of F |KW(X)op. This is clear at every object distinct from
U ; it will therefore suffice to prove that F |(KW(X) ∪ {U})op is a right Kan extension of F |KW(X)op.

By assumption, F |N(K⊆U (X)∪{U})op is a right Kan extension of F |N(K⊆U (X))op and Lemma 7.3.4.8
implies that F |N(K⊆U (X))op is a right Kan extension of F |N(KW(X))op. Invoking Proposition 4.3.2.8, we
deduce that F |N(KW(X) ∪ {U})op is a right Kan extension of F |N(KW(X))op. This shows that FU is a
sheaf, and completes the proof that (1)⇒ (2).

Now suppose that F satisfies (2). We first verify that FK is a K-sheaf. The space FK(∅) = FU(∅) is
contractible because FU is a sheaf (and because the empty sieve is a covering sieve on ∅ ⊆ X). Suppose next
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that K and K ′ are compact subsets of X. We wish to prove that the diagram

F(K ∪K ′) //

��

F(K)

��
F(K ′) // F(K ∩K ′)

is a pullback in S. Let us denote this diagram by σ : ∆1×∆1 → S. Let P be the set of all pairs U,U ′ ∈ U(X)
such that K ⊆ U and K ′ ⊆ U ′. The functor F induces a map σP : N(P op). → S∆1×∆1

, which carries each
pair (U,U ′) to the diagram

F(U ∪ U ′) //

��

F(U)

��
F(U ′) // F(U ∩ U ′)

and carries the cone point to σ. Since FU is a sheaf, each σP (U,U ′) is a pullback diagram in C. Since filtered
colimits in C are left exact, it will suffice to show that σP is a colimit diagram. By Proposition 5.1.2.2, it
suffices to show that each of the four maps

N(P op). → S

, given by evaluating σP at the four vertices of ∆1 ×∆1, is a colimit diagram. We will treat the case of the
final vertex; the other cases are handled in the same way. Let Q = {U ∈ U(X) : K ∩K ′ ⊆ U}. T We are
given a map g : N(P op). → S which admits a factorization

N(P op).
g′′→ N(Qop).

g′→ N(U(X) ∪K(X))op F→ C .

Since F is a left Kan extension of FU, the diagram F ◦g′′ is a colimit. It therefore suffices to show that g′′

induces a cofinal map N(P )op → N(Q)op. Using Theorem 4.1.3.1, it suffices to prove that for every U ′′ ∈ Q,
the partially ordered set PU ′′ = {(U,U ′) ∈ P : U ∩ U ′ ⊆ U ′′} has contractible nerve. It now suffices to
observe that P opU ′′ is filtered (since PU ′′ is nonempty and stable under intersections).

We next show that for any compact subset K ⊆ X, the map

N(KKb(X)op). → N(K(X) ∪ U(X))op F→ C

is a colimit diagram. Let V = U(X) ∪ KKb(X), and let V′ = V∪{K}. It follows from Proposition 4.3.2.8
that F |N(V)op and F |N(V′)op are left Kan extensions of F |N(U(X))op, so that F |N(V′)op is a left Kan
extension of F |N(V)op. Therefore the diagram

(N(KKb(X) ∪ {U ∈ U(X) : K ⊆ U})op). → N(K(X) ∪ U(X))op F→ C

is a colimit. It therefore suffices to show that the inclusion

N(KKb(X))op ⊆ N(KKb(X) ∪ {U ∈ U(X) : K ⊆ U})op

is cofinal. Using Theorem 4.1.3.1, we are reduced to showing that if Y ∈ KKb(X) ∪ {U ∈ U(X) : K ⊆ U},
then the nerve of the partially ordered set R = {K ′ ∈ K(X) : K b K ′ ⊂ Y } is weakly contractible. It now
suffices to observe that Rop is filtered, since R is nonempty and stable under intersections. This completes
the proof that FK is a K-sheaf.

We now show that F is a right Kan extension of FK. Let U be an open subset of X, and for V ∈ U(X)
write V b U if the closure V is compact and contained in U . Let UbU (X) = {V ∈ U(X) : V b U}, and
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consider the diagram

N(UbU (X))op
f //

��

N(UbU (X) ∪K⊆U (X))op

��

N(K⊆U (X))op

��

f ′oo

N(UbU (X)op)/

φ

%%JJJJJJJJJJJJJJJJJJJJJJJJJ
N(UbU (X) ∪K⊆U (X))op)/

��

N(K⊆U (X)op)/

φ′

yyttttttttttttttttttttttttt

N(K(X) ∪ U(X))op

F

��
C .

We wish to prove that φ′ is a limit diagram. Since the sieve UbU (X) covers U and FU is a sheaf, we conclude
that φ is a limit diagram. It therefore suffices to prove that fop and (f ′)op are cofinal maps of simplicial
sets. According to Theorem 4.1.3.1, it suffices to prove that if Y ∈ K⊆U (X) ∪ UbU (X), then the partially
ordered sets {V ∈ U(X) : Y ⊆ V b U} and {K ∈ K(X) : Y ⊆ K ⊆ U} have weakly contractible nerves. We
now observe that both of these partially ordered sets are filtered (since they are nonempty and stable under
unions). This completes the proof that F is a right Kan extension of FK.

Corollary 7.3.4.10. Let X be a locally compact topological space and C a presentable ∞-category in which
filtered colimits are left exact. Let

ShvKU(X;C) ⊆ Fun(N(K(X) ∪ U(X))op,C)

be the full subcategory spanned by those presheaves which satisfy the equivalent conditions of Theorem 7.3.4.9.
Then the restriction functors

Shv(X;C)← ShvKU(X;C)→ ShvK(X;C)

are equivalences of ∞-categories.

Corollary 7.3.4.11. Let X be a compact Hausdorff space. Then the global sections functor Γ : Shv(X)→ S

is a proper morphism of ∞-topoi.

Proof. The existence of fiber products Shv(X)×S Y in TopR follows from Theorem 7.3.3.9. It will therefore
suffice to prove that for any (homotopy) Cartesian rectangle

X′′ //

��

X′ //

��

Shv(X)

��
Y′′

f∗ // Y′ // S,

the square on the left is left adjointable. Using Theorem 7.3.3.9, we can identify the square on the left with

Shv(X;Y′′) //

��

Shv(X;Y′)

��
Y′′

f∗ // Y′,

where the vertical morphisms are given by taking global sections.
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Choose a correspondence M from Y′ to Y′′ which is associated to the functor f∗. Since f∗ admits a
left adjoint f∗, the projection M → ∆1 is both a Cartesian fibration and a coCartesian fibration. For
every simplicial set K, let MK = Fun(K,M) ×Fun(K,∆1) ∆1. Then MK determines a correspondence from
Fun(K,Y′) to Fun(K,Y′′). Using Proposition 3.1.2.1, we conclude that MK → ∆1 is both a Cartesian and
a coCartesian fibration, and that it is associated to the functors given by composition with f∗ and f∗.

Before proceeding further, let us adopt the following convention for the remainder of the proof: given
a simplicial set Z with a map q : Z → ∆1, we will say that an edge of Z is Cartesian or coCartesian if
it is q-Cartesian or q-coCartesian, respectively. The map q to which we are referring should be clear from
context.

Let MU denote the full subcategory of MN(U(X))op whose objects correspond to sheaves on X (with values
in either Y′ or Y′′). Since f∗ preserves limits, composition with f∗ carries Shv(X;Y′′) into Shv(X;Y′). We
conclude that the projection MU → ∆1 is a Cartesian fibration, and that the inclusion MU ⊆ MN(U(X))op

preserves Cartesian edges.
Similarly, we define MK to be the full subcategory of MN(K(X))op whose objects correspond to K-sheaves

on X (with values in either Y′ or Y′′). Since f∗ preserves finite limits and filtered colimits, composition with
f∗ carries ShvK(X;Y′) into ShvK(X;Y′′). It follows that the projection MK → ∆1 is a coCartesian fibration,
and that the inclusion MK ⊆MN(U(X))op preserves coCartesian edges.

Now let M′
KU = MN(K(X)∪U(X))op and let MKU be the full subcategory of M′

KU spanned by the objects
of ShvKU(X;Y′) and ShvKU(X;Y′′). We have a commutative diagram

MKU

φU

##G
GGGGGGG

φK{{xxxxxxxx

MU

ΓU

##G
GG

GG
GG

GG
MK

ΓK{{www
ww

ww
ww

M

where ΓU and ΓK denote the global sections functors (given by evaluation at X ∈ U(X)∩K(X)). According
to Remark 7.3.1.3, to complete the proof it will suffice to show that MU → ∆1 is a coCartesian fibration,
and that ΓU preserves both Cartesian and coCartesian edges. It is clear that ΓU preserves Cartesian edges,
since it is a composition of maps

MU ⊆MN(U(X))op →M

which preserve Cartesian edges. Similarly, we already know that MK → ∆1 is a coCartesian fibration, and
that ΓK preserves coCartesian edges. To complete the proof, it will therefore suffice to show that φU and φK

are equivalences of ∞-categories. We will give the argument for φU; the proof in the case of φK is identical
and left to the reader.

According to Corollary 7.3.4.10, the map φU induces equivalences

ShvKU(X;Y′)→ Shv(X;Y′)

ShvKU(X;Y′′)→ Shv(X;Y′′)

after passing to the fibers over either vertex of ∆1. We will complete the proof by applying Corollary 2.3.4.4.
In order to do so, we must verify that p : MKU → ∆1 is a Cartesian fibration, and that φU preserves
Cartesian edges.

To show that p is a Cartesian fibration, we begin with an arbitrary F ∈ ShvKU(X;Y′′). Using Propo-
sition 3.1.2.1, we conclude the existence of a p′-Cartesian morphism α : F′ → F, where p′ denotes the
projection M′

KU and F′ = F ◦p∗ ∈ Fun(N(K(X) ∪ U(X))op,Y′). Since p∗ preserves limits, we conclude that
F′ |N(U(X))op is a sheaf on X with values in Y′; however, F′ is not necessarily a left Kan extension of
F′ |N(U(X))op. Let C denote the full subcategory of Fun(N(K(X) ∪ U(X))op,Y′) spanned by those func-
tors G : N(K(X) ∪ U(X))op which are left Kan extensions of G |N(U(X))op, and s a section of the trivial
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fibration C → (Y′)N(U(X))op

, so that s is a left adjoint to the restriction map r : M′
KU → (Y′)N(U(X))op

.
Let F′′ = (s ◦ r) F′ be a left Kan extension of F′ |N(U(X))op. Then F′′ is an initial object of the fiber
M′

KU×Fun(N(U(X))op,Y′){F′ |N(U(X))op}, so that there exists a map β : F′′ → F′ which induces the identity
on F′′ |N(U(X))op = F′ |N(U(X))op.

Let σ : ∆2 →M′
KU classify a diagram

F′

α

��@
@@

@@
@@

F′′

β
>>}}}}}}}} γ // F,

so that γ is a composition of α and β. It is easy to see that φU(γ) is a Cartesian edge of MU (since it is
a composition of a Cartesian edge with an equivalence in Shv(X;Y′)). We claim that γ is p-Cartesian. To
prove this, consider the diagram

ShvKU(X;Y′)×M′
KU

(M′
KU)/σ

θ0

��

η′ // (MKU)γ

η

��

(ShvKU(X;Y′))/β ×ShvKU(X;Y′)/ F′
(M′

KU)/α

θ1

��
ShvKU(X;Y′)×M′

KU
(M′

KU)/α
θ2 // ShvKU(X;Y′)×MKU

(MKU)/F.

We wish to show that η is a trivial fibration. Since η is a right fibration, it suffices to show that the fibers
of η are contractible. The map η′ is a trivial fibration (since the inclusion ∆{0,2} ⊆ ∆2 is right anodyne),
so it will suffice to prove that η ◦ η′ is a trivial fibration. In view of the commutativity of the diagram,
it will suffice to show that θ0, θ1, and θ2 are trivial fibrations. The triviality of θ0 follows from the fact
that the horn inclusion Λ2

1 ⊆ ∆2 is right anodyne. The triviality of θ2 follows from the fact that α is
p′-Cartesian. Finally, we observe that θ1 is a pullback of the map θ′1 : ShvKU(X;Y′)/β → ShvKU(X;Y′)/F′ .
Let C = (Y′)N(K(X)∪U(X))op

. To prove that θ′1 is a trivial fibration, we must show that for every G ∈ ShvKU,
composition with β induces a homotopy equivalence

MapC(G,F′′)→ MapC(G,F′).

Without loss of generality, we may suppose that G = s(G′), where G′ ∈ Shv(X;Y′); now we simply invoke
the adjointness of s with the restriction functor r and the observation that r(β) is an equivalence.

Corollary 7.3.4.12. Let X be a compact Hausdorff space. The global sections functor Γ : Shv(X) → S

preserves filtered colimits.

Proof. Applying Theorem 7.3.4.9, we can replace Shv(X) by ShvK(X). Now observe that the full sub-
category ShvK(X) ⊆ P(N(K(X))op) is stable under filtered colimits. We thereby reduce to proving that
the evaluation functor P(N(K(X))op) → S commutes with filtered colimits, which follows from Proposition
5.1.2.2. Alternatively, one can apply Corollary 7.3.4.10 and Remark 7.3.1.6.

Remark 7.3.4.13. One can also deduce Corollary 7.3.4.12 using the geometric model for Shv(X) introduced
in §7.1. Using the characterization of properness in terms of filtered colimits described in Remark 7.3.1.6,
one can formally deduce Corollary 7.3.4.11 from Corollary 7.3.4.12. This leads to another proof of the proper
base change theorem, which does not make use of Theorem 7.3.4.9 or the other ideas of this section. However,
this alternative proof is considerably more difficult than the one described here, since it requires a rigorous
justification of Remark 7.3.1.6. We also note that Theorem 7.3.4.9 and Corollary 7.3.4.10 are interesting in
their own right, and could conceivably be applied in other contexts.
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7.3.5 Sheaves on Coherent Spaces

Theorem 7.3.4.9 has an analogue in the setting of coherent topological spaces which is somewhat easier to
prove. First, we need the analogue of Lemma 7.3.4.8:

Lemma 7.3.5.1. Let X be a coherent topological space, let U0(X) denote the collection of compact open
subsets of X, and let F : N(U0(X))op → C be a presheaf taking values in an ∞-category C, having the
following properties:

(1) The object F(∅) ∈ C is final.

(2) For every pair of compact open sets U, V ⊆ X, the diagram

F(U ∩ V ) //

��

F(U)

��
F(V ) // F(U ∪ V )

is a pullback.

Let W be a covering of X by compact open subsets, and let U1(X) ⊆ U0(X) be collection of all compact open
subsets of X which are contained in some element of W. Then F is a right Kan extension of F |N(U1(X))op.

Proof. The proof is similar to that of Lemma 7.3.4.8, but slightly easier. Let us say that a covering W of a
coherent topological space X by compact open subsets is good if it satisfies the conclusions of the Lemma.
We observe that W automatically has a finite subcover. We will prove, by induction on n ≥ 0, that if W is
collection of open subsets of a locally coherent topological space X such that there exist W1, . . . ,Wn ∈ W

with W1 ∪ . . .∪Wn = X, then W is a good covering of X. If n = 0, then X = ∅. In this case, we must prove
that F(∅) is final, which is one of our assumptions.

Suppose that W ⊆W′ are coverings of X by compact open sets, and that for every W ′ ∈W′ the induced
covering {W ∩W ′ : W ∈W} is a good covering of W ′. It then follows from Proposition 4.3.2.8 that W′ is a
good covering of X if and only if W is a good covering of X.

Now suppose n > 0. Let V = W2 ∪ . . . ∪Wn, and let W′ = W∪{V }. Using the above remark and the
inductive hypothesis, it will suffice to show that W′ is a good covering of X. Now W′ contains a pair of
open sets W1 and V which cover X. We thereby reduce to the case n = 2; using the above remark we can
furthermore suppose that W = {W1,W2}.

We now wish to show that for every compact U ⊆ X, F exhibits F(U) as the limit of F |N(U1(X)/U )op.
Without loss of generality, we may replace X by U and thereby reduce to the case U = X. Let U2(X) =
{W1,W2,W1 ∩W2} ⊆ U1(X). Using Theorem 4.1.3.1, we deduce that the inclusion N(U2(X)) ⊆ N(U1(X))
is cofinal. Consequently, it suffices to prove that F(X) is the limit of the diagram F |N(U2(X))op. In other
words, we must show that the diagram

F(X) //

��

F(W1)

��
F(W2) // F(W1 ∩W2)

is a pullback in C, which is true by assumption.

Theorem 7.3.5.2. Let X be a coherent topological space, and let U0(X) ⊆ U(X) denote the collection of
compact open subsets of X. Let C be an ∞-category which admits small limits. The restriction map

Shv(X;C)→ Fun(N(U0(X))op,C)

is fully faithful, and its essential image consists of precisely those functors F0 : N(U0(X))op → C satisfying
the following conditions:
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(1) The object F0(∅) ∈ C is final.

(2) For every pair of compact open sets U, V ⊆ X, the diagram

F0(U ∩ V ) //

��

F0(U)

��
F0(V ) // F0(U ∪ V )

is a pullback.

Proof. Let D ⊆ CN(U(X))op

be the full subcategory spanned by those presheaves F : N(U(X))op → C which
are right Kan extensions of F0 = F |N(U0(X))op, and such that F0 satisfies conditions (1) and (2). According
to Proposition 4.3.2.15, it will suffice to show that D coincides with Shv(X;C).

Suppose that F : N(U(X))op → C is a sheaf. We first show that F is a right Kan extension of F0 =
F |N(U0(X))op. Let U be an open subset of X, let U(X)(0)/U denote the collection of compact open subsets

of U , and let U(X)(1)/U denote the sieve generated by U(X)(0)/U . Consider the diagram

N(U(X)(0)/U ).

f

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
i // N(U(X)(1)/U ).

f ′

++WWWWWWWWWWWWWWWWWWWWWWWWW
// N(U(X)/U ).

&&NNNNNNNNNNNN
// N(U(X))

F

��
Cop .

We wish to prove that f is a colimit diagram. Using Theorem 4.1.3.1, we deduce that the inclusion
N(U(X))(0)/U ⊆ N(U(X))(1)/U is cofinal. It therefore suffices to prove that f ′ is a colimit diagram. Since F

is a sheaf, it suffices to prove that U(X)(1)/U is a covering sieve. In other words, we need to prove that U is a
union of compact open subsets of X, which follows immediately from our assumption that X is coherent.

We next prove that F0 satisfies (1) and (2). To prove (1), we simply observe that the empty sieve is a
cover of ∅ and apply the sheaf condition. To prove (2), we may assume without loss of generality that neither
U nor V is contained in the other (otherwise the result is obvious). Let U(X)(0)/U∪V be the full subcategory

spanned by U , V , and U ∩ V , and let U(X)(1)/U∪V be the sieve on U ∪ V generated by U(X)(0)/U∪V . As above,
we have a diagram

(N(U(X))(0)/U∪V ).

f

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
i // N(U(X)(1)/U∪V ).

f ′

++WWWWWWWWWWWWWWWWWWWWWWWWWWWW
// N(U(X)/U∪V ).

''OOOOOOOOOOOOO
// N(U(X))

F

��
Cop,

and we wish to show that f is a colimit diagram. Theorem 4.1.3.1 implies that the inclusion N(U(X))(0)/U∪V ⊆
N(U(X))(1)/U∪V is cofinal. It therefore suffices to prove that f ′ is a colimit diagram, which follows from the

sheaf condition since U(X)(1)/U∪V is a covering sieve. This completes the proof that Shv(X;C) ⊆ D.
It remains to prove that D ⊆ Shv(X;C). In other words, we must show that if F is a right Kan extension

of F0 = F |N(U0(X))op, and F0 satisfies conditions (1) and (2), then F is a sheaf. Let U be an open subset
of X, U(X)(0)/U a sieve which covers U . Let U0(X)/U denote the category of compact open subsets of U

and U0(X)(0)/U the category of compact open subsets of U which belong to the sieve U(X)(0)/U . We wish to

prove that F(U) is a limit of F |N(U(X)(0)/U )op. We will in fact prove the slightly stronger assertion that

F |N(U(X)/U )op is a right Kan extension of F |N(U(X)(0)/U )op.

525



We have a commutative diagram

U0(X)(0)/U //

��

U0(X)/U

��
U(X)(0)/U // U(X)/U .

By assumption, F is a right Kan extension of F0. It follows that F |N(U(X)(0)/U )op is a right Kan extension of

F |N(U0(X)(0)/U )op and that F |N(U(X)/U )op is a right Kan extension of F |N(U0(X)/U )op. By the transitivity
of Kan extensions (Proposition 4.3.2.8), it will suffice to prove that F |N(U0(X)/U )op is a right Kan extension
of F |N(U0(X)(0)/U )op. This follows immediately from Lemma 7.3.5.1.

Corollary 7.3.5.3. Let X be a coherent topological space. Then the global sections functor Γ : Shv(X)→ S

is a proper map of ∞-topoi.

Proof. Identical to the proof of Corollary 7.3.4.11, using Theorem 7.3.5.2 in place of Corollary 7.3.4.10.

Corollary 7.3.5.4. Let X be a coherent topological space. Then the global sections functor

Γ : Shv(X)→ S

commutes with filtered colimits.

7.3.6 Cell-Like Maps

Recall that a topological space X is an absolute neighborhood retract if X is metrizable and if for any closed
immersion X ↪→ Y of X in a metric space Y , there exists an open set U ⊆ Y containing the image of X,
such that the inclusion X ↪→ U has a left inverse (in other words, X is a retract of U).

Let p : X → Y be a continuous map between locally compact absolute neighborhood retracts. The map
p is said to be cell-like if p is proper and each fiber Xy = X ×Y {y} has trivial shape (in the sense of Borsuk;
see [38] and §7.1.6). The theory of cell-like maps plays an important role in geometric topology: we refer
the reader to [12] for a discussion (and for several equivalent formulations of the condition that a map be
cell-like).

The purpose of this section is to describe a class of geometric morphisms between∞-topoi, which we will
call cell-like morphisms. We will then compare our theory of cell-like morphisms with the classical theory
of cell-like maps. We will also give a “nonclassical” example which arises in the theory of rigid analytic
geometry.

Definition 7.3.6.1. Let p∗ : X→ Y be a geometric morphism of ∞-topoi. We will say that p∗ is cell-like if
it is proper and if the right adjoint p∗ (which is well-defined up to equivalence) is fully faithful.

Warning 7.3.6.2. Many authors refer to a map p : X → Y of arbitrary compact metric spaces as cell-
like if each fiber Xy = X ×Y {y} has trivial shape. This condition is generally weaker than the condition
that p∗ : Shv(X) → Shv(Y ) be cell-like in the sense of Definition 7.3.6.1. However, the two definitions are
equivalent provided that X and Y are sufficiently nice (for example, if they are locally compact absolute
neighborhood retracts). Our departure from the classical terminology is perhaps justified by the fact that
the class of morphisms introduced in Definition 7.3.6.1 has good formal properties: for example, stability
under composition.

Remark 7.3.6.3. Let p∗ : X→ Y be a cell-like geometric morphism between ∞-topoi. Then the unit map
idY → p∗p

∗ is an equivalence of functors. It follows immediately that p∗ induces an equivalence of shapes
Sh(X)→ Sh(Y) (see §7.1.6.
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Proposition 7.3.6.4. Let p∗ : X→ Y be a proper morphism of ∞-topoi. Suppose that Y has enough points.
Then p∗ is cell-like if and only if, for every pullback diagram

X′ //

��

X

p∗

��
S // Y

in TopR, the ∞-topos X′ has trivial shape.

Proof. Suppose first that each fiber X′ has trivial shape. Let F ∈ Y. We wish to show that the unit map
u : F → p∗p

∗ F is an equivalence. Since Y has enough points, it suffices to show that for each point q∗ : S→ Y,
the map q∗u is an equivalence in S, where q∗ denotes a left adjoint to q∗. Form a pullback diagram of∞-topoi

X′ //

s∗

��

X

p∗

��
S

q∗ // Y .

Since p∗ is proper, this diagram is left-adjointable. Consequently, q∗u can be identified with the unit map

K → s∗s
∗K,

where K = q∗ F ∈ S. If X′ has trivial shape, then this map is an equivalence.
Conversely, if p∗ is cell-like, then the above argument shows that for every diagram

X′ //

s∗

��

X

p∗

��
S

q∗ // Y

as above and every F ∈ Y, the adjunction map

K → s∗s
∗K

is an equivalence, where K = q∗ F. To prove that X′ has trivial shape, it will suffice to show that q∗ is
essentially surjective. For this, we observe that since S is a final object in the ∞-category of ∞-topoi, there
exists a geometric morphism r∗ : Y→ S such that r∗ ◦ q∗ is homotopic to idS. It follows that q∗ ◦ r∗ ' idS.
Since idS is essentially surjective, we conclude that q∗ is essentially surjective.

Corollary 7.3.6.5. Let p : X → Y be a map of paracompact topological spaces. Assume that p∗ is proper,
and that Y has finite covering dimension. Then p∗ : Shv(X) → Shv(Y ) is cell-like if and only if each fiber
Xy = X ×Y {y} has trivial shape.

Proof. Combine Proposition 7.3.6.4 with Corollary 7.2.1.24.

Proposition 7.3.6.6. Let p : X → Y be a proper map of locally compact ANRs. The following conditions
are equivalent:

(1) The geometric morphism p∗ : Shv(X)→ Shv(Y ) is cell-like.

(2) For every open subset U ⊆ Y , the restriction map X ×Y U → U is a homotopy equivalence.

(3) Each fiber Xy = X ×Y {y} has trivial shape.
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Proof. It is easy to see that if p∗ is cell-like, then each of the restrictions p′ : X ×Y U → U induces a cell-like
geometric morphism. According to Remark 7.3.6.3, p′∗ is a shape equivalence, and therefore a homotopy
equivalence by Proposition 7.1.6.7. Thus (1)⇒ (2).

We next prove that (2)⇒ (1). Let F ∈ Shv(Y ), and let u : F → p∗p
∗ F be a unit map; we wish to show

that u is an equivalence. It will suffice to show that the induced map F(U)→ (p∗p∗ F)(U) is an equivalence
in S for each paracompact open subset U ⊆ Y . Replacing Y by u, we may reduce to the problem of showing
that the map F(Y )→ (p∗ F)(X) is a homotopy equivalence. According to Corollary 7.1.4.4, we may assume
that F is the simplicial nerve of SingY Ỹ , where Ỹ is a fibrant-cofibrant object of Top/Y . According to
Proposition 7.1.5.1, we may identify p∗ F with SingX X̃, where X̃ = X ×Y Ỹ . It therefore suffices to prove
that the induced map of simplicial function spaces

MapY (Y, Ỹ )→ MapX(X, X̃) ' MapY (X, Ỹ )

is a homotopy equivalence, which follows immediately from (2).
The implication (1)⇒ (3) follows from the proof of Proposition 7.3.6.6, and the implication (3)⇒ (2) is

classical (see [25]).

Remark 7.3.6.7. It is possible to prove the following generalization of Proposition 7.3.6.6: a proper ge-
ometric morphism p∗ : X → Y is cell-like if and only if, for each object U ∈ Y, the associated geometric
morphism X/p∗U → Y/U is a shape equivalence (and, in fact, it is only necessary to check this on a collection
of objects U ∈ Y which generates Y under colimits).

Remark 7.3.6.8. Another useful property of the class of cell-like morphisms, which we will not prove here,
is stability under base change: given a pullback diagram

X′

p′∗
��

// X

p∗

��
Y′ // Y

where p∗ is cell-like, p′∗ is also cell-like.

If p∗ : X→ Y is a cell-like morphism of∞-topoi, then many properties of Y are controlled by the analogous
properties of X. For example:

Proposition 7.3.6.9. Let p∗ : X → Y be a cell-like morphism of ∞-topoi. If X has homotopy dimension
≤ n, then Y also has homotopy dimension ≤ n.

Proof. Let 1Y be a final object of Y, U an (n − 1)-connected object of Y, and p∗ a left adjoint to p∗.
We wish to prove that HomhY(1Y, U) is nonempty. Since p∗ is fully faithful, it will suffice to prove that
HomhX(p∗1Y, p

∗U). We now observe that p∗1Y is a final object of X (since p is left exact), p∗U is (n −
1)-connected (Proposition 6.5.1.16), and X has homotopy dimension ≤ n, so that HomhX(p∗1Y, p

∗U) is
nonempty as desired.

We conclude with a different example of a class of cell-like maps. We will assume in the following
discussion that the reader is familiar with the basic ideas of rigid analytic geometry; for an account of this
theory we refer the reader to [19]. Let K be field which is complete with respect to a non-Archimedean
absolute value ||K : K → R. Let A be an affinoid algebra over K: that is, a quotient of an algebra of
convergent power series (in several variables) with values in K. Let X be the rigid space associated to A.
One can associate to X two different “underlying” topological spaces:

(ZR1) The category C of rational open subsets of X has a Grothendieck topology, given by admissible affine
covers. The topos of sheaves of sets on C is localic, and the underlying locale has enough points: it
is therefore isomorphic to the locale of open subsets of a (canonically determined) topological space
XZR, the Zariski-Riemann space of X.
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(ZR2) In the case where K is a discretely valued field with ring of integers R, one may define XZR to be the
inverse limit of the underlying spaces of all formal schemes X̂ → Spf R which have generic fiber X.

(ZR3) Concretely, XZR can be identified with the set of all isomorphism classes of continuous multiplicative
seminorms ||A : A → M ∪ {∞}, where M is an ordered abelian group containing the value group
|K∗|K ⊆ R∗, and the restriction of ||A to K is ||K .

(B1) The category of sheaves of sets on C contains a full subcategory, consisting of overconvergent sheaves.
This category is also a localic topos, and the underyling locale is isomorphic to the lattice of open
subsets of a (canonically determined) topological space XB , the Berkovich space of X. The category of
overconvergent sheaves is a localization of the category of all sheaves on C, and there is an associated
map of topological spaces p : XZR → XB .

(B2) Concretely, XB can be identified with the set of all continuous multiplicative seminorms ||A : A →
R∪{∞} which extend ||K . It is equipped with the topology of pointwise convergence, and is a compact
Hausdorff space.

The relationship between the Zariski-Riemann space XZR and the Berkovich space XB (or, more concep-
tually, the relationship between the category of all sheaves on X and the category of overconvergent sheaves
on X) is neatly summarized by the following result.

Proposition 7.3.6.10. Let K be a field which is complete with respect to a non-Archimedean absolute value
||K , let A be an affinoid algebra over K, let X be the associated rigid space, and p : XZR → XB the natural
map. Then p induces a cell-like morphism of ∞-topoi p∗ : Shv(XZR)→ Shv(XB).

Before giving the proof, we need an easy lemma. Recall that a topological space X is irreducible if every
finite collection of nonempty open subsets of X has nonempty intersections.

Lemma 7.3.6.11. Let X be an irreducible topological space. Then Shv(X) has trivial shape.

Proof. Let π : X → ∗ be the projection from X to a point, π∗ : Shv(X) → Shv(∗) the induced geometric
morphism. We will construct a left adjoint π∗ to π∗ such that the unit map id→ π∗π

∗ is an equivalence.
We begin by defining G : P(X) → P(∗) to be the functor given by composition with π−1, so that

G|Shv(X) = π∗. Let
i : N(U(X))op → N(U(∗))op

be defined so that

i(U) =

{
∅ if U = ∅
{∗} if U 6= ∅,

and let F : P(∗)→ P(U) be given by composition with i. We observe that F is a left Kan extension functor,
so that the identity map

idP(∗) → G ◦ F
exhibits F as a left adjoint to G. We will show that F (Shv(∗)) ⊆ Shv(X). Setting π∗ = F |Shv(∗), we
conclude that the identity map

idShv(∗) → π∗π
∗

is the unit of an adjunction between π∗ and π∗, which will complete the proof.
Let U ⊆ U(X) be a sieve which covers the open set U ⊆ X. We wish to prove that the diagram

p : N(Uop)/ → N(U(X))op i→ N(U(∗))op F→ S

is a limit. Let U0 = {V ∈ U : V 6= ∅}. Since F(∅) is a final object of S, p is a limit if and only if p|N(Uop0 )/

is a limit diagram. If U = ∅, then this follows from the fact that F(∅) is final in S. If U 6= ∅, then p|N(Uop0 )/

is a constant diagram, so it will suffice to prove that the simplicial set N(U0)op is weakly contractible. This
follows from the observation that U

op
0 is a filtered partially ordered set, since U0 is nonempty and stable

under finite intersections (because X is irreducible).
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Proof of Proposition 7.3.6.10. We first show that p∗ is a proper map of ∞-topoi. We note that p factors as
a composition

XZR
p′→ XZR ×XB

p′′→ XB .

The map p′ is a pullback of the diagonal map XB → XB × XB . Since XB is Hausdorff, p′ is a closed
immersion. It follows p′∗ is a closed immersion of∞-topoi (Corollary 7.3.2.9) and therefore a proper morphism
(Proposition 7.3.2.12). It therefore suffices to prove that p′′ is a proper map of∞-topoi. We note the existence
of a commutative diagram

Shv(XZR ×XB)

p′′∗
��

// Shv(XZR)

g∗

��
Shv(XB) // Shv(∗).

Using Proposition 7.3.1.12, we deduce that this is a homotopy Cartesian diagram of ∞-topoi. It therefore
suffices to show that the global sections functor g∗ : Shv(XZR) → Shv(∗) is proper, which follows from
Corollary 7.3.5.3.

We now observe that the topological space XB is paracompact and has finite covering dimension ([4],
Corollary 3.2.8), so that Shv(XB) has enough points (Corollary 7.2.1.24). According to Proposition 7.3.6.4,
it suffices to show that for every fiber diagram

X′ //

��

Shv(XZR)

��
Shv(∗)

q∗ // Shv(XB),

the ∞-topos X′ has trivial shape. Using Lemma 6.4.5.6, we conclude that q∗ is necessarily induced by a
homomorphism of locales U(XB) → U(∗), which corresponds to an irreducible closed subset of XB . Since
XB is Hausdorff, this subset consists of a single (closed) point x. Using Proposition 7.3.2.12 and Corollary
7.3.2.9, we can identify X′ with the ∞-topos Shv(Y ), where Y = XZR ×XB

{x}. We now observe that the
topological space Y is coherent and irreducible (it contains a unique “generic” point), so that Shv(Y ) has
trivial shape by Lemma 7.3.6.11.

Remark 7.3.6.12. Let p∗ : Shv(XZR) → Shv(XB) be as in Proposition 7.3.6.10. Then p∗ has a fully
faithful left adjoint p∗. We might say that an object of Shv(XZR) is overconvergent if it belongs to the
essential image of p∗; for sheaves of sets, this agrees with the classical terminology.

Remark 7.3.6.13. One can generalize Proposition 7.3.6.10 to rigid spaces which are not affinoid; we leave
the details to the reader.
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Appendix A

Appendix

This appendix is comprised of three parts. In §A.1, we will review some ideas from classical category theory,
such as monoidal structures, enriched categories, and Quillen’s small object argument. We give a brief
overview of the theory of model categories in §A.2. The main result here is Proposition A.2.9.5, which will
allow us to establish the existence of model structures in a variety of situations with a minimal amount of
effort. Finally, in §A.3, we will discuss some more technical topics, such as the existence of model structure
on diagram categories and on categories of enriched categories. Our exposition is rather dense; for a more
leisurely account of the theory of model categories we refer the reader to one of the standard texts, such as
[27].
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A.1 Category Theory

Familiarity with classical category theory is the main prerequisite for reading this book. In this section, we
will fix some of the notation that we will use when discussing categories, and summarize (generally without
proofs) some of the concepts which we will use in the body of the text.

If C is a category, then we will write X ∈ C to mean that X is an object of C. For X,Y ∈ C, we write
HomC(X,Y ) for the set of morphisms from X to Y in C. We also write idX for the identity automorphism
of X ∈ C (regarded as an element of HomC(X,X)).

If Z is an object in a category C, then the overcategory C/Z of objects over Z is defined as follows: the
objects of C/Z are diagrams X → Z in C. A morphism from f : X → Z to g : Y → Z is a commutative
triangle

X //

f   A
AA

AA
AA

A Y

g
~~}}

}}
}}

}

Z.

Dually, we have an undercategory CZ/ = ((Cop)Z/)op of objects under Z.
If f : X → Z and g : Y → Z are objects in C/Z , then we will often write HomZ(X,Y ) rather than

HomC/Z
(f, g).

We let Set denote the category of sets, and Cat the category of (small) categories (where the morphisms
are given by functors).

If κ is a regular cardinal, we will say that a set S is κ-small if it has cardinality less than κ. We will also
use this terminology when discussing mathematical objects other than sets, which are built out of sets. For
example, we will say that a category C is κ-small if the set of all objects of C is κ-small, and the set of all
morphisms in C is likewise κ-small.

We will need to discuss categories which are not small. In order to minimize the effort spent dealing with
set-theoretic complications, we will adopt the usual device of “Grothendieck universes”. We fix a strongly
inaccessible cardinal κ, and refer to a mathematical object (such as a set or category) as small if it is κ-small,
and large otherwise. It should be emphasized that this is primarily a linguistic device, and that none of our
results depend in an essential way on the existence of a strongly inaccessible cardinal κ.

Throughout this book, the word “topos” will always mean Grothendieck topos. Strictly speaking, a
knowledge of classical topos theory is not required to read this paper: all of the relevant classical concepts
will be introduced (though sometimes in a hurried fashion) in the course of our search for suitable ∞-
categorical analogues.

A.1.1 Compactness and Presentability

Let κ be a regular cardinal.

Definition A.1.1.1. A partially ordered set I is κ-filtered if, for any subset I0 ⊆ I having cardinality < κ,
there exists an upper bound for I0 in I.

Let C be a category which admits (small) colimits, and let X be an object of C. Suppose given a κ-filtered
partially ordered set I and a diagram {Yα}α∈I in C, indexed by I. Let Y denote a colimit of this diagram.
There there is an associated map of sets

ψ : lim−→HomC(X,Yα)→ HomC(X,Y ).

We say that X is κ-compact if ψ is bijective, for every κ-filtered partially ordered set I and every diagram
{Yα} indexed by I. We say that X is small if it is κ-compact for some (small) regular cardinal κ. In this
case, X is κ-compact for all sufficiently large regular cardinals κ.

Definition A.1.1.2. A category C is presentable if it satisfies the following conditions:
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(1) The category C admits all (small) colimits.

(2) There exists a (small) set S of objects of C which generates C under colimits; in other words, every
object of C may be obtained as the colimit of a (small) diagram taking values in S.

(3) Every object in C is small. (Assuming (2), this is equivalent to the assertion that every object which
belongs to S is small.)

(4) For any pair of objects X,Y ∈ C, the set HomC(X,Y ) is small.

Remark A.1.1.3. In §5.5, we describe an ∞-categorical generalization of Definition A.1.1.2.

Remark A.1.1.4. For more details of the theory of presentable categories, we refer the reader to [1]. Note
that our terminology differs slightly from that of [1], in which our presentable categories are called locally
presentable categories.

A.1.2 Lifting Problems and the Small Object Argument

Let C be a category, and let p : A→ B and q : X → Y be morphisms in C. Recall that p is said to have the
left lifting property with respect to q, and q the right lifting property with respect to p, if given any diagram

A

p

��

// X

q

��
B

>>~
~

~
~

// Y

there exists a dotted arrow as indicated, rendering the diagram commutative.

Remark A.1.2.1. In the case where Y is a final object of C, we will instead say that X has the extension
property with respect to p : A→ B.

Let A be any collection of morphisms in C. We define A⊥ to be the class of all morphisms which have
the right lifting property with respect to all morphisms in A, and A> to be the class of all morphisms which
have the left lifting property with respect to all morphisms in A. We observe that

A ⊆ (A⊥)>.

The class of morphisms (A⊥)> enjoys several stability properties which we axiomatize in the following
definition.

Definition A.1.2.2. Let C be a category with all (small) colimits, and let S be a class of morphisms of C.
We will say that S is saturated if it has the following properties:

(1) (Closure under the formation of pushouts) Given a pushout diagram

C
f //

��

D

��
C ′

f ′ // D′

such that f belongs to S, the morphism f ′ also belongs to S.
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(2) (Closure under transfinite composition) Let C ∈ C be an object, α an ordinal, and let {Dβ}β<α be
a system of objects of CC/ indexed by α: in other words, for each β < α, we are supplied with a
morphism C → Dβ , and for each γ ≤ β < α a commutative diagram

Dγ

φγ,β

��

C

>>}}}}}}}}

  A
AA

AA
AA

A

Dβ

satisfying φβ,γ ◦ φγ,δ = φβ,δ. For β ≤ α, we let D<β be a colimit of the system {Dγ}γ<β , taken in the
category CC/.

Suppose that, for each β < α, the natural map D<β → Dβ belongs to S. Then the induced map
C → D<α belongs to S.

(3) (Closure under the formation of retracts) Given a commutative diagram

C

f

��

// C ′

g

��

// C

f

��
D // D′ // D

in which both horizontal compositions are the identity, if g belongs to S, then so does f .

It is worth noting that saturation has the following consequences:

Proposition A.1.2.3. Let C be a category which admits all (small) colimits, and let S be a saturated class
of morphism in C. Then:

(1) Every isomorphism belongs to S.

(2) The class S is stable under composition: if f : X → Y and g : Y → Z belong to S, then so does g ◦ f .

Proof. Assertion (1) is equivalent to the closure of S under transfinite composition, in the special case where
α = 0; (2) is equivalent to the special case where α = 2.

Remark A.1.2.4. A reader who is ill-at-ease with the style of the preceding argument should feel free to
take the asserted properties as part of the definition of a saturated class of morphisms.

The intersection of any collection of saturated classes of morphisms is itself saturated. Consequently, for
any category C which admits small colimits, and any collection A of morphisms of C, there exists a smallest
saturated class of morphisms containing A: we will call this the saturated class of morphisms generated by
A. We note that (A⊥)> is saturated. Under appropriate set-theoretic assumptions, Quillen’s “small object”
argument can be used to establish that (A⊥)> is the saturated class generated by A:

Proposition A.1.2.5 (Small Object Argument). Let C be a presentable category and A0 = {φi : Ci →
Di}i∈I a collection of morphisms in C indexed by a set I. Then there exists a functor T : C → C and a
natural transformation

θ : idC → T

with the following properties:
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(1) For every object X ∈ C, the object T (X) has the extension property with respect to every morphism in
A0.

(2) For every object X ∈ C, the map θX : X → T (X) belongs to the saturated class of morphisms generated
by A0.

(3) If κ is a regular cardinal such that each object Ci is κ-compact, then T commutes with κ-filtered colimits.

Proof. We define a functor S : C→ C as follows. For each object X ∈ C, let S(X) be defined by the pushout
diagram ∐

i∈I,η∈HomC(Ci,X) Ci //

��

X

��∐
i∈I,η∈HomC(Ci,X)Di // S(X).

Let κ be a regular cardinal as in (3): it follows easily that S commutes with κ-filtered colimits. Moreover,
S is equipped with a natural transformation idC → S.

Now we define a transfinite sequence of functors Tα : C → C as follows. Let T0 be the identity functor,
and let Tα+1 = S ◦ Tα. Finally, for a limit ordinal λ, let Tλ be the colimit of the sequence of functors
{Tβ}β<λ. It is easy to check that the functor Tκ has all of the desired properties.

Corollary A.1.2.6. Let C be a presentable category, and let A = {Ci → Di}i∈I be a collection of morphisms
in C indexed by a set I. Then every morphism f : X → Z admits a factorization

X
f ′→ Y

f ′′→ Z

where f ′ belongs to the smallest saturated class of morphisms containing A, and f ′′ belongs to A⊥.

Proof. Apply Proposition A.1.2.5 to the category C/Z and the collection of all commutative diagrams

Ci

  A
AA

AA
AA

A
// Di

~~}}
}}

}}
}}

Z.

Corollary A.1.2.7. Let C be a presentable category, and let A be a set of morphisms of C. Then (A⊥)> is
the smallest saturated class of morphisms containing A.

Proof. Let A be the smallest saturated class of morphisms containing A, so that A ⊆ (A⊥)>. To establish
the reverse inclusion, For the reverse inclusion, let us suppose that f : X → Z belongs to (A⊥)>). Corollary
A.1.2.6 implies the existence of a factorization

X
f ′→ Y

f ′′→ Z

where f ′ ∈ A and f ′′ belongs to A⊥. It follows that f has the left lifting property with respect to f ′′, so
that f is a retract of f ′ and therefore belongs to A.
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A.1.3 Monoidal Categories

A monoidal category is a category C equipped with a (coherently) associative “product” functor⊗ : C×C→ C

and a unit object 1. The associativity is expressed by demanding isomorphisms

ηA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C),

and the requirement that 1 be unital is expressed by demanding isomorphisms

αA : A⊗ 1→ A

βA : 1⊗A→ A.

We do not merely require the existence of these isomorphisms: they are part of the structure of a monoidal
category. Moreover, these isomorphisms are required to satisfy the following conditions:

• The isomorphism ηA,B,C depends functorially on the triple (A,B,C); in other words, η may be regarded
as a natural isomorphism between the functors

C×C×C→ C .

(A,B,C) 7→ (A⊗B)⊗ C

(A,B,C) 7→ A⊗ (B ⊗ C).

Similarly αA and βA depend functorially on A.

• Given any quadruple (A,B,C,D) of objects of C, the MacLane pentagon

((A⊗B)⊗ C)⊗D

ηA,B,C⊗idDuujjjjjjjjjjjjjjj
ηA⊗B,C,D

))TTTTTTTTTTTTTTT

(A⊗ (B ⊗ C))⊗D

ηA,B⊗C,D

��

(A⊗B)⊗ (C ⊗D)

ηA,B,C⊗D

��
A⊗ ((B ⊗ C)⊗D)

idA ⊗ηB,C,D // A⊗ (B ⊗ (C ⊗D))

is commutative.

• For any pair (A,B) of objects of C, the triangle

(A⊗ 1)⊗B
ηA,1,B //

αA⊗idB

&&MMMMMMMMMMM
A⊗ (1⊗B)

idA ⊗βBxxqqqqqqqqqqq

A⊗B

is commutative.

MacLane’s coherence theorem asserts that the commutativity of this pair of diagrams implies the com-
mutativity of all diagrams that can be written using only the isomorphisms ηA,B,C , αA, and βA. More
precisely, any monoidal category is equivalent (as a monoidal category) to a strict monoidal category: that
is, a monoidal category in which ⊗ is literally associative, 1 is literally a unit with respect to ⊗, and the
isomorphisms ηA,B,C , αA, βA are the identity maps.
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Example A.1.3.1. Let C be a category which admits finite products. Then C admits the structure of a
monoidal category, where the operation ⊗ is given by Cartesian product

A⊗B ' A×B

and the isomorphisms ηA,B,C are induced from the evident associativity of the Cartesian product. The
identity 1 is defined to be the final object of C, and the isomorphisms αA and βA are determined in the
obvious way. We refer to this monoidal structure on C as the Cartesian monoidal structure.

We remark that the Cartesian product A×B is only well-defined up to (unique) isomorphism (as is the
final object 1), so that strictly speaking the Cartesian monoidal structure on C depends on various choices;
however, all such choices lead to (canonically) equivalent monoidal categories.

Remark A.1.3.2. Let (C,⊗,1, η, α, β) be a monoidal category. We will generally abuse notation by simply
saying that C is a monoidal category, or that (C,⊗) is a monoidal category, or that ⊗ is a monoidal structure
on C; the other structure is implicitly understood to be present as well.

Remark A.1.3.3. Let C be a category equipped with a monoidal structure ⊗. Then we may define a new
monoidal structure on C, by setting A ⊗op B = B ⊗ A. We refer to this monoidal structure ⊗op as the
opposite of the monoidal structure ⊗.

Definition A.1.3.4. A monoidal category (C,⊗) is said to be left closed if, for each A ∈ C, the functor

N 7→ A⊗N

admits a right adjoint
Y 7→ AY.

We say that (C,⊗) is right-closed if the opposite monoidal structure (C,⊗op) is left-closed; in other words, if
every functor

N 7→ N ⊗A
has a right adjoint

Y 7→ Y A.

Finally, we say that (C,⊗) is closed if it is both right-closed and left-closed.

In the setting of monoidal categories, it is appropriate to consider only those functors which are compatible
with the monoidal structures in the following sense:

Definition A.1.3.5. Let (C,⊗) and (D,⊗) be monoidal categories. A right-lax monoidal functor from C to
D consists of the following data:

• A functor G : C→ D.

• A natural transformation γA,B : G(A)⊗G(B)→ G(A⊗B) rendering commutative the diagram

(G(A)⊗G(B))⊗G(C)
γA,B //

ηG(A),G(B),G(C)

��

G(A⊗B)⊗G(C)
γA⊗B,C // G((A⊗B)⊗ C)

G(ηA,B,C)

��
G(A)⊗ (G(B)⊗G(C))

γB,C // G(A)⊗G(B ⊗ C)
γA,B⊗C// G(A⊗ (B ⊗ C)).

• A map e : 1D → G(1C) rendering commutative the diagrams

G(A)⊗ 1D
id⊗e//

αG(A)

((PPPPPPPPPPPP
G(A)⊗G(1C)

γA,1C // G(A⊗ 1C)

G(αA)wwnnnnnnnnnnnn

G(A)
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1D ⊗G(B)
e⊗id//

βG(B)

((PPPPPPPPPPPPP
G(1C)⊗G(B)

γ1C,A // G(1C ⊗B)

G(αB)vvnnnnnnnnnnnn

G(B)

.

A natural transformation between right-lax monoidal functors is monoidal if it commutes with the maps
γA,B , e.

Dually, a left-lax monoidal functor from C to D consists of a right-lax monoidal functor from Cop to
Dop; it is determined by giving a functor F : C → D together with a map e′ : F (1C) → 1D and a natural
transformation

γ′A,B : F (A⊗B)→ F (A)⊗ F (B)

satisfying the appropriate analogues of the conditions listed above.
If F is a right-lax monoidal functor via isomorphisms

e : 1D → F (1C)

γA,B : F (A)⊗ F (B)→ F (A⊗B),

then F may be regarded as a left-lax monoidal functor by setting e′ = e−1, γ′A,B = γ−1
A,B . In this case, we

simply say that F is a monoidal functor.

Remark A.1.3.6. Let

C
F // D
G
oo

be an adjunction between categories C and D. Suppose that C and D are equipped with monoidal structures.
Then endowing G with the structure of a right-lax monoidal functor is equivalent to endowing F with the
structure of a left-lax monoidal functor.

Example A.1.3.7. Let C and D be categories which admit finite products, and let F : C→ D be a functor
between them. Then, if we regard C and D as endowed with the Cartesian monoidal structure, then F
acquires the structure of a left lax-monoidal functor in a canonical way, via the maps F (A×B)→ F (A)×F (B)
induced from the functoriality of F . In this case, F is a monoidal functor if and only if it commutes with
finite products.

A.1.4 Enriched Category Theory

One frequently encounters categories D in which the collections of morphisms HomD(X,Y ) between two
objects X,Y ∈ D has additional structure: for example, a topology, or a group structure, or the structure
of a vector space. These situations may all be efficiently described using the language of enriched category
theory, which we now introduce.

Let (C,⊗) be a monoidal category. A C-enriched category D consists of the following data:

(1) A collection of objects.

(2) For every pair of objects X,Y ∈ D, a mapping object MapD(X,Y ) of C.

(3) For every triple of objects X,Y, Z ∈ D, a composition map

MapD(Y,Z)⊗MapD(X,Y )→ MapD(X,Z).
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Composition is required to be associative in the sense that for any W,X, Y, Z ∈ C, the diagram

MapD(Z, Y )⊗MapD(Y,X)⊗MapD(X,W ) //

��

MapD(Z,X)⊗MapD(X,W )

��
MapD(Z, Y )⊗MapD(Y,W ) // MapD(Z,W )

is commutative.

(4) For every object X ∈ D, a unit map 1→ MapD(X,X) rendering commutative the diagrams

1⊗MapD(Y,X) //

((QQQQQQQQQQQQQ
MapD(X,X)⊗MapD(Y,X)

ttjjjjjjjjjjjjjjjj

MapD(Y,X)

MapD(X,Y )⊗ 1 //

((RRRRRRRRRRRRR
MapD(X,Y )⊗MapD(X,X)

ttjjjjjjjjjjjjjjjj

MapD(X,Y ).

Example A.1.4.1. Suppose that (C,⊗) is a right-closed monoidal category. Then C is enriched over itself
in a natural way, if one defines MapC(X,Y ) = Y X .

Example A.1.4.2. Let C be the category of sets, with the Cartesian monoidal structure. Then a C-enriched
category is simply a category in the usual sense.

Remark A.1.4.3. Let G : C → C′ be a right-lax monoidal functor between monoidal categories. Suppose
that D is a category enriched over C. We may define a category G(D), enriched over C′, as follows:

(1) The objects of G(D) are the objects of D.

(2) Given objects X,Y ∈ D, we set

MapG(D)(X,Y ) = G(MapD(X,Y )).

(3) The composition in G(D) is given by the map

G(MapD(Y, Z))⊗G(MapD(X,Y ))→ G(MapD(Y,Z)⊗MapD(X,Y ))→ G(MapD(X,Z)).

Here the first map is determined by the right-weakly monoidal structure on the functor G, and the
second is obtained by applying G to the composition law in the category D.

(4) For every object X ∈ D, the associated unit G(D) is given by the composition

1C′ → G(1C)→ G(MapD(X,X)).

Remark A.1.4.4. If D and D′ are categories enriched over the same monoidal category C, then one can
define a category of C-enriched functors from D to D′ in the evident way. Namely, an enriched functor
F : D→ D′ consists of a map from the objects of D to the objects of D′ and a collection of morphisms

ηX,Y : MapD(X,Y )→ MapD′(FX,FY )

with the following properties:
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(i) For each object X ∈ D, the composition

1C → MapD(X,X)
ηX.X→ MapD′(FX,FX)

coincides with the unit map for FX ∈ D′.

(ii) For every triple of objects X,Y, Z ∈ D, the diagram

MapD(X,Y )⊗MapD(Y, Z) //

��

MapD(X,Z)

��
MapD′(FX,FY )⊗MapD(FY, FZ) // MapD(FX,FZ)

is commutative.

If F and F ′ are enriched functors, an enriched natural transformation α from F to F ′ consists of specifying,
for each object X ∈ D, a morphism αX ∈ HomD′(FX,F ′X) which renders commutative the diagram

MapD(X,Y ) //

��

MapD′(FX,FY )

αY

��
MapD′(F ′X,F ′Y )

αX // MapD′(FX,F ′Y ).

Suppose that C is any monoidal category. Consider the functor C→ Set given by

X 7→ HomC(1, X).

This is a right-lax monoidal functor from (C,⊗) to Set, where the latter is equipped with the Cartesian
monoidal structure. By the above remarks, we see that we may equip any C-enriched category D with the
structure of an ordinary category by setting

HomD(X,Y ) = HomC(1,MapD(X,Y )).

We will generally not distinguish notationally between D as a C-enriched category and this (underlying)
category having the same objects. However, to avoid confusion, we use different notations for the morphisms:
MapD(X,Y ) is an object of C, while HomD(X,Y ) is a set.

Let C be a right-closed monoidal category, and D a category enriched over C. Fix objects C ∈ C, X ∈ D,
and consider the functor

D→ C

Y 7→ MapD(X,Y )C .

This functor may or may not be corepresentable, in the sense that there exists an object Z ∈ D and an
isomorphism of functors

η : MapD(X, •)C ' MapD(Z, •).

If such an object Z exists, we will denote it by X⊗C. The natural isomorphism η is determined by specifying
a single map η(X) : C → MapD(X,X ⊗ C). By general nonsense, the map η(X) determines X ⊗ C up to
(unique) isomorphism, provided that X ⊗C exists. If the object X ⊗C exists for every C ∈ C, X ∈ D, then
we say that D is tensored over C. In this case, we may regard

(X,C) 7→ X ⊗ C

as determining a functor D⊗C→ D. Moreover, one has canonical isomorphisms

X ⊗ (C ⊗D) ' (X ⊗ C)⊗D
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which express the idea that D may be regarded as equipped with an “action” of C. Here we imagine C as a
kind of generalized monoid (via its monoidal structure).

Dually, if C is right-closed, then an object of D which represents the functor

Y 7→CMapD(Y,X)

will be denoted by CX; the object CX (if it exists) is determined up to (unique) isomorphism by a map
C → MapD(CX,X). If this object exists for all C ∈ C, X ∈ D, then we say that D is cotensored over C.

Example A.1.4.5. Let C be a right-closed monoidal category. Then C may be regarded as enriched over
itself in a natural way. It is automatically tensored over itself; it is cotensored over itself if and only if it is
left-closed.

A.2 Model Categories

One of the oldest and most successful approaches to the study of ∞-categorical phenomena is Quillen’s
theory of model categories. In this book, Quillen’s theory will play two (related) roles:

(1) The structures that we use to describe higher categories are naturally organized into model categories.
For example,∞-categories are precisely those simplicial sets which are fibrant with respect to the Joyal
model structure (Theorem 2.3.6.4). The theory of model categories provides a convenient framework
for phrasing certain results and for comparing different models of higher category theory (see, for
example, §1.3.4).

(2) The theory of model categories can itself be regarded as an approach to higher category theory. If A
is a simplicial model category (as defined in A.2.12), then the subcategory A◦ ⊆ A of fibrant-cofibrant
objects forms a fibrant simplicial category. Proposition 1.1.5.9 implies that the simplicial nerve N(A◦)
is an ∞-category. We will refer to N(A◦) as the underlying ∞-category of A. Of course, not every
∞-category arises in this way, even up to equivalence: for example, the existence of homotopy limits
and homotopy colimits in A implies the existence of various limits and colimits in N(A◦) (see Theorem
4.2.4.1). Nevertheless, we can often use the theory of model categories to prove theorems about general
∞-categories, by reducing to the situation of ∞-categories which arise via the above construction. For
example, our proof of the ∞-categorical Yoneda lemma (Proposition 5.1.3.1) uses this strategy.

Remark A.2.0.6. Using a slightly more complicated construction, one can associate an ∞-category to a
model category A which is not simplicially enriched. Namely, consider the simplicial set S = N(A) as a
marked simplicial set (see §3.1.1) in which the marked edges are those which correspond to weak equivalences
in A, and choose a marked anodyne map S → C\, where C is an∞-category. Then C is canonically determined
by A up to equivalence (in fact, up to contractible ambiguity). In the case where A is a simplicial model
category, C is equivalent the simplicial nerve N(A◦). We will discuss this construction briefly in §A.3.7, but
it will not be needed in the main text of this book.

The purpose of this section is to review the theory of model categories, with an eye towards the sort of
applications described above. Our exposition is somewhat terse and we will omit many proofs. For a more
detailed account, we refer the reader to [27] (or any other text on the theory of model categories).

A.2.1 The Model Category Axioms

Definition A.2.1.1. A model category is a category C which is equipped with three distinguished classes
of morphisms in C, called cofibrations, fibrations, and weak equivalences, in which the following axioms are
satisfied:

(1) The category C admits (small) limits and colimits.
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(2) Given a composable pair of maps X
f→ Y

g→ Z, if two of g ◦ f , f , g are weak equivalences, then so is
the third.

(3) Suppose f : X → Y is a retract of g : X ′ → Y ′: that is, suppose there exists a commutative diagram

X
i //

f

��

X ′

g

��

r // X

f

��
Y

i′ // Y ′
r′ // Y

where r ◦ i = idX and r′ ◦ i′ = idY . Then

(i) If g is a fibration, so is f .

(ii) If g is a cofibration, then so is f .

(iii) If g is a weak equivalence, then so is f .

(4) Given a diagram
A

i

��

// X

p

��
B //

??~
~

~
~

Y,

a dotted arrow can be found rendering the diagram commutative if either

(i) The map i is a cofibration, and the map p is both a fibration and a weak equivalence.

(ii) The map i is both a cofibration and a weak equivalence, and the map p is a fibration.

(5) Any map X → Z in C admits factorizations

X
f→ Y

g→ Z

X
f ′→ Y ′

g′→ Z

where f is a cofibration, g is a fibration and a weak equivalence, f ′ is a cofibration and a weak
equivalence, and g′ is a fibration.

A map f in a model category C is called a trivial cofibration if it is both a cofibration and a weak
equivalence; similarly f is called a trivial fibration if it is both a fibration and a weak equivalence. By axiom
(1), any model category C has an initial object ∅ and a final object ∗. An object X ∈ C is said to be fibrant
if the unique map X → ∗ is a fibration, and cofibrant if the unique map ∅ → X is a cofibration.

A.2.2 The Homotopy Category of a Model Category

Let C be a model category containing an object X. A cylinder object for X is an object C together with a
diagram X

∐
X

i→ C
j→ X where i is a cofibration and j is a weak equivalence, and the composition j ◦ i is

the “fold map” X
∐
X → X. Dually, a path object for Y ∈ C is an object P together with a diagram

Y
q→ P

p→ Y × Y

such that q is a weak equivalence, p is a fibration, and p ◦ q is the diagonal map Y → Y × Y . The existence
of cylinder and path objects follows from the factorization axiom (5) of Definition A.2.1.1 (factor the “fold
map” X

∐
X → X as a cofibration followed by a trivial fibration and the diagonal map Y → Y × Y as a

trivial cofibration followed by a fibration).
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Proposition A.2.2.1. Let C be a model category. Let X be a cofibrant object of C, Y a fibrant object of C,
and f, g : X → Y two maps. The following conditions are equivalent:

(1) For every cylinder object X
∐
X

j→ C, there exists a commutative diagram

X
∐
X

j //

(f,g)

##F
FF

FF
FF

FF
C

����
��

��
��

Y

(2) There exists a cylinder object X
∐
X

j→ C and a commutative diagram

X
∐
X

j //

(f,g)

##F
FF

FF
FF

FF
C

����
��

��
��

Y

(3) For every path object P
p→ Y × Y , there exists a commutative diagram

X //

(f,g)

##G
GG

GG
GG

GG P

p
{{xx

xx
xx

xx
x

Y × Y

(4) There exists a path object P
p→ Y × Y and a commutative diagram

X //

(f,g)

##G
GG

GG
GG

GG P

p
{{xx

xx
xx

xx
x

Y × Y

If C is a model category containing a cofibrant object X and a fibrant object Y , we say two maps
f, g : X → Y are homotopic if the hypotheses of Proposition A.2.2.1 are satisfied, and write f ' g. The
relation ' is an equivalence relation on HomC(X,Y ). The homotopy category hC may be defined as follows:

• The objects of hC are the fibrant-cofibrant objects of C.

• For X,Y ∈ hC, the set HomhC(X,Y ) is the set of '-equivalence classes of HomC(X,Y ).

Composition is well-defined in hC, in virtue of the fact that if f ' g, then f ◦ h ' g ◦ h (this is clear
from characterization (2) of Proposition A.2.2.1) and h′ ◦ f ' h′ ◦ g (this is clear from characterization (4)
of Proposition A.2.2.1), for any maps h, h′ such that the compositions are defined in C.

There is another way of defining hC (or at least, a category equivalent to hC): one begins with all of
C and formally adjoins inverses to all weak equivalences. Let H(C) denote the category so-obtained. If
X ∈ C is cofibrant and Y ∈ C is fibrant, then homotopic maps f, g : X → Y have the same image in H(C);
consequently we obtain a functor hC → H (C) which can be shown to be an equivalence. We will generally
ignore the distinction between these two categories, employing whichever description is more useful for the
problem at hand.

Remark A.2.2.2. Since C is (generally) not a small category, it is not immediately clear that H(C) has
small morphism sets; however, this follows from the equivalence between H(C) and hC.
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A.2.3 Left Properness and Homotopy Pushout Squares

Definition A.2.3.1. A model category C is left proper if, for any pushout square

A
i //

j

��

B

j′

��
A′

i′ // B′

in which i is a cofibration and j is a weak equivalence, the map j′ is also a weak equivalence. Dually, C is
right proper if, for any pullback square

X ′ p′ //

q′

��

Y ′

q

��
X

q // Y

in which p is a fibration and q is a weak equivalence, the map q′ is also a weak equivalence.

In this book, we will deal almost exclusively with left proper model categories. The following provides a
useful criterion for establishing left-properness:

Proposition A.2.3.2. Let C be a model category in which every object is cofibrant. Then C is left proper.

Proof. Suppose given a pushout diagram

A
i //

j

��

B

j′

��
A′

i′ // B′

where i is a cofibration and j is a weak equivalence. We wish to show that j′ is also a weak equivalence.
Equivalently, we wish to show that j′ is an isomorphism in the homotopy category hC. In other words, we
need to show that for every fibrant object Z of C, composition with j′ induces a bijection HomhC(B′, Z)→
HomhC(B,Z).

We first show that composition with j′ is surjective on homotopy classes. Suppose given a map f : B → Z.
Since j is a weak equivalence, the composition f ◦ i is homotopic to g ◦ j, for some g : A′ → B. According
to Proposition A.2.4.1, there is a map f ′ : B → Z such that f ′ ◦ i = g ◦ j, and such that f ′ is homotopic to
f . The amalgamation of f ′ and g determines a map B′ → Z which lifts f ′.

We now show that j′ is injective on homotopy classes. Suppose given a pair of maps s, s′ : B′ → Z. Let
P be a path object for Z. If s ◦ j′ and s′ ◦ j′ are homotopic, then there exists a commutative diagram

B
h //

j′

��

P

��
B′

s×s′// Z × Z.

We now replace C by C/Z×Z and apply the surjectivity statement above to deduce that there is a map
h′ : B′ → P which is homotopic to h ◦ j′. The existence of h′ shows that s and s′ are homotopic, as
desired.

Suppose given a diagram
A0 ← A→ A1
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in a model category C. In general, the pushout A0

∐
AA1 is poorly behaved, in the sense that a map of

diagrams
A0

��

Aoo //

��

A1

��
B0 Boo // B1

need not induce a weak equivalence A0

∐
AA1 → B0

∐
B B1, even if each of the vertical arrows in the diagram

is individually a weak equivalence. To correct this difficulty, it is convenient to introduce the left-derived
functor of “pushout”. The homotopy pushout of the diagram

A0 Aoo // A1

is defined to be the pushout A′0
∐
A′ A

′
1, where we have chosen a commutative diagram

A′0

��

A′

��

i //
j
oo A′1

��
A0 Aoo // A1

in which the top row is a cofibrant diagram, in the sense that A′ is cofibrant and the maps i and j are both
cofibrations. One can show that such a diagram exists, and that the pushout A′0

∐
A′ A

′
1 depends on the

choice of diagram only up to weak equivalence. (For a more systematic approach which includes a definition
of “cofibrant” for more complicated diagrams, we refer the reader to §A.3.3.)

More generally, we will say that a diagram

A

  B
BB

BB
BB

B

~~||
||

||
||

A0

  B
BB

BB
BB

B A1

~~||
||

||
||

M

is a homotopy pushout square if the composite map

A′0
∐
A′

A′1 → A0

∐
A

A1 →M

is a weak equivalence. In this case we will also say that M is a homotopy pushout of A0 and A1 over A. One
can show that this condition is independent of the choice of “cofibrant resolution”

A′0 A′oo // A′1

of the original diagram. In particular, we note that if the diagram

A0 A //oo A1

is already cofibrant, then the ordinary pushout A0

∐
AA1 is a homotopy pushout. However, the condition

that the diagram be cofibrant is quite strong; in good situations we can get away with quite a bit less:
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Proposition A.2.3.3. Let C be a left proper model category, and let

A

iyyttttttttttt
j

%%JJJJJJJJJJJ

A0

$$I
IIIIIIII A1

zzuuuuuuuuu

A0

∐
AA1

be a pushout square. Suppose that either i or j is a cofibration. Then the above diagram is also a homotopy
pushout square.

Remark A.2.3.4. The above discussion of homotopy pushouts can be dualized; one obtains the notion
of homotopy pullbacks, and the analogue of Proposition A.2.3.3 requires that C be a right proper model
category.

A.2.4 A Lifting Criterion

The following basic principle will be used many times throughout this book:

Proposition A.2.4.1. Let C be model category containing cofibrant objects A and B, and a fibrant object
X. Suppose given a cofibration i : A → B and any map f : A → X. Suppose moreover that there exists a
commutative diagram

A

[i]

��

[f ]

  @
@@

@@
@@

@

X

B

g
>>~~~~~~~

in the homotopy category hC. Then there exists a commutative diagram

A

i

��

f

  @
@@

@@
@@

@

X

B

g
>>~~~~~~~

in C, with [g] = g. ( Here we let [p] denote the homotopy class in hC of a morphism p in C. )

Proof. Choose a map g′ : B → X representing the homotopy class g. Choose a cylinder object

A
∐

A→ C(A)→ A,

and choose a factorization
C(A)

∐
A

‘
A

(B
∐

B)→ C(B)→ B

where the first map is a cofibration and the second a trivial fibration. We observe that C(B) is a cylinder
object for B.
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Since g′ ◦ i is homotopic to f , there exists a map h0 : C(A)
∐
AB → X with h|B = g′ and h|A = f .

The inclusion C(A)
∐
AB → C(B) is a trivial cofibration, so h0 extends to a map h : C(B)→ X. We may

regard h as a homotopy from g′ to g, where g ◦ i = f .

Proposition A.2.4.1 will often be applied in the following way. Suppose given a diagram

A′ //

��

A

i

��

f

  @
@@

@@
@@

@

X

B′ // B

>>~
~

~
~

which we would like to extend as indicated by the dotted arrow. If X is fibrant, i is a cofibration between
cofibrant objects, and the horizontal arrows are weak equivalences, then it suffices to solve the (frequently
easier) problem of constructing the dotted arrow in the diagram

A′

��

''NNNNNNNNNNNNN

X

B′

88ppppppp

.

A.2.5 Quillen Adjunctions and Quillen Equivalences

Let C and D be model categories, and suppose given a pair of adjoint functors

C
F // D
G
oo

(here F is the left adjoint and G is the right adjoint). The following conditions are equivalent:

(1) The functor F preserves cofibrations and trivial cofibrations.

(2) The functor G preserves fibrations and trivial fibrations.

(3) The functor F preserves cofibrations and the functor G preserves fibrations.

(4) The functor F preserves trivial cofibrations and the functor G preserves trivial fibrations.

If any of these equivalent conditions is satisfied, then we say that the pair (F,G) is a Quillen adjunction
between C and D. In this case, one can show that F preserves weak equivalences between cofibrant objects,
and G preserves weak equivalences between fibrant objects.

Suppose that C
F // D
G
oo is a Quillen adjunction. We may view the homotopy category hC as obtained

from C by first passing to the full subcategory consisting of cofibrant objects, and then inverting all weak
equivalences. Applying a similar procedure with D, we see that because F preserves weak equivalence
between cofibrant objects, it induces a functor hC→ hD; this functor is called the left derived functor of F
and denoted LF . Similarly, one may define the right derived functor RG of G. One can show that LF and
RG determine an adjunction between the homotopy categories hC and hD.
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Proposition A.2.5.1. Let C and D be model categories, and let

C
F // D
G
oo

be a Quillen adjunction. The following are equivalent:

(1) The left derived functor LF : hC→ hD is an equivalence of categories.

(2) The right derived functor RG : hD→ hC is an equivalence of categories.

(3) For every cofibrant object C ∈ C and every fibrant object D ∈ D, a map C → G(D) is a weak equivalence
in C if and only if the adjoint map F (C)→ D is a weak equivalence in D.

Proof. Since the derived functors LF and RG are adjoint to one another, it is clear that (1) is equivalent to
(2). Moreover, (1) and (2) are equivalent to the assertion that the unit and counit of the adjunction

u : idC → RG ◦ LF

v : LF ◦RG→ idD

are weak equivalences. Let us consider the unit u. Choose a fibrant object C of C. The composite functor
(RG◦LF )(C) is defined to be G(D), where F (C)→ D is a weak equivalence in D, and D is a fibrant object
of D. Thus, u is a weak equivalence when evaluated on C if and only if for any weak equivalence F (C)→ D,
the adjoint map C → G(D) is a weak equivalence. Similarly, the counit v is a weak equivalence if and only
if the converse holds. Thus (1) and (2) are equivalent to (3).

If the equivalent conditions of Proposition A.2.5.1 are satisfied, then we say that the adjunction (F,G)
gives a Quillen equivalence between the model categories C and D.

A.2.6 Monoidal Model Categories

Definition A.2.6.1. A monoidal model category is a model category C, equipped with a closed monoidal
structure ⊗ satisfying the following conditions:

(1) For every pair of cofibrations i : A→ A′, j : B → B′, the induced map

k : (A⊗B′)
∐
A⊗B

(A′ ⊗B)→ A′ ⊗B′

is a cofibration. Moreover, if either i or j is a weak equivalence, then k is a weak equivalence.

(2) The unit object 1 of C is cofibrant.

Remark A.2.6.2. It is customary to demand a weaker form of the second axiom in Definition A.2.6.1, in
order to incorporate certain examples from homotopy theory; however, Definition A.2.6.1 will be sufficiently
general to cover all applications in this book.

Remark A.2.6.3. Given a pair of maps i : A → A′, j : B → B′ in a monoidal category C, one can define
their smash ⊗-product to be the map

i ∧ j : (A⊗B′)
∐
A⊗B

(A′ ⊗B)→ A′ ⊗B′.

The operation ∧ is associative, in the sense that it is possible to identify the source and target of the maps
(i ∧ j) ∧ k and i ∧ (j ∧ k) in such a way that the two maps coincide. Definition A.2.6.1 is equivalent to the
assertion that if i1, i2, . . ., in is a finite sequence of cofibrations in C, then the smash product

i1 ∧ . . . ∧ in
is a cofibration, which is a weak equivalence if im is a weak equivalence for some 1 ≤ m ≤ n. Axiom (2) just
amounts to the special case n = 0.
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The following observation is useful for establishing that a monoidal structure and a model structure are
compatible:

Proposition A.2.6.4. Let C be a model category equipped with a closed monoidal structure ⊗. Suppose
that:

(1) Every object of C is cofibrant.

(2) For every pair of cofibrations i : A→ A′, j : B → B′, the smash ⊗-product i ∧ j is a cofibration.

Then C is a monoidal model category if and only if, for each object C ∈ C, the functors

M 7→ C ⊗M

N 7→ N ⊗ C

preserve weak equivalences.

Proof. Let ∅ denote the initial object of C. Since C is a closed monoidal category, for each C ∈ C the functors

M 7→ C ⊗M

N 7→ N ⊗ C

commute with colimits; in particular, we have C ⊗∅ ' ∅ ' ∅⊗C, where ∅ denotes the initial object of C. In
particular, we note that if iC denotes the map ∅ → C, then for any map j : M → N , the smash ⊗-product
iC ∧ j can be identified with idC ⊗j : C ⊗M → C ⊗N .

Suppose that C is a monoidal model category. The above remarks show that if j : M → N is a (trivial)
cofibration, then iC ∧ j = idC ⊗j is a (trivial) cofibration. Thus, the functor M 7→ C ⊗M is a left Quillen
functor, and therefore preserves weak equivalences between cofibrant objects. Since every object of C is
cofibrant, M 7→ C ⊗M preserves weak equivalences in general. Similarly, the functor N 7→ N ⊗C preserves
weak equivalences.

Now suppose that the functors
M 7→ C ⊗M

N 7→ N ⊗ C

preserve weak equivalences, for every object C of C. Suppose given a pair of cofibrations i : A → A′,
j : B → B′. By assumption i ∧ j is a cofibration; we must show that i ∧ j is a weak equivalence if either i
or j is a weak equivalence. We will treat the case where i is a weak equivalence; the other case follows by a
dual argument. Consider the diagram

A⊗B
i⊗idB //

��

A′ ⊗B

��
A⊗B′

f // (A′ ⊗B)
∐
A⊗B(A⊗B′) // A′ ⊗B′.

By assumption, i ⊗ idB is a weak equivalence. The square in the diagram is a homotopy pushout, so
Proposition A.2.3.2 implies that f is a weak equivalence as well. The hypothesis implies also that (i∧j)◦f =
i⊗ idB′ is a weak equivalence. Thus i ∧ j is a weak equivalence, by the two-out-of-three property.
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A.2.7 Enriched Model Categories

Definition A.2.7.1. Let (C,⊗) be a monoidal model category, and let D be a category enriched over C.
Suppose that the underlying category of D is equipped with a model structure. We will say that D is a
C-enriched model category if the following conditions are satisfied:

(1) As a C-enriched category, D is tensored and cotensored over C.

(2) For every cofibration i : C → C ′ in C and every cofibration j : D → D′ in D, the induced map

k : (D′ ⊗ C)
∐
D⊗C

(D ⊗ C ′)→ D′ ⊗ C ′

is a cofibration. Moreover, if i or j is a weak equivalence, then k is a weak equivalence.

Remark A.2.7.2. An easy formal argument shows that condition (2) is equivalent to either of the following
statements:

(2′) Given any cofibration i : D → D′ in D and any fibration j : X → Y in D, the induced map

k : MapD(D′, X)→ MapD(D,X)×MapD(D,Y ) MapD(D′, Y )

is a fibration in C, which is a weak equivalence if either i or j is a weak equivalence.

(2′′) Given any cofibration i : C → C ′ in C and any fibration j : X → Y in D, the induced map

k : XC′ → XC ×Y C Y C
′

is a fibration in D, which is trivial if either i or j is trivial.

Example A.2.7.3. If C is a monoidal model category, then it may be regarded as a model category enriched
over itself (via the same model structure).

Remark A.2.7.4. Any category C may be regarded as enriched over the category Set of sets. However, it is
not the case that any model category C may be regarded as a Set-enriched model category; this is a reflection
of the fact that the theory of model categories is an approach to higher category theory, in which morphisms
should really be thought of as constituting spaces. There is an analogous assertion for model categories but
it is more complicated: any suitably nice model category is equivalent to a model category enriched over the
category Set∆ of simplicial sets, in an essentially unique way: see [43] for a precise statement and a proof.

A.2.8 Enriched Quillen Adjunctions

In this section, we assume that S is a monoidal model category in which every object is cofibrant.
Let C and D be model categories enriched over S, and suppose given a Quillen adjunction

C
F // D
G
oo

between the underlying model categories. We wish to study the situation where G (but not F ) has the
structure of S-enriched functor. This situation will arise when we study marked model structures in §3.

If G is a S-enriched functor, then for each X ∈ C, Y ∈ D, we obtain a map in S

MapD(FX, Y )→ MapC(GFX,GY ).

Thus, for every S ∈ S, we are given a map

HomD(F (X)⊗ S, Y )→ HomC(G(F (X)⊗ S), G(Y )) = HomD(F ((G ◦ F )(X)⊗ S, Y ).
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As this map is functorial in Y , it is induced by composition with a map

b : F ((G ◦ F )(X)⊗ S)→ X ⊗ S.

Let βX,S denote the composition

F (X ⊗ S)→ F ((G ◦ F )X ⊗ S) b→ X ⊗ S.

The collection of maps βX,S is simply another means of encoding the data of G as a S-enriched functor.

Proposition A.2.8.1. Let C and D be S-enriched model categories. Let C
F // D
G
oo be a Quillen adjunction

between the underlying model categories. Suppose that βX,S is a weak equivalence for every object X of C

and every S ∈ S, and that every object of C is cofibrant. The following are equivalent:

(1) The adjunction (F,G) is a Quillen equivalence.

(2) The restriction of G gives a weak equivalence of S-enriched categories D◦ → C◦ (see §A.3.1).

Remark A.2.8.2. Strictly speaking, in §A.3.1 we only define weak equivalences between small S-enriched
categories; however, the definition extends to large S-enriched categories in an obvious way.

Proof. Since G preserves fibrant objects, and every object of C is cofibrant, it is clear that G carries D◦

into C◦. It is clear that (2) implies (1). Suppose that (1) holds. Then G is essentially surjective, since the
right derived functor RG is essentially surjective on homotopy categories. It suffices to show that G is fully
faithful: in other words, that for every pair of fibrant-cofibrant objects X,Y ∈ D, the induced map

i : MapD(X,Y )→ MapC(G(X), G(Y ))

is a weak equivalence between fibrant objects of S.
Since the left derived functor LF is essentially surjective, there exists an object X ′ ∈ C and a weak

equivalence FX ′ → X. We may regard X as a “fibrant replacement” for FX ′ in D; it follows that the
adjoint map X ′ → GX may be identified with the adjunction X ′ → (RG ◦ LF )X ′, and is therefore a weak
equivalence by (1). Thus we have a diagram

MapD(X,Y )

��

i // MapC(G(X), G(Y ))

��
MapD(F (X ′), Y ) i′ // MapC(X ′, G(Y ))

in which the vertical arrows are homotopy equivalences; thus, to show that i is a weak equivalence, it
suffices to show that i′ is a weak equivalence. For this, it suffices to show that i′ induces a bijection from
[S,MapD(F (X ′), Y )] to [S,MapC(X ′, G(Y ))], for every S ∈ S; here [S,K] denotes the set of homotopy
classes of maps from S into K in the homotopy category hS. But we may rewrite this map of sets as

i′S : MaphD(F (X ′)⊗ S, Y )→ MaphC(X ′ ⊗ S,G(Y )) = MaphD(F (X ′ ⊗ S), Y ),

and it is given by composition with βX′,S . (Here hC and hD denote the homotopy categories of C and D as
model categories; these are equivalent to the corresponding homotopy categories of C◦ and D◦ as S-enriched
categories). Since βX′,S is an isomorphism in the homotopy category hD, the map i′S is bijective and (2)
holds, as desired.

Corollary A.2.8.3. Let

C
F // D
G
oo

be a Quillen adjunction between simplicial model categories, and suppose that G is a simplicial functor. Then
G induces an equivalence of ∞-categories N(D◦)→ N(C◦).
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A.2.9 Perfect Model Categories

The purpose of this section is to describe a general procedure for constructing model categories. More
specifically, we show that, under suitable hypotheses, one can determine a model structure on a category C

by specifying the class of weak equivalences, together with a small amount of additional data. We will refer
to the model categories which arise via this construction as perfect.

Definition A.2.9.1. Let C be a presentable category. A class W of morphisms in C is perfect if it satisfies
the following conditions:

(1) Every isomorphism belongs to W .

(2) The class W is stable under retracts.

(3) Given a pair of composable morphisms X
f→ Y

g→ Z, if any two of the morphisms f , g, and g ◦ f
belong to W , then so does the third.

(4) The class W is stable under filtered colimits. More precisely, suppose given a family of morphisms
{fα : Xα → Yα} which is indexed by a filtered partially ordered set. Let X denote a colimit of {Xα}
and Y a colimit of {Yα}, and f : X → Y the induced map. If each fα belongs to W , then so does f .

(5) There exists a (small) subset W0 ⊆ W such that every morphism belonging to W can be obtained as
a filtered colimit of morphisms belonging to W0.

Example A.2.9.2. If C is a presentable category, then the class W consisting of all isomorphisms in C is
perfect.

It will be convenient to consider a reformulation of condition (5):

Proposition A.2.9.3. Let C be a presentable category, and let W be a class of morphisms of C satisfying
condition (4) of Definition A.2.9.1. Then W satisfies condition (5) of Definition A.2.9.1 if and only if, for
all sufficiently large regular cardinals κ, the following condition is satisfied:

(5′κ) Let A be a κ-filtered partially ordered set, {fα : Xα → Yα}α∈A a family of morphisms in C indexed by
A. Suppose that each Xα and each Yα is κ-compact. For each filtered subset B ⊆ A, we let XB and
YB denote (filtered) colimits of the systems {Xα}α∈B and {Yα}α∈B, and fB : XB → YB the induced
map. Suppose that fA belongs to W . Then for any κ-small subset C ⊆ A, there exists a filtered κ-small
subset B ⊆ A which contains C, such that fB belongs to W .

Proof. First suppose that (5′κ) is satisfied for all sufficiently large κ. Choose κ large enough that C is
generated under colimits by its full subcategory Cκ of κ-compact objects, and such that (5′κ) is satisfied. Let
W0 ⊆ W be a set of representatives for all morphisms f : X → Y which belong to W , such that X and Y
are κ-compact. Since Cκ is essentially small, W0 is small. We note that any morphism f : X → Y may be
obtained as a κ-filtered colimit of morphisms {fα : Xα → Yα}α∈A, where Xα and Yα are κ-compact. Let
A′ denote the collection of all κ-small, filtered subsets B ⊆ A, and let A′0 ⊆ A′ denote the subcollection
consisting of those B such that fB belongs to W . If f belongs to W , then condition (5′κ) implies that A′0 is
cofinal in A, so that the morphism f is a colimit of the (filtered) system {fB : XB → YB}B∈A′0 . Since each
fB belongs to W0 (or, more precisely, is isomorphic to a morphism which belongs to W0), it follows that W0

generates W under filtered colimits, so that condition (5) is satisfied.
Now suppose that condition (5) is satisfied for some subset W0 ⊆ W . Choose κ large enough that the

domain and codomain of each morphism of W0 is κ-compact. Enlarging κ if necessary, we may suppose that
κ > ω. We claim that (5′κ) is satisfied. To prove this, we consider any system of morphisms {fα : Xα →
Yα}α∈A satisfying the hypotheses of (5′κ). In particular, fA belongs to W , so that fA may be obtained in
some other way as a filtered colimit of a system {f ′α : X ′

α → Y ′α}α∈A′ , where each of the objects X ′
α and Y ′α
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are κ-compact. Let A′′ denote the family of all κ-small, filtered subsets B ⊆ A′. Replacing A′′ by A′ and
the family {f ′α : X ′

α → Y ′α}α∈A′ by {f ′B : X ′
B → Y ′B}B∈A′′ , we may reduce to the case where A′ is κ-filtered.

Let C ⊆ A be a κ-small subset. Since A is κ-filtered, A contains an upper bound α0 for C (not necessarily
belonging to C). Consider the diagram

Xα0

fα0 //

��

Yα0

��
XA

fA // YA.

Using the κ-compactness of Xα0 and Yα0 , we deduce the existence of a factorization

Xα0

fα0 //

g0

��

Yα0

h0

��
X ′
β0

f ′β0 //

��

Y ′β0

��
XA

fA // YA

for some β0 ∈ A′. By the same argument, we may factor the lower square as

X ′
β0

f ′β0 //

g′0
��

Yβ′0

h′0
��

Xα1

fα1 //

��

Yα1

��
XA

fA // YA

Enlarging α1 if necessary, we may suppose that α1 > α0. The composite map g′0 ◦ g0 does not necessarily
coincide with the map ηα0,α1 : Xα0 → Xα1 given by the filtered system that we began with. In spite of this,
the diagram

Xα0

""D
DD

DD
DD

D
g0 // X ′

β0

g′0 // Xα1

||zz
zz

zz
zz

XA

commutes. Since Xα0 is κ-compact, we may guarantee the equality g′0 ◦ g0 = ηα0,α1 holds after enlarging α1.
Similarly, after enlarging α1 further if necessary, we may ensure that h′0 ◦ h0 is the defining map Yα0 → Yα1

of the system that we began with.
Iterating this argument, we may produce a commutative ladder (in the category of arrows of C)

fα0
//

��

f ′β0

~~}}
}}

}}
}}

��
fα1

//

��

f ′β1

||yy
yy

yy
yy

��. . . // . . .
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We now take B = C ∪ {α0, α1, . . .}, which is κ-small in virtue of the assumption that κ > ω. We note that
the morphism fB may be identified with the colimit of the family of morphisms {fαn}n≥0, which coincides
with the colimit of the family {f ′βn

}n≥0. Since each f ′βn
belongs to W , we deduce that fB belongs to W .

Corollary A.2.9.4. Let F : C → C′ be a functor between presentable categories which preserves filtered
colimits, and let WC′ be a perfect class of morphisms in C′. Then WC = F−1WC′ is a perfect class of
morphisms in C.

Proof. It is clear that conditions (1) through (4) are satisfied. To complete the proof, we apply Proposition
A.2.9.3, and observe that if WC′ satisfies (5′κ), then WC satisfies (5′κ).

Proposition A.2.9.5. Let C be a presentable category. Suppose given a class W of morphisms of C, which we
will call weak equivalences, and a (small) set A of morphisms of C, which we will call generating cofibrations.
Suppose furthermore that the following assumptions are satisfied:

(1) The class W of weak equivalences is perfect in the sense of Definition A.2.9.1.

(2) For any diagram

X
f //

��

Y

��
X ′ //

g

��

Y ′

g′

��
X ′′ // Y ′′

in which both squares are coCartesian, f belongs to A, and g belongs to W , the map g′ also belongs to
W .

(3) If g : X → Y is a morphism in C which has the right lifting property with respect to every morphism
in A, then g belongs to W .

Then there exists a left proper model structure on C which may be described as follows:

(C) A morphism f : X → Y in C is a cofibration if it belongs to the saturated class of morphisms generated
by A.

(W ) A morphism f : X → Y in C is a weak equivalence if it belongs to W .

(F ) A morphism f : X → Y in C is a fibration if it has the right lifting property with respect to every map
which is both a cofibration and a weak equivalence.

Definition A.2.9.6. We will say that a model category C is perfect if it arises via the construction described
in Proposition A.2.9.5.

Remark A.2.9.7. The notion of a perfect model category is closely related to that of a combinatorial
model category (see for example [13]). More precisely, a model category A is perfect if and only if it is
combinatorial, left proper, and the collection of weak equivalences in A is stable under filtered colimits.
Most of the results of this appendix which concern perfect model categories can be proved in the more
general setting of combinatorial model categories.

The rest of this section is devoted to a proof of Proposition A.2.9.5. Most of the hard work is contained
in the following result:
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Lemma A.2.9.8. Under the hypotheses of Proposition A.2.9.5, the collection W ∩ C of trivial cofibrations
is a saturated. Moreover, W ∩C is generated ( as a saturated collection of morphisms ) by a ( small ) set of
morphisms of C.

Proof. We first show that W ∩ C is saturated. The only nontrivial point to verify is that W ∩ C is stable
under the formation of pushouts. Suppose given a coCartesian diagram

X

f

��

// X ′′

f ′′

��
Y // Y ′′

in which f belongs to C ∩W ; we wish to show that f ′′ also belongs to C ∩W . Since C is saturated, it will
suffice to show that f ′′ belongs to W . Using the small object argument, we can factor the top horizontal
map to produce a coCartesian rectangle

X

f

��

g // X ′

f ′

��

h // X ′′

f ′′

��
Y // Y ′

h′ // Y ′′

in which g is a cofibration and h has the right lifting property with respect to all the morphisms in A. Since
W is stable under the formation of pushouts by cofibrations, we deduce that f ′ belongs to W . Moreover, by
assumption (3), h belongs to W . Since h′ is a pushout of h by the cofibration f ′, we deduce that h′ belongs
to W as well. Applying the two-out-of-three property (twice), we deduce that f ′′ belongs to W .

We next show that the saturated class C ∩W is generated by a set of morphisms. Choose a regular
cardinal κ such that W satisfies (5′κ) of Proposition A.2.9.3. Enlarging κ if necessary, we may suppose that
for each f ∈ A, the domain and codomain of f are κ-compact. Let (C ∩W )κ denote the collection of all
morphisms f ∈ C∩W such that the domain and codomain of f are κ-compact. Then (C∩W )κ is essentially
small; it will suffice to show that C ∩W is generated by (C ∩W )κ as a saturated class.

Enlarging A if necessary, we may suppose that A is stable under the formation of retracts. In this case,
the small object argument implies that for any morphism f : X → Y belonging to C, there exists a transfinite
sequence {Xα}α<λ of objects of CX/, indexed by an ordinal λ, such that if we set

X<β = lim−→α<β
Xα,

then Y ' X<λ, and for each β < λ the natural map X<β → Xβ is a pushout of a morphism in A. Let
B denote the collection all ordinals smaller than λ, and for β ≤ λ we let B<β ⊆ B denote the subset of
B consisting of ordinals smaller than β. We will construct a new partial ordering � on B, and a diagram
{X ′

α}α∈B indexed by B, having the following properties:

(a) The partial ordering � is refinement of the usual ordering on B. In other words, if α � β, then α ≤ β.

(b) There is a transformation of diagrams {X ′
α}α∈B → {Xα}α∈B which induces isomorphisms

lim−→{X
′
α}α∈B<β

' X<β

for each β ≤ λ.

(c) For each β ∈ B, the set {α ∈ B : α � β} is κ-small.

(d) For each β ∈ B, the natural map
lim−→{X

′
α}α≺β → X ′

β

is a pushout of a morphism belonging to A.
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The construction of the relation � and the system {X ′
α}α∈B proceeds by induction. Supposing that �

has already been defined on B<β , along with the system {X ′
α}α∈B<β

, we note that there exists some pushout
diagram

M //

��

N

��
X<β // Xβ

where g belongs to A. In this case, M is κ-compact, so that the left vertical map factors through lim−→{X
′
α}α∈B′

for some κ-small B′ ⊆ B<β . Enlarging B′ if necessary, we may suppose that B′ is closed downwards under
�; we then define α � β if and only if α ∈ B′ ∪ {β}, and we define X ′

β so that the diagram

M
g //

��

N

��
lim−→{X

′
α}α∈B′ // X ′

β

is coCartesian.
For each D ⊆ B which is closed downward under �, let us define X ′

D to be the colimit of the system
{X ′

α}α∈D. We now define a transfinite sequence of such subsets {Dβ}β<γ , indexed by an ordinal γ, having
the following properties:

• For each α ≤ β < γ, we have an inclusion Dα ⊆ Dβ . Set D<β =
⋃
α<β Dα.

• For each β < γ, the set {x ∈ Bβ |x /∈ B<β} is nonempty and κ-small.

• For each β < γ, the map X → X ′
Dβ

belongs to W .

• The subset D<γ coincides with B.

Our construction goes by induction on β. Suppose that D<β has been constructed. We note that the
map X → X ′

D<β
belongs to W (this is obvious if β is a successor ordinal; if β is a limit ordinal we invoke

the stability of W under filtered colimits). If D<β = B, then we set γ = β and we are finished. Otherwise,
we let P denote the collection of all subsets of B which are closed downwards under �, contain D<β , and
are κ-small. We note that P is a κ-filtered partially ordered set, and that the map s : X ′

D<β
→ Y is the

colimit of maps {X ′
D<β

→ X ′
D′}D′∈P . By the two-out-of-three property, s belongs to W . We now invoke

assumption (5′κ) of Proposition A.2.9.3 to deduce the existence of a κ-small filtered subset P0 ⊆ P such that
the map

X ′
D<β
→ lim−→{X

′
D′}D′∈P ′

belongs to W . We now set Dβ =
⋃
D′∈P ′ D

′. We note that this induction must eventually terminate, since
the cardinality of Dβ is at least the cardinality of β, but is bounded by the cardinality of B.

Now we observe that the map f : X → Y has been factored as a transfinite composition of maps

X → X ′
D0
→ X ′

D1
→ . . . ,

each of which is a pushout of a morphism belonging to (C ∩W )κ, as desired.

We are now prepared to give the proof of Proposition A.2.9.5.

Proof. The category C has all (small) limits and colimits, since it is presentable. The two-out-three property
for W is among our assumptions, as is the stability of W under retracts. The classes of fibrations and
cofibrations are stable under retracts by definition.
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Let P denote the collection of all morphisms f in C with the following property: for coCartesian diagram

X
f //

��

Y

��
X ′ //

g

��

Y ′

g′

��
X ′′ // Y ′′

where g belongs to W , the map g′ also belongs to W . By assumption, A ⊆ P . It is easy to see that P is
saturated, so that every cofibration belongs to P . In other words, the class of weak equivalences is stable
under pushouts by cofibrations. This proves that C is left proper (provided that C is a model category).

We next establish the factorization axioms. By the small object argument, any morphism X → Z admits
a factorization

X
f→ Y

g→ Z

where f ∈ C and g has the right lifting property with respect to every morphism in C. In particular, g has
the right lifting property with respect to every morphism in C ∩W , so that g is a fibration; by assumption
(3), g is a trivial fibration. Similarly, using Lemma A.2.9.8 we may choose a factorization as above where
f ∈ C ∩W and g has the right lifting property with respect to C ∩W ; then g is a fibration by definition.

To complete the proof, it suffices to show that cofibrations have the left lifting property with respect to
trivial fibrations, and trivial cofibrations have the left lifting property with respect to fibrations. The second
of these statements is clear (it is the definition of a fibration). For the first statement, let us consider an
arbitrary trivial fibration p : X → Z. By the small object argument, there exists a factorization of p

X
q→ Y

r→ Z

where q is a cofibration, and r has the right lifting property with respect to all cofibrations. Then r is a
weak equivalence by (3), so that q is a weak equivalence by the two-out-of-three property. Considering the
diagram

X

q

��

X

p

��
Y

r //

>>~
~

~
~

Z,

we deduce the existence of the dotted arrow from the fact that p is a fibration and q is a trivial cofibration.
It follows that p is a retract of r, and therefore p also has the right lifting property with respect to all
cofibrations.

A.2.10 Simplicial Sets

The formalism of simplicial sets plays a prominent role throughout this book. In this section, we will review
the definition of a simplicial set, and establish some notation.

Let ∆ denote the category of combinatorial simplices. The objects of ∆ are finite, nonempty, linearly
ordered sets. Morphisms in ∆ are given by (nonstrictly) order-preserving maps. For each n ≥ 0, we let
[n] denote the linearly ordered set {0, . . . , n}. Every object of ∆ admits a unique isomorphism with [n], for
some n ≥ 0.

If C is any category, a simplicial object of C is a functor ∆op → C. Dually, a cosimplicial object of C is a
functor ∆ → C. A simplicial set is a simplicial object in the category of sets. More explicitly, a simplicial
set S is determined by the following data:

• A set Sn for each n ≥ 0 (the value of S on the object [n] ∈∆).
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• A map p∗ : Sn → Sm for each order-preserving map [m] → [n], the formation of which is compatible
with composition (including empty composition, so that (id[n])∗ = idSn).

Let recall a bit of standard notation for working with a simplicial set S. For each 0 ≤ j ≤ n, the face
map dj : Sn → Sn−1 is defined to be the pullback p∗, where p : [n− 1]→ [n] is given by

p(i) =

{
i if i < j

i+ 1 if i ≥ j.

Similarly, the degeneracy map sj : Sn → Sn+1 is defined to be the pullback q∗, where q : [n + 1] → [n] is
defined by the formula

q(i) =

{
i if i ≤ j
i− 1 if i > j.

Because every order-preserving map from [n] to [m] can be factored as a composition of face and degeneracy
maps, the structure of a simplicial set S is completely determined by the sets Sn for n ≥ 0, together with
the face and degeneracy operations defined above. These operations are required to satisfy certain identities,
which we will not make explicit here.

Notation A.2.10.1. The category of simplicial sets will be denoted by Set∆. If J is a nonempty linearly
ordered set, we let ∆J ∈ Set∆ denote the representable functor Hom∆(•, J). For each n ≥ 0, we will write
∆n in place of ∆[n]. We observe that, for any simplicial set S, there is a natural identification of sets
Sn ' HomSet∆(∆n, S).

Example A.2.10.2. For 0 ≤ j ≤ n, we let Λnj ⊂ ∆n denote the “j-th horn”. It is determined by the
following property: an object of (Λnj )m is given by an order-preserving map p : [m] → [n] satisfying the
condition that {j} ∪ p([m]) 6= [n]. Geometrically, Λnj corresponds to the subset of an n-simplex ∆n in which
the jth face and the interior have been removed.

More generally, if J is any linearly ordered set containing an element j, we let ΛJj denote the simplicial
subset of ∆J obtained by removing the interior and the “opposite face” to the vertex j.

A.2.11 Simplicial Sets as a Model Category

The category C of simplicial sets has a (perfect) model structure, which may be described as follows:

• A map of simplicial sets f : X → Y is a cofibration if it is a monomorphism; that is, if the induced
map Xn → Yn is injective for all n ≥ 0.

• A map of simplicial sets f : X → Y is a fibration if it is a Kan fibration; that is, if for any diagram

Λni� _

��

// X

f

��
∆n //

>>|
|

|
|

Y

it is possible to supply the dotted arrow rendering the diagram commutative.

• A map of simplicial sets f : X → Y is a weak equivalence if the induced map of geometric realizations
|X| → |Y | is a homotopy equivalence of topological spaces.

Remark A.2.11.1. To see that Set∆ is perfect, we note that the class of all cofibrations is generated by
the collection of all inclusions ∂∆n ⊆ ∆n; it is then easy to see that the conditions of Proposition A.2.9.5
are satisfied. The nontrivial point is to verify that the fibrations for this model structure are precisely the
Kan fibrations; this ultimately rests on a delicate analysis due to Quillen (see [21]).
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Remark A.2.11.2. In §1.3.4, we introduce another (perfect) model structure on Set∆, the Joyal model
structure. This model structure has the same class of cofibrations, but the fibrations and the weak equiv-
alences differ from those defined in this section. To avoid confusion, we will refer to the fibrations and
weak equivalences for the usual model structure on simplicial sets as Kan fibrations and weak homotopy
equivalences, respectively.

Remark A.2.11.3. Since the category Set∆ admits finite products, it may be regarded as a monoidal cat-
egory with respect to the Cartesian monoidal structure. This monoidal structure is closed (in other words,
Set∆ is a Cartesian closed category). Moreover, since the geometric realization functor X 7→ |X| com-
mutes with products and detects weak equivalences, we deduce from Proposition A.2.6.4 that the Cartesian
monoidal structure on Set∆ is compatible with its model structure. In other words, we may regard Set∆ as
a monoidal model category.

A.2.12 Simplicial Model Categories

The category Set∆ may be viewed as a monoidal model category, where the monoidal structure is given by
the Cartesian product.

Definition A.2.12.1. A simplicial model category is a model category which is enriched over the monoidal
model category Set∆, in the sense of Definition A.2.7.1. (Here we regard Set∆ as endowed with the Cartesian
monoidal structure, which is compatible with the usual model structure on Set∆ by Remark A.2.11.3.)

Unwinding the definitions, we see that a simplicial model category C is a model category which is enriched
over simplicial sets, satisfying the following conditions:

• As a simplicial category, C is tensored and cotensored over Set∆.

• For every cofibration p : X → X ′ in C and every fibration q : Y → Y ′ in C, the associated map

MapC(X ′, Y )→ MapC(X,Y )×MapC(X,Y ′) MapC(X ′, Y ′)

is a Kan fibration which is trivial if either p or q is a weak equivalence.

The following provides a criterion for detecting simplicial model structures:

Proposition A.2.12.2. Let C be a simplicial category Set∆ which is equipped with a model structure ( not
assumed to be compatible with the model structure on C ). Suppose that every object of C is cofibrant, and
that the class of weak equivalences in C is stable under filtered colimits. Then C is a simplicial model category
if and only if the following conditions are satisfied:

(1) As a simplicial category, C is both tensored and cotensored over Set∆.

(2) Given a cofibration i : A→ B and a fibration p : X → Y in C, the induced map of simplicial sets

q : MapC(B,X)→ MapC(A,X)×MapC(A,Y ) MapC(B, Y )

is a Kan fibration.

(3) For every n ≥ 0 and every object C in C, the natural map

C ⊗∆n → C ⊗∆0 ' C

is a weak equivalence in C.
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Proof. Suppose first that C is a simplicial model category. It is clear that (1) and (2) are satisfied. To prove
(3), we note that the projection ∆n → ∆0 admits a section s : ∆0 → ∆n which is a trivial cofibration. If C is
a simplicial model category, then since C is cofibrant it follows from Definition A.2.7.1 that C⊗∆0 → C⊗∆n

is a trivial cofibration, and in particular a weak equivalence. Thus the projection C ⊗ ∆n → C ⊗ ∆0 is a
weak equivalence by the two-out-of-three property.

Now suppose that (1), (2), and (3) are satisfied. We wish to show that C is a simplicial model category.
By repeating the argument used in the proof of Proposition A.2.6.4, it suffices to prove that the functor

(C,K) 7→ C ⊗K

preserves weak equivalences in each variable separately.
Fix the object C ∈ C, and suppose that f : K → K ′ is a weak homotopy equivalence of simplicial

sets. Choose a cofibration K → K ′′, where K ′′ is a contractible Kan complex. Then we may factor f as a
composition

K
f ′→ K ×K ′′ f

′′

→ K.

To prove that idC ⊗f is a weak equivalence, it suffices to prove that idC ⊗f ′ and idC ⊗f ′′ are weak equiva-
lences. Note that the map f ′′ has a section s, which is a trivial cofibration. Thus, to prove that idC ⊗f ′′ is
a weak equivalence, it suffices to show that idC ⊗s is a weak equivalence. In other words, we may reduce to
the case where f is itself a trivial cofibration of simplicial sets.

Consider the collection A of all monomorphisms f : K → K ′ of simplicial sets having the property that
idC ⊗f is a weak equivalence in C. It is easy to see that this collection of morphisms is saturated. Thus, to
prove that it contains all trivial cofibrations of simplicial sets, it suffices to show that every horn inclusion
Λni → ∆n belongs to A. We prove this by induction on n > 0. Choose a vertex v belonging to Λni . We note
that the inclusion {v} → Λni is a pushout of horn inclusions in dimensions < n; by the inductive hypothesis,
this inclusion belongs to A. Thus, it suffices to show that {v} → ∆n belongs to A, which is equivalent to
assumption (3).

Now let us show that for each simplicial set K, the functor

C 7→ C ⊗K

preserves weak equivalences. We will prove this by induction on the (possibly infinite) dimension of K.
Choose a weak equivalence g : C → C ′ in C. Let S denote the collection of all simplicial subsets L ⊆ K
such that g ⊗ idL is a weak equivalence. We regard S as a partially ordered set with respect to inclusions
of simplicial subsets. Clearly ∅ ∈ S. Since weak equivalences in C are stable under filtered colimits, the
supremum of every chain in S belongs to S. By Zorn’s lemma, S has a maximal element L. We wish to
show that L = K. If not, we may choose some nondegenerate simplex σ of K which does not belong to L.
Choose σ of the smallest possible dimension, so that all of the faces of σ belong to L. Thus, there is an
inclusion L′ = L

∐
∂ σ σ ⊆ K. Since C is left proper, assumption (2) implies that the diagram

D ⊗ ∂ σ //

��

D ⊗ σ

��
D ⊗ L // D ⊗ L′

is a homotopy pushout, for every object D ∈ C. We observe that g⊗idL is a weak equivalence by assumption,
g⊗id∂ σ is a weak equivalence by the inductive hypothesis (since ∂ σ has dimension smaller than the dimension
of K), and g⊗ idσ is a weak equivalence in virtue of assumption (3) and the fact that g is a weak equivalence.
It follows that g ⊗ idL′ is a weak equivalence, which contradicts the maximality of L. Thus L = K and the
proof is complete.

If C is a simplicial model category, then there is automatically a strong relationship between the homotopy
theory of the underlying model category and the homotopy theory of the simplicial sets MapC(•, •). For
example, we have the following:
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Proposition A.2.12.3. Let C be a simplicial model category, let X be a cofibrant object of C, and let Y be
a fibrant object of C. The simplicial set K = MapC(X,Y ) is a Kan complex; moreover, there is a canonical
bijection

π0K ' HomhC(X,Y ).

A.3 Simplicial Categories

Among the many different models for higher category theory, the theory of simplicial categories is perhaps
the most rigid. This can be either a curse or a blessing, depending on the situation. For the most part, we
have chosen to use the less rigid theory of ∞-categories (see §1.1.2) throughout this book. However, some
arguments are substantially easier to carry out in the setting of simplicial categories. For this reason, we
have devoted the final section of this appendix to giving a review of the theory of simplicial categories.

We will begin in §A.3.1 by introducing a (perfect) model structure on the category Cat∆ of (small)
simplicial categories, which was constructed by Bergner ([6]). Putting aside set-theoretic technicalities,
every simplicial model category A provides a fibrant object A◦ of Cat∆. In §A.3.2, we will introduce a path
space object for A◦, which will allow us to perform calculations in the homotopy category of Cat∆.

In §A.3.3, we will review the construction of model structures on diagram categories. These ideas will
be applied in §A.3.4 to construct internal mapping objects in Cat∆, and in §A.3.5 where we review the
construction of homotopy limits and homotopy colimits. We will conclude the appendix with §A.3.6, which
contains the proof of two useful “diagram straightening” results.

A.3.1 Model Structures on Enriched Categories

Throughout this section, we fix a perfect monoidal model category S, in which every object is cofibrant.
The main case of interest to us is that in which S is the category of simplicial sets (with its usual model
structure and the Cartesian monoidal structure), and we will eventually specialize to this case. However,
the treatment of the general case requires little additional effort, and there are a number of other examples
which arise naturally in other contexts:

(i) The category Set∆ of simplicial sets, equipped with the Cartesian monoidal structure and the Joyal
model structure defined in §1.3.4.

(ii) The category of complexes
. . .→Mn →Mn →Mn−1 → . . . ,

of vector spaces over a field k, with its usual model structure (in which weak equivalences are quasi-
isomorphisms, cofibrations are monomorphisms, and fibrations are epimorphisms) and monoidal struc-
ture given by the formation of tensor products of complexes.

We will denote by CatS the category of (small) S-enriched categories, where the morphisms are given by
functors between S-enriched categories. The goal of this section is to describe a model structure on CatS.

We first note that the monoidal structure on S induces a monoidal structure on its homotopy category hS,
which is determined up to (unique) isomorphism by the requirement that there exist a monoidal structure
on the functor

S→ hS

given by inverting all weak equivalences. Consequently, we note that any S-enriched category C gives rise to
an hS-enriched category hC, having the same objects as C and where mapping spaces are given by

MaphC(X,Y ) = [MapC(X,Y )].

Here we let [K] denote the image in hS of an object K ∈ S. We will refer to hC as the homotopy category
of C; the passage from C to hC is a special case of Remark A.1.4.3.
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Remark A.3.1.1. If S is the category Set∆, the above terminology reduces to the definitions given in §1.1.3.

Definition A.3.1.2. We say that a functor F : C→ C′ in CatS is a weak equivalence if the induced functor
hC→ hC′ is an equivalence of hS-enriched categories. In other words, F is a weak equivalence if and only if:

(1) For every pair of objects X,Y ∈ C, the induced map

MapC(X,Y )→ MapC′(F (X), F (Y ))

is a weak equivalence in S.

(2) Every object Y ∈ C′ is equivalent to F (X) in the homotopy category hC′, for some X ∈ C.

Lemma A.3.1.3. The category CatS is presentable, and the class W of weak equivalences is perfect ( see
Definition A.2.9.1 ).

Proof. The first statement follows from the presentability of S; the second follows from the assumption that
the class of weak equivalences in S is perfect.

We now introduce a bit of notation. If S ∈ S, we will let ES denote the S-enriched category having two
objects X and Y , with

MapC(Z,Z ′) =


1S if Z = Z ′ = X

1S if Z = Z ′ = Y

S if Z = X,Z ′ = Y

∅ if Z = Y, Z ′ = X.

Here ∅ denotes the initial object of S and 1S denotes the unit object with respect to the monoidal structure
on S. We let ∗ denote the S-enriched category having only a single object X, with Map∗(X,X) = 1S.

Let A denote a (small) set of generating cofibrations for S (which exists in virtue of the assumption that
S is perfect). We now define A′ to be the collection of all morphisms in CatS of the form

Ej : ES → ET ,

where j : S → T belongs to A, together with the inclusion

i : ∅ ⊆ ∗.

Proposition A.3.1.4. There exists a perfect model structure on CatS, in which the weak equivalences are
given by Definition A.3.1.2 and the class of cofibrations is the saturated class of morphisms generated by A′.

Proof. It suffices to verify the hypotheses of Proposition A.2.9.5. Condition (1) is satisfied by Lemma A.3.1.3.
For condition (3), we must show that any functor F : C→ C′ having the right lifting property with respect
to all morphisms in A′ is a weak equivalence. Since F has the right lifting property with respect to i : ∅ → ∗,
it is surjective on objects and therefore essentially surjective. For each j ∈ A, the assumption that F has
the right lifting property with respect to Ej ensures that the map

p : MapC(X,Y )→ MapC′(F (X), F (Y ))

has the right lifting property with respect to j. Since A generates the class of cofibrations in S, we deduce
that p is a trivial fibration, and in particular a weak equivalence.

It remains to verify condition (2): namely, that the class of weak equivalences is stable under pushout
by the elements of A′. We must show that given any pair of functors F : C→ D, G : C→ C′ with F a weak
equivalence and G a pushout of some morphism in A′, the induced map F ′ : C′ → D′ = D

∐
C C′ is a weak

equivalence. There are two cases to consider.
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First, suppose that G is a pushout of the generating cofibration i : ∅ → ∗. In other words, the category
C′ is obtained from C by adjoining a new object X, which admits no morphisms to or from the objects of
C (and no endomorphisms other than the identity). The category D′ is obtained from D by adjoining X in
the same fashion. It is easy to see that if F is a weak equivalence, then F ′ is also a weak equivalence.

The other basic case to consider is one in which G is a pushout of one of the generating cofibrations Ej .
We consider the more general situation

C′ = C
∐
ES

ET ,

where S → T is any cofibration in S. For the remainder of the proof, we will suppose that S = Set∆,
equipped with the Cartesian monoidal structure. We introduce this assumption purely in the interest of
notational convenience (so that we can describe by formulas all of the maps used in the proof below); our
argument is easily adapted to the general case.

Let H : ES → C denote the “attaching map”, so that H is determined by a pair of objects x = H(X)
and y = H(Y ) and a map of simplicial sets h : S → MapC(x, y). By definition, C′ is universal with respect
to the property that it receives a map from C, and the map h extends to a map h̃ : T → MapC′(x, y). To
carry out the proof, we will give an explicit construction of a category C′ which has this universal property.

We begin by declaring that the objects of C′ are the objects of C. The definition of the morphisms in
C′ is a bit more complicated. Let w and z be objects of C. We define a sequence of simplicial sets Mk as
follows:

M0
C = MapC(w, z)

M1
C = MapC(y, z)× T ×MapC(w, x)

M2
C = MapC(y, z)× T ×MapC(y, x)× T ×MapC(w, x)

and so forth. More specifically, for k ≥ 1, the m-simplices of Mk
C are finite sequences

(σ0, τ1, σ1, τ2, . . . , τk, σk)

where σ0 ∈ MapC(y, z)m, σk ∈ MapC(w, x)m, σi ∈ MapC(y, x)m for 0 < i < k, and τi ∈ Tm for 1 ≤ i ≤ k.
We define MapC′(w, z) to be the quotient of the disjoint union

∐
kM

k
C by the equivalence relation which

is generated by making the identification

(σ0, τ1, . . . , σk) ' (σ0, τ1, . . . , τj−1, σj−1 ◦ h(τj) ◦ σj , τj+1, . . . , σk)

whenever the simplex τj belongs to Sm ⊆ Tm.
We equip C′ with an associative composition law, which is given on the level of simplices by

(σ0, τ1, . . . , σk) ◦ (σ′0, τ
′
1, . . . , σ

′
l) = (σ0, τ1, . . . , τk, σk ◦ σ′0, τ ′1, . . . , σ′l).

It is easy to verify that this composition law is well-defined (that is, compatible with the equivalence relation
introduced above), associative, and that the identification M0

C = MapC(w, z) gives rise to an inclusion of
categories C ⊆ C′. Moreover, the map h : S → MapC(x, y) extends to h̃ : T → MapC′(x, y), given by the
composition

T ' {idy} × T × {idx} ⊆ MapC(y, y)× T ×MapC(x, x) = M1
C → MapC′(x, y).

Moreover, it is not difficult to see that C′ has the desired universal property.
We observe that, by construction, the simplicial sets MapC′(w, z) come equipped with a natural filtration.

Namely, define MapC′(w, z)k to be the image of ∐
0≤i≤k

M i
C
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in MapC′(w, z). Then we have

MapC(w, z) = MapC′(w, z)
0 ⊆ MapC′(w, z)

1 ⊆ . . .

and
⋃
k MapC′(w, z)k = MapC′(w, z). Moreover, the inclusion MapC′(w, z)k ⊆ MapC′(w, z)k+1 is a pushout

of the inclusion Nk+1
C ⊆ Mk+1

C , where Nk+1 is the simplicial subset of Mk+1
C whose m-simplices consist of

those (2m+ 1)-tuples (σ0, τ1, . . . , σm) such that τi ∈ Sm for at least one value of i.
Let us now return to the problem at hand: namely, we wish to prove that F ′ : C′ → D′ is an equivalence.

We note that the construction outlined above may also be employed to produce a model for D′, and an
analogous filtration on its morphism spaces.

Since G′ : D → D′ and F : C → D are essentially surjective, we deduce that F ′ is essentially surjective.
Hence it will suffice to show that, for any objects w, z ∈ C′, the induced map

φ : MapC′(w, z)→ MapD′(w, z)

is a weak homotopy equivalence. For this, it will suffice to show that for each i ≥ 0, the induced map
φi : MapC′(w, z)i → MapD′(w, z)i is a weak homotopy equivalence; then φ, being a filtered colimit of weak
homotopy equivalences φi, will itself be a weak homotopy equivalence.

The proof now proceeds by induction on i. When i = 0, φi is a weak homotopy equivalence by assumption
(since F is an equivalence of simplicial categories). For the inductive step, we note that φi+1 is obtained as
a pushout

MapC′(w, z)
i

∐
Ni+1

C

M i+1
C → MapD′(w, z)i

∐
Ni+1

D

M i+1
D .

Since S is left-proper, both of these pushouts are homotopy pushouts. Consequently, to show that φi+1 is a
weak homotopy equivalence, it suffices to show that φi is a weak homotopy equivalence and the each of the
maps

N i+1
C → N i+1

D

M i+1
C →M i+1

D

are weak homotopy equivalences. Both of these maps are given by products of weak equivalences (since F
is an equivalence) and isomorphisms, and are therefore weak equivalences as desired.

In order for Proposition A.3.1.4 to be useful in practice, it is necessary to understand the fibrations in
CatS. In the case where S = Set∆, there is a simple description of the class of fibrations. We first recall the
following definition (see [31]):

Definition A.3.1.5. Let F : C→ C′ be a functor between (ordinary) categories. We say that F is a quasi-
fibration if, for any object X ∈ C and any isomorphism f : F (X) → Y in C′, there exists an isomorphism
f̃ : X → Ỹ in C such that f = F (f̃) (and so also Y = F (Ỹ ).)

Warning A.3.1.6. Definition A.3.1.5 is somewhat unnatural, in that it is not invariant under equivalences
of categories. It is a notion which exists in the category Cat of small categories, rather than the 2-category
of small categories. One may explain its relevance as follows: the 2-category of small categories is a kind of
homotopy theory (provided that we ignore non-invertible natural transformations of functors), which may
be modelled by the category Cat of small categories. In fact, there exists a Quillen model structure on Cat
in which the weak equivalences are equivalences of categories and the fibrations are the quasi-fibrations of
categories. For a proof, we refer the reader to [31].

The following theorem of Bergner gives an explicit characterization of the fibrations in the category Cat∆
of simplicial categories:

Theorem A.3.1.7 (Bergner [6]). Let F : C→ D be a functor between ( small ) simplicial categories. Then
F is a fibration in Cat∆ if and only if it has the following properties:
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(1) For every pair of objects X,Y ∈ C, the map

MapC(X,Y )→ MapD(F (X), F (Y ))

is a Kan fibration.

(2) The functor F induces a quasi-fibration from hC to hD.

Corollary A.3.1.8. A simplicial category C is fibrant if and only if each of the morphism spaces MapC(X,Y )
is a Kan complex.

A.3.2 Path Spaces in the Category of Simplicial Categories

We saw in §A.3.1 that there exists a model structure on Cat∆, such that the fibrant objects are precisely
those categories which are enriched over Kan. Let A be a simplicial model category, and let A◦ ⊆ A be the
full subcategory spanned by objects which are both fibrant and cofibrant. According to Theorem A.3.1.7,
the simplicial category A◦ is fibrant when regarded as an object of Cat∆. In other words, A◦ is suitable to
use for computing the homotopy set [C,A◦] = HomhCatS(C,A◦): if C is cofibrant, then every map from C to
A◦ in the homotopy category is represented by an actual simplicial functor from C to A◦. Moreover, two
simplicial functors F, F ′ : C→ A◦ represent the same morphism in hCat∆ if and only if they are homotopic
to one another. The relation of homotopy can be described either in terms of a cylinder object for C or a
path object for A◦. Unfortunately, it is rather difficult to construct a cylinder object for C explicitly, since
we do not have a good understanding of the cofibrations in Cat∆. On the other hand, Theorem A.3.1.7 gives
us a good understanding of the fibrations in Cat∆, which will allow us to give a very explicit construction of
a path object for A◦.

Let A be a simplicial model category. Our goal is to give a direct construction of a path space object for
A◦ in Cat∆. In other words, we wish to supply a simplicial category P (A), equipped with a diagram

A◦ → P (A)→ A◦ ×A◦

of simplicial categories, in which the composite map is the diagonal, the left map is a weak equivalence, and
the right map is a fibration.

We define P (A) to be the category whose objects are triples A,B,C ∈ A◦, equipped with a fibration
φ : C → B×A such that the induced maps C → B, C → A are weak equivalences. Such triples are organized
into a simplicial category in an evident fashion. Moreover, P (A) comes equipped with simplicial functors
π, π′ : P (A)→ A◦, given by

π(A,B,C, φ) = A

π′(A,B,C, φ) = B.

There is also a functor τ : (A)◦ → P (A), which is determined by functorially choosing a factorization of the
diagonal map A→ A×A as a composition

A
i→ X

φ→ A×A,

where i is a trivial cofibration and φ is a fibration (the existence of such a functorial factorization follows
using the small object argument).

Theorem A.3.2.1. Let A be a simplicial model category. Then the morphisms π, π′ : P (A) → A◦ and
τ : A◦ → P (A) furnish P (A) with the structure of a path object for A◦ in CatS.

Proof. We first show that π × π′ is a fibration of simplicial categories. Let D = (A,B,C, φ) and D′ =
(A′, B′, C ′, φ′) be objects of P (A). We must show that the natural map

MapP (A)(D,D
′)→ MapA(A,A′)×MapA(B,B′)
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is a Kan fibration of simplicial sets. This map is a base change of

MapA(C,C ′)→ MapA(C,A′ ×B′),

which is a fibration in virtue of the assumption that φ′ is a fibration, and C is cofibrant.
To complete the proof that π × π′ is a fibration of simplicial categories, we must show that it induces a

quasi-fibration on homotopy categories. In other words, we must show that if D = (A,B,C, φ) is an object
in P (A), and we are given weak equivalences f : A → A′, g : B → B′, then we can extend f and g to
an equivalence D → D′ = (A′, B′, C ′, φ′). To do so, it suffices to factor the map C → A′ × B′ as a trivial
cofibration C → C ′ followed by a fibration φ′ : A′ ×B′. We will prove below that π is an equivalence, from
which we conclude that D → D′ is an equivalence in P (A). π is an equivalence, proven below.

To complete the proof, let us show that φ is a weak equivalence of S-enriched categories. By the
two-out-of-three property, it will suffice to show that π is a weak equivalence. We first show that π is
fully-faithful. Let D = (A,B,C, φ) and D′ = (A′, B′, C ′, φ′) be objects in P (A). We wish to show that
p : MapP (A)(D,D′)→ MapA(A,A′) is a weak homotopy equivalence. We have a commutative diagram

MapP (A)(D,D′) //

��

MapA(C,C ′)

��
MapA(A,A′)×MapA(B,B′)

��

// MapA(C,A′ ×B′)

��
MapA(A,A′)×MapA(C,B′)

��

// MapA(C,A′)×MapA(C,B′)

��
MapA(A,A′) // MapA(C,A′).

We note that, since the map C → A is a weak equivalence between cofibrant objects, and A′ is fibrant,
the bottom horizontal map is a weak homotopy equivalence. Consequently, to show that the top horizontal
map is a weak homotopy equivalence, it will suffice to show that each square in the diagram is homotopy
Cartesian. This is clear for the lower square, since it is Cartesian and fibrant. The middle square is homotopy
Cartesian because both of the middle vertical maps are weak homotopy equivalences. The upper square is
homotopy Cartesian because the upper right vertical arrow is a Kan fibration (and Set∆ is right proper).

To complete the proof, it will suffice to show that π is essentially surjective. This is obvious, because
π ◦ τ is the identity functor.

A.3.3 Model Structures on Diagram Categories

Throughout this section, we will suppose that S is a perfect monoidal model category in which every object
is cofibrant. Let C be a (small) S-enriched category, and let A be a perfect S-enriched model category. Our
goal is to study the category AC of S-enriched functors from C to A. We will show that this category admits
a model structure (in fact, two such structures), which is suitably functorial in C. The ideas explained here
will play a crucial role in our discussion of homotopy colimits (see §A.3.5), and will be used in §A.3.4 to
construct certain mapping objects in Cat∆.

Definition A.3.3.1. Let C be a (small) S-enriched category, and A a perfect, S-enriched model category.
A natural transformation α : F → G in AC is a:

• weak cofibration if the induced map F (C)→ G(C) is a cofibration in A, for each C ∈ C.

• weak fibration if the induced map F (C)→ G(C) is a fibration in A, for each C ∈ C.
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• weak equivalence if the induced map F (C)→ G(C) is a weak equivalence in A, for each C ∈ C.

• strong fibration if it has the right lifting property with respect to every morphism β in AC which is
simultaneously a weak equivalence and a weak cofibration.

• strong cofibration if it has the left lifting property with respect to every morphism β in AC which is
simultaneously a weak equivalence and a weak fibration.

Proposition A.3.3.2. Let A be a perfect S-enriched model category, and let C be an arbitrary (small)
S-enriched category. Then there exist two perfect model structures on AC:

• The projective model structure, determined by the strong cofibrations, weak equivalences, and weak
fibrations.

• The injective model structure, determined by the weak cofibrations, weak equivalences, and strong fi-
brations.

Proof. It suffices to verify the hypotheses of Proposition A.2.9.5. The presentability of AC, and the fact that
the class of weak equivalences is perfect, follow by straightforward cardinality arguments.

To verify that condition (3) is satisfied, we may as well restrict our attention to the projective model
structure, since any natural transformation p : G → G′ having the right lifting property with respect to all
weak cofibrations will automatically have the right lifting property with respect to all strong cofibrations.
For each object C ∈ C and each A ∈ A, we define

FCA : C→ A

by the formula
FCA(C ′) = A⊗MapC(C,C ′).

We note that if i : A → A′ is a cofibration in A, then the induced map FCA → FCA′ is a strong cofibration
in AC. If p : G → G′ has the right lifting property with respect to all such cofibrations, then the induced
map G(C) → G′(C) has the right lifting property with respect to every cofibration, and is therefore a weak
equivalence in A; it follows that p is a weak equivalence.

To verify that condition (2) is satisfied, we may as well restrict our attention to the injective model
structure, since every strong cofibration is a weak cofibration. We must show that the class of weak equiva-
lences is stable under cobase extension by weak cofibrations. However, since pushouts in AC are computed
compontwise, this follows immediately from the left-properness of A.

Remark A.3.3.3. It follows from the proof of Proposition A.3.3.2 that the class of strong cofibrations is
generated (as a saturated class of morphisms) by the maps j : FCA → FCA′ , where C ∈ C and A → A′ is a
cofibration in A. Since every object of S is cofibrant, we conclude that j is a weak cofibration. It follows
that every strong cofibration is a weak cofibration; dually, every strong fibration is a weak fibration.

Because the projective and injective model structures on AC have the same weak equivalences, the
identity functor idAC is a Quillen equivalence between them. However, it is important to keep distinguish
these two model structures, because they have different variance properties as we now explain.

Let f : C → C′ be a S-enriched functor. Then composition with f yields a pullback functor f∗ : AC′ →
AC. Since A has all S-enriched limits and colimits, f∗ has a right adjoint which we shall denote by f∗ and
a left adjoint which we shall denote by f!.

Proposition A.3.3.4. Let A be a perfect S-enriched model category, and let f : C → C′ be a simplicial
functor. Then:

(1) The pair (f!, f∗) gives a Quillen adjunction between the projective model structures on AC and AC′ .

(2) The pair (f∗, f∗) gives a Quillen adjunction between the injective model structures on AC and AC′ .
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Proof. This follows immediately from the simple observation that f∗ preserves weak equivalences, weak
fibrations, and weak cofibrations.

We now make a somewhat less trivial observation.

Proposition A.3.3.5. Let A be a perfect simplicial model category, and f : C → C′ a weak equivalence
between (small) simplicial categories. Then:

(1) The Quillen adjunction (f!, f∗) gives a Quillen equivalence between the projective model structures on
AC and AC′ .

(2) The Quillen adjunction (f∗, f∗) gives a Quillen equivalence between the injective model structures on
AC and AC′ .

Before giving the proof, we need a lemma.

Lemma A.3.3.6. Let A be a left proper simplicial model category, let f : A → A′ be a cofibration in A,
and let g : K → K ′ be a weak equivalence in Set∆. Then the induced map

θg(A⊗K ′)
∐
A⊗K

(A′ ⊗K)→ A′ ⊗K ′

is a weak equivalence in A.

Proof. If g is a cofibration, then θg is a trivial cofibration. More generally, suppose that g is given as a
composition

K
g′→ K ′′ g

′′

→ K ′,

where g′ is a trivial cofibration. Then θg = θg′′ ◦ θ′g′ , where θ′g′ is a pushout of θg′ , and therefore a trivial
cofibration. It follows that θg is an equivalence if and only if θg′′ is an equivalence. Using this argument, we
may reduce to the case where g is a trivial fibration.

We now observe that g admits a section s : K ′ → K, which is a trivial cofibration. Applying the above
argument to the diagram

K ′ s→ K
g→ K ′,

we deduce that θg is an equivalence if and only if θidK
is an equivalence. But θidK

is an isomorphism of
simplicial sets.

Proof of Proposition A.3.3.5. We first note that (1) and (2) are equivalent: they are both equivalent to the
assertion that f∗ induces an equivalence on homotopy categories. It therefore suffices to prove (1). Let
Lf! : AC → AC′ denote the left derived functor of f!. We must show that the unit and counit maps

hF : F 7→ f∗Lf!F

kG : Lf!f∗G→ G

are isomorphisms for all F ∈ hAC, G ∈ hAC. Since f is essentially surjective on homotopy categories, a
natural transformation K → K ′ of functors K,K ′ : C′ → A is a weak equivalence if and only if f∗K → f∗K ′

is a weak equivalence. Consequently, to prove kG is an isomorphism, it suffices to show that hf∗G is an
isomorphism.

Let us consider the collection Z of all F : C→ A such that the natural map

h′F : F → f∗f!F

is a weak equivalence. To complete the proof, it will suffice to show that Z contains all strongly cofibrant
objects of AC. We note that the class of strong cofibrations is generated, as a saturated class of morphisms,
by the maps

iA,A′ : FCA → FCA′
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induced by cofibrations A → A′ in A. By the small object argument, any strong cofibration is a retract of
a transfinite composition of pushouts of morphisms of this type.

It is clear that Z is stable under retracts. It is also stable under filtered colimits, in virtue of the fact that
both f! and f∗ commute with colimits, and the fact that the class of weak equivalences in AC is stable under
filtered colimits. Consequently, it will suffice to show that C is stable under pushouts by the generating strong
cofibrations iA,A′ above. In other words, we must show that if F belongs to Z, and there is a coCartesian
diagram

FCA
//

��

FCA′

��
F // F ′

then F ′ also belongs to Z. But the map h′F ′ is obtained from a map of pushout diagrams

FCA′

��

FCA
oo //

��

F

��
f∗f! F

C
A′ f∗f! F

C
A

oo // f∗f!F.

Evaluating at an object D ∈ C′, we must show that the composition

(MapC′(C,D)⊗A′)
∐

MapC′ (C,D)⊗A

F (D) θ→ (MapC′(C,D)⊗A′)
∐

MapC′ (C,D)⊗A

(f!F )(f(D))

θ′→ (MapC(f(C), f(D))⊗A′)
∐

MapC(f(C),f(D))⊗A

(f!F )(f(D))

is a weak equivalence. The map θ is a pushout of the weak equivalence F (D)→ (f!F )(f(D)) by a cofibration,
and therefore a weak equivalence (since A is left proper). The map θ′ is a pushout of the map

(MapC′(C,D)⊗A′)
∐

MapC′ (C,D)⊗A

(MapC(f(C), f(D))⊗A)→ MapC(f(C), f(D))⊗A′

and therefore a weak equivalence, by Lemma A.3.3.6.

A.3.4 Model Categories of Presheaves

Let A be a perfect simplicial model category, and let C be an arbitrary (small) simplicial category. We will
regard AC as endowed with the injective model structure described in §A.3.3 (since the projective model
structure on AC is Quillen equivalent to the injective model structure, the results of this section carry over
to case of projective model structures with little change). We can identify AC with the model category of A-
valued presheaves on Cop. The simplicial structure on A induces a simplicial structure on AC. This simplicial
structure is compatible with the model structure on AC. Consequently, the full subcategory (AC)◦ ⊆ AC

spanned by the fibrant-cofibrant objects is a fibrant simplicial category; the objective of this section is to
characterize (AC)◦ by a universal mapping property in the homotopy category hCat∆.

Any fibrant-cofibrant object of AC determines a simplicial functor C → A◦. Let [C,A◦] denote the
collection of homotopy classes of maps from C to A◦ in the homotopy category of Cat∆. Let π0AC denote
the collection of homotopy equivalence classes of objects in (AC)◦.

Proposition A.3.4.1. Let A be a perfect simplicial model category, and C a simplicial category. Then the
map

φ : π0AC → [C,A◦],

constructed above, is bijective.
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Proof. Choose an equivalence C′ → C, where C′ is a cofibrant simplicial category. Proposition A.3.3.5 implies
that AC′ and AC are Quillen equivalent. We are therefore free to replace C by C′, and thereby reduce to the
case where C is cofibrant.

We first show that φ is surjective. Let [f ] ∈ [C,A◦]. Since C is cofibrant and A◦ is fibrant in Cat∆,
we can find a simplicial functor f : C → A◦ representing [f ]. The simplicial functor f takes values in
fibrant-cofibrant objects of A, but is not necessarily fibrant-cofibrant as an object of AC. However, there
exists a trivial weak cofibration f → f ′, where f ′ is strongly fibrant. Consequently, it will suffice to show
that a weak equivalence u : G→ G′ of simplicial functors C→ A◦ guarantees that [G] = [G′] ∈ [C,A◦].

To prove this, we choose a factorization of the map idG×u : G→ G×G′ as

G
v→ G′′

w→ G×G′,

where v is a trivial weak cofibration and w a strong fibration. We note that the triple (G,G′, G′′, w)
determines a simplicial functor C→ P (A), which is a right-homotopy from G to G′.

Let us now show that φ is injective. Suppose that G and G′ are fibrant-cofibrant objects of AC which
determine the same element of [C,A◦]. Then G and G′ are right-homotopic in the model category Cat∆,
as exhibited by some map f : C → P (A). The map f determines another simplicial functor G′′ : C → A,
equipped with weak equivalences G′′ → G, G′′ → G′. This proves that G and G′ are isomorphic in the
homotopy category, as desired.

In what follows, we will work inside the homotopy category of Cat∆. If C is a simplicial category, we will
write [C] when considering C as an object of this homotopy category.

Proposition A.3.4.2. Let A be a perfect simplicial model category and let C be a ( small ) simplicial
category. Then the evaluation map

(AC)◦ × C→ A◦

exhibits [(AC)◦] as an exponential [A◦][C] inside the homotopy category of Cat∆.

Proof. Let D be any simplicial category. We wish to show that the natural map

HomhCat∆([D], [(AC)◦])→ HomhCat∆([D]× [C], [A◦])

is bijective.
By Proposition A.3.4.1, the left hand side may be identified with the set of isomorphism classes of objects

in the homotopy category of the model category (AC)D = AD×C. Applying Proposition A.3.4.1 again, we
may rewrite this as

HomhCat∆([D×C], [A◦]).

Since products in Cat∆ preserve equivalences, we have [D×C] ' [D]× [C] and the proof is complete.

A.3.5 Homotopy Limits in S-Enriched Model Categories

Throughout this section, we fix a perfect, monoidal model category S in which every object is cofibrant.
Our objective is to review the theory of homotopy limits and colimits in a form which will be convenient for
comparison with limits and colimits in ∞-categories (the subject of §4.2.4).

Let A be a perfect, S-enriched model category. Let f : C → C′ be a S-enriched functor betweeen S-
enriched categories. We wish to consider the right-derived functor Rf∗ of f∗ : (A)C → (A)C′ . This derived
functor is called the homotopy right Kan extension functor. The usual way of defining it involves choosing
a “fibrant replacement functor” Q : AC → AC, and setting Rf∗ = f∗ ◦ Q. The fact that AC is perfect
guarantees that such a fibrant replacement functor exists. However, for our purposes it is more convenient
to address the indeterminacy in the definition of Rf∗ in another way.

Let F ∈ AC, G ∈ AC′ , and let η : G → f∗F be a map in AC′ . We will say that η exhibits G as the
homotopy right Kan extension of F if, for some weak equivalence F → F ′ where F ′ is strongly fibrant in AC,
the composite map G → f∗F → f∗F

′ is a weak equivalence in AC′ . Since f∗ preserves weak equivalences
between strongly fibrant objects, this condition is independent of the choice of F ′.
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Remark A.3.5.1. Given an object F ∈ AC, it is not necessarily the case that there exists a map η : G→ f∗F
which exhibits G as a homotopy right Kan extension of F . However, such a map can always be found after
replacing F by a weakly equivalent object; for example, if F is strongly fibrant, we may take G = f∗F and
η to be the identity map.

We note that the theory of homotopy right Kan extensions in A can in some sense be reduced to the
theory of homotopy right Kan extensions in S.

Proposition A.3.5.2. Suppose given objects F ∈ AC, G ∈ AC′ , and a map η : G → f∗F . Assume that F
and G are weakly fibrant. The following conditions are equivalent:

(1) The map η exhibits G as a homotopy right Kan extension of F .

(2) For each cofibrant object A ∈ A, the induced map

ηA : GA → f∗FA

exhibits GA as a homotopy right Kan extension of FA. Here FA ∈ SC and GA ∈ SC′ are defined by
FA(C) = MapA(A,F (C)), GA(C) = MapA(A,G(C)).

(3) For every fibrant-cofibrant object A ∈ A, the induced map

ηA : GA → f∗FA

exhibits GA as a homotopy right Kan extension of FA.

Proof. Choose an equivalence F → F ′, where F ′ is strongly fibrant. We note that the induced maps
FA → F ′A are weak equivalences for any cofibrant A ∈ A, since MapA(A, •) preserves weak equivalences
between fibrant objects. Consequently, we may without loss of generality replace F by F ′ and thereby
assume that F is strongly fibrant.

Now suppose that A is any cofibrant object of A; we claim that FA is strongly fibrant. To show that FA
has the right lifting property with respect to a trivial weak cofibration H → H ′ of functors C→ S, one need
only observe that F has the right lifting property with respect to trivial weak cofibration H ⊗A→ H ′ ⊗A
in AC.

Now we note that (1) is equivalent to the assertion that η is a weak equivalence, (2) is equivalent to the
assertion that ηA is a weak equivalence for any cofibrant object A, and (3) is equivalent to the assertion that
ηA is a weak equivalence whenever A is fibrant-cofibrant. Because MapA(A, •) preserves weak equivalences
between fibrant objects, we deduce that (1) ⇒ (2). It is clear that (2) ⇒ (3). We will complete the proof
by showing that (3) ⇒ (1). Assume that (3) holds; we must show that η(C ′) : G(C ′) → f∗F (C ′) is an
isomorphism in the homotopy category hA, for each C ′ ∈ C′. For this, it suffices to show that G(C ′) and
f∗F (C ′) represent the same hS-valued functors on the homotopy category hA, which is precisely the content
of (3).

It follows that we can make sense of homotopy right Kan extensions for diagrams which do not take
values in a model category. Let f : C→ C′ be a S-enriched functor as in the discussion above, and let A be
an arbitrary S-enriched category which is fibrant as an object of CatS (in other words, a S-enriched category
in which MapC(X,Y ) is a fibrant objects of S for each X,Y ∈ C). Suppose given objects F ∈ AC, G ∈ AC′ ,
and η : f∗G→ F we say that η exhibits G as a homotopy right Kan extension of F if, for each object A ∈ A,
the induced map

ηA : GA → f∗FA

exhibits GA ∈ SC′ as a homotopy right Kan extension of FA ∈ SC.

Remark A.3.5.3. In view of Proposition A.3.5.2, the terminology just introduced for general A agrees with
the terminology introduced for a perfect S-enriched model category A if we set A = A◦. We remark that,
in general, the two notions do not agree if we take A = A, so that our terminology is potentially ambiguous;
however, we feel that there is little danger of confusion.
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Let us now suppose that S is the category of simplicial sets, with the usual model structure (and the
Cartesian monoidal structure). Let ∗ denote the final object of Cat∆: that is, the simplicial category with
one object and only the identity morphism. For any simplicial category C, there is a unique simplicial functor
f : C → ∗. If A is another simplicial category, F : C → A is a simplicial functor, and A ∈ A = A∗ is an
object, then we say that a functor f∗A → F exhibits A as a homotopy limit of F if it exhibits A as a
homotopy right Kan extension of F .

Remark A.3.5.4. In the preceding discussion, we considered injective model structures, Rf∗, and homotopy
limits. An entirely dual discussion may be carried out with projective model structures and Lf!; one obtains
a notion of homotopy colimit which is the dual of the notion of homotopy limit.

A.3.6 Straightening of Diagrams

The main disadvantage of the theory of simplicial categories as an approach to higher category theory is that
it is not easy to construct the correct mapping objects. Let C and D be simplicial categories, and let DC

denote the simplicial category of simplicial functors from C to D. The simplicial category DC is generally
not a suitable ∞-categorical mapping space, even when C is cofibrant and D is fibrant (the problem is that
the class of cofibrant simplicial categories is not stable under the formation of products). There are at
least two possible solutions to this difficulty: one is to work with simplicial model categories, where under
suitable hypotheses one does obtain the correct category of functors from this point of view (Proposition
A.3.4.2). Alternatively, one could abandon simplicial categories altogether and work in the less rigid setting
of ∞-categories. The goal of this section is to prove that these two approaches lead to the same result. In
order to formulate a precise statement, we will make use of the simplicial nerve construction introduced in
§1.1.5.

Proposition A.3.6.1. Let A be a perfect simplicial model category, S be a simplicial set, C a small simplicial
category, and u : C[S]→ C an equivalence. Then the induced map

N(AC)◦ → Fun(S,N(A◦))

is a categorical equivalence of simplicial sets.

Proof. According to Theorem 1.3.4.1, we may identify the homotopy category of Set∆ (with respect to the
Joyal model structure) with the homotopy category of Cat∆. We now observe that, because N(A◦) is an ∞-
category, the simplicial set Fun(S,N(A◦)) can be identified with an exponential [N(A◦)][S] in the homotopy
category hSet∆. We now conclude by applying Proposition A.3.4.2.

One consequence of Proposition A.3.6.1 is that every homotopy coherent diagram in a suitable model
category A can be “straightened”, as we indicated in Remark 1.2.6.2.

Corollary A.3.6.2. Let I be a fibrant simplicial category, S a simplicial set, and p : N(I)→ S a map. Then
it is possible to find the following:

(1) A fibrant simplicial category C.

(2) A simplicial functor P : I→ C.

(3) A categorical equivalence of simplicial sets j : S → N(C).

(4) An equivalence between j ◦ p and N(P ), as objects of the ∞-category Fun(N(I),N(C)).

Proof. Choose an equivalence i : C[S] → C0, where C0 is fibrant; let A denote the model category of
simplicial presheaves on (with the injective model structure) C0. Composing i with the Yoneda embedding
of C0, we obtain a fully faithful simplicial functor C[S]→ A◦, which we may alternatively view as a morphism
j0 : S → N(A◦).
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We now apply Proposition A.3.6.1 to the case where u is the counit map C[N(I)] → I. We deduce that
the natural map

N(AI)◦ → Fun(N(I),N(A◦))

is an equivalence. From the essential surjectivity, we deduce that j0 ◦ p is equivalent to N(P0), where
P0 : I→ A◦ is a simplicial functor.

We now take C to be the essential image of C[S] in A◦, and note that j0 and P0 factor uniquely through
maps j : S → N(C), P : I→ C which possess the desired properties.

A.3.7 The Underlying ∞-Category of a Model Category

Let A be a model category. We would like to extract from A an underlying∞-category C. Roughly speaking,
the idea is that C should be obtained from A by formally inverting the weak equivalences. More precisely,
we consider the marked simplicial set (N(A),W ), where W is the class of weak equivalences in A. This is
usually not a fibrant object of (Set+∆), but there exists a map (N(A),W ) → C\, where C is an ∞-category.
Of course, C is not uniquely determined, but it is determined up to (canonical) equivalence. More precisely,
for every ∞-category D, the restriction map

Fun(C,D)→ Fun(N(A),D)

is fully faithful, and its essential image consists of those functors F : N(A) → D which carry each weak
equivalence in A to an equivalence in D.

If A is a simplicial model category, then there is a much simpler procedure for extracting the underlying
∞-category of A. Let A◦ ⊆ A denote the full subcategory spanned by fibrant-cofibrant objects. Then A◦

is a fibrant simplicial category, and we can define C to be the simplicial nerve N(A◦). This definition has
the advantage of being very direct: C is well-defined up to canonical isomorphism, rather than only up to
equivalence. However, it is not obvious that this definition has the desired universal property: in fact, it is
not obvious that C receives a functor from the ordinary nerve of A.

Our goal in this section is to prove that (under mild hypotheses) the two constructions sketched above
are equivalent to one another (Corollary A.3.7.2). The proof will be based on the following more general
result:

Proposition A.3.7.1. Let f : C→ D be a functor between ∞-categories, where D is locally small. Suppose
that for every small category I, the following conditions are satisfied:

(1) The induced functor

F : hFun(N(I),C)
◦f→ hFun(N(I),D)

is essentially surjective.

(2) If X ′ and X ′′ are objects of hFun(N(I),C) and η : F (X ′) ' F (X ′′) is an isomorphism in hFun(N(I),C),

then there exist maps X ′ α→ X
β← X ′′ such that F (α) and F (β) are isomorphisms in hFun(N(I),D),

and η = F (β)−1 ◦ F (α).

Let E denote the collection of equivalences in D. Then the induced map

(C, f−1 E)→ (D,E)

is an equivalence of marked simplicial sets.

Corollary A.3.7.2. Let A be a perfect simplicial model category. Then the marked simplicial sets N(A◦)\

and (Nd(A),W ) are marked equivalent to one another. Here W denotes the class of weak equivalences in A,
and Nd(A) denotes the nerve of A regarded as an ordinary category.
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Proof. We have a diagram of marked simplicial sets

N(A◦)\
i
↪→ (N(A),W )

j
←↩ (Nd(A),W ).

Using a variant on the proof of Proposition A.1.2.5, we can construct a simplicial functor T : A → A,
together with a natural weak equivalence α : idA → T , such that the essential image of T consists of fibrant
objects of A. This proves that i is a marked equivalence. To prove that j is a marked equivalence, it will
suffice to show that the hypotheses of Proposition A.3.7.1 are satisfied.

(1) Let I be a small category and p : N(I) → N(A◦) a diagram. Proposition A.3.6.1 implies that p is
equivalent to a diagram which factors through Nd(A◦).

(2) Let q′, q′′ : I → A◦ be such that there is an equivalence η : N(q′) → N(q′′) in Fun(N(I),N(A◦)). We
wish to show that there exist weak equivalences of diagrams

q′
α→ q

β← q′′

such that η ' N(β)−1 ◦N(α) in the homotopy category hFun(N(I),N(A◦)). Without loss of generality,
we may assume that q′ and q′′ are strongly fibrant diagrams. The desired result now follows immediately
from Proposition A.3.6.1.

The remainder of this section is dedicated to the proof of Proposition A.3.7.1. The main idea is to
show that ∞-categories can be closely approximated by ordinary categories. More precisely, we will use the
following:

Lemma A.3.7.3. Let (K,E) be a marked simplicial set. There exists a category I, a collection W of
morphisms of I ( which contains every identity morphism ), and an equivalence of marked simplicial sets
(N(I),W )→ (K,E). Moreover, I and W can be chosen to depend functorially in (K,E).

Proof. Let I be the category of simplices of K and f : N(I) → K the map constructed in the proof of
Proposition 4.2.3.14. Let W = f−1 E. We observe that the construction

(K,E) 7→ (N(I),W )

is functorial in (K,E), commutes with colimits, and preserves cofibrations. We wish to prove that f induces a
marked equivalence (N(I),W )→ (K,E). By a standard argument (as in the proof of Proposition 1.3.2.8), we
may reduce to the case where K = ∆n. In this case, we can identify I with the category ∆/[n], whose objects
are maps σ : [m]→ [n] of nonempty, finite linearly ordered sets. The map N(I)→ ∆n is induced by a functor
from F : I → [n], which associates to each map σ : [m] → [n] the element σ(m) ∈ [n]. This functor has a
right adjoint G, which carries each k ∈ [n] to the inclusion {0, . . . , k} ⊆ [n]. Let g : (∆n,E)→ (N(I),W ) be
the induced map of marked simplicial sets. Then f ◦ g is the identity, and the unit map idI → G ◦F induces
a homotopy

(N(I),W )× (∆1)] → (N(I),W )

from the identity to g ◦f ; it follows that f and g are mutually inverse equivalences in the homotopy category
hSet+∆.

Notation A.3.7.4. Let T : Set+∆ → Set+∆ be a fibrant replacement functor, so that for every marked
simplicial set (X,E), we have T (X,E) = C\ for some ∞-category C. We let h(X ,E) denote the homotopy
category hC, considered as a category enriched over H. In view of Proposition 3.1.5.3, a map of marked
simplicial sets (X,E)→ (X ′,E′) is a marked equivalence if and only if the induced map h(X ,E)→ h(X ′,E′)
is an equivalence of H-enriched categories.
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Lemma A.3.7.5. Let f : C → D be a functor between ∞-categories which satisfies the hypotheses of
Proposition A.3.7.1, and let E denote the collection of all equivalences in D. Suppose given a commutative
diagram of marked simplicial sets

X
f ′ //

φ

��

Y

φ′

��
(C, f−1 E)

f // D\,

where X and Y are small, and consider the induced diagram of H-enriched homotopy categories

hX
F ′ //

ψ

��

hY

ψ′

��

σ

yys s
s

s
s

h(C, f −1 E) F // hD.

Then there exists a dotted arrow as indicated, together with isomorphisms β : σ ◦ F ′ ' ψ, α : F ◦ σ ' ψ′,
with the property that the composition

F ◦ ψ
β
' F ◦ σ ◦ F ′ α' ψ′ ◦ F ′

is the identity.

Proof. Using Lemma A.3.7.3, we may assume without loss of generality that X = (N(I),W ) and Y =
(N(I′),W ′), where I and I′ are small categories. Assumption (1) of Proposition A.3.7.1 guarantees the
existence of σ̃ : N(I)→ C such that the diagram

(N(I),W )

��

eσ
xxqqqqqqqqqq

(C, f−1 E) //
D\

commutes up to homotopy α̃ : f ◦ σ̃ → φ′. Let σ denote the induced functor between homotopy categories,
and α : F ◦ σ ' ψ′ the natural isomorphism induced by the homotopy α̃. We have an induced homotopy

f ′(α̃) : f ◦ σ̃ ◦ f ′ → φ′ ◦ f ′ = f ◦ φ.

Using assumption (2) of Proposition A.3.7.1, we deduce the existence of natural transformations

σ̃ ◦ f ′
eβ′→ φ′′

eβ′′← φ,

such that f(β̃′) and f(β̃′′) are equivalences, and f ′(α̃) is equal to the composition f(β̃′′)−1 ◦ f(β̃′) in the
homotopy category hFun(N(I),D). We observe that β̃′ and β̃′′ induce isomorphisms β′ and β′′ in the category
of H-enriched functors from h(N(I),W ) to h(C, f −1 E). We now set β = (β′′)−1 ◦ β′. It is easy to see that
σ, α, and β possess the desired properties.

Proof of Proposition A.3.7.1. The proof is essentially contained in Lemma A.3.7.5: we would like to take
X = (C, f−1 E) and Y = D\, and use the existence of σ to deduce that f induces an equivalence of H-enriched
homotopy categories h( C, f −1 E) → hD. We encounter here a technicality stemming from the fact that C

and D need not be small (in fact, they are not small in the principal case of interest: Corollary A.3.7.2). We
must therefore use a slightly more indirect argument. To prove that f induces an equivalence of H-enriched
homotopy categories, it will suffice to prove the following assertions:
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(i) For every object D ∈ D, there exists an object C ∈ C and an equivalence D → f(C).

(ii) For every pair of objects C,C ′ ∈ C and every morphism φ : f(C) → f(C ′), there exists a morphism
φ : C → C ′ in h(C, f −1 E) such that f(φ) and φ coincide in the homotopy category hD.

(iii) For every morphism φ : C → C ′ in h(C, f −1 E) and every n ≥ 0, the induced map

πn(Maph(C,f−1 E)(C,C
′), φ)→ πn(MapD(f(C), f(C ′)), f(φ))

is surjective.

(iv) For every morphism φ : C → C ′ in h(C, f −1 E) and every n ≥ 0, the induced map

πn(Maph(C,f−1 E)(C,C
′), φ)→ πn(MapD(f(C), f(C ′)), f(φ))

is injective.

Assertion (i) follows immediately from (1) in the case where I consists of a single object. To prove (ii),
we let I be the be the two-object category [1] = {0, 1}, and p : N(I)→ D the diagram classifying a morphism
φ : f(C) → f(C ′). Applying condition (1), we deduce that there is a diagram φ′ : C0 → C ′0 in C, and a
square

f(C0)

ψ

��

f(φ′) // f(C ′0)

ψ
′

��
f(C)

φ // f(C ′)

in D, where ψ and ψ
′

are equivalences. Using condition (2), we deduce that there exist isomorphisms
ψ : C0 → C, ψ′ : C ′0 → C ′ in the homotopy category h(C, f −1 E) such that ψ ' f(ψ) and ψ

′ ' f(ψ′). We
now observe that φ ' f(φ), where φ = ψ′ ◦ φ′ ◦ ψ−1 (in the homotopy category hD).

We now prove (iii). Without loss of generality, we may suppose that D is a minimal∞-category. Choose
a small simplicial subset C(0) ⊆ C such that φ belongs to the image of the induced map

h(C(0 ), f −1 E∩C(0 )1 )→ h(C, f −1 E),

and let D(0) ⊆ D be the essential image of f |C(0). Since D is minimal and locally small, D(0) is small. We
now apply Lemma A.3.7.5 to the diagram

(C(0), f−1 E∩C(0)1)

��

// D(0)\

��
(C, f−1 E) //

D\

to deduce the existence of a H-enriched functor σ : hD(0 )→ h(C, f −1 E). By construction, φ′ = (σ ◦ f)(φ) :
B → B′ is isomorphic to φ (in the category of arrows of h(C, f −1 E). It will therefore suffice to prove that
the map

πn(Maph(C,f−1 E)(B,B
′), φ′)→ πn(MaphD(f(B), f(B′)), f(φ′)) ' πn(MaphD(f(C), f(C ′)), φ)

is surjective. This is clear, since this map admits a section (given by σ).
The proof of (iv) is a bit easier. Suppose given a map η : Sn → Maph(C,f−1 E)(C,C ′) in the homotopy

category H, and suppose that f(η) : Sn → MapD(f(C), f(C ′)) is nullhomotopic. Choose a map of marked
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simplicial sets g : X → (C, f−1 E), where X is small and η is the image of a map η̃ : Sn → MaphX (B,B′).
Since (f ◦ g)(η) is nullhomotopic, the map g ◦ f factors as a composition

X
f ′→ Y

g′→ D\,

where Y is small and f ′(η̃) is nullhomotopic. We now apply Lemma A.3.7.5 to the diagram

X

g

��

f ′ // Y

g′

��
(C, f−1 E)

f //
D\

to conclude that η is itself nullhomotopic, as desired.
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