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Introduction

Let X be a topological space and G an abelian group. There are many different definitions for the cohomology
group H"(X;G); we will single out three of them for discussion here. First of all, we have the singular
cohomology groups Hg,,, (X; G), which are defined to be cohomology of a chain complex of G-valued singular
cochains on X. An alternative is to regard H" (e, G) as a representable functor on the homotopy category
of topological spaces, so that H?ep(X : ) can be identified with the set of homotopy classes of maps from X
into an Eilenberg-MacLane space K(G,n). A third possibility is to use the sheaf cohomology HY ..+(X; G)
of X with coefficients in the constant sheaf G on X.

If X is a sufficiently nice space (for example, a CW complex), then these three definitions give the same
result. In general, however, all three give different answers. The singular cohomology of X is constructed
using continuous maps from simplices A into X. If there are not many maps into X (for example if every
path in X is constant), then we cannot expect Hg ,(X;G) to tell us very much about X. Similarly, the
cohomology group Hy,,(X;G) is defined using maps from X into a simplicial complex, which (ultimately)
relies on the existence of continuous real-valued functions on X. If X does not admit many real-valued
functions, we should not expect Hy,,(X;G) to be a useful invariant. However, the sheaf cohomology of X
seems to be a good invariant for arbitrary spaces: it has excellent formal properties and sometimes gives
interesting information in situations to which the other approaches do not apply (such as the étale topology
of algebraic varieties).

We will take the position that the sheaf cohomology of a space X is the correct answer in all cases. It is
then natural to ask for conditions under which the other definitions of cohomology give the same answer. We
should expect this to be true for singular cohomology when there are many continuous functions into X, and
for Eilenberg-MacLane cohomology when there are many continuous functions out of X. It seems that the
latter class of spaces is much larger than the former: it includes, for example, all paracompact spaces, and
consequently for paracompact spaces one can show that the sheaf cohomology HY ..+(X;G) coincides with
the Eilenberg-MacLane cohomology Hy,,(X;G). One of the main results of this paper is a generalization of
the preceding statement to non-abelian cohomology, and to the case where the coeflicient system G is not
necessarily constant.

Classically, the non-abelian cohomology H'(X; G) of X with coefficients in a possibly non-abelian group
G can be understood as the set of isomorphism classes of G-torsors over X. When X is paracompact, such
torsors can be classified by homotopy classes of maps from X into an Eilenberg-MacLane space K(G,1).
Note that the group G and the space K(G, 1) are essentially the same piece of data: G determines K (G, 1)
up to homotopy equivalence, and conversely G may be recovered as the fundamental group of K (G, 1). More
canonically, specifying the group G is equivalent to specifying the space K(G,1) together with a base point;
the space K(G,1) alone only determines G up to inner automorphisms. However, inner automorphisms
of G act by the identity on H'(X;G), so that H'(X;G) really depends only on K(G,1). This suggests
the proper coefficients for non-abelian cohomology are not groups, but “homotopy types” (which we regard
as purely combinatorial entities, represented for example by simplicial complexes). We may define the
non-abelian cohomology Hye,(X; K) of X with coefficients in an arbitrary space K to be the collection
of homotopy classes of maps from X into K. This leads to a good theory whenever X is paracompact.
Moreover, we can learn a great deal by considering the case where K is not an Eilenberg-MacLane space.
For example, if K = BU XZ is the classifying space for complex K-theory and X is a compact Hausdorff
space, then Hyep (X; K) is the usual complex K-theory of X, defined as the Grothendieck group of the monoid
of isomorphism classes of complex vector bundles on X.

When X is not paracompact, we are forced to seek a better way of defining H(X; K). Given the apparent
power and flexibility of sheaf-theoretic methods, it is natural to look for some generalization of sheaf coho-
mology, using as coefficients “sheaves of homotopy types on X.” This is an old idea, laid out by Grothendieck
in his vision of a theory of higher stacks. This vision has subsequently been realized in the work of various
authors (most notably Brown, Joyal, and Jardine; see for example [28]), who employ various formalisms
based on simplicial (pre)sheaves on X. The resulting theories are essentially equivalent, and we shall refer
to them collectively as the Brown-Joyal-Jardine theory. According to the philosophy of this approach, if K



is a simplicial set, then the cohomology of X with coefficients in K is given by

A(X; K) = mo(F(X)),
where F is a fibrant replacement for the constant simplicial (pre)sheaf with value K on X. The process of
“fibrant replacement” should be regarded as a kind of “sheafification”: the simplicial presheaf F is obtained
from the constant (pre)sheaf by forcing it to satisfy a descent condition for arbitrary hypercoverings of open
subsets of X.

If K is an Eilenberg-MacLane space K(G,n), the Brown-Joyal-Jardine theory recovers the classical
sheaf-cohomology group (or set, if n < 1) H..¢(X; G). It follows that if X is paracompact and K is an
Eilenberg-MacLane space, then there is a natural isomorphism ﬁ(X  K) ~ H,ep (X; K). However, it turns out
that ﬁ(X ; K) # Hyep(X; K) in general, even when X is paracompact. In fact, one can give an example of a
compact Hausdorff space for which ﬁ(X ; BU x Z)) does not coincide with the complex K-theory of X. We will
proceed on the assumption that the classical K-group K (X) is the “correct” answer in this case, and give an
alternative to the Brown-Joyal-Jardine theory which computes this answer. Our alternative is distinguished
from the Brown-Joyal-Jardine theory by the fact that we require our “sheaves of spaces” to satisfy a descent
condition only for ordinary coverings of a space X, rather than for arbitrary hypercoverings. Aside from
this point we can proceed in the same way, setting H(X; K) = mo(F' (X)), where J’ is the (simplicial) sheaf
which is obtained by forcing the “constant presheaf with value K” to satisfy this weaker descent condition.
In general, ¥ will not satisfy descent for hypercoverings, and consequently it will not be equivalent to the
simplicial presheaf F used in the definition of H.

The resulting theory has the following properties:

(1) If X is paracompact, H(X; K) may be identified with the set of homotopy classes from X into K.
(2) There is a canonical map 0 : H(X; K) — ﬁ(X; K).

(3) If X is a paracompact topological space of finite covering dimension (or a Noetherian topological space
of finite Krull dimension), then # is an isomorphism.

(4) If K has only finitely many nonvanishing homotopy groups, then € is an isomorphism. In particular,
taking K to be an Eilenberg-MacLane space K (G, n), then H(X; K(G,n)) is isomorphic to the sheaf
cohomology group HYj .+(X;G).

Our theory of higher stacks enjoys good formal properties which are not always shared by the Brown-
Joyal-Jardine theory; we will summarize the situation in §6.5.4. However, these good properties come with
a price attached. The essential difference between oo-stacks (sheaves of spaces which are required to satisfy
descent only for ordinary coverings) and oco-hyperstacks (sheaves of spaces which are required to satisfy
descent for arbitrary hypercoverings) is that the former can fail to satisfy the Whitehead theorem: one can
have, for example, a pointed stack (E,n) for which m;(E,n) is a trivial sheaf for all ¢ > 0, and yet E is not
“contractible” (for the definition of these homotopy sheaves, see §6.5.1).

In order to make a thorough comparison of our theory of stacks on X and the Brown-Joyal-Jardine theory
of hyperstacks on X, it seems desirable to fit both of them into some larger context. The proper framework
is provided by the theory oco-topoi. Roughly speaking, an co-topos is an oco-category that “looks like” the
oo-category of co-stacks on a topological space, just as an ordinary topos is supposed to be a category that
“looks like” the category of sheaves (of sets) on a topological space. For every topological space (or topos)
X, the oco-stacks on X constitute an co-topos, as do the co-hyperstacks on X. However, it is the former
oo-topos which enjoys a more universal position among co-topoi related to X.

The aim of this book is to construct a theory of co-topoi which will permit us to make sense of the above
discussion, and to illustrate some connections between this theory and classical topology. The ideas involved
are fundamentally homotopy-theoretic in nature, and cannot be adequately described in the language of
classical category theory. Consequently, most of this book is concerned with the construction of a suitable
theory of higher categories. The language of higher category theory has many other applications, which we
will discuss elsewhere ([34], [35]).



Summary

We will begin in §1 with an introduction to higher category theory. Our intention is that §1 can be used as a
short “user’s guide” to higher categories. Consequently, many proofs are deferred until later chapters, which
contain a more detailed and technical account of co-category theory. Our hope is that a reader who does
not wish to be burdened with technical details can proceed directly from §1 to the (far more interesting)
material of §5 and beyond, referring back to §2 through §4 as needed.

In order to work effectively with co-categories, it is important to have a flexible relative theory which
allows us to discuss co-categories fibered over a given oco-category €. We will formalize this idea by introducing
the notion of a Cartesian fibrations between simplicial sets. We will study the theory of Cartesian fibrations
in §2 alongside several related notions, each of which play an important role in higher category theory.

In §3, we will study the theory of Cartesian fibrations in more detail. Our main objective is to prove that
giving a Cartesian fibration of oo-categories € — D is equivalent to giving a (contravariant) functor from
D into a suitable co-category of co-categories. The proof of this result uses the theory of marked simplicial
sets, and is quite technical.

In §4, we will finish laying the groundwork by analyzing in detail the theory of co-categorical limits and
colimits. We will show that just as in classical category theory, the limit of a complicated diagram can be
decomposed in terms of the limits of simpler diagrams. We will also introduce relative versions of colimit
constructions, such as the formation of left Kan extensions.

In some sense, the material of §1 through §4 of this book should be regarded as completely formal. All
of our main results can be summarized as follows: there exists a reasonable theory of oco-categories, and
it behaves in more or less the same way as the theory of ordinary categories. Many of the ideas that we
introduce are straightforward generalizations of their classical counterparts, which should be familiar to most
mathematicians who have mastered the basics of category theory.

In §5, we introduce oco-categorical analogues of more sophisticated concepts from ordinary category
theory: presheaves, Pro and Ind-categories, accessible and presentable categories, and localizations. The
main theme is that most of the co-categories which appear “in nature” are large, but are determined by
small subcategories. Taking careful advantage of this fact will allow us to deduce a number of pleasant
results, such as our co-categorical version of the adjoint functor theorem.

In §6 we come to the heart of the book: the study of co-topoi, which can be regarded as the co-categorical
analogues of Grothendieck topoi. Our first main result is an analogue of Giraud’s theorem, which asserts
the equivalence of “extrinsic” and “intrinsic” approaches to the subject. Roughly speaking, an co-topos is
an oo-category which “looks like” the oco-category of spaces. We will show that this intuition is justified in
the sense that it is possible to reconstruct a large portion of classical homotopy theory inside an arbitrary
oo-topos.

In §7 we will discuss the relationship between our theory of co-topoi and ideas from classical topology. We
show that, if X is a paracompact space, then the co-topos of “sheaves of spaces” on X can be interpreted
in terms of the classical homotopy theory of spaces over X: this will allow us to obtain the comparison
result mentioned in the introduction. The main theme is that various ideas from geometric topology (such
as dimension theory and shape theory) can be reformulated using the language of co-topoi. We will also
formulate and prove “nonabelian” generalizations of classical cohomological results, such as Grothendieck’s
vanishing theorem for the cohomology of Noetherian topological spaces, and the proper base change theorem.

We have included an appendix, in which we summarize the ideas from classical category theory and the
theory of model categories which we will use in the body of the text. We advise the reader to refer to it only
as needed.

Terminology
A few comments on some of the terminology which appears in this book:

e The word topos will always mean Grothendieck topos.



o We will refer to a category C as accessible or presentable if it is locally accessible or locally presentable
in the terminology of [37].

e Unless otherwise specified, the term oco-category will be used to indicate a higher category in which all
n-morphisms are invertible for n > 1.

e We will study higher category theory in Joyal’s setting of quasicategories. However, we do not always
follow Joyal’s terminology. In particular, we will use the term co-category to refer to what Joyal calls a
quasicategory (which are, in turn, the same as the weak Kan complex of Boardman and Vogt); we will
use the terms inner fibration and inner anodyne map where Joyal uses mid-fibration and mid-anodyne
map.
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Chapter 1

An Overview of Higher Category
Theory

This chapter is intended as a general introduction to higher category theory. We begin with what we feel
is the most intuitive approach to the subject, based on topological categories. This approach is easy to
understand, but difficult to work with when one wishes to perform even simple categorical constructions.
As a remedy, we will introduce the more convenient formalism of co-categories (called weak Kan complexes
in [7] and quasi-categories in [30]), which provides a more suitable setting for adaptations of sophisticated
category-theoretic ideas. Our goal in §1.1.1 is to introduce both approaches and to explain why they are
equivalent to one another. The proof of this equivalence will rely on a crucial result (Theorem 1.1.5.12)
which we will prove in §1.3.

Our second objective in this chapter is to give the reader an idea of how to work with the formalism of
oo-categories. In §1.2 we will establish a vocabulary which includes co-categorical analogues (often direct
generalizations) of most of the important concepts from ordinary category theory. To keep the exposition
brisk, we will postpone the more difficult proofs until later chapters of this book. Our hope is that, after
reading this chapter, a reader who does not wish to be burdened with the details will be able to understand
(at least in outline) some of the more conceptual ideas described in §5 and beyond.
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1.1 Foundations for Higher Category Theory

1.1.1 Goals and Obstacles

Category theory is a powerful organizational tool in many areas of mathematics. Recall that an ordinary
category C consists of a collection of objects, together a morphism set Home (X, Y) for every pair of objects
X,Y € @ (these morphism sets are furthermore equipped with an associative compositon law). Virtually
every class of mathematical structures can be realized as the objects of some category €, where the morphisms
express the relationships which exist between the objects of C. In many situations, these morphisms are
themselves a basic object of study. We might then want to know not only what the morphisms are, but how
they are related to one another. A formalization of this idea leads to the theory of 2-categories, in which
we have not only morphisms but also morphisms between the morphisms, called 2-morphisms. The vision of
higher category theory is that we should have a notion of n-category for all n > 0, in which we have not only
objects, morphisms, and 2-morphisms, but also k-morphisms for all £ < n. Finally, in some sort of limit we
might hope to obtain a theory of co-categories, where there are morphisms of all orders.

Example 1.1.1.1. Let X be a topological space, and 0 < n < oco. We can extract an n-category m<, X
(roughly) as follows. The objects of <, X are the points of X. If z,y € X, then the morphisms from z to
y in m<, X are given by continuous paths [0,1] — X starting at x and ending at y. The 2-morphisms are
given by homotopies of paths, the 3-morphisms by homotopies between homotopies, and so forth. Finally,
if n < oo, then two n-morphisms of m<, X are considered to be the same if and only if they are homotopic
to one another.

If n = 0, then 7<, X can be identified with the set moX of path components of X. If n = 1, then our
definition of m<, X agrees with usual definition for the fundamental groupoid of X. For this reason, m<,X is
often called the fundamental n-groupoid of X. It is an n-groupoid (rather than a mere n-category) because
every k-morphism of m<;X has an inverse (at least “up to homotopy”).

There are many approaches to realizing the vision of higher category theory. We might begin by defining
a 2-category to be a “category enriched over Cat.” In other words, we consider a collection of objects
together with a category of morphisms Hom(A, B) for any two objects A and B, and composition functors
capce : Hom(A, B) x Hom(B, C) — Hom(A, C) (to simplify the discussion, we will ignore identity morphisms
for a moment). These functors are required to satisfy an associative law, which asserts that for any quadruple
(A, B,C, D) of objects, the diagram

Hom(A, B) x Hom(B, C) x Hom(C, D) — Hom(A, C') x Hom(C, D)

i l

Hom(A, B) x Hom(B, D) Hom(A4, D)

commutes; in other words, one has an equality of functors

cacp © (cape x 1) =capp o (1 X cgep)

from Hom(A, B) x Hom(B, C) x Hom(C, D) to Hom(A, D). This leads to the definition of a strict 2-category.

At this point, we should object that the definition of a strict 2-category violates one of the basic philo-
sophical principles of category theory: one should never demand that two functors F' and F’ be equal to
one another. Instead one should postulate the existence of a natural isomorphism between F' and F’. This
means that the associative law should not take the form of an equation, but of additional structure: a col-
lection of isomorphisms yapcep : cacp © (cape X 1) ~ capp o (1 X cgep). We should further demand that
the isomorphisms y4pcp be functorial in the quadruple (A, B, C, D) and satisfy certain higher associativity
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conditions, which generalize the “Pentagon axiom” described in §A.1.3. After formulating the appropriate
conditions, we arrive at the definition of a weak 2-category.

Let us contrast the notions of “strict 2-category” and “weak 2-category.” The former is easier to define,
since we do not have to worry about the higher associativity conditions satisfied by the transformations
Yapcp- On the other hand, the latter notion seems more natural if we take the philosophy of category
theory seriously. In this case, we happen to be lucky: the notions of “strict 2-category” and “weak 2-
category” turn out to be equivalent. More precisely, any weak 2-category is equivalent (in the relevant sense)
to a strict 2-category. The choice of definition can therefore be regarded as a question of aesthetics.

We now plunge onward to 3-categories. Following the above program, we might define a strict 3-category
to consist of a collection of objects together with strict 2-categories Hom(A, B) for any pair of objects A
and B, together with a strictly associative composition law. Alternatively, we could seek a definition of weak
3-category by allowing Hom(A, B) to be only a weak 2-category, requiring associativity only up to natural
2-isomorphisms, which satisfy higher associativity laws up to natural 3-isomorphisms, which in turn satisfy
still higher associativity laws of their own. Unfortunately, it turns out that these notions are not equivalent.

Both of these approaches have serious drawbacks. The obvious problem with weak 3-categories is that
an explicit definition is extremely complicated (see [22], where a definition is given along these lines), to
the point where it is essentially unusable. On the other hand, strict 3-categories have the problem of not
being the correct notion: most of the weak 3-categories which occur in nature (such as the fundamental
3-groupoids of topological spaces) are not equivalent to strict 3-categories. The situation only gets worse
(from either point of view) as we pass to 4-categories and beyond.

Fortunately, it turns out that major simplifications can be introduced if we are willing to restrict our
attention to oco-categories in which most of the higher morphisms are invertible. Let us henceforth use
the term (oo, n)-category to refer to oo-categories in which all k-morphisms are invertible for k¥ > n. The
oo-categories described in Example 1.1.1.1 (when n = oo) are all (oo, 0)-categories. The converse, which
asserts that every (oo, 0)-category has the form m<., X for some topological space X, is a generally accepted
principle of higher category theory. Moreover, the oco-groupoid <. X encodes the entire homotopy type of
X. In other words, (oo, 0)-categories (that is, co-categories in which all morphisms are invertible) have been
extensively studied from another point of view: they are essentially the same thing as “spaces” in the sense
of homotopy theory, and there are many equivalent ways to describe them (for example, we can use CW
complexes or simplicial sets).

Convention 1.1.1.2. We will often refer to (oo, 0)-categories as co-groupoids and (oo, 2)-categories as co-
bicategories. Unless otherwise specified, the generic term oco-category will mean (oo, 1)-category.

In this book, we will restrict our attention almost entirely to the theory of co-categories (in which we
have only invertible n-morphisms for n > 2). Our reasons are threefold:

(1) Allowing noninvertible n-morphisms for n > 1 introduces a number of additional complications to the
theory, at both technical and conceptual levels. As we will see throughout this book, many ideas from
category theory generalize to the co-categorical setting in a natural way. However, these generalizations
are not so straightforward if we allow noninvertible 2-morphisms. For example, one must distinguish
between strict and lax fiber products, even in the setting of “classical” 2-categories.

(2) For the applications studied in this book, we will not need to consider (0o, n)-categories for n > 2. The
case n = 2 is of some relevance, because the collection of (small) co-categories can naturally be viewed
as a (large) oco-bicategory. However, we will generally be able to exploit this structure in an ad-hoc
manner, without developing any general theory of oo-bicategories.

(3) For n > 1, the theory of (oo, n)-categories is most naturally viewed as a special case of enriched
(higher) category theory. Roughly speaking, an n-category can be viewed as a category enriched over
(n — 1)-categories. As we explained above, this point of view is inadequate because it requires that
composition satisfies an associative law up to equality, while in practice the associativity only holds up
to isomorphism or some weaker notion of equivalence. In other words, to obtain the correct definition
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we need to view the collection of (n — 1)-categories as an n-category, not as an ordinary category.
Consequently, the naive approach is circular: though it does lead to the correct theory of n-categories,
we can only make sense of it if the theory of n-categories is already in place.

Thinking along similar lines, we can view an (0o, n)-category as an oo-category which is enriched over
(00,n — 1)-categories. The collection of (oo, n — 1)-categories it itself organized into an (oo, n)-category
Cat(oo,n—1), S0 at a first glance this definition suffers from the same problem of circularity. However,
because the associativity properties of composition are required to hold up to equivalence, rather than
up to arbitrary natural transformation, the noninvertible k-morphisms in Cat(o ,,—1) are irrelevant for
k > 1. We may therefore view an (oo, n)-category as a category enriched over Cat( 1), where the
latter is regarded as an oco-category by discarding noninvertible k-morphisms for 2 < k < n. In other
words, the naive inductive definition of higher category theory is reasonable, provided that we work in
the co-categorical setting from the outset. We refer the reader to [49] for a definition of n-categories
which follows this line of thought.

The theory of enriched co-categories is a useful and important one, but will not be treated in this
book. Instead we refer the reader to [34] for an introduction using the same language and formalism
we employ here.

Though we will not need a theory of (0o, n)-categories for n > 1, the case n = 1 is the main subject matter
of this book. Fortunately, the above discussion suggests a definition. Namely, an oco-category € should be
consist of a collection of objects, and an co-groupoid Mape(X,Y") for every pair object objects X,Y € C.
These co-groupoids can be identified with “spaces”, and should be equipped with an associative composition
law. As before, we are faced with two choices as to how to make this precise: do we require associativity on
the nose, or only up to (coherent) homotopy? Fortunately, the answer turns out to be irrelevant: as in the
theory of 2-categories, any oco-category with a coherently associative multiplication can be replaced by an
equivalent co-category with a strictly associative multiplication. We are led to the following:

Definition 1.1.1.3. A topological category is a category which is enriched over €3G, the category of compactly
generated (Hausdorff) topological spaces. The category of topological categories will be denoted by Catiop.

More explicitly, a topological category € consists of a collection of objects, together with a (compactly
generated) topological space Mape(X,Y) for any pair of objects X,Y € €. These mapping spaces must be
equipped with an associative composition law, given by continuous maps

Mape(Xo, X1) X Mape(X1, X2) X ... Mape(Xn—1, Xpn) — Mape(Xo, X5)
(defined for all n > 0). Here the product is taken in the category of compactly generated topological spaces.

Remark 1.1.1.4. The decision to work with compactly generated topological spaces, rather than arbitrary
spaces, is made in order to facilitate the comparison with more combinatorial approaches to homotopy theory.
This is a purely technical point which the reader may safely ignore.

It is possible to use Definition 1.1.1.3 as a foundation for higher category theory: that is, to define an
oo-category to be a topological category. However, this approach has a number of technical disadvantages.
We will describe an alternative (though equivalent) formalism in the next section.

1.1.2 oo-Categories

Of the numerous formalizations of higher category theory, Definition 1.1.1.3 is the quickest and most trans-
parent. However, it is one of the most difficult to actually work with. Fortunately, there exist several
approaches in which the difficulties become more tractable, including the theory of Segal categories, the
theory of complete Segal spaces, and Quillen’s theory of model categories. To review all of these notions and
their interrelationships would involve too great a digression from the main purpose of this book. However,
the frequency with which we will encounter sophisticated categorical constructions necessitates the use of
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one of these more efficient approaches. We will employ the theory of weak Kan complezes, which goes back
to Boardman-Vogt ([7]). These objects have subsequently been studied more extensively by Joyal ([30] and
[31]), who calls them quasicategories. We will simply call them co-categories.

To get a feeling for what an co-category € should be, it is useful to consider two extreme cases. If every
morphism in € is invertible, then C is equivalent to the fundamental co-groupoid of a topological space X.
In this case, higher category theory reduces to classical homotopy theory. On the other hand, if € has no
nontrivial n-morphisms for n > 1, then € is equivalent to an ordinary category. A general formalism must
capture the features of both of these examples. In other words, we need a class of mathematical objects
which can behave both like categories and like topological spaces. In §1.1.1, we achieved this by “brute
force”: namely, we directly amalgamated the theory of topological spaces and the theory of categories, by
considering topological categories. However, it is possible to approach the problem more directly using the
theory of simplicial sets. We will assume that the reader has some familiarity with the theory of simplicial
sets; a brief review of this theory is included in §A.2.10, and a more extensive introduction can be found in
[21].

The theory of simplicial sets originated as a combinatorial approach to homotopy theory. Given any
topological space X, one can associated a simplicial set Sing X, whose n-simplices are precisely the continuous
maps |A"| — X, where |A"| = {(zo,...,2,) € [0,1]" Yz + ... + 3, = 1} is the standard n-simplex.
Moreover, the topological space X is determined, up to weak homotopy equivalence, by Sing X. More
precisely, the singular complex functor

X — Sing X

has a left adjoint, which carries every simplicial set K to its geometric realization |K|. For every topological
space X, the counit map
| Sing X| — X

is a weak homotopy equivalence. Consequently, if one is only interested in studying topological spaces up to
weak homotopy equivalence, one might as well work simplicial sets instead.

If X is a topological space, then the simplicial set Sing X has an important property, which is captured
by the following definition:

Definition 1.1.2.1. Let K be a simplicial set. We say that K is a Kan complex if, for any 0 < ¢ < n and
any diagram of solid arrows

j 7
s
s

v

A"

there exists a dotted arrow as indicated rendering the diagram commutative. Here A} C A™ denotes the ith
horn, obtained from the simplex A™ by deleting the interior and the face opposite the ith vertex.

The singular complex of any topological space X is a Kan complex: this follows from the fact that the
horn |A?| is a retract of the simplex |A™] in the category of topological spaces. Conversely, any Kan complex
K “behaves like” a space: for example, there are simple combinatorial recipes for extracting homotopy groups
from K (which turn out be isomorphic to the homotopy groups of the topological space |K|). According to
a theorem of Quillen (see [21] for a proof), the singular complex and geometric realization provide mutually
inverse equivalences between the homotopy category of CW complexes and the homotopy category of Kan
complexes.

The formalism of simplicial sets is also closely related to category theory. To any category €, we can
associate a simplicial set N(€), called the nerve of €. For each n > 0, we let N(C),, = Mapg,, (A", N(C))
denote the set of all functors [n] — €. Here [n] denotes the linearly ordered set {0,...,n}, regarded as a
category in the obvious way. More concretely, N(C),, is the set of all composable sequences of morphisms

o . v,
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having length n. In this description, the face map d; carries the above sequence to

Glo. So oL, L v,

while the degeneracy s; carries it to
. ide, : 3 -
oo e o T oy, L v,

It is more or less clear from this description that the simplicial set N(C) is just a fancy way of encoding
the structure of C as a category. More precisely, we note that the category € can be recovered (up to
isomorphism) from its nerve N(C). The objects of C are simply the vertices of N(C); that is, the elements
of N(€)o. A morphism from Cy to C is given by an edge ¢ € N(C); with di(¢) = Cp and do(¢) = Ci.
The identity morphism from an object C to itself is given by the degenerate simplex so(C). Finally, given a

diagram Cj 4, Ch 9, (5, the edge of N(€) corresponding to 1) o ¢ may be uniquely characterized by the fact
that there exists a 2-simplex o € N(€)2 with d2(0) = ¢, do(o) =, and d1(0) = ¢ o ¢.
It is not difficult to characterize those simplicial sets which arise as the nerve of a category:

Proposition 1.1.2.2. Let K be a simplicial set. Then the following conditions are equivalent:
(1) There exists a small category C and an isomorphism K ~ N(C).

(2) For each 0 < i <n and each diagram
A — > K

7
s
s
s

ATL
there exists a unique dotted arrow rendering the diagram commutative.
Proof. An easy exercise for the reader; see Proposition 1.2.17.9 for a generalization. O

We note that condition (2) of Proposition 1.1.2.2 is very similar to Definition 1.1.2.1. However, it is
different in two important respects. First, it requires the extension condition only for inner horns A} with
0 < i < n. Second, the asserted condition is stronger in this case: not only does any map A} — K extend
to the simplex A", but the extension is unique.

Remark 1.1.2.3. It is easy to see that it is not reasonable to expect condition (2) of Proposition 1.1.2.2 to
hold for “outer” horns A, ¢ € {0,n}. Consider, for example, the case where i = n = 2, and where K is the
nerve of a category €. Giving a map A2 — K corresponds to supplying the solid arrows in the diagram

4
s
s \
s

Co ———Cy,
and the extension condition would amount to the assertion that one could always find a dotted arrow
rendering the diagram commutative. This is true in general only when the category € is a groupoid.

We now see that the notion of a simplicial set is a flexible one: a simplicial set K can be a good model
for an oo-groupoid (if K is a Kan complex), or for an ordinary category (if it satisfies the hypotheses of
Proposition 1.1.2.2). Based on these observations, we might expect that some more general class of simplicial
sets could serve as models for co-categories in general.
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Consider first an arbitrary simplicial set K. We can try to envision K as a generalized category, whose
objects are the vertices of K (that is, the elements of Kj), and whose morphisms are the edges of K (that
is, the elements of K;). A 2-simplex o : A2 — K should be thought of as a diagram

Y
N
X—0>Z

together with an identification (or homotopy) between 6 and ¥ o¢ which renders the diagram “commutative”.
(Note that, in higher category theory, this is not merely a condition: the homotopy 6 ~ 1o ¢ is an additional
datum). Simplices of larger dimension may be thought of as verifying the commutativity of certain higher-
dimensional diagrams.

Unfortunately, for a general simplicial set K, the analogy outlined above is not very strong. The essence
of the problem is that, though we may refer to the 1-simplices of K as “morphisms”, there is in general no
way to compose them. Taking our cue from the example of N(C), we might say that a morphism 6 : X — Z
is a composition of morphisms ¢ : X — Y and ¢ : Y — Z if there exists a 2-simplex ¢ : A2 — K as in the
diagram indicated above. We must now consider two potential difficulties: the 2-simplex ¢ may not exist,
and if it does it exist it may not be unique, so that we have more than one choice for the composition 6.

The existence of ¢ can be formulated as an extension condition on the simplicial set K. We note that a
composable pair of morphisms (1), ¢) determines a map of simplicial sets A? — K. Thus, the assertion that
o can always be found may be formulated as a extension property: any map of simplicial sets A? — K can
be extended to A2, as indicated in the following diagram:

Y p—

7
7/
v
s

A2

The uniqueness of 6 is another matter. It turns out to be unnecessary (and unnatural) to require that 0
be uniquely determined. To understand this point, let us return to the example of the fundamental groupoid
of a topological space X. This is a category whose objects are the points x € X. The morphisms between
a point z € X and a point y € X are given by continuous paths p : [0,1] — X such that p(0) = x and
p(1) = y. Two such paths are considered to be equivalent if there is a homotopy between them. Composition
in the fundamental groupoid is given by concatenation of paths. Given paths p,q: [0,1] — X with p(0) = z,
p(1) = ¢(0) =y, and ¢(1) = z, the composite of p and ¢ should be a path joining = to z. There are many
ways of obtaining such a path from p and g. One of the simplest is to define

2 if 0
r<t>={p( D il

to define the composite path. Because the paths r and v’ are homotopic to one another, it does not matter
which one we choose.

The situation becomes more complicated if try to think 2-categorically. We can capture more information
about the space X by considering its fundamental 2-groupoid. This is a 2-category whose objects are the
points of X, whose morphisms are paths between points, and whose 2-morphisms are given by homotopies
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between paths (which are themselves considered modulo homotopy). In order to have composition of mor-
phisms unambiguously defined, we would have to choose some formula once and for all. Moreover, there
is no particularly compelling choice; for example, neither of the formulas written above leads to a strictly
associative composition law.

The lesson to learn from this is that in higher-categorical situations, we should not necessarily ask for
a uniquely determined composition of two morphisms. In the fundamental groupoid example, there are
many choices for a composite path but all of them are homotopic to one another. Moreover, in keeping
with the philosophy of higher category theory, any path which is homotopic to the composite should be just
as good as the composite itself. From this point of view, it is perhaps more natural to view composition
as a relation than as a function, and this is very efficiently encoded in the formalism of simplicial sets: a
2-simplex o : A2 — K should be viewed as “evidence” that dy(c) o d2(c) is homotopic to dy (o).

Exactly what conditions on a simplicial set K will guarantee that it behaves like a higher category?
Based on the above argument, it seems reasonable to require that K satisfy an extension condition with
respect to certain horn inclusions A}, as in Definition 1.1.2.1. However, as we observed in Remark 1.1.2.3,
this is reasonable only for the inner horns where 0 < i < n, which appear in the statement of Proposition
1.1.2.2.

Definition 1.1.2.4. An oco-category is a simplicial set K which has the following property: for any 0 < i < n,
any map fo: A} — K admits an extension f: A" — K.

Definition 1.1.2.4 was first formulated by Boardman and Vogt ([7]). They referred to oo-catgories as
weak Kan complexes, motivated by the obvious analogy with Definition 1.1.2.1. Our terminology places
more emphasis on the analogy with the characterization of ordinary categories given in Proposition 1.1.2.2:
we require the same extension conditions, but drop the uniqueness assumption.

Example 1.1.2.5. Any Kan complex is an oco-category. In particular, if X is a topological space, then
we may view its singular complex Sing X as an oo-category: this one way of defining the fundamental
oo-groupoid m< X of X, introduced informally in Example 1.1.1.1.

Example 1.1.2.6. The nerve of any category is an co-category. We will occasionally abuse terminology by
identifying a category € with its nerve N(C); by means of this identification, we may view ordinary category
theory as a special case of the study of co-categories.

The weak Kan condition of Definition 1.1.2.4 leads to a very elegant and powerful version of higher
category theory. This theory has been developed by Joyal in the papers [30] and [31] (where simplicial sets
satisfying the condition of Definition 1.1.2.4 are called quasi-categories), and will be used throughout this
book.

Notation 1.1.2.7. Depending on the context, we will use two different notations in connection with simpli-
cial sets. When emphasizing their role as co-categories, we will often denote them by calligraphic letters such
as G, D, and so forth. When casting simplicial sets in their different (though related) role of representing
homotopy types, we will employ capital Roman letters. To avoid confusion, we will also employ the latter
notation when we wish to contrast the theory of co-categories with some other other approach to higher
category theory, such as the theory of topological categories.

1.1.3 Equivalences of Topological Categories

We have now introduced two approaches to higher category theory: one based on topological categories,
and one based on simplicial sets. These two approaches turn out to be equivalent to one another. However,
the equivalence itself needs to be understood in a higher-categorical setting. We take our cue from classical
homotopy theory, in which we can take the basic objects to be either topological spaces or simplicial sets.
It is not true that every Kan complex is isomorphic to the singular complex of a topological space, or that
every CW complex is isomorphic to the geometric realization of a simplicial set. However, both of these
statements become true if we replace the words “isomorphic to” by “homotopy equivalent to”. We would like
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to formulate a similar statement regarding our approaches to higher category theory. The first step is to find
a concept which replaces “homotopy equivalence”. If F': € — D is a functor between topological categories,
under what circumstances should we regard F as an “equivalence” (so that € and €' really represent the
same higher category)?

The most naive answer is that F' should be regarded as an equivalence if it is an isomorphism of topological
categories. This means that F' induces a bijection between the objects of € and the objects of D, and a
homeomorphism Mape(X,Y) — Mapgy (F(X), F(Y)) for every pair of objects X,Y € C. However, it is
immediately obvious that this condition is far too strong; for example, in the case where € and D are
ordinary categories (which we may view also topological categories, where all morphism sets are endowed
with the discrete topology), we recover the notion of an isomorphism between categories. This notion does
not play an important role in category theory. One rarely asks whether or not two categories are isomorphic;
instead, one asks whether or not they are equivalent. This suggests the following definition:

Definition 1.1.3.1. A functor F': € — D between topological categories is a strong equivalence if it is an
equivalence in the sense of enriched category theory. In other words, F' is a strong equivalence if it induces
homeomorphisms Mape(X,Y) — Mapq, (F(X), F(Y)) for every pair of objects X,Y € €, and every object
of D is isomorphic (in D) to F(X) for some X € C.

The notion of strong equivalence between topological categories has the virtue that, when restricted to
ordinary categories, it reduces to the usual notion of equivalence. However, it is still not the right definition:
for a pair of objects X and Y of a higher category €, the morphism space Mape (X, Y") should itself only be
well-defined up to homotopy equivalence.

Definition 1.1.3.2. Let C be a topological category. The homotopy category hC is defined as follows:
e The objects of hC are the objects of C.
o If X.Y € C, then we define Homy,e(X,Y) = 7o Mape(X,Y).

e Composition of morphisms hC is induced from the composition of morphisms in € by applying the
functor 7.

Example 1.1.3.3. Let C be the topological category whose objects are CW-complexes, where Mape(X,Y)
is the set of continuous maps from X to Y, equipped with the (compactly generated version of the) compact-
open topology. We will denote the homotopy category of € by H, and refer to H as the homotopy category
of spaces.

There is a second construction of the homotopy category H, which will play an important role in what
follows. First, we must recall a bit of terminology from classical homotopy theory.

Definition 1.1.3.4. A map f : X — Y between topological spaces is said to be a weak homotopy equivalence
if it induces a bijection 19X — mY, and if for every point £ € X and every ¢ > 1, the induced map of
homotopy groups

7"'i()(v x) - ﬂ-i(Yv f(l‘))

is an isomorphism.

Given a space X € CG, classical homotopy theory ensures the existence of a CW-complex X’ equipped
with a weak homotopy equivalence ¢ : X’ — X. Of course, X’ is not uniquely determined; however, it is
unique up to canonical homotopy equivalence, so that the assignment

X [X] = X'

determines a functor 6 : €§ — JH. By construction, # carries weak homotopy equivalences in C§ to isomor-
phisms in H. In fact, 8 is universal with respect to this property. In other words, we may describe H as
the category obtained from C§G by formally inverting all weak homotopy equivalences. This is one version
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of Whitehead’s theorem, which is usually stated as follows: every weak homotopy equivalence between CW
complexes admits a homotopy inverse.

We can now improve upon Definition 1.1.3.2 slightly. We first observe that the functor 6 : €§ —
H preserves products. Consequently, we can apply the construction of Remark A.1.4.3 to convert any
topological category C into a category enriched over H. We will denote this H-enriched category by hC, and
refer to it as the homotopy category of €. More concretely, the homotopy category h€C may be described as
follows:

(1) The objects of hC are the objects of C.

(2) For X,Y € C, we have
Mapy,e(X,Y) = [Mape (X, Y)].

(3) The composition law on hC is obtained from the composition law on € by applying the functor 6 :

CG — H.

Remark 1.1.3.5. If C is a topological category, we have now defined hC in two different ways: first as an
ordinary category, and then as a category enriched over JH. These two definitions are compatible with one
another, in the sense that hC (as an ordinary category) is the underlying category of hC (as an H-enriched
category). This follows immediately from the observation that for every topological space X, there is a
canonical bijection

moX =~ Mapg(*, [X]).

If C is a topological category, we may imagine that hC is the object which is obtained by forgetting
the topological morphism spaces of € and remembering only their (weak) homotopy types. The following
definition codifies the idea that these homotopy types should be “all that really matter”.

Definition 1.1.3.6. Let F': € — D be a functor between topological categories. We will say that F' is a
weak equivalence, or simply an equivalence, if the induced functor

hC — hD

is an equivalence of H-enriched categories.

More concretely, a functor F' is an equivalence if and only if:
e For every pair of objects X,Y € C, the induced map
Mape (X, V) — Mapy, (F(X), F(Y))
is a weak homotopy equivalence of topological spaces.

e Every object of D is isomorphic in hD to F(X), for some X € C.

Remark 1.1.3.7. A morphism f: X — Y in D is said to be an equivalence if the induced morphism in hD
is an isomorphism. In general, this is much weaker than the condition that f be an isomorphism in D; see
Proposition 1.2.4.1.

It is Definition 1.1.3.6 which gives the correct notion of equivalence between topological categories (at
least, when one is using them to describe higher category theory). We will agree that all relevant properties of
topological categories are invariant under this notion of equivalence. We say that two topological categories
are equivalent if there is an equivalence between them, or more generally if there is a chain of equivalences
joining them. Equivalent topological categories should be regarded as “the same” for all relevant purposes.
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Remark 1.1.3.8. According to Definition 1.1.3.6, a functor F' : € — D is an equivalence if and only if
the induced functor h€ — hD is an equivalence. In other words, the homotopy category h€ (regarded as a
category which is enriched over H) is an invariant of € which is sufficiently powerful to detect equivalences
between oo-categories. This should be regarded as analogous to the more classical fact that the homotopy
groups m; (X, x) of a CW complex X are homotopy invariants which detect homotopy equivalences between
CW complexes (by Whitehead’s theorem). However, it important to remember that hC does not determine
C up to equivalence, just as the homotopy type of a CW complex is not determined by its homotopy groups.

1.1.4 Simplicial Categories

In the previous sections we introduced two very different approaches to the foundations of higher category
theory: one based on topological categories, the other on simplicial sets. In order to prove that they are
equivalent to one another, we will introduce a third approach, which is closely related to the first but shares
the combinatorial flavor of the second.

Definition 1.1.4.1. A simplicial category is a category which is enriched over the category Seta of simplicial
sets. The category of simplicial categories (where morphisms are given by simplicially enriched functors)
will be denoted by Cata.

Remark 1.1.4.2. Every simplicial category can be regarded as a simplicial object in the category Cat.
Conversely, a simplicial object of Cat arises from a simplicial category if and only if the underlying simplicial
set of objects is constant.

Like topological categories, simplicial categories can be used as models of higher category theory. If Cis a
simplicial category, then we will generally think of the simplicial sets Mape(X,Y) as “spaces”, or homotopy

types.

Remark 1.1.4.3. If € is a simplicial category with the property that each of the simplicial sets Mape(X,Y)
is an oco-category, then we may view C itself as a kind of co-bicategory. We will not use this interpretation
of simplicial categories in this book. Usually we will consider only fibrant simplicial categories: that is,
simplicial categories for which the mapping objects Mape(X,Y) are Kan complexes.

The relationship between simplicial categories and topological categories is easy to describe. Let Seta
denote the category of simplicial sets and CG the category of compactly generated Hausdorff spaces. We
recall that there exists a pair of adjoint functors

Il
Setpa=——=CG
Sing

which are called the geometric realization and singular complex functors, respectively. Both of these functors
commute with finite products. Consequently, if € is a simplicial category, we may define a topological
category | C| in the following way:

e The objects of | €| are the objects of C.
e If XY € C, then Maple‘(X,Y) = |Mape(X,Y)|.

e The composition law for morphisms in | €| is obtained from the composition law on € by applying the
geometric realization functor.

Similarly, if € is a topological category, we may obtain a simplicial category Sing C by applying the
singular complex functor to each of the morphism spaces individually. The singular complex and geometric
realization functors determine an adjunction between Cata and Cattop. This adjunction should be understood
as determining an “equivalence” between the theory of simplicial categories and the theory of topological
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categories. This is an essentially a formal consequence of the fact that the geometric realization and singular
complex functors determine an equivalence between the homotopy theory of topological spaces and the
homotopy theory of simplicial sets. More precisely, we recall that a map f: S — T of simplicial sets is said
to be a weak homotopy equivalence if the induced map |S| — |T| of topological spaces is a weak homotopy
equivalence. A theorem of Quillen (see [21] for a proof) asserts that the unit and counit morphisms

S — Sing | S|

|Sing X| — X

are weak homotopy equivalences, for every (compactly generated) topological space X and every simplicial
set S. It follows that the category obtained from C§ by inverting weak homotopy equivalences (of spaces) is
equivalent to the category obtained from Seta by inverting weak homotopy equivalences. We use the symbol
H to denote either of these (equivalent) categories.

If € is a simplicial category, we let hC denote the H-enriched category obtained by applying the functor
Seta — H to each of the morphism spaces of €. We will refer to hC as the homotopy category of €. We
note that this is the same notation that was introduced in §1.1.3 for the homotopy category of a topological
category. However, there is little risk of confusion: the above remarks imply the existence of canonical
isomorphisms

hC ~ h|C|
hD ~ hSing D
for every simplicial category € and every topological category D.

Definition 1.1.4.4. A functor € — € between simplicial categories is an equivalence if the induced functor
hC€ — h€’ is an equivalence of H-enriched categories.

In other words, a functor € — €' between simplicial categories is an equivalence if and only if the
geometric realization | G| — | €| is an equivalence of topological categories. In fact, one can say more. It
follows easily from the preceding remarks that the unit and counit maps

€—>Sing\€|

|SingD| — D

induce isomorphisms between homotopy categories. Consequently, if we are working with topological or
simplicial categories up to equivalence, we are always free to replace a simplicial category C by |C]|, or
a topological category D by SingD. In this sense, the notions of topological and simplicial category are
equivalent and either can be used as a foundation for higher category theory.

1.1.5 Comparing oco-Categories with Simplicial Categories

In §1.1.4, we introduced the theory of simplicial categories and explained why (for our purposes) it is
equivalent to the theory of topological categories. In this section, we see that the theory of simplicial
categories is also closely related to the theory of co-categories. Our discussion requires somewhat more
elaborate constructions than were needed in the previous sections; a reader who does not wish to become
bogged down in details is urged to skip ahead to §1.2.1.

We will relate simplicial categories with simplicial sets by means of the simplicial nerve functor

N : Cata — Seta .
Recall that the nerve of an ordinary category C is defined by the formula

Homge, (A", N(€)) = Homeat ([n], C),
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where [n] denotes the linearly ordered set {0,...,n}, regarded as a category. This definition makes sense
also when C is a simplicial category, but is clearly not very interesting: it makes no use of the simplicial
structure on C. In order to obtain a more interesting construction, we need to replace the ordinary category
[n] by a suitable “thickening”, a simplicial category which we will denote by €[A"].

Definition 1.1.5.1. Let J be a linearly ordered set. The simplicial category €[A”’] is defined as follows:
e The objects of €[A’] are the elements of .J.

e Ifi,j € J, then
. 0 if j <i

Here P; ; denotes the partially ordered set {I C J: (i,j € [) A (Vk € I[i < k < j])}.

o Ifip <iy <...<iy,, then the composition

MaquJ](io, Zl) X ... X MapQ[AJ](in_l, Zn) — Map¢[AJ](i0, Zn)
is induced by the map of partially ordered sets

PZ‘O’Z'IX...XPZ‘ — P

n—1,in 0,in

(11,7In)*—>11UUIn

In order to help digest Definition 1.1.5.1, let us analyze the structure of the topological category | €[A”]|.
The objects of this category are elements of the set [n] = {0,...,n}. For each 0 < i < j < n, the
topological space Map| gany| (4, 4) is homeomorphic to a cube; it may be identified with the set of all functions
p:{k €[n]:i<k<j} — [0,1] which satisfy p(i) = p(j) = 1. The morphism space Map, ¢[an) (i,7) is
empty when j < ¢, and composition of morphisms is given by concatenation of functions.

Remark 1.1.5.2. Let us attempt to better understand the simplicial category €[A”] and its relationship
to the ordinary category [n]. These categories have the same objects, namely the elements of {0,...,n}. In
the category [n], there is a unique morphism ¢;; : ¢ — j whenever ¢ < j. In virtue of the uniqueness, these
elements satisfy g;x 0 ¢;j = g for i < j < k.

In the simplicial category €[A"], there is a vertex p;; € Mapean)(i, ), given by the element {3, j} € P;;.
We note that pji o p;; # pir (unless we are in one of the degenerate cases where ¢ = j or j = k). Instead,
the collection of all compositions

Pinin_1 ©Pin_1in_2 © -+ ©Piyigs

where i =g <1 < ... <1 <1, = j constitute all of the different vertices of the cube Mapg(an;(i, j). The
weak contractibility of MapQ[An](i, j) expresses the idea that although these compositions do not coincide,
they are all canonically homotopic to one another. We observe that there is a (unique) functor €[A"] — [n]
which is the identity on objects, and that this functor is an equivalence of simplicial categories. We can
summarize the situation informally as follows: the simplicial category €[A"] is a “thickened version” of [n],
where we have dropped the strict associativity condition

djk © Qij = Qik
and instead have imposed associativity only up to (coherent) homotopy.

The construction J — €[A7] is functorial in J, as we now explain.

Definition 1.1.5.3. Let f : J — J' be a monotone map between linearly ordered sets. The simplicial
functor €[f] : €[A7] — €[A] is defined as follows:
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e For each object i € €[A7], €[f](i) = f(i) € €[A”].

o If i < jin J, then the map Mapgas (i, j) — MapQ-[AJ/](f(i),f(j)) induced by f is the nerve of the
map
Pij = Py, 10)

I— f(I).

Remark 1.1.5.4. Using the notation of Remark 1.1.5.2, we note that Definition 1.1.5.3 has been rigged so
that the functor €[f] carries the vertex p;; € Mapg(as) (4, ) to the vertex py) sy € Mapgias(f(2), f(4))-

It is not difficult to check that the construction described in Definition 1.1.5.3 is well-defined, and com-
patible with composition in f. Consequently, we deduce that € determines a functor

A — Cata
A" — C[A™],
which we may view as a cosimplicial object of Cata.

Definition 1.1.5.5. Let C be a simplicial category. The simplicial nerve N(C) is the simplicial set determined
by the equation
Homget, (A", N(€)) = Homeat . (€[A"], ©).

If C is a topological category, we define the topological nerve N(€) of € to be the simplicial nerve of Sing C.

Remark 1.1.5.6. If € is a simplicial (topological) category, we will often abuse terminology by referring to
the simplicial (topological) nerve of € simply as the nerve of C.

Warning 1.1.5.7. Let C be a simplicial category. Then C can be regarded as an ordinary category, by
ignoring all simplices of positive dimension in the mapping spaces of €. The simplicial nerve of C does not
agree with the nerve of this underlying ordinary category. Our notation is therefore potentially ambiguous.
We will adopt the following convention: whenever € is a simplicial category, N(C) will denote the simplicial
nerve of €, unless we specify otherwise. Similarly, if C is a topological category, then the topological nerve
of € does not generally coincide with the nerve of the underlying category; the notation N(€) will be used
to indicate the topological nerve, unless otherwise specified.

Example 1.1.5.8. Any ordinary category € may be considered as a simplicial category, by taking each of
the simplicial sets Home(X,Y) to be constant. In this case, the set of simplicial functors €[A"] — € may
be identified with the set of functors from [n] into €. Consequently, the simplicial nerve of € agrees with
the ordinary nerve of C, as defined in §1.1.2. Similarly, the ordinary nerve of € can be identified with the
topological nerve of C, where C is regarded as a topological category with discrete morphism spaces.

In order to get a feel for what the nerve of a topological category € looks like, let us explicitly describe
its low-dimensional simplices:

e The O-simplices of N(C) may be identified with the objects of €.
e The 1-simplices of N(€) may be identified with the morphisms of C.

e To give a map from the boundary of a 2-simplex into N(C) is to give a diagram (not necessarily
commutative)
Y
fV Yz
X L
To give a 2-simplex of N(C€) having this specified boundary is equivalent to giving a path from fy zo fxy
to fxz in Mape(X, Z2).
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The category Cata of simplicial categories admits (small) colimits. Consequently, by formal nonsense,
the functor € : A — Qata extends uniquely (up to unique isomorphism) to a colimit-preserving functor
Seta — Cata, which we will denote also by €. By construction, the functor € is left adjoint to the simplicial
nerve functor N. For each simplicial set S, we can view €[S] as the simplicial category “freely generated” by
S: every m-simplex o : A" — S determines a functor €[A"] — €[S], which we can think of as a homotopy
coherent diagram [n] — €[S].

Proposition 1.1.5.9. Let C be a simplicial category having the property that, for every pair of objects
X,Y € C, the simplicial set Mape(X,Y) is a Kan complex. Then the simplicial nerve N(C) is an oo-
category.

Proof. We must show that if 0 < ¢ < n, then N(C) has the right extension property with respect to the
inclusion A7 C A". Rephrasing this in the language of simplicial categories, we must show that € has the
right extension property with respect to the simplicial functor

C[A?] — €[A"].

To prove this, we make use of the following observations concerning €[A?], which we view as a simplicial
subcategory of €[A"]:

e The objects of €[A?] are the objects of €[A™]: that is, elements of the set [n].

e For 0 < j <k < n, the simplicial set Mapg(sn)(j, k) coincides with Mapg(an)(j, k) unless j = 0 and
k=n. '

Consequently, every extension problem

is equivalent to
Mapg(an)(0,n) —— Mape(F(0), F(n))

_ 7
—
—
—
—
—~

Mapgiany(0,7)

Since the simplicial set on the right is a Kan complex by assumption, it suffices to verify that the left vertical
map is anodyne. This follows by inspection: the simplicial set Mapg A,L}(O,n) can be identified with the

cube (AN){Ln=1} "and Mapgan)(0,7) can be identified with the simplicial subset obtained by removing
the interior of the cube together with one of its faces. O

Remark 1.1.5.10. The proof of Proposition 1.1.5.9 yields a slightly stronger result: if ' : € — D is a
functor between simplicial categories which induces Kan fibrations Mape(C, C") — Mapq, (F(C), F(C")) for
every pair of objects C,C’ € €, then the associated map N(€) — N(D) is an inner fibration of simplicial sets
(see Definition 2.0.0.3).

Corollary 1.1.5.11. Let C be a topological category. Then the topological nerve N(C) is an oo-category.

Proof. This follows immediately from Proposition 1.1.5.9, since the singular complex of any topological space
is a Kan complex. O

We now cite the following theorem, which will be proven in §1.3.3 and refined in §1.3.4:
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Theorem 1.1.5.12. Let C be a topological category, and let X, Y € C be objects. Then the counit map
| Mapen(ey (X, Y)| — Mape(X,Y)
is a weak homotopy equivalence of topological spaces.

Assuming Theorem 1.1.5.12, we can now explain why the theory of oco-categories is equivalent to the
theory of topological categories (or, equivalently, simplicial categories). The adjoint functors N and | €[e]]
are not mutually inverse equivalences of categories. However, they are homotopy inverse to one another. To
make this precise, we need to introduce a definition.

Definition 1.1.5.13. Let S be a simplicial set. The homotopy category hS is defined to be the homotopy
category h€[S] of the simplicial category €[S].

A map f : S — T of simplicial sets is a categorical equivalence if the induced map hS — hT is an
equivalence of H-enriched categories.

Remark 1.1.5.14. In [31], Joyal uses the term “weak categorical equivalence” for what we have called a
“categorical equivalence,” and reserves the term “categorical equivalence” for a stronger notion of equivalence.

Remark 1.1.5.15. We have introduced the term “categorical equivalence”, rather than simply “equivalence”
or “weak equivalence”, in order to avoid confusing the notion of categorical equivalence of simplicial sets
with the (more classical) notion of weak homotopy equivalence of simplicial sets.

Remark 1.1.5.16. It is immediate from the definition that f : S — T is a categorical equivalence if and
only if €[S] — €[T] is an equivalence (of simplicial categories), if and only if | €[S]| — | €[T]| is an equivalence
(of topological categories).

We now observe that the adjoint functors (] €[e]|,N) determine an equivalence between the theory of
simplicial sets (up to categorical equivalence) and that of topological categories (up to equivalence). In other
words, for any topological category € the counit functor

[EN(C)]| — €
is an equivalence of topological categories, and for any simplicial set S the unit map
S — N|e[9]]

is a categorical equivalence of simplicial sets. In view of Remark 1.1.5.16, the second assertion is a formal
consequence of the first. Moreover, the first assertion is merely a reformulation of Theorem 1.1.5.12.

The reader may at this point object that we have achieved a comparison between the theory of topological
categories with the theory of simplicial sets, but that not every simplicial set is an co-category. However,
every simplicial set is categorically equivalent to an oco-category. In fact, Theorem 1.1.5.12 implies that
every simplicial set S is categorically equivalent to the nerve of the topological category | €[S]|, which is an
oo-category (Corollary 1.1.5.11).
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1.2 The Language of Higher Category Theory

One of the main goals of this book is to demonstrate that many ideas from classical category theory can be
adapted to the setting of higher categories. In this section, we will survey some of the simplest examples.

1.2.1 The Opposite of an co-Category

If C is an ordinary category, then the opposite category € is defined in the following way:

e The objects of C°P are the objects of C.

e For X\ Y € @, we have Homeor (X,Y) = Home(Y, X). Identity morphisms and composition are defined
in the obvious way.

This definition generalizes without change to the setting of topological or simplicial categories. Adapting
this definition to the setting of co-categories requires a few additional words. We may define more generally
the opposite of a simplicial set S as follows: For any finite, nonempty, linearly ordered set J, we set S°P(J) =
S(J°P), where J°P denotes the same set J endowed with the opposite ordering. More concretely, we have
S = S,,, but the face and degeneracy maps on S are given by the formulas

(d’L . S’rOLp — S,Zzil) == (dnfz : Sn - Snfl)

(55:87P — 8P 1) = (8n—i : Sn — Sng1).

The formation of opposite categories is fully compatible with all of the constructions we have introduced
for passing back and forth between different models of higher category theory.

It is clear from the definition that a simplicial set S is an oco-category if and only if its opposite S°P is an
oo-category: for 0 < i < n, S has the extension property with respect to the horn inclusion A} C A™ if and
only if S°P has the extension property with respect to the horn inclusion A],_, C A™.

1.2.2 Mapping Spaces in Higher Category Theory

If X and Y are objects of an ordinary category C, then one has a well-defined set Home(X,Y') of morphisms
from X to Y. In higher category theory, one has instead a morphism space Mape(X,Y). In the setting of
topological or simplicial categories, this morphism space (either a topological space or a simplicial set) is
an inherent feature of the formalism. In the setting of oo-categories, it is not so obvious how Mape(X,Y)
should be defined. However, it is at least clear what to do on the level of the homotopy category.

Definition 1.2.2.1. Let S be a simplicial set containing vertices x and y, and let J{ denote the homotopy
category of spaces. We define Mapg(z,y) = Map, g(x,y) € H to be the object of H representing the space
of maps from z to y in S. Here hS denotes the homotopy category of S, regarded as a H-enriched category
(Definition 1.1.5.13).

Warning 1.2.2.2. Let S be a simplicial set. The notation Mapg(X,Y) has two very different meanings.
When X and Y are vertices of S, then our notation should be interpreted in the sense of Definition 1.2.2.1,
so that Mapg(X,Y) is an object of . If X and Y are objects of (Seta) /g, then we instead let Mapg(X,Y")
denote the simplicial mapping object

yX Xgx {@} € Seta,

where ¢ denotes the structural morphism X — S. We trust that it will be clear in context which of these
two definitions applies in a given situation.
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We now consider the following question: given a simplicial set .S containing a pair of vertices x and y, how
can we compute Mapg(z,y)? We have defined Mapg(z,y) as an object of the homotopy category 3, but for
many purposes it is important to choose a simplicial set M which represents Mapg(x,y). The most obvious
candidate for M is the simplicial set Mapgg)(z,y). The advantages of this definition are that it works in all
cases (that is, S does not need to be an co-category), and comes equipped with an associative composition law.
However, the construction of the simplicial set Mapg (g (z,y) is quite complicated. Furthermore, Mapg (g (z,9)
is usually not a Kan complex, so it can be difficult to extract algebraic invariants like homotopy groups, even
when a concrete description of its simplices is known.

In order to address these shortcomings, we will introduce another simplicial set which represents the
homotopy type Mapg (z,y) € H, at least when S is an co-category. We define a new simplicial set Hom% (z, y),
the space of right morphisms from = to y, by letting Homge, (A", Hom®2(z,y)) denote the set of all z :
A1 — S such that z|AT"1} = ¢ and z|A{%"} is a constant simplex at the vertex z. The face and
degeneracy operations on Homg‘(x, y)n are defined to coincide with corresponding operations on S, 1.

We first observe that when S is an co-category, Hom?(x, y) really is a “space”:

Proposition 1.2.2.3. Let C be an oco-category containing a pair of objects x and y. The simplicial set
Hom% (x,y) is a Kan complex.

Proof. 1t is immediate from the definition that if C is a co-category, then M = Homg‘(m, y) satisfies the Kan
extension condition for every horn inclusion A7 C A™ where 0 < ¢ < n. This implies that M is a Kan
complex (Proposition 1.2.5.1). O

Remark 1.2.2.4. If S is a simplicial set and z,y, z € Sy, then there is no obvious composition law
Hom$ (x,y) x Homg(y, z) — Homg (z, 2).

We will later see that if S is an oco-category, then there is a composition law which is well-defined up to a
contractible space of choices. The absence of a canonical choice for a composition law is the main drawback
of Hom¥(z, %), in comparison with

Mape(s)(,y).
The main goal of §1.3 is to show that, if S is an co-category, then there is a (canonical) isomorphism between
Homg‘(x, y) and Mapgg)(7, y) in the homotopy category 3. In particular, we will conclude that Homfsi(x, Y)
represents Mapg(z,y), whenever S is an oco-category.

Remark 1.2.2.5. The definition of Hom&(z,y) is not self-dual: that is, Homb., (z,y) # HomX(y,z) in
general. Instead we define Homk(z,y) = Hom¥., (y, ), so that Hom%(z, ), is the set of all z € S, ;1 such
that z|A1%} = 2 and z|AT}7+1} is the constant simplex at the vertex .

Although the simplicial sets HomIg(x,y) and Homg‘(x,y) are generally not isomorphic to one another,
they are homotopy equivalent whenever S is an oo-category. To prove this, it is convenient to define a third,
self-dual, space of morphisms: let Homg(z,y) = {2} x5 S2" x g {y}. In other words, to give an n-simplex of
Homg(,y), one must give a map f: A" x A! — S, such that f|A™ x {0} is constant at x and f|A™ x {1}
is constant at y. We observe that there exist natural inclusions

HomZ (z,y) — Homg(x,y) « Hom(z,y),

which are induced by retracting the cylinder A™ x A! onto certain maximal dimensional simplices. We
will later show (Corollary 4.2.1.8) that these inclusions are homotopy equivalences, provided that S is an
oo-category.

1.2.3 The Homotopy Category

For every ordinary category C, the nerve N(C) is an co-category. Informally, we can describe the situation as
follows: the nerve functor is a fully faithful inclusion from the bicategory of categories to the co-bicategory
of co-categories. Moreover, this inclusion has a left adjoint:
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Proposition 1.2.3.1. The nerve functor Cat — Seta is right adjoint to the functor h: Seta — Cat, which
associates to every simplicial set S its homotopy category hS (here we ignore the H-enrichment of hS ).

Proof. Let us temporarily distinguish between the nerve functor N : Cat — Seta and the simplicial nerve
functor N’ : Cata — Seta. These two functors are related by the fact that N can be written as a composition
7 N’
Cat C Catp — Seta .
The functor mg : Seta — Set is a left adjoint to the inclusion functor Set — Seta. It follows that the functor
Cata — Cat

Cr— he
is left adjoint to 4. It follows that N =i o N’ has a left adjoint, given by the composition

Seta %] Cata L Cat,
which coincides with the homotopy category functor h : Seta — Cat by definition. O

Remark 1.2.3.2. The formation of the homotopy category is literally left adjoint to the inclusion Cat C
Cata. The analogous assertion is not quite true in the setting of topological categories, since the functor
o : CG — Set is a left adjoint only when restricted to locally path connected spaces.

Warning 1.2.3.3. If C is a simplicial category, then we do not necessarily expect that h€ ~ hN(€). However,
this is always the case when C is fibrant, in the sense that every simplicial set Mape(X,Y) is a Kan complex.

Remark 1.2.3.4. If S is a simplicial set, Joyal ([31]) refers to the category hS as the fundamental category
of S. This is motivated by the observation that if S is a Kan complex, then hS is the fundamental groupoid
of S in the usual sense.

Our objective, for the remainder of this section, is to obtain a more explicit understanding of the homotopy
category hS of a simplicial set .S. Proposition 1.2.3.1 implies that hS admits the following presentation by
generators and relations:

e The objects of hS are the vertices of S.

e For every edge ¢ : A! — S, there is a morphism ¢ from ¢(0) to ¢(1).

e For each o : A? — S, we have dy(0) o da(0) = d1(0).
e For each vertex z of S, the morphism SpZ is the identity id,.

If S is an oo-category, there is a much more satisfying construction of the category hS. We will describe
this construction in detail, since it nicely illustrates the utility of the weak Kan condition of Definition 1.1.2.4.

Let € be an oo-category. We will construct a category 7(€) (which we will eventually show to be equivalent
to the homotopy category h€). The objects of 7(€) are the vertices of €. Given an edge ¢ : Al — C, we
shall say that ¢ has source C' = ¢(0) and target C' = ¢(1), and write ¢ : C — C’. For each object C of €,
we let ide denote the degenerate edge so(C) : C — C.

Let ¢ : C — C'" and ¢' : C — C’ be a pair of edges of € having the same source and target. We will say
that ¢ and ¢’ are homotopic if there is a 2-simplex o : A? — €, which we depict as follows:

Cl
S
C—¢>C’.

In this case, we say that o is a homotopy between ¢ and ¢'.
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Proposition 1.2.3.5. Let C be an co-category, and let C' and C' be objects of w(C). Then the relation of
homotopy is an equivalence relation on the edges joining C to C'.

Proof. Let ¢ : A' — € be an edge. Then s1(¢) is a homotopy from ¢ to itself. Thus homotopy is a reflexive
relation.

Suppose next that ¢, ¢, ¢"” : C — C' are edges with the same source and target. Let o be a homotopy
from ¢ to ¢’ and ¢’ a homotopy from ¢ to ¢”. Let ¢’ : A2 — € denote the constant map at the vertex C.
We have a commutative diagram

Since @ is an oo-category, there exists a 3-simplex 7 : A?> — € as indicated by the dotted arrow in the
diagram. Tt is easy to see that dq(7) is a homotopy from ¢ to ¢”.

As a special case, we may take ¢ = ¢"; we then deduce that the relation of homotopy is symmetric. It
then follows immediately from the above that the relation of homotopy is also transitive. O

Remark 1.2.3.6. The definition of homotopy that we have given is not evidently self-dual; in other words,
it is not immediately obvious a homotopic pair of edges ¢, ¢’ : C — C’ of an co-category € remain homotopic
when regarded as edges in the opposite co-category C°?. To prove this, let o be a homotopy from ¢ to ¢/,
and consider the commutative diagram

A3 (0,510,0,500)

——=C
7
-
T -
-
-
-
-

A3.

The assumption that € is an co-category guarantees a 3-simplex 7 rendering the diagram commutative. The
face doT may be regarded as a homotopy from ¢’ to ¢ in C°P.

We can now define the morphism sets of the category m(C): given vertices X and Y of C, we let
Homy(e)(X,Y’) denote the set of homotopy classes of edges ¢ : X — Y in C. For each edge ¢ : Al — G, we
let [¢] denote the corresponding morphism in 7(C).

We define a composition law on 7(C) as follows. Suppose that X, Y, and Z are vertices of €, and that
we are given edges ¢ : X — Y, ¢ : Y — Z. The pair (¢,9) determines a map A? — €. Since C is an
oo-category, this map extends to a 2-simplex o : A? — €. We now define [)] o [¢] = [d;0].

Proposition 1.2.3.7. Let C be an co-category. The composition law on w(C) is well-defined. In other words,
the homotopy class [1)] o [¢] does not depend on the choice of 1) representing [1)], the choice of ¢ representing
[0], or the choice of the the 2-simplex o.

Proof. We begin by verifying the independence of the choice of o. Suppose that we are given two 2-simplices
0,0 : A? — @, satisfying
doo = dyo = (0

dQO‘ = ng’l = qf)

Consider the diagram

(s1%,0,0",0)
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Since C is an co-category, there exists a 3-simplex 7 as indicated by the dotted arrow. It follows that d;7 is
a homotopy from dio to dio’.

We now show that [¢] o [¢] depends only on 1 and ¢ only up to homotopy. In view of Remark 1.2.3.6, the
assertion is symmetric with respect to ¢ and ¢; it will therefore suffice to show that [¢] o [¢] does not change
if we replace ¢ by a morphism ¢’ which is homotopic to ¢. Let o be a 2-simplex with dgo = 1), deo = ¢,
and let ¢’ be a homotopy from ¢ to ¢’. Consider the diagram

801/J7°7U,U/)

Again, the hypothesis that € is an co-category guarantees the existence of a 3-simplex 7 as indicated in the
diagram. Let ¢” = d;7. Then [¢)] o [¢'] = [d10’]. But dyo = dyo’ by construction, so that [¢] o [¢] = [¢)] o [¢]
as desired. 0

Proposition 1.2.3.8. If C is an co-category, then w(C) is a category.

Proof. Let C be a vertex of €. We first verify that [id¢] is an identity with respect to the composition law
on 7(C€). For every edge ¢ : C' — C in C, the 2-simplex s;(¢) verifies the equation

ide] o [¢] = [¢].

This proves that id¢ is a left identity; the dual argument (Remark 1.2.3.6) shows that [id¢] is a right identity.
The only other thing we need to check is the associative law for composition in 7(C). Suppose given a
composable sequence of edges

Cﬁc/ﬂcuﬂc///

Choose a 2-simplices o, 0’,0” : A2 — €, corresponding to diagrams
7N
¥
C
C//
A
0
C——
C//
7
C’/ w/ C///’

respectively. Then [¢] o [¢] = [¢], [¢"] o [¢] = [0], and [¢”] o [¢'] = [¢/]. Consider the diagram

C//

C//l

(¢",0",0,0)

AT
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Since C is an co-category, there exists a 3-simplex 7 rendering the diagram commutative. Then ds(7) verifies
the equation [¢/'] o [¢] = [f], so that

([¢"]o[8]) o [6] = [0] = [¢"] o [¥)] = [¢"] o ([¢'] o [#])
as desired. O
We now show that if € is an oco-category, then 7(€) is naturally equivalent (in fact isomorphic) to hC.

Proposition 1.2.3.9. Let C be an oco-category. There exists a unique functor F' : h€ — m(C) with the
following properties:

(1) On objects, F is the identity map.

(2) For every edge ¢ of C, F(¢) = [¢)].
Moreover, F is an isomorphism of categories.

Proof. The existence and uniqueness of F follows immediately from our presentation of hC by generators
and relations. It is obvious that F' is bijective on objects and surjective on morphisms. To complete the
proof, it will suffice to show that F is faithful.

We first show that every morphism f : 2 — y in h€ may be written as ¢ for some ¢ € €. Since the
morphisms in h€ are generated by morphisms having the form ¢ under composition, it suffices to show
that the set of such morphisms contains all identity morphisms and is stable under composition. The first
assertion is clear, since g% = id,. For the second, we note that if ¢ : x — y and ¢’ : y — 2 are composable
edges, then there exists a 2-simplex o : A? — ©, which we may depict as follows:

Thus ¢’ o ¢ = 2. L
Now suppose that ¢, ¢’ : x — y are such that [¢] = [¢']; we wish to show that ¢ = ¢’. By definition,
there exists a homotopy o : A? — € joining ¢ and ¢’. The existence of ¢ entails the relation

id, o = ¢/

in the homotopy category hS, so that ¢ = ¢’ as desired. O

1.2.4 Objects, Morphisms and Equivalences

As in ordinary category theory, we may speak of objects and morphisms in a higher category C. If C is a
topological (or simplicial) category, these should be understood literally as the objects and morphisms in
the underlying category of €. We may also apply this terminology to oco-categories (or even more general
simplicial sets): if S is a simplicial set, then the objects of S are the vertices A° — S, and the morphisms of
S are edges A — S. A morphism ¢ : A — S is said to have source X = ¢(0) and target Y = ¢(1); we will
often denote this by writing ¢ : X — Y. If X : AY — S is an object of S, we will write idx = so(X): X — X
and refer to this as the identity morphism of X.

If f,g: X — Y are two morphisms in a higher category C, then f and g are homotopic if they determine
the same morphism in the homotopy category hC. In the setting of oco-categories, this coincides with the
notion of homotopy introduced in the previous section. In the setting of topological categories, this simply
means that f and ¢ lie in the same path component of Mape(X,Y). In either case, we will sometimes
indicate this relationship between f and g by writing f ~ g.
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A morphism f: X — Y in an oo-category € is said to be an equivalence if it determines an isomorphism
in the homotopy category hC. We say that X and Y are equivalent if there is an equivalence between them
(in other words, if they are isomorphic as objects of hC).

If C is a topological category, then the requirement that a morphism f : X — Y be an equivalence is
quite a bit weaker than the requirement that f be an isomorphism. In fact, we have the following:

Proposition 1.2.4.1. Let f : X — Y be a morphism in a topological category. The following conditions
are equivalent:

(1) The morphism f is an equivalence.

(2) The morphism f has a homotopy inverse g : Y — X that is, a morphism g such that f o g ~idy and
go f~idx.

3) For every object Z € C, the induced map Mape(Z, X) — Mape(Z,Y) is a homotopy equivalence.

3) z
(4) For every object Z € C, the induced map Mape(Z, X) — Mape(Z,Y) is a weak homotopy equivalence.
(5) For every object Z € C, the induced map Mape(Y, Z) — Mape(X, Z) is a homotopy equivalence.
(6) v (X,2)

6) For every object Z € C, the induced map Mape(Y, Z) — Mape 18 a weak homotopy equivalence.

)

Proof. It is clear that (2) is merely a reformulation of (1). We will show that (2) = (3) = (4) = (1); the
implications (2) = (5) = (6) = (1) follow using the same argument.

To see that (2) implies (3), we note that if ¢ is a homotopy inverse to f, then composition with g gives
a map Mape(Z,Y) — Mape(Z, X) which is homotopy inverse to composition with f. It is clear that (3)
implies (4). Finally, if (4) holds, then we note that X and Y represent the same functor on hC so that f
induces an isomorphism between f and g in hC. O

Example 1.2.4.2. Let € be the category of CW-complexes, considered as a topological category by endowing
each of the sets Home(X,Y) with the (compactly generated) compact open topology. A pair of objects
X,Y € @ are equivalent (in the sense defined above) if and only if they are homotopy equivalent (in the
sense of classical topology).

If € is an co-category (topological category, simplicial category), then we shall write X € € to mean that
X is an object of €. We will generally understand that all meaningful properties of objects are invariant
under equivalence. Similarly, all meaningful properties of morphisms are invariant under homotopy and
under composition with equivalences.

In the setting of co-categories, there is a very useful characterization of equivalences which is due to
Joyal.

Proposition 1.2.4.3 (Joyal [31]). Let € be an co-category, and ¢ : A* — € a morphism of €. Then ¢ is an
equivalence if and only if, for every n > 2 and every map fo : Aj — € such that fol ALY = & there exists
an extension of fo to A™.

The proof requires some ideas which we have not yet introduced, and will be given in §2.1.2.

1.2.5 o0o0-Groupoids and Classical Homotopy Theory

Let € be an co-category. We will say that € is an co-groupoid if the homotopy category hC is a groupoid: in
other words, if every morphism in € is an equivalence. In §1.1.1, we asserted that the theory of co-groupoids
is equivalent to classical homotopy theory. We can now formulate this idea in a very precise way:

Proposition 1.2.5.1 (Joyal [30]). Let C be a simplicial set. The following conditions are equivalent:

(1) The simplicial set C is an co-category and its homotopy category hC is a groupoid.
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(2) The simplicial set C satisfies the extension condition for all horn inclusions AT C A™ for 0 <i < n.
(3) The simplicial set C satisfies the extension condition for all horn inclusions AT C A™ for 0 <i < n.

(4) The simplicial set C is a Kan complex; in other words, it satisfies the extension condition for all horn
inclusions AT C A™ for 0 <i <n.

Proof. The equivalence (1) < (2) follows immediately from Proposition 1.2.4.3. Similarly, the equivalence
(1) & (3) follows by applying Proposition 1.2.4.3 to C°?. We conclude by observing that (4) < (2)A(3). O

Remark 1.2.5.2. The assertion that we can identify oo-groupoids with spaces is less obvious in other for-
mulations of higher category theory. For example, suppose that € is a topological category whose homotopy
category C is a groupoid. For simplicity, we will assume furthermore that € has a single object X. We may
then identify € with the topological monoid M = Home (X, X). The assumption that hC is an groupoid
is equivalent to the assumption that the discrete monoid myM is a group. In this case, one can show that
the unit map M — QBM is a weak homotopy equivalence, where BM denotes the classifying space of
the topological monoid M. In other words, up to equivalence, specifying € (together with the object X) is
equivalent to specifying the space BM (together with its base point).

Informally, we might say that the inclusion functor 7 from Kan complexes to oo-categories exhibits
the oco-category of (small) co-groupoids as a full subcategory of the oo-bicategory of (small) co-categories.
Conversely, every oco-category € has an “underlying” oco-groupoid, which is obtained by discarding the non-
invertible morphisms of C:

Proposition 1.2.5.3 ([31]). Let € be an co-category. Let €' C € be the largest simplicial subset of € having
the property that every edge of €' is an equivalence in C. Then €' is a Kan complex. It may be characterized by
the following universal property: for any Kan complex K, the induced map Homge, (K, ") — Homge, (K, C)
is a bijection.

Proof. Tt is straightforward to check that € is an oco-category. Moreover, if f is a morphism in €', then f
has a homotopy inverse g € €. Since g is itself an equivalence in €, we conclude that g belongs to €' and is
therefore a homotopy inverse to f in €. In other words, every morphism in €’ is an equivalence, so that €
is a Kan complex by Proposition 1.2.5.1. To prove the last assertion, we observe that if K is an oo-category,
then any map of simplicial sets ¢ : K — C carries equivalences in K to equivalences in €. In particular, if K
is a Kan complex, then ¢ factors (uniquely) through €. O

It follows from Proposition 1.2.5.3 that the functor
Cr €

is right adjoint to the inclusion functor from Kan complexes to co-categories. It is easy to see that this right
adjoint is an invariant notion: that is, a categorical equivalence of co-categories € — D induces a homotopy
equivalence € — D’ of Kan complexes.

Remark 1.2.5.4. It is easy to give analogous constructions in the case of topological or simplicial categories.
For example, if C is a topological category, then we can define € to be another topological category with
the same objects as €, where Mape/ (X,Y) C Mape(X,Y) is the subspace consisting of equivalences in
Mape(X,Y), equipped with the subspace topology.

Remark 1.2.5.5. We will later introduce a relative version of the construction described in Proposition
1.2.5.3, which applies to certain families of co-categories (Corollary 2.3.2.8).

Although the inclusion functor from Kan complexes to co-categories does not literally have a left adjoint,
it does have a left adjoint in a higher-categorical sense. This left adjoint is computed by any “fibrant
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replacement” functor (for the usual model structure) from Seta to itself, for example the functor S +— Sing |S|.
The unit map
u: S — Sing |5

is always a weak homotopy equivalence, but generally not a categorical equivalence. For example, if S is an
oo-category, then u is a categorical equivalence if and only if S is a Kan complex. In general, Sing |S| may
be regarded as the co-groupoid obtained from S by freely adjoining inverses to all the morphisms in S.

Remark 1.2.5.6. The inclusion functor ¢ and its homotopy-theoretic left-adjoint may be also be understood
using the formalism of localizations of model categories. In addition to its usual model category structure,
the category Seta of simplicial sets may be endowed with the Joyal model structure which we will define
in §1.3.4. These model structures have the same cofibrations (in both cases, the cofibrations are simply
the monomorphisms of simplicial sets). However, the Joyal model structure has fewer weak equivalences
(categorical equivalences, rather than weak homotopy equivalences) and consequently more fibrant objects
(all co-categories, rather than only Kan complexes). It follows that the usual homotopy theory of simplicial
sets is a localization of the homotopy theory of oco-categories. The identity functor from Seta to itself
determines a Quillen adjunction between these two homotopy theories, which plays the role of ¢ and its left
adjoint.

1.2.6 Homotopy Commutativity versus Homotopy Coherence

Let € be an co-category (topological category, simplicial category). To a first approximation, working in € is
like working in its homotopy category hC: up to equivalence, € and hC have the same objects and morphisms.
The main difference between hC and € is that in C, one must not ask whether or not morphisms are equal,
instead one should ask whether or not they are homotopic. If so, the homotopy itself is an additional datum
which we will need to consider. Consequently, the notion of a commutative diagram in hC, which corresponds
to a homotopy commutative diagram in C, is quite unnatural and usually needs to be replaced by the more
refined notion of a homotopy coherent diagram in C.

To understand the problem, let us suppose that F': J — H is a functor from an ordinary category J into
the homotopy category of spaces H. In other words, F' assigns to each object X € J a space (say, a CW
complex) F(X), and to each morphism ¢ : X — Y in J a continuous map of spaces F(¢) : F(X) — F(Y)
(well-defined up to homotopy), such that F(¢ o) is homotopic to F(¢) o F(¢) for any pair of composable
morphisms ¢, in J. In this situation, it may or may not be possible to lift I to an actual functor F from
J to the ordinary category of topological spaces, such that I’ induces a functor J — H which is naturally
isomorphic to F'. In general there are obstructions to both the existence and the uniqueness of the lifting F,
even up to homotopy. To see this, let us suppose for a moment that I exists, so that there exist homotopies
kg : F(¢) ~ F(¢). These homotopies determine additional data on F: namely, one obtains a canonical
homotopy hg 4 from F(¢ o) to F(¢) o F(¢) by composing

F(¢pon)) = F(poth) = F(¢) o F() = F(¢) o F(v).

The functor F' to the homotopy category H should be viewed as a first approximation to F ; we obtain a
second approximation when we take into account the homotopies hg . These homotopies are not arbitrary:
the associativity of composition gives a relationship between hg. y, hy 60, e pos and hgoy e, for a composable
triple of morphisms (¢, ), #) in J. This relationship may be formulated in terms of the existence of a certain
higher homotopy, which is once again canonically determined by F (and the homotopies k4). To obtain
the next approximation to ﬁ, we should take these higher homotopies into account, and formulate the
associativity properties that they enjoy, and so on. Roughly speaking, a homotopy coherent diagram in € is
a functor F' : J — hC, together with all of the extra data that would be available if we were able to lift F' to
a functor F : J — C.

The distinction between homotopy commutativity and homotopy coherence is arguably the main difficulty
in working with higher categories. The idea of homotopy coherence is simple enough, and can be made precise
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in the setting of a general topological category. However, the amount of data required to specify a homotopy
coherent diagram is considerable, so the concept is quite difficult to employ in practical situations.

Remark 1.2.6.1. Let J be an ordinary category and C a topological category. Any functor F' : J — C
determines a homotopy coherent diagram in C (with all of the homotopies involved being constant). For
many topological categories C, the converse fails: not every homotopy-coherent diagram in € can be obtained
in this way, even up to equivalence. In these cases, it is the notion of homotopy coherent diagram which is
fundamental; a homotopy coherent diagram should be regarded as “just as good” as a strictly commutative
diagram, for co-categorical purposes. As evidence for this, we remark that given an equivalence ¢’ — €, a
strictly commutative diagram F : J — € cannot always be lifted to a strictly commutative diagram in €’;
however it can always be lifted (up to equivalence) to a homotopy coherent diagram in €.

One of the advantages of working with co-categories is that the definition of a homotopy coherent diagram
is easy to formulate. We simply define a homotopy coherent diagram in an co-category € to be a map of
simplicial sets f : N(J) — C. The restriction of f to simplices of low dimension encodes the induced map
on homotopy categories. Specifying f on higher-dimensional simplices gives precisely the “coherence data”
that the above discussion calls for.

Remark 1.2.6.2. Another possible approach to the problem of homotopy coherence is to restrict our
attention to topological categories € in which every homotopy coherent diagram is equivalent to a strictly
commutative diagram. For example, this is always true when C is a sufficiently nice model category: see
§A.3.6. Consequently, in the framework of model categories it is possible to ingore the theory of homotopy
coherent diagrams, and work with strictly commutative diagrams instead. This approach is quite powerful,
but lacks flexibility (since we often wish to study oco-categories which are not associated to model categories).

1.2.7 Functors between Higher Categories

The notion of a homotopy coherent diagram in an higher category € is a special case of the more general
notion of a functor F' : 3 — € between higher categories (specifically, it is the special case in which J is
assumed to be an ordinary category). Just as the collection of all ordinary categories forms a bicategory
(with functors as morphisms and natural transformations as 2-morphisms), the collection of all co-categories
can be organized into an oo-bicategory. In particular, for any co-categories € and €, we expect to be able
to construct an oo-category Fun(C, €") of functors from € to €'.

In the setting of topological categories, the construction of an appropriate mapping object Fun(C, €') is
quite difficult. The naive guess is that Fun(C, €") should be a category of topological functors from € to €':
that is, functors which induce continuous maps between morphism spaces. However, we saw in §1.2.6 that
this notion is generally too rigid, even in the special case where C is an ordinary category.

Remark 1.2.7.1. Using the language of model categories, one might say that the problem is that not every
topological category is cofibrant. If € is a “cofibrant” topological category (for example, if € = | €[S]| where
S is a simplicial set), then the collection of topological functors from € to €' is large enough to contain
representatives for every oo-categorical functor from € to €’. Most ordinary categories are not cofibrant
when viewed as topological categories. More importantly, the property of being cofibrant is not stable under
products, so that naive attempts to construct a mapping object Fun(C, €") need not give the correct answer
even when C itself is assumed cofibrant. This is arguably the most important technical disadvantage of the
theory of topological (or simplicial) categories as an approach to higher category theory.

The construction of functor categories is much easier to describe in the framework of co-categories. If
C and D are oco-categories, then we can simply define a functor from C to D to be a map p : € — D of
simplicial sets.

Notation 1.2.7.2. Let € and D be simplicial sets. We let Fun(C, D) denote the simplicial set Mapg, . (C, D)
parametrizing maps from € to D. We will use this notation only when D is an oco-category (the simplicial
set C will often, but not always, be an oco-category as well). We will refer to Fun(C, D) as the co-category
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of functors from € to D (see Proposition 1.2.7.3 below). We will refer to morphisms in Fun(C, D) as natural
transformations of functors, and equivalences in Fun(C, D) as natural equivalences.

Proposition 1.2.7.3. Let K be an arbitrary simplicial set.
(1) For every oco-category C, the simplicial set Fun(K, C) is an oo-category.

(2) Let € — D be a categorical equivalence of co-categories. Then the induced map Fun(K, €) — Fun(K, D)
is a categorical equivalence.

(3) Let C be an oco-category, and K — K’ a categorical equivalence of simplicial sets. Then the induced
map Fun(K’, C) — Fun(K, C) is a categorical equivalence.

The proof makes use of the Joyal model structure on Seta, and will be given in §1.3.4.

1.2.8 Joins of co-Categories

Let € and €' be ordinary categories. We will define a new category € €', called the join of C and €’. An
object of Cx € is either an object of € or an object of €. The morphism sets are given as follows:

Home(X,Y) if XY el
Home/ (X,Y) if X,Y € ¢
0 ifXecC,yee
* if XeeyvYec.

HOHM}*@(X;)U =

Composition of morphisms in € € is defined in the obvious way.
The join construction described above is often useful when discussing diagram categories, limits, and
colimits. In this section, we will introduce a generalization of this construction to the co-categorical setting.

Definition 1.2.8.1. If S and S’ are simplicial sets, then the simplicial set S x S’ is defined as follows: for
each nonempty finite linearly ordered set J, we set

(SN = [ s xs(1),

J=IUI'

where the union is taken over all decompositions of J into disjoint subsets I and I’ satisfying ¢ < i’ for
all i € I, i € I'. Here we allow the possibility that either I or I’ is empty, in which case we agree to the
convention that S(0) = S'(0) = *.

More concretely, we have
(SxSm=8.us,u |J SixS]

i+j=n—1

The join operation endows Seta with the structure of a monoidal category (see §A.1.3). The identity
for the join operation is the empty simplicial set §# = A~'. More generally, we have natural isomorphisms
Gt A% ATTL o ACHD=L for all 4,5 > 0.

Remark 1.2.8.2. The operation * is essentially determined by the isomorphisms ¢;;, together with its
behavior under the formation of colimits: for any fixed simplicial set .S, the functors

T—TxS

T— S%T

commute with colimits, when regarded as functors from Seta to the undercategory (Seta)g, of simplicial
sets under S.
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Passage to the nerve carries joins of categories into joins of simplicial sets. More precisely, for every pair
of categories € and €, there is a canonical isomorphism

N(C*€") ~ N(C) » N(&).

(The existence of this isomorphism persists when we allow € and €’ to be a simplicial or topological categories
and apply the appropriate generalization of the nerve functor.) This suggests that the join operation on
simplicial sets is the appropriate co-categorical analogue of the join operation on categories.

We remark that the formation of joins does not commute with the functor €[e]. However, the simplicial
category €[S x S’] contains €[S] and €[S’] as full (topological) subcategories, and contains no morphisms
from objects of €[S’] to objects of €[S]. Consequently, there is unique map ¢ : €[S *S'] — €[S]x €[S’] which
reduces to the identity on €[S] and €[S’]. We will later show that ¢ is an equivalence of simplicial categories
(Corollary 4.2.1.4).

We conclude by recording a pleasant property of the join operation:

Proposition 1.2.8.3 (Joyal [31]). If S and S’ are co-categories, then S xS’ is an co-category.

Proof. Let p : A — S x5’ be a map, with 0 < ¢ < n. If p carries A" entirely into S C S % S’ or into
S C S% 5’ then we deduce the existence an extension of p to A™ by invoking the assumption that S and S’
are oo-categories. Otherwise, we may suppose that p carries the vertices {0,...,7} into S, and the vertices
{j+1,...,n} into S’. We may now restrict p to obtain maps

A{Ov“'fj} — S

A{j—l—l,...,n} N S/7
which together determine a map A™ — S+ S’ extending p. O

Notation 1.2.8.4. Let K be a simplicial set. The left cone K< is defined to be the join A° x K. Dually,
the right cone K> is defined to be the join K x AY. Either cone contains a distinguished vertex (belonging
to AY), which we will refer to as the cone point.

1.2.9 Overcategories and Undercategories

Let C be an ordinary category, and X € € an object. The overcategory C,x is defined as follows: the objects
of €/x are morphisms ¥ — X in € having target X. Morphisms are given by commutative triangles

Y ——m— 7
X
and composition is defined in the obvious way.
One can rephrase the definition of the overcategory as follows. Let [0] denote the category with a single
object, possessing only an identity morphism. Then specifying an object X € C is equivalent to specifying

a functor x : [0] — C. The overcategory €,x may then be described by the following universal property: for
any category €', we have a bijection

Hom(€’, €, x) ~ Hom, (€ [0], €),

where the subscript on the right hand side indicates that we consider only those functors €’ x[0] — € whose
restriction to [0] coincides with x.

We would like to generalize the construction of overcategories to the co-categorical setting. Let us begin
by working in the framework of topological categories. In this case, there is a natural candidate for the
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relevant overcategory. Namely, if C is a topological category containing an object X, then the overcategory
€, x (defined as above) has the structure of a topological category, where each morphism space Mape/x (Y, 2)
is topologized as a subspace of Mape (Y, Z) (here we are identifying an object of C,x with its image in €).
This topological category is usually not a model for the correct co-categorical slice construction. The problem
is that a morphism in €, x consists of a commutative triangle

of objects over X. To obtain the correct notion, we should allow also triangles which commute only up to
homotopy.

Remark 1.2.9.1. In some cases, the naive overcategory C,x is a good approximation to the correct con-
struction: see Lemma 6.1.3.13.

In the setting of oo-categories, Joyal has given a much simpler description of the desired construction
(see [30]). This description will play a vitally important role throughout this book. We begin by noting the
following:

Proposition 1.2.9.2 ([30]). Let S and K be simplicial sets, and p : K — S an arbitrary map. There exists
a simplicial set S, with the following universal property:

Homge, (Y, 5),) = Hom, (Y x K, 5),

where the subscripts on the right hand side indicates that we consider only those morphisms f : Y x K — S
such that f|K = p.

Proof. One defines (S/,), to be Hom,(A™ x K, S). The universal property holds by definition when Y is a
simplex. It holds in general because both sides are compatible with the formation of colimits in Y. O

Let p: K — S be as in Proposition 1.2.9.2. If S is an co-category, we will refer to S/, as an overcategory
of S, or as the co-category of objects of S over p. The following result guarantees that the operation of
passing to overcategories is well-behaved:

Proposition 1.2.9.3. Let p : K — € be a map of simplicial sets, and suppose that C is an co-category.
Then C,, is an oo-category. Moreover, if g : € — € is a categorical equivalence of co-categories, then the
induced map €, — G//qp is a categorical equivalence as well.

The proof requires a number of ideas which have not yet introduced, and will be postponed (see Propo-
sition 2.1.2.3 for the first assertion and §2.3.5 for the second).

Remark 1.2.9.4. Let C be an oo-category. In the particular case where p : A™ — € classifies an n-simplex
o € C,, we will often write €/, in place of of €,,. In particular, if X is an object of C, we let C,x denote
the overcategory €,,, where p : AY — € has image X.

Remark 1.2.9.5. Let p : K — € be a map of simplicial sets. The preceding discussion can be dualized,
replacing Y x K by K xY; in this case we denote the corresponding simplicial set by €, which (if C is an
oo-category) we will refer to as an undercategory of C. In the special case where K = A™ and p classifies a
simplex o € €, we will also write C,, for C,/; in particular, we will write Cx, when X is an object of C.

Remark 1.2.9.6. If C is an ordinary category and X € €, then there is a canonical isomorphism N(C),x ~
N(€/x). In other words, the overcategory construction for co-categories can be regarded as a generalization
of the relevant construction from classical category theory.
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1.2.10 Fully Faithful and Essentially Surjective Functors

Definition 1.2.10.1. Let F : € — D be a functor between topological categories (simplicial categories,
simplicial sets). We will say that F is essentially surjective if the induced functor hF : hC — hD is
essentially surjective (that is, if every object of D is equivalent to F/(X) for some X € @).

We will say that F' is fully faithful if hF' is a fully faithful functor of H-enriched categories. In other
words, F' is fully faithful if and only if, for every pair of objects X,Y € €, the induced map Map(X,Y) —
Map,p (F(X), F(Y)) is an isomorphism in the homotopy category K.

Remark 1.2.10.2. Because Definition 1.2.10.1 makes reference only to the homotopy categories of € and
D, it is invariant under equivalence and under operations which pass between the various models for higher
category theory that we have introduced.

Just as in ordinary category theory, a functor F' is an equivalence if and only if it is fully faithful and
essentially surjective.

1.2.11 Subcategories of co-Categories

Let € be an co-category, and let (h€)’” C h€ be a subcategory of its homotopy category. We can then form
a pullback diagram of simplicial sets
¢—¢

.

N(L€)' —= N(hC).

We will refer to € as the subcategory of € spanned by (h@)’. In general, we will say that a simplicial subset
€' C @ is a subcategory of € if it arises via this construction.

Remark 1.2.11.1. We say “subcategory”, rather than “sub-oo-category”, in order to avoid awkward lan-
guage. The terminology is not meant to suggest that € is itself a category, or isomorphic to the nerve of a
category.

In the case where (hC)’ is a full subcategory of h C, we will say that € is a full subcategory of C. In this
case, €' is determined by the set € of those objects X € € which belong to €'. We will then say that € is
the full subcategory of € spanned by Cj,.

It follows from Remark 1.2.2.4 that the inclusion €’ C @ is fully faithful. In general, any fully faithful
functor f: C"” — @ factors as a composition

e Lele,

where f’ is an equivalence of co-categories and f” is the inclusion of the full subcategory €' C € spanned by
the set of objects f(Cp) C Co.

1.2.12 Initial and Final Objects

If C is an ordinary category, then an object X € C is said to be final if Home(Y, X) consists of a single
element, for every Y € C. Dually, an object X € € is initial if it is final when viewed as an object of C°P.
The goal of this section is to generalize these definitions to the oco-categorical setting.

If C is a topological category, then a candidate definition immediately presents itself: we could ignore
the topology on the morphism spaces, and consider those objects of € which are final when € is regarded as
an ordinary category. This requirement is unnaturally strong. For example, the category CG of compactly
generated Hausdorff spaces has a final object: the topological space *, consisting of a single point. However,
there are objects of €§ which are equivalent to x (any contractible space) but not isomorphic to x (and
therefore not final objects of €9, at least in the classical sense). Since any reasonable co-categorical notion
is stable under equivalence, we need to find a weaker condition.
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Definition 1.2.12.1. Let € be a topological category (simplicial category, simplicial set). An object X € C
is final if it is final in the homotopy category hC, regarded as a category enriched over H. In other words,
X is final if and only if for each Y € €, the mapping space Map, (Y, X) is weakly contractible (that is, a
final object of K).

Remark 1.2.12.2. Since the Definition 1.2.12.1 makes reference only to the homotopy category hC, it is
invariant under equivalence and under passing between the various models for higher category theory.

In the setting of co-categories, it is convenient to employ a slightly more sophisticated definition, which
we borrow from [30].

Definition 1.2.12.3. Let C be a simplicial set. A vertex X of C is strongly final if the projection €,x — €
is a trivial fibration of simplicial sets.

In other words, a vertex X of € is strongly final if and only if any map fp : 9 A™ — € such that fo(n) = X
can be extended to a map f: A" — S.

Proposition 1.2.12.4. Let C be an oo-category containing an object Y. The object Y 1is strongly final if
and only if, for every object X € C, the Kan complex Homg(X, Y') is contractible.

Proof. The “only if” direction is clear: the space Homlé‘(X, Y) is the fiber of the projection p : C/y — C
over the vertex X. If p is a trivial fibration, then the fiber is a contractible Kan complex. Since p is a right
fibration (Proposition 2.1.2.2), the converse holds as well (Lemma 2.1.3.3). O

Corollary 1.2.12.5. Let C be a simplicial set. Every strongly final object of C is a final object of C; the
converse holds if C is an co-category.

Proof. Let [0] denote the category with a single object and a single morphism. Suppose that Y is a strongly
final vertex of €. Then there exists a retraction of € onto G, carrying the cone point to Y. Consequently,
we obtain a retraction of (H-enriched) homotopy categories from (hC)«[0] to h€, carrying the unique object
of [0] to Y. This implies that Y is final in hC, so that Y is a final object of C.

To prove the converse, we note that if € is an oco-category then Homg(X ,Y) represents the homotopy
type Mape(X,Y) € H; by Proposition 1.2.12.4 this space is contractible for all X if and only if Y is strongly
final. O

Remark 1.2.12.6. The above discussion dualizes in an evident way, so that we have a notion of initial
objects of an co-category C.

Example 1.2.12.7. Let C be an ordinary category containing an object X. Then X is a final (initial) object
of the oco-category N(C) if and only if it is a final (initial) object of C, in the usual sense.

Remark 1.2.12.8. Definition 1.2.12.3 is only natural in the case where C is an co-category. For example, if
C is not an oo-category, then the collection of strongly final vertices of € need not be stable under equivalence.

An ordinary category € may have more than one final object, but any two final objects are uniquely
isomorphic to one another. In the setting of oco-categories, an analogous statement holds, but is slightly
more complicated because the word “unique” needs to be interpreted in a homotopy theoretic sense:

Proposition 1.2.12.9 (Joyal). Let C be a co-category, and let €' be the full subcategory of C spanned by the
final vertices of C. Then €' is either empty or a contractible Kan complex.

Proof. We wish to prove that every map p : 9 A" — €’ can be extended to an n-simplex of €. If n = 0,
this is possible unless €' is empty. For n > 0, the desired extension exists because p carries the nth vertex
of @ A™ to a final object of C. O
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1.2.13 Limits and Colimits

An important consequence of the distinction between homotopy commutativity and homotopy coherence is
that the appropriate notions of limit and colimit in a higher category € do not coincide with the notion of
limit and colimit in the homotopy category hC (where limits and colimits often do not exist). Limits and
colimits in € are often referred to as homotopy limits and homotopy colimits, to avoid confusing them with
ordinary limits and colimits.

Like the notion of homotopy coherence, homotopy limits and colimits can be defined in a topological
category, but the definition is rather complicated. We will review a few special cases here, and discuss the
general definition in the appendix (§A.3.5).

Example 1.2.13.1. Let {X,} be a family of objects in a topological category €. A homotopy product
X =[], Xq is an object of € equipped with morphisms f, : X — X, which induce a weak homotopy
equivalence

Mape(Y, X) — | [ Mape (Y, Xa)

for every object Y € C.
Passing to path components and using the fact that mg commutes with products, we deduce that

Homye (Y, X) ~ | [ Hompe(Y; Xa),

so that any product in € is also a product in hC. In particular, the object X is determined up to canonical
isomorphism in hC.

In the special case where the index set is empty, we recover the notion of a final object of C: an object
X for which each of the mapping spaces Mape (Y, X) is weakly contractible.

Example 1.2.13.2. Given two morphisms 7 : X — Z and ¢ : Y — Z in a topological category C, let us
define Mape (W, X x% V) to be the space consisting of points p € Mape (W, X), ¢ € Mape(W,Y), together
with a path 7 : [0,1] — Mape(W, Z) joining 7 o p to 9 o g. We endow Mape (W, X x% Y) with the obvious
topology, so that X x% Y can be viewed presheaf of topological spaces on €. A homotopy fiber product for X
and Y over Z is an object of € which represents this presheaf, up to weak homotopy equivalence. In other
words, it is an object P € € equipped with a point p € Mape(P, X X}ZL Y) which induces weak homotopy
equivalences Mape (W, P) — Mape (W, X x% Y) for every W € €.

We note that, if there exists a fiber product (in the ordinary sense) X Xz Y in the category €, then
this ordinary fiber product admits a (canonically determined) map to the homotopy fiber product (if the
homotopy fiber product exists). This map need not be an equivalence, but it is an equivalence in many
good cases. We also note that a homotopy fiber product P comes equipped with a map to the fiber product
X Xz Y taken in the category hC (if this fiber product exists); this map is almost never an isomorphism.

Remark 1.2.13.3. Homotopy limits and colimits in general may be described in relation to homotopy limits
of topological spaces. The homotopy limit X of a diagram of objects { X, } in an arbitrary topological category
C is determined, up to equivalence, by the property that there is a natural weak homotopy equivalence

Mape (Y, X) ~ holim{Mape (Y, X4)}.

Similarly, the homotopy colimit of the diagram is characterized by the existence of a natural weak homotopy
equivalence
Mape(X,Y) ~ holim{Mape (X, Y)}.

For a more precise discussion, we refer the reader to §A.3.5.

In the setting of co-categories, limits and colimits are quite easy to define:
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Definition 1.2.13.4 (Joyal [30]). Let € be an oco-category and let p : K — C be an arbitrary map of
simplicial sets. A colimit for p is an initial object of C,, and a limit for p is a final object of € ,.

Remark 1.2.13.5. According to Definition 1.2.13.4, a colimit of a diagram p : K — € is an object of
Cp/. We may identify this object with a map p : K* — € extending p. In general, we will say that a map
p: K” — Cis a colimit diagram if it is a colimit of p = p|K. In this case, we will also abuse terminology by
referring to p(co) € € as a colimit of p, where oo denotes the cone point of K.

If p: K — Cis a diagram, we will sometimes write hi>n(p) to denote a colimit of p (considered either
as an object of €, or of €), and lim(p) to denote a limit of p (as either an object of €/, or an object
of €). This notation is slightly abusive, since lim(p) is not uniquely determined by p. This phenomenon is
familiar in classical category theory: the colimit of a diagram is not unique, but is determined up to canonical
isomorphism. In the co-categorical setting, we have a similar uniqueness result: Proposition 1.2.12.9 implies
that the collection of candidates for li_r)n(p), if nonempty, is parametrized by a contractible Kan complex.

Remark 1.2.13.6. In §4.2.4, we will show that Definition 1.2.13.4 agrees with the classical theory of
homotopy (co)limits, when we specialize to the case where € is the nerve of a topological category.

Remark 1.2.13.7. Let € be an oo-category, @ C € a full subcategory, and p : K — €' a diagram. Then
€,/ = €' x¢ €. In particular, if p has a colimit in €, and that colimit belongs to €, then the same object

may be regarded as a colimit for p in €.

Let f: € — € be a map between oco-categories. Let p : K — € be a diagram in €, having a colimit
x € €,/. The image f(z) € @'fp/ may or may not be a colimit for the composite map f op. If it is, we will
say that f preserves the colimit of the diagram p. Often we will apply this terminology not to a particular
diagram p but some class of diagrams: for example, we may speak of maps f which preserve coproducts,
pushouts, or filtered colimits (see §4.4 for a discussion of special classes of colimits). Similarly, we may ask
whether or not a map f preserves the limit of a particular diagram, or various families of diagrams.

We conclude this section by giving a simple example of a colimit-preserving functor.

Proposition 1.2.13.8. Let C be an co-category, q : T — C and p : K — €, two diagrams. Let pg denote
the composition of p with the projection C,, — €. Suppose that po has a colimit in C. Then:

(1) The diagram p has a colimit in C,,, and that colimit is preserved by the projection C,q — C.
n extension p : — 18 a colimit of p if and only if the composition
2) A jonp: K* — Cq i lima if and only if th 11
KD — G/q — C
is a colimit of pg.

Proof. We first prove the “if” direction of (2). Let p: K* — €/, be such that the composite map pp : K~ — €
is a colimit of py. We wish to show that p is a colimit of p. We may identify p with a map K x A’ xT — €.
For this, it suffices to show that for any inclusion A C B of simplicial sets, it is possible to solve the lifting
problem depicted in the following diagram:

KxBx*T KxA’xAxT)—=0¢
K*xAxT _ 7

—
—
—
—
—
—

KxA%xBx«T.
Because pg is a colimit of pg, the projection

Crs/ = Cpos

42



is a trivial fibration of simplicial sets and therefore has the right lifting property with respect to the inclusion
AxT C B*T.

We now prove (1). Let po : K* — € be a colimit of pg. Since the projection Cgz;, — €,/ is a trivial
fibration, it has the right lifting property with respect to T this guarantees the existence of an extension
p: K* — @ lifting py. The preceding analysis proves that p is a colimit of p.

Finally, the “only if” direction of (2) follows from (1), since any two colimits of p are equivalent. O

1.2.14 Presentations of co-Categories

Like many types of mathematical structures, co-categories can be described by generators and relations.
In particular, it makes sense to speak of a finitely presented co-category C. Roughly speaking, C is finitely
presented if it has finitely many objects and its morphism spaces are determined by specifying a finite number
of generating morphisms, a finite number of relations among these generating morphisms, a finite number
of relations among the relations, and so forth (a finite number of relations in all).

Example 1.2.14.1. Let C be the free higher category generated by a single object X and a single morphism
f: X — X. Then C is a finitely presented co-category with a single object, and Home (X, X) = {1, f, f2,...}
is infinite and discrete. In particular, we note that the finite presentation of € does not guarantee finiteness
properties of the morphism spaces.

Example 1.2.14.2. If we identify co-groupoids with spaces, then giving a presentation for an co-groupoid
corresponds to giving a cell decomposition of the associated space. Consequently, the finitely presented
oo-groupoids correspond precisely to the finite cell complexes.

Example 1.2.14.3. Suppose that C is a higher category with only two objects X and Y, and that X and
Y have contractible endomorphism spaces and that Home (X, Y') is empty. Then € is completely determined
by the morphism space Home(Y, X), which may be arbitrary. In this case, € is finitely presented if and only
if Home (Y, X) is a finite cell complex (up to homotopy equivalence).

The idea of giving a presentation for an co-category is very naturally encoded in theory of simplicial sets;
more specifically, in Joyal’s model structure on Seta, which we will discuss in §1.3.3. This model structure
can be described as follows:

e The fibrant objects of Seta are precisely the oco-categories.

e The weak equivalences in Seta are precisely those maps p : S — S” which induce equivalences €[S] —
€[S’] of simplicial categories.

If S is an arbitrary simplicial set, we can choose a “fibrant replacement” for S; that is, a categorical
equivalence S — € where C is an oco-category. For example, we can take C to be the nerve of the topological
category | €[S]|. The co-category € is well-defined up to equivalence, and we may regard it as an oo-category
which is “generated by” S. The simplicial set S itself can be thought of as a “blueprint” for building €. We
may view S as generated from the empty (simplicial) set by adjoining nondegenerate simplices. Adjoining
a 0-simplex to S has the effect of adding an object to the co-category €, and adjoining a 1-simplex to S
has the effect of adjoining a morphism to €. Higher dimensional simplices can be thought of as encoding
relations among the morphisms.

1.2.15 Set-Theoretic Technicalities

In ordinary category theory, one frequently encounters categories in which the collection of objects is too large
to form a set. Generally speaking, this does not create any difficulties so long as we avoid doing anything
which is obviously illegal (such as considering the “category of all categories” as an object of itself).

The same issues arise in the setting of higher category theory, and are in some sense even more of a
nuisance. In ordinary category theory, one generally allows a category € to have a proper class of objects,
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but still requires Home(X,Y) to be a set for fixed objects X,Y € €. The formalism of oo-categories treats
objects and morphisms on the same footing (they are both simplices of a simplicial set), and it is somewhat
unnatural (though certainly possible) to directly impose the analogous condition; see §5.4.1 for a discussion.

There are several means of handling the technical difficulties inherent in working with large objects (in
either classical or higher category theory):

(1) One can employ some set-theoretic device which enables one to distinguish between “large” and “small”.
Examples include:

— Assuming the existence of a sufficient supply of (Grothendieck) universes.

— Working in an axiomatic framework which allows both sets and classes (collections of sets which
are possibly too large to themselves be considered sets).

— Working in a standard set-theoretic framework (such as Zermelo-Frankel), but incorporating a
theory of classes through some ad-hoc device. For example, one can define a class to be a collection
of sets which is defined by some formula in the language of set theory.

(2) One can work exclusively with “small” categories, and mirror the distinction between “large” and
“small” by keeping careful track of relative sizes.

(3) One can simply ignore the set-theoretic difficulties inherent in discussing “large” categories.

Needless to say, approach (2) yields the most refined information. However, it has the disadvantage of
burdening our exposition with an additional layer of technicalities. On the other hand, approach (3) will
sometimes be inadequate, since we will need to make arguments which play off the distinction between a
“large” category and a “small” subcategory which determines it. Consequently, we shall officially adopt
approach (1) for the remainder of this paper. More specifically, we assume the existence of a strongly
inaccessible cardinal number s, and we let U(k) denote the collection of all sets having rank < k. We
will refer to a mathematical object as small if it belongs to U(k) (or is isomorphic to such an object), and
essentially smallif it is equivalent (in whatever relevant sense) to a small object. For example, an oo-category
C is essentially small if and only if it satisfies the following conditions:

e The set of isomorphism classes of objects in the homotopy category hC has cardinality < k.

e For every morphism f : X — Y in C and every ¢ > 0, the homotopy set wi(Homlé(X, Y), f) has
cardinality < k.

For a proof and further discussion, we refer the reader to §5.4.1.

Remark 1.2.15.1. The existence of the strongly inaccessible cardinal k¥ cannot be proven from the standard
axioms of set theory, or proven consistent with the standard axioms for set theory. However, it should be
clear that assuming the existence of k is merely the most convenient of the devices mentioned above; none
of the results proven in this paper will depend on this assumption in an essential way.

1.2.16 The oco-Category of Spaces

The category of sets plays a central role in classical category theory. The main reason is that every category
C is enriched over sets: given a pair of objects X, Y € €, we may regard Home(X,Y) as an object of Set. In
the higher categorical setting, the proper analogue of Set is the co-category 8 of spaces, which we will now
introduce.

Definition 1.2.16.1. Let Xan denote the full subcategory of Seta spanned by the collection of Kan com-
plexes. We will regard Kan as a simplicial category. Let § = N(Kan) denote the (simplicial) nerve of Kan.
We will refer to 8 as the co-category of spaces.
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Remark 1.2.16.2. For every pair of objects X,Y € XKan, the simplicial set Mapg,,(X,Y) = Y¥ is a Kan
complex. It follows that 8 is an oo-category (Proposition 1.1.5.9).

Remark 1.2.16.3. There are many other ways to obtain a suitable “co-category of spaces”. For example,
we could instead define § to be the (topological) nerve of the category of CW-complexes and continuous
maps. All that really matters is that we have a oo-category which is equivalent to § = N(Kan) defined above.
We have selected Definition 1.2.16.1 for definiteness and to simplify our discussion of the Yoneda embedding
in §5.1.3.

Remark 1.2.16.4. We will occasionally need to distinguish between “large” spaces and “small” spaces. In
such contexts, we will let 8 denote the oo-category of small spaces (defined by taking the simplicial nerve of
the category of small Kan complexes), and S the oo-category of large spaces (defined by taking the simplicial
nerve of the category of all Kan complexes). We observe that 8 is a large co-category, and that S is even
bigger.

1.2.17 n-Categories

The theory of co-categories can be regarded as a generalization of classical category theory: if € is an ordinary
category, then its nerve N(C) is an oo-category which determines € up to canonical isomorphism. Moreover,
Proposition 1.1.2.2 provides a precise characterization of those co-categories which can be obtained from
ordinary categories. In this section, we will explain how to specialize the theory of co-categories to obtain a
theory of n-categories, for every nonnegative integer n. (However, the ideas described here are appropriate
for describing only those n-categories which have only invertible k-morphisms, for every k > 2.)

Before we can give the appropriate definition, we need to introduce a bit of terminology. Let f, f’ :
K — € be two diagrams in an oo-category C, and suppose that K’ C K is a simplicial subset such that
fIK' = f/|[K' = fo. We will say that f and f' are homotopic relative to K' if they are equivalent when
viewed as objects of the co-category Fun(K, €) Xpun(k-,¢) {fo}. Equivalently, f and f” are homotopic relative
to K’ if there exists a homotopy

h:KxAl =@

with the following properties:

(i) The restriction h|K’ x Al coincides with the composition
K'xA' - K e,

(i) The restriction h|K x {0} coincides with f.
(#41) The restriction h|K x {1} coincides with f’.
(iv) For every vertex = of K, the restriction h|{x} x A! is an equivalence in C.
We observe that if K’ contains every vertex of K, then condition (iv) follows from condition (4).

Definition 1.2.17.1. Let € be a simplicial set and n > —1 an integer. We will say that € is an n-category
if it is an oco-category and the following additional conditions are satisfied:

(1) Given a pair of maps f, f: A™ — @, if f and f’ are homotopic relative to  A™, then f = f’.
(2) Given m > n and a pair of maps f, f/: A™ — C, if f|O0A™ = f/|0 A™, then f = f’.

It is sometimes convenient to extend Definition 1.2.17.1 to the case where n = —2: we will say that a
simplicial set € is a (—2)-category if it is a final object of Seta: in other words, if it is isomorphic to A°.
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Example 1.2.17.2. Let € be a (—1)-category. Using condition (2) of Definition 1.2.17.1, one shows by
induction on m that C has at most one m-simplex. Consequently, we see that up to isomorphism there are
precisely two (—1)-categories: A~™! ~ () and A°.

Example 1.2.17.3. Let C be a 0-category, and let X = €y denote the set of objects of €. Let us write x < y
if there is a morphism ¢ from z to y in €. Since C is an co-category, this relation is reflexive and transitive.
Moreover, condition (2) of Definition 1.2.17.1 guarantees that the morphism ¢ is unique if it exists. If z <y
and y < z, it follows that the morphisms relating x and y are mutually inverse equivalences. Condition
(1) then implies that z = y. We deduce that (X, <) is a partially ordered set. It follows from Proposition
1.2.17.5 below that the map € — N(X) is an isomorphism.

Conversely, it is easy to see that the nerve of any partially ordered set (X, <) is a O-category in the sense
of Definition 1.2.17.1. Consequently, the full subcategory of Seta spanned by the 0-categories is equivalent
to the category of partially ordered sets.

Remark 1.2.17.4. Let € be an n-category, and let m > n + 1. Then the restriction map
0 : Homget, (A™, C) — Homges, (0 A™, C)

is bijective. If n = —1, this is clear from Example 1.2.17.2; let us therefore suppose that n > 0, so that m > 2.
The injectivity of 6 follows immediately from part (2) of Definition 1.2.17.1. To prove the surjectivity, we
consider an arbitrary map fo : 0 A™ — C. Let f: A™ — C be an extension of fo|AT* (which exists since C
is an oo-category, and 0 < 1 < m). Using condition (2) again, we deduce that 6(f) = fo.

The following result shows that, in the case where n = 1, Definition 1.2.17.1 recovers the usual definition
of a category:

Proposition 1.2.17.5. Let S be a simplicial set. The following conditions are equivalent:
(1) The unit map u: S — N(hS) is an isomorphism of simplicial sets.
(2) There exists a (small) category C and an isomorphism S ~ N(C) of simplicial sets.
(3) The simplicial set S is a 1-category.

Proof. The implications (1) = (2) = (3) are clear. Let us therefore assume that (3) holds, and show that
f S — N(hS) is an isomorphism. We will prove, by induction on n, that the map w is bijective on
n-simplices.

For n = 0, this is clear. If n = 1, the surjectivity of u obvious. To prove the injectivity, we note that if
f(®) = f(¢), then the edges ¢ and 1) are homotopic in S. A simple application of condition (2) of Definition
1.2.17.1 then shows that ¢ = 1.

Now suppose n > 1. The injectivity of u on n-simplices follows from condition (3) of Definition 1.2.17.1,
and the injectivity of u on (n — 1)-simplices. To prove the surjectivity, let us suppose given a map s : A™ —
N(hS). Choose 0 < i < n. Since u is bijective on lower-dimensional simplices, the map s|A? factors uniquely
through S. Since S is an oco-category, this factorization extends to a map s : A™ — S. Since N(hS) is the
nerve of a category, a pair of maps from A™ into N(hS) which agree on A must be the same. We deduce
that wos = s, and the proof is complete. O

Remark 1.2.17.6. The condition that an co-category € be an n-category is not invariant under categorical
equivalence. For example, if D is a category with several objects, all of which are uniquely isomorphic
to one another, then N(D) is categorically equivalent to A° but is not a (—1)-category. Consequently,
there can be no intrinsic characterization of the class of n-categories itself. Nevertheless, there does exist a
convenient description for the class of co-categories which are equivalent to n-categories. We will establish
this characterization in §2.2.4.
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Our next goal is to establish that the class of n-categories is stable under the formation of functor
categories. In order to do so, we need to reformulate Definition 1.2.17.1 in a more invariant manner. Recall
that for any simplicial set X, the n-skeleton sk’ X is defined to be the simplicial subset of X generated by
all the simplices of X having dimension < n.

Proposition 1.2.17.7. Let C be an co-category and n > —1. The following are equivalent:
(1) The oco-category C is an n-category.

(2) For every simplicial set K and every pair of maps f, f' : K — C such that f|sk" K and f'|sk™ K are
homotopic relative to sk” ' K, we have f = f'.

Proof. The implication (2) = (1) is obvious. Suppose that (1) is satisfied and let f, f' : K — € be as in
the statement of (2). To prove that f = f’ it suffices to show that f and f’ agree on every nondegenerate
simplex of K. We may therefore reduce to the case where K = A™. We now work by induction on m. If
m < n, there is nothing to prove. In the case m = n, the assumption that € is an n-category immediately
implies that f = f’. If m > n, the inductive hypothesis implies that f| 9 A™ = f/| 9 A™, so that (1) implies
that f = f'. O

Corollary 1.2.17.8. Let € be an n-category and X a simplicial set. Then Fun(X, @) is an n-category.

Proof. Proposition 1.2.7.3 asserts that Fun(X, ) is an oo-category. We will show that Fun(X, €) satisfies
condition (2) of Proposition 1.2.17.7. Suppose given a pair of maps f, f : K — Fun(X, €) such that f|sk" K
and f’|sk™ K are homotopic relative to f|sk™ ' K. We wish to show that f = f. We may identify f and
f’ with maps F, F’ : K x X — €. Since € is an n-category, to prove that F' = F" it suffices to show that
F|sk™(K x X) and F'|sk™(K x X) are homotopic relative to sk '(K x X). This follows at once, since
skP(K x X) C (sk? K) x X for every integer p. O

When n = 1, Proposition 1.1.2.2 asserts that the class of n-categories can be characterized by the
uniqueness of certain horn fillers. We now prove a generalization of this result.

Proposition 1.2.17.9. Let n > 1, and let C be an oco-category. Then C is an n-category if and only if it
satisfies the following condition:

e For every m > n and every diagram

A™

where 0 < i < m, there exists a unique dotted arrow f as indicated, which renders the diagram
commutative.

Proof. Suppose first that C is an n-category. Let f, f' : A™ — € be two maps with f|AY* = f'|A", where
0 < i< mand m > n. We wish to prove that f = f’. Since A" contains the (n — 1)-skeleton of A",
it will suffice (by Proposition 1.2.17.7) to show that f and f’ are homotopic relative to AT*. This follows
immediately from the fact that the inclusion A* C A™ is a categorical equivalence.

Now suppose that every map fy : A* — €, where 0 < ¢ < m and n < m, extends uniquely to an
m-simplex of €. We will show that € satisfies conditions (1) and (2) of Definition 1.2.17.1. Condition (2) is
obvious: if f, f' : A™ — € are two maps which coincide on  A™, then they coincide on AJ* and are therefore
equal to one another (here we use the fact that m > 1 because of our assumption that n > 1). Condition (1)
is a bit more subtle. Suppose that f, f/ : A™ — € are homotopic via a homotopy h : A" x A' — @€ which is
constant on & A™ x Al. For 0 <i < n, let o; denote the (n + 1)-simplex of € obtained by composing h with
the map

[+ 1] = [n] x [1]
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i 400 if j <
(j—1,1) ifj>i.

If i < n, then we observe that o; \A?jll is equivalent to the restriction (s;d;o;) |A?j_r11. Applying our hypothesis,

we conclude that o; = s;d;o;, so that d;o; = d;110;. A dual argument establishes the same equality for
0 < 4. Since n > 0, we conclude that d;o; = d;410; for all i. Consequently, we have a chain of equalities

fl = d()O'O = d10'0 = d10'1 = d20'1 =...= dnUn = dn+10n = f
so that f/ = f, as desired. O
Corollary 1.2.17.10. Let € be an n-category and let p : K — C be a diagram. Then €/, is an n-category.

Proof. If n < 0, this follows easily from Examples 1.2.17.2 and 1.2.17.3. We may therefore suppose that
n > 1. Proposition 1.2.9.3 implies that €/, is an oco-category. According to Proposition 1.2.17.9, it suffices
to show that for every m > n, 0 < i < m, and every map fy : A]* — C/,, there exists a unique map
[+ A™ — €/, extending f. Equivalently, we must show that there is a unique map g rendering the diagram

go
7
g -
e
e

Ve
A™ % K

commutative. The existence of g follows from the fact that €/, is an co-category. Suppose that g’ : A"+ K —
C is another map which extends go. Proposition 1.1.2.2 implies that ¢'|A™ = g|A™. We conclude that g
and ¢’ coincide on the n-skeleton of A™ x K. Since C is an n-category, we deduce that g = ¢’ as desired. [

We conclude this section by introducing a construction which allows us to pass from an arbitrary oo-
category C to its “underlying” n-category, by discarding information about morphisms of order > n. In
the case where n = 1, we have already introduced the relevant construction: we simply replace € by its
homotopy category (or, more precisely, the nerve of its homotopy category).

Notation 1.2.17.11. Let € be an oo-category and let n > 1. For every simplicial set K, let [K,C], C
Fun(sk™ K, €) be the subset consisting of those diagrams sk K — € which extend to the (n + 1)-skeleton
of K (in other words, the image of the restriction map Fun(sk"™' K, €) — Fun(sk™ K, C)). We define an
equivalence relation ~ on [K, €], as follows: given two maps f, g : sk” K — C, we write f ~ g if f and g are
homotopic relative to sk 1 K.

Proposition 1.2.17.12. Let C be an oco-category and n > 1.

(1) There exists a simplicial set h,C with the following universal mapping property: Fun(K, h,C) =
(K, €/ ~.

(2) The simplicial set h,C is an n-category.
(3) If C is an n-category, then the natural map 6 : € — h,C is an isomorphism.

(4) For every n-category D, composition with 0 induces an isomorphism of simplicial sets

¢ : Fun(h, @, D) — Fun(C, D).

Proof. To prove (1), we begin by defining hnC([m]) = [A™, €],/ ~, so that the desired universal property
holds by definition whenever K is a simplex. Unwinding the definitions, to check the universal property for
a general simplicial set K we must verify the following fact:
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(%) Given two maps f,g : d A" — @ which are homotopic relative to sk”~* A"1 if f extends to an
(n + 1)-simplex of €, then g extends to an (n + 1)-simplex of C.

This follows easily from Proposition A.2.4.1.

We next show that h,C is an oco-category. Let 19 : A]* — h,C be a morphism, where 0 < i < m. We
wish to show that 1y extends to an m-simplex n: A™ — C. If m < n + 2, then A" = skt A7, so that 19
can be written as a composition

A —setne.

The existence of 1 now follows from our assumption that € is an oco-category. If m > n + 2, then
Homsget, (A", h,C) ~ Homget o (A™, hy, C) by construction, so there is nothing to prove.

We next prove that h,€C is an n-category. It is clear from the construction that for m > n, any two
m-simplices of h,C with the same boundary must coincide. Suppose next that we are given two maps
[, f'+ A" — h,C which are homotopic relative to 9 A™. Let F': A" x Al = h,Cbea homotopy from f to
f'. Using (%), we deduce that F is the image under 6 of a map F : A™ x Al — h,C, where F|d A" x Al
factors through the projection 9 A™ x Al — 9A™. Since n > 0, we conclude that Fisa homotopy from
F|A™ x {0} to F|A™ x {1}, so that f = f’. This completes the proof of (2).

To prove (3), let us suppose that € is an n-category; we prove by induction on m that the map € — h,C
is bijective on m-simplices. For m < n, this is clear. When m = n it follows from part (1) of Definition
1.2.17.1. When m = n + 1, surjectivity follows from the construction of h,, €, and injectivity from part (2)
of Definition 1.2.17.1. For m > n + 1, we have a commutative diagram

Homget, (A™, C) Homget, (A™, h,,C)

i i

Homget, (0 A™, C) —— Homget . (0 A™, h,,C)

where the bottom horizontal map is an isomorphism by the inductive hypothesis, the left vertical map is an
isomorphism by construction, and the right vertical map is an isomorphism by Remark 1.2.17.4; it follows
that the upper horizontal map is an isomorphism as well.

To prove (4), we observe that if D is an n-category, then the composition

Fun(€, D) — Fun(h,C, h,D) ~ Fun(h,C, D)
is an inverse to ¢, where the second isomorphism is given by (3). O

Remark 1.2.17.13. The construction of Proposition 1.2.17.12 does not quite work if n < 0, since there
may exist equivalences in h,, € which do not arise from equivalences in €. However, it is a simple matter
to give an alternative construction in these cases which satisfies conditions (2), (3), and (4); we leave the
details to the reader.

Remark 1.2.17.14. In the case n = 1, the co-category h; € constructed in Proposition 1.2.17.12 is isomor-
phic to the nerve of the homotopy category hC.
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1.3 The Equivalence of Topological Categories with co-Categories

Theorem 1.1.5.12 asserts that for every topological category € and every pair of objects X, Y € C, the counit
map
u: | Maqu(e)] (X, Y)| — Mape(X, Y)

is a weak homotopy equivalence of topological spaces. This result is the main ingredient needed to establish
the equivalence between the theory of topological categories and the theory of co-categories. The goal of
this section is to give a proof of Theorem 1.1.5.12 and to develop some of its consequences.

We first replace Theorem 1.1.5.12 by a statement about simplicial categories. Consider the composition

v . Sing(u) .
MapQ[N(e)](X,Y) ﬁSlngMap‘Q[N(e)”(X,Y) = Sing Mape (X, Y).

Classical homotopy theory ensures that v is a weak homotopy equivalence. Moreover, u is a weak homotopy
equivalence of topological spaces if and only if Sing(u) is a weak homotopy equivalence of simplicial sets.
Consequently, u is a weak homotopy equivalence of topological spaces if and only if Sing(u) o v is a weak
homotopy equivalence of simplicial sets. It will therefore suffice to prove the following simplicial analogue of
Theorem 1.1.5.12:

Theorem 1.3.0.1. Let C be a fibrant simplicial category (that is, a simplicial category in which each mapping
space Mape(C, D) is a Kan complex), and let X, Y € C be a pair of objects. The counit map

u : Mape ey (X,Y) — Mape(X,Y)
is a weak homotopy equivalence of simplicial sets.

The strategy of our proof is as follows. In §1.3.2, we will define the twisted geometric realization functor
[lgs and its right adjoint Singge. Let D be an arbitrary oo-category containing a pair of objects X, Y, and

let M = Hom%(X7 Y') be simplicial set constructed in §1.2.2. In §1.3.3, we will construct a weak homotopy
equivalence f : |Hom$ (X,Y)|ge — Mapg(p)(X,Y). In the special case where D is the (simplicial) nerve of
a fibrant simplicial category €, we can identify Hom (X,Y) with Singge Mape(X,Y) in such a way that
the composition u o f coincides with the counit map

0 : [ Singge Mape (X, Y)[gs — Mape(X,Y).

We will see in §1.3.2 that 6 is a weak homotopy equivalence for formal reasons, so that Theorem 1.3.0.1 will
follow using the two-out-of-three property.

We will conclude this section with §1.3.4, where we apply Theorem 1.3.0.1 to construct the Joyal model
structure on 8eta and to establish a more refined version of the equivalence between oo-categories and
simplicial categories.

1.3.1 Composition Laws on co-Categories

In an ordinary category, if f : X — Y and g : Y — Z are two morphisms, then one has a specified composition
go f. In an co-category, this is not quite true: in general there exist many candidates for the composition go f
(though all of these candidates are homotopic to one another). To prove Theorem 1.3.0.1 for a co-category
G, it will be convenient for us to choose a composition for every composable pair of morphisms. In fact, we
will need something slightly more general: a chosen composition for every “composable” pair of simplices,
of arbitrary dimension.

Definition 1.3.1.1. Let C be a simplicial set. A composition law on C consists of specifying, for every pair
of simplices o € Cp,, T € @, with o|A™} = 7|A{%} a composite 700 € €,4,,. This composition law is
required to satisfy the following conditions:
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(1) The diagram
A{O,...,m}c—> Antm <—)A{m,...,m+n}

e

C

commutes.
(2) If 0 < i < m, then (1 0s;0) =s;(roo). If 0 <i<n, then (s;700) = sy4:(T00).
(3) If 0 <i < m, then (tod;o) =di(to0). If 0 <i<n,then (d;700) =d,yi(700).
The existence of a composition law on an oco-category € is guaranteed by the following result:
Proposition 1.3.1.2. Suppose that C is an co-category. Then C admits a composition law.

Proof. Let o € C,,; we will define the composition law 7 — 7o ¢ by induction on m. If m = 0, we simply set
Too =17. If 0 = s;0 is a degenerate simplex, then we set 700 = s;(700”’). If m > 0 and o is nondegenerate,
then we define 7 o o for 7 € €,, by induction on n. If n = 0, then we set Too = . If 7 = ;7' is degenerate,
then we set 700 = $;1m (7' 0 o). Finally, in the case where n > 0 and 7 is also nondegenerate, we note that
the definition of a composition law prescribes the face d;(7o0) for i # m. These faces assemble to determine
a map A”T™ — €. Since € is an co-category and 0 < m < n + m, this map extends to an (n + m)-simplex
700 € Cpim. One readily checks that this construction has the desired properties. O

There is generally no canonical choice of composition law on an co-category €. Moreover, we cannot gen-
erally ensure that the composition law given by Proposition 1.3.1.2 is associative. However, the compatibility
of composition with degeneracy maps can be interpreted as asserting that composition is unital.

1.3.2 Twisted Geometric Realization

Let C be a fibrant simplicial category containing a pair of objects X and Y. We wish to understand the
relationship between the mapping space Mape(X,Y) in € and the mapping space Homg(e)(X, Y) in the
oo-category N(C). As one might expect, these two simplicial sets are almost the same; in particular, they are
homotopy equivalent to one another. In order to prove this, we will need to introduce a bit of terminology.

Let A denote the category of combinatorial simplices and Seta the category of simplicial sets, so that
Seta may be identified with the category of presheaves of sets on A. If € is any category which admits small
colimits, then any functor f : A — € extends to a colimit-preserving functor F' : Seta — € (which is unique
up to unique isomorphism). We may regard f as a cosimplicial object C'* of C. In this case, we shall denote
the functor F' by

S+ |S]|ce.

Remark 1.3.2.1. Concretely, one constructs |S|ce by taking the disjoint union of S, x C™ and making
the appropriate identifications along the “boundaries”. In the language of category theory, the geometric
realization is given by the coend
/ Sp x C".
[nleA

The functor S — |S|ce has a right adjoint which we shall denote by Sing~.. It may be described by the
formula

Singe (X)n, = Home (C™, X).
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Example 1.3.2.2. Let € be the category €3 of compactly generated Hausdorff spaces, and let C*® be the
cosimplicial space defined by

C" = {(zg,...,xz,) €[0,1]" " o +... 42, =1}

Then |S|ce is the usual geometric realization |S| of the simplicial set S and Sing.. = Sing is the functor
which assigns to each topological space X its its singular complex.

Example 1.3.2.3. Let C be the category Seta, and let C'® be the standard simplex (the cosimplicial object
of Seta given by the Yoneda embedding):
cn=A"

Then ||cs and Singqe are both (isomorphic to) the identity functor on Seta.

Example 1.3.2.4. Let € = Cat, and let f : A — Cat be the functor which associates to each finite nonempty
linearly ordered set J the corresponding category. Then Sing-. = N is the functor which associates to each
category its nerve, and ||ce associates, to each simplicial set S, the homotopy category hS as defined in
§1.2.3.

Example 1.3.2.5. Let C = Cata, and let C*® be the cosimplicial object of € given in Definitions 1.1.5.1 and
1.1.5.3. Then Singc. is the simplicial nerve functor, and ||¢s is its left adjoint

S ¢[S].

Let us now turn to the problem of interest: the computation of Homﬁ(e)(X ,Y), where C is a simplicial

category containing objects X and Y. We begin with a description of Homg(X ,Y) which is valid for any
simplicial set S. Let J” be the simplicial set obtained from A™*! by collapsing the face A{%~"} to a point.
Then J*® is a cosimplicial object of Seta equipped with two base points. The simplicial set Homg“(:c, Y)e 18
the fiber of

Homget, (J°,5) — S x S

over the vertex (X,Y).

In the special case where S is the nerve of a simplicial category €, the simplicial set Hom(J*, S) may be
rewritten as Homeat, (€[J°], C). A straightforward computation shows that €[J"] may be identified with a
simplicial category having two objects (which we will again denote by X and Y'), with morphisms given by

*  fS=T=X
* HsS=T=Y
0 fS=Y.T=X
Q" fS=X,T=Y.

Homgj»)(5,T) =

Here QQ°® is a cosimplicial object of Set A which we will describe more explicitly in a moment. We have proved:

Proposition 1.3.2.6. Let C be a simplicial category, and let X, Y € C be two objects. There is a natural
isomorphism of simplicial sets Homﬁ(@)(X, Y) =~ Singge Mape(X,Y).

In order to proceed with our analysis, we need to better understand the cosimplicial object Q® of Seta.
It admits the following description:

e For each n > 0, let Py, denote the partially ordered set of nonempty subsets of [n], and K, the
simplicial set N(P) (which may be identified with a simplicial subset of the (n + 1)-cube (A!)"*1).
The simplicial set Q™ is obtained by collapsing, for each 0 < ¢ < n, the subset

(Al){j¢0§j<i} x {1} x (Al){j:i<j§n} C K[n]

to its quotient (Al)ls<isn},
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e Amap [ :[n] — [m] determines a map Py : Py,) — Pjy,), by setting P¢(I) = f(I). The map Py in turn
induces a map of simplicial sets K,,; — K[}, which determines a map of quotients Q™ — Q™ when f
is order-preserving.

Remark 1.3.2.7. Let Q° = |Q®| denote the cosimplicial space obtained by applying the (usual) geometric
realization functor to Q°®. The space Q" may be described as a quotient of the cube of all functions p : [n] —
[0,1] satisfying p(0) = 1. This cube is to be divided by the following equivalence relation: p ~ p’ if there
exists a nonnegative integer ¢ < n such that p|{i,...n} = p'|{i,...,n} and p(i) = p'(i) = 1.

Each Q" is homeomorphic to an n-simplex, and these homeomorphisms may be chosen to be compatible
with the face maps of the cosimplicial space Q°. However, Q° is not isomorphic to the standard simplex
because it has very different degeneracies. For example, the product of the degeneracy mappings Q" — (Ql)”
is not injective for n > 2.

Our goal for the remainder of this section is to study the functors Singg. and llge and to prove that
they are “close” to the identity functor. More precisely, there is a map 7 : Q®* — A® of cosimplicial objects
of 8eta. It is induced by a map Kj,) — A", which the nerve of the map of partially ordered sets Py,,; — [n]
which carries each nonempty subset of [n] to its largest element.

Proposition 1.3.2.8. Let S be a simplicial set. Then the map ps : |S|gs — S induced by 7 is a weak
homotopy equivalence.

Proof. Consider the collection A of simplicial sets S for which the assertion of Proposition 1.3.2.8 holds.
Since A is stable under filtered colimits, it will suffice to prove that every simplicial set S having only finitely
many nondegenerate simplices belongs to A. We prove this by induction on the dimension n of S, and the
number of nondegenerate simplices of S of dimension n. If S = (), there is nothing to prove; otherwise we
may write
S~s ] A"
9 A™
Slge =18l [ 1A"[q--

[0 A™]qe

Since both of these pushouts are homotopy pushouts, it suffices to show that pg/, psgan, and pan are weak

homotopy equivalences. For pg: and pg A, this follows from the inductive hypothesis; for parn, we need only
observe that both A™ and |A™|gs = Q™ are weakly contractible. O

Remark 1.3.2.9. The strategy used to prove Proposition 1.3.2.8 will reappear frequently throughout this
book: it allows us to prove theorems about arbitrary simplicial sets by reducing to the case of simplices.

Proposition 1.3.2.10. Let X be a Kan complex. Then the counit map
v :|Singge X|ge — X
is a weak homotopy equivalence.

Proof. Our proof will use the language of model categories. We first note the pair (||qe, Singg.) determines
a Quillen adjunction from Seta to itself. For this, it suffices to prove that the functor

S [Slq

preserves cofibrations and weak equivalences. The case of cofibrations is easy, and the second case follows
from Proposition 1.3.2.8.

It follows that the derived functors of Sing. and ||« induce adjoint functors from the homotopy category
H to itself. Proposition 1.3.2.8 implies that the left derived functor of Sing. is an equivalence of categories.
It follows that the counit of the adjunction is an isomorphism of functors. In other words, for any fibrant
simplicial set X and any weak homotopy equivalence i : Y — Singge. X where Y is cofibrant, the induced
map |Y|ge — X is a weak homotopy equivalence. Choosing ¢ to be the identity map, we conclude that v is
a weak homotopy equivalence as desired. O
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1.3.3 A Comparison Theorem

Let D be an oco-category containing a pair of objects X and Y, and let Q® denote the cosimplicial object of
Seta described in §1.3.2. By construction, there is a canonical map of simplicial sets

f+ [ Homs (X, Y)|ge — Mape(p) (X, Y).
Moreover, in the special case where D is the nerve of a fibrant simplicial category €, the composition
| Hom® (X, Y)|ge &> Mapep)(X,Y) — Mape(X,Y)
can be identified with the counit map
| Singge Mape(X,Y)|ge — Mape(X,Y),

and is therefore a weak equivalence (Proposition 1.3.2.10). Consequently, we may reformulate Theorem
1.3.0.1 in the following way:

Proposition 1.3.3.1. Let D be an co-category containing a pair of objects X and Y. Then the natural map
f ¢ | Hom3 (X, Y)|ge — Mapg(p) (X, Y)
is a weak homotopy equivalence of simplicial sets.

The proof of Proposition 1.3.3.1 will occupy the remainder of this section. Our argument is quite technical
and can be safely omitted by the reader who does not want to become bogged down in details.

To show that f is a weak homotopy equivalence, it will be convenient for us to return to the topological
setting and show instead that |f| : |Hom% (X, Y)|qe — | Mape(p)(X,Y)| is a homotopy equivalence of
topological spaces. To prove this, we will need an explicit description of the topological category | €[D]|. The
objects of | €[D]| may be identified with the vertices of D. If o : A¥ — D is a simplex of D, and p : [k] — [0, 1]
is a function satisfying p(0) = p(k) = 1, then there is a corresponding morphism o[p] : 0(0) — o (k) in | €[D]|.
Moreover, o[p] € | Mapg(p)(c(0),o(k))| depends continuously on p (which ranges over a cube of dimension
k—1).

Every morphism in | €[D]| can be written as a composition og[pg] ... o oy, [pn]. These morphisms are
subject only to the following relations:

(P1) Let X : A° — D be a vertex of D, and let p : {0} — [0,1] be such that p(0) = 1. Then X[p] = idy €

| Mapg(p) (X, X)|.
(P2) If 0 : AF — D is a k-simplex of D, 0 < i < k, and p : [k] — [0, 1] satisfies p(0) = p(k) = 1, p(i) = 0,
then
olp] = (dio)q] € [ Mapgp)(a(0), o (k))l,
where

£0) = {p(j) if j <

p(G+1) ifj>i

(P3) If o : A¥ — D is a k-simplex of D, 0 <4 < k, and p : [k + 1] — [0, 1] satisfies p(0) = p(k + 1) = 1, then
(s;0)[p] = o[q], where

p(J) ifj <i
q(j) = {sup{p(j),p(j + 1)} ifj=1i.
p(j+1) if j >
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(P4) If o : Ak — D is a k-simplex of D, 0 < i < k, and p : [d] — [0, 1] satisfies p(0) = p(d) = p(i) = 1, then

U[p] _ O_// //] OO'/[p/].
Here o/ = o|Al01 o = g| ALk p/(5) = p(4) for 0 < j < i, and p”(j) = p(j+i) for 0 < j < k—i.

Using these properties, we deduce that every morphism in the topological category |€[D]| admits a
unique representation as a composition og[pg] o ... o o, [p,] having the property that each of the simplices
o; is nondegenerate of some positive dimension k;, and the functions p;|{1,...,k; — 1} do not assume the
value 0 or 1. In this representation, composition is simply given by concatenation. For our purposes, this
presentation is too unwieldy, since it requires us to consider compositions of arbitrarily long strings of the
generating morphisms o[p]. In the case where D is an co-category, a much simpler description is available.

Lemma 1.3.3.2. Let D be an oo-category containing objects X and Y. Every morphism ¢ : X — Y in
the topological category | €[D]| has the form o[p|, where o : A¥ — D is a simplex of positive dimension and

p: [k] — [0,1] satisfies p(0) = p(k) = 1.

Proof. Using relation (P1), we may assume that ¢ = og[pg] o ... 0 o,[pn] for n > 0. Choose a composition
law on D (Proposition 1.3.1.2). Using relation (P4), we deduce that o”[p"’] o o'[p'] = (¢” o ¢’)[p], where p
is obtained by concatenating p’ and p”’. Applying this relation repeatedly, we deduce that ¢ = o[p], where
o: AF — D and p : [k] — [0,1] is appropriately chosen. Replacing o by soo if necessary (and applying
relation (P3)), we may ensure that k > 0. O

Let us now fix an oco-category D and a pair of objects X, Y € D. Our goal is to analyze the topological
space M = |Mapgp)(X,Y)|. Lemma 1.3.3.2 implies that every point of this space admits a particularly
simple representative. However, this representation is mot unique. For each positive dimensional simplex
o : AF — D with ¢(0) = X, o(n) =Y, the collection of functions p : [k] — [0,1] with p(0) = p(k) = 1 is
homeomorphic to an (n — 1)-dimensional cube [0,1]*~!. We have a continuous map

(0,11 — M

p—olpl.

Lemma 1.3.3.2 implies that M is spanned by the images of these cubes, as o is allowed to vary. We may
therefore view M as a quotient of the disjoint union

[T, 1%

g

where the following relations have been imposed:

(R1) Let o : A¥ — D satisfy 0(0) = X, o(k) = Y, let 0 < i < k, and let p : [k] — [0,1] satisfy
p(0) = p(k) =1, p(i) = 0. Then o[p] = (d;o)[q], where

Gy i<
q<]>_{p(j+1> >

(k:)—a’(k):Y, let 0 =ipg < i1 <...<

(R2) Let 0,0’ : A¥ — D be simplices with o O) ( )

in =k, and let p : [k] — [0, 1] satisfy p(ip) =

J|A{ija~-7ij+1} - J’|A{ij7---,ij+1}

for 0 < j < n, then o[p] = o’'[p].
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(R3) Let o : Ak — D satisfy 0(0) = X and o(k) = Y, let 0 < i < k, and let p : [k + 1] — [0, 1] satisfy
p(0) = p(k+1) = 1. Then (s;0)[p] = olq], where ¢ : [d] — [0,1] is given by

p(4) ifj<i
q(4) = {sup{p(j),p(j + 1)} ifj=1i.
p(j+1) if j>i

Using relation (R3), we see that M is actually spanned by the images of the maps p — olp|, where o
is a nondegenerate simplex of D (or, in the case X =Y, 0 = s9(X) € D1). However, relation (R3) will
be very inconvenient for us in the arguments which follow. We therefore define M to be the quotient of
the topological space []_[0, 1]*=! where the coproduct is taken over simplices o of positive dimension, and
only the relations (R1) and (R2) have been imposed. If o : A¥ — D satisfies 0(0) = X, o(k) = Y, and

p: [k] — [0,1] satisfies p(0) = p(k) = 1, then we let o[p] denote the corresponding point of M. There is an

obvious quotient map 7 : M — M, having the property that = (c[p]) = o[p].
Lemma 1.3.3.3. The map 7 : M — M isa homotopy equivalence.

Proof. We first observe that the map m may be obtained as the geometric realization of a map of simplicial
sets. Consequently, it will suffice to show that the fibers of 7 are contractible. Choose a point o[p] € M.
We will assume that o : A¥ — D is nondegenerate simplex of positive dimension, and that p : [k] — [0,1]
is strictly positive. Such a representation always exists, unless X = Y and o[p] = idx; the proof in this
exceptional case can be given using a slightly easier version of the argument below, and is left to the reader.

Every point of M which lies in 7=!{c[p]} can be written in the form o’[p], where ¢’ : A™ — D is the
pullback of o under a surjective map f : [m] — [k], and p(i) = sup(;)_; p'(j). It follows that 7='{o[p]} is
homomorphic to the product

Fix [ Fow x Y,
0<i<n

where:

(1) For t € (0,1], the space F} is described as follows: points of F; may be represented by finite sequences
of real numbers (r1,...,7,) lying in the interval [0,¢], which assume the value ¢ at least once. Two
such sequences are identified if they differ from one another by inserting or deleting zeroes.

(2) The space F} is defined in the same way as F}, except that we consider only sequences which begin
with ry = t.

(3) The space F/' is defined in the same way as Fy, except that we consider only sequences which end with
ry, =t.

We now observe that each of the spaces F} is contractible: in fact, we have a homotopy
h':[0,1] x F, — F{
from a constant map to the identity, given by
Ri(ri,...,rn) = (11,872, ..., 8Ty).

A similar argument shows that each F}’ is contractible. Finally, we show that F; is contractible by showing
that the identity map F; — F; is homotopic to a map which factors through the contractible subspace
F] C F;. To see this, we consider the homotopy

h:[O,l]th—>Ft

given by
hs(ri,...,mn) = (st,r1,...,7T0).
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Our next step is to perform a similar analysis of the topological space N = |Hom%(X,Y)|qe. For
each o : AF*1 — D such that o(k +1) = Y and o|AF is the constant map with value X, and for each
p: [k + 1] — [0,1] satisfies p(0) = p(k + 1) = 1, there is a corresponding point o[[p]] € N. Moreover, N is
obtained by gluing together these cubes using the following relations:

(R1") Let o : A¥*1 — D be such that o(k + 1) = Y and o|A* is constant at X, let 1 < i < k, and let
p: [k + 1] — [0, 1] be such that p(0) = p(k + 1) =1, p(i) = 0. Then o[[p]] = (d;0)[[q]] € N, where

N V) if j <i
q(”_{pml) ifj>i

(R2') Let o : A¥*1 — D be such that o(k + 1) =
p,p ¢ [k+ 1] — [0,1] be such that p(0) =
p(j) = p'(j) for all i < j < k+1, then of[p]]

(i

’E

Y and o|A* is constant at X, let 0 < i < k, and let
) = plk+1) = 1, /(0) = /(i) = Pk + 1) = 1. If
o]

(R3') Let o : AF*1 — D be such that o(k + 1) = Y and o|A* is constant at X, let 0 < i < k, and let
p [6+2] — [0,1] be such that p(0) = p(k+2) = 1. Then (s;0)[[p] = ollg], where

p(4) ifj <1
q(j) = < sup{p(i),p(i + 1)} ifj=i.
p(j+1) if j >

Our objective is to prove that the map |f| : N — M is a homotopy equivalence of topological spaces. In
terms of the above presentations, the map |f| is given by

ollpl] = olpl.

Once again, the relation (R3') is actually somewhat inconvenient for us. We therefore define a N to be
the topological space obtained using the above presentation, but omitting the relations of the form (R3’).

By definition, there is a canonical projection map N — N. Repeating the argument of Lemma 1.3.3.3, we
deduce the following:

Lemma 1.3.3.4. The projection N — N isa homotopy equivalence of topological spaces.

We also observe that N can be identified with a closed subspace of M (even when X =Y'). We now have
a commutative diagram

N—>M
T

of topological spaces, in which the vertical arrows are weak homotopy equivalences. In view of Lemmas
1.3.3.3 and 1.3.3.4, we are reduced to proving the following assertion:

Proposition 1.3.3.5. Let D be an oo-category containing a pair of objects X and Y, and let N C M be
defined as above. Then N isa deformation retract of M.

Proof. Choose a composition law on D (Proposition 1.3.1.2). Let 0 < i < n, and let 0 : A™ — D be a
simplex such that o(n) = Y, and o|A{0#=1} is constant at the vertex X. We will define a new simplex
A;(0) € Dypy1. Our construction will possess the following properties:

(i) If i = 1, then doA;(0) = o] AtLn} o g|AL01
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(ii) If ¢ = n, then A;(0) = sp_10.

(iii) If o|AL9-7} is constant at the vertex z, then A;(o) = s;0.

)
)
(iv) If i > 1 and j < 4, then d;jA;(0) = A,_1(d;0).
(v) If j =4, then d; A;(0) = 0.

)

(Vi Ifi+1< 1<n+1, dJAZ(O') = Ai(djfld).

The construction proceeds by induction on ¢ > 1. For a fixed value of i, we work by induction on n > 3.
When n = i, we set A;(0) = s,—10 in accordance with condition (#4). For n > 4, we note that the desired
properties uniquely prescribe the restriction of A;(o) to the horn A?jll. Since D is an oco-category, this horn
may be filled to an (n 4 1)-simplex which permits us to define 4;(c). Finally, we note that if o|A{%#} is
constant at the vertex X, then we may choose this filler to be s;o and thereby satisfy condition (ii7).

Now choose an arbitrary o : A" — D with ¢(0) = X, o(n) = Y. We will define a sequence of
simplices (09, ...,0,—1) in D, and another sequence (71,...,7n—1) € Dpy1. Let o9 = 0. For i > 0, we set
7i = Ai(0i—1) and o; = dip17. Let p : [n] — [0,1] satisfy p(0) = p(n) = 1. We will constructing a path
in M of length _,.,, 2p(i) which begins at the point o[p] and ends at the point on_1[p]. This path is
obtained by concatenating a sequence of paths h; : [0, 2p(4)] which join &;_1[p] to &;[p]. More specifically, we
set h;(t) = 7;[q], where

p(4) ifj<iorj>i+1
t if j=dand 0 <t<p(i)
a:(j) = ¢ p(i if j =i and p(i) <t < 2p(i)

ifj=i+1and 0<¢t<p(i)
2p(i) —t ifj=1i+1and p(i) <t <2p(i)

One readily checks that this path depends continuously on p and is independent of the representation of
the point o[p] € M. Consequently, we obtain a homotopy from the identity map of M to itself to a map

M — N. Moreover, condition (iii) ensures that this homotopy leaves N setwise fixed. It follows that N is
a deformation retract of M, as desired. O

1.3.4 The Joyal Model Structure

The category of simplicial sets can be endowed with a model structure for which the fibrant objects are
precisely the oo-categories. The original construction of this model structure is due to Joyal, who uses
purely combinatorial arguments ([31]). In this section, we will exploit the relationship between simplicial
categories and co-categories to give an alternative description of this model structure. Our discussion will
make use of a model structure on the category Cata of simplicial categories, which we review in §A.3.1.

Theorem 1.3.4.1. There exists a perfect model structure on the category of simplicial sets with the following
properties:

(C) Amapp:S— S of simplicial sets is a cofibration if and only if it is a monomorphism.

(W) Amapp:S— S is a categorical equivalence if and only if the induced simplicial functor €[S] — €[]
is an equivalence of simplicial categories.

Moreover, the adjoint functors (€,N) determine a Quillen equivalence between Seta (with the model
structure defined above) and Cata .

Our proof will make use of the theory of inner anodyne maps of simplicial sets, which we will study in
§2. We first establish a simple Lemma.
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Lemma 1.3.4.2. FEvery inner anodyne map f: A — B of simplicial sets is a categorical equivalence.

Proof. Tt will suffice to prove that if f is inner anodyne, then the associated map €[f] is a trivial cofibration of
simplicial categories. The collection of all morphisms f for which this statement holds is saturated (Definition
A.1.2.2). Consequently, we may assume that f is an inner horn inclusion A? C A™ 0 < i < n. We now
explicitly describe the map €[f]:

e The objects of €[0A?] are the objects of €[A™]: namely, elements of the linearly ordered set [n] =
{0,...,n}.

e For 0 < j <k <n, the simplicial set Mapg(sn1(J, k) is equal to Mapg(ani(j, k) unless j =0 and k = n.
In the latter case,
Mape(an (4, k) = K C (A" = Mapg(an) (4, %),

where K is the simplicial subset of the cube (A!)"~! obtained by removing the interior and a single
face.

We observe that €[f] is a pushout of the inclusion Ex C Ea1yn-1 (see §A.3.1 for an explanation of this
notation). It now suffices to observe that the inclusion K C (A)"~! is trivial fibration of simplicial sets
(with respect to the usual model structure on Seta). O

Proof of Theorem 1.3.4.1. We first show that € carries cofibrations of simplicial sets to cofibrations of simpli-
cial categories. Since the class of all cofibrations of simplicial sets is generated by the inclusions 0 A™ C A™,
it suffices to show that each map €[0 A"] — €[A"] is a cofibration of simplicial categories. If n = 0, then the
inclusion €[@ A™] C €[A™] is isomorphic to the inclusion () C * of simplicial categories, which is a cofibration.
In the case where n > 0, we make use of the following explicit description of €[0 A™] as a subcategory of

C[A"]:

e The objects of €[0 A™] are the objects of €[A™]: namely, elements of the linearly ordered set [n] =
{0,...,n}.

e For 0 < j < k < n, the simplicial set Homg[pan](j, k) is equal to Homgjan)(j, k) unless j = 0 and
k = n. In the latter case, Homg[g an](j, k) consists of the boundary of the cube

(A1) = Homegar (j, k).

In particular, the inclusion &[0 A"] C €[A"] is a pushout of the inclusion Eyaryn-1 C Ea1yn-1, which is
a cofibration of simplicial categories (see §A.3.1 for an explanation of our notation).

We now declare that a map p : S — S’ of simplicial sets is a categorical fibration if it has the right lifting
property with respect to all maps which are cofibrations and categorical equivalences. We now claim that
the cofibrations, categorical equivalences, and categorical fibrations determine a perfect model structure on
Seta. To prove this, it will suffice to show that the hypotheses of Proposition A.2.9.5 are satisfied:

(1) The class of categorical equivalences in Seta is perfect. This follows from Corollary A.2.9.4, since
the functor € preserves filtered colimits, and the class of equivalences between simplicial categories is
perfect.

(2) The class of categorical equivalences is stable under pushouts by cofibrations. Since € preserves cofi-
brations, this follows immediately from the left-properness of Cata.

(3) A map of simplicial sets which has the right lifting property with respect to all cofibrations is a
categorical equivalence. In other words, we must show that if p : S — S’ is a trivial fibration of
simplicial sets, then the induced functor €[p] : €[S] — €[S’] is an equivalence of simplicial categories.
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Since p is a trivial fibration, it admits a section s : S — S. It is clear that €[p] o €[s] is the identity; it
therefore suffices to show that

¢[s] o €[p] : €[S] — €[9]
is homotopic to the identity.

Let K denote the simplicial set Mapg, (5, S). Then K is a contractible Kan complex, containing points
x and y which classify sop and idg. We note the existence of a natural “evaluation map” e: K xS — S,
such that sop = eo ({z} x idg), ids = eo ({y} x idg). It therefore suffices to show that the functor
¢ carries {z} x idg and {y} x idg into homotopic morphisms. Since both of these maps section the
projection K x S — S, it suffices to show that the projection €[K x S| — €[S] is an equivalence of
simplicial categories. Replacing S by S x K and S’ by S, we are reduced to the special case where
S =5"x K and K is a contractible Kan complex.

By the small object argument, we can find an inner anodyne map S’ — V', where V is an oco-category.
The corresponding map S’ x K — V x K is also inner anodyne (Proposition 2.2.2.1), so the maps
€[S’] — C€[V] and €[S’ x K] — €[V x K] are both trivial cofibrations (Lemma 1.3.4.2). It follows
that we are free to replace S’ by V and S by V x K. In other words, we may suppose that S’ is
an oo-category (and now we will have no further need of the assumption that .S is isomorphic to the
product S’ x K).

Since p is surjective on vertices, it is clear that €[p] is essentially surjective. It therefore suffices to
show that for every pair of vertices x,y € Sp, the induced map of simplicial sets Mapg(g (z,y) —
Mapg (s (p(), p(y)) is a weak homotopy equivalence. Using Propositions 1.3.3.1 and 1.3.2.8, it suffices
to show that the map Hom?(my) — Homg{, (pz,py) is a weak homotopy equivalence. This map is
obviously a trivial fibration if p is a trivial fibration.

By construction, the functor € preserves weak equivalences. We verified above that € preserves cofibra-
tions as well. It follows that the adjoint functors (€, N) determine a Quillen adjunction

[
SetA<T> Cata .

To complete the proof, we wish to show that this Quillen adjunction is a Quillen equivalence. According to
Proposition A.2.5.1, we must show that for every simplicial set S and every fibrant simplicial category C, a
map

u:S — N(C)
is a categorical equivalence if and only if the adjoint map
v:CS]—¢C

is an equivalence of simplicial categories. We observe that v factors as a composition

¢[s] W eNe)] L e.

By definition, u is a categorical equivalence if and only if €[u] is an equivalence of simplicial categories.
We now conclude by observing that the counit map w is an equivalence of simplicial categories (Theorem
1.3.0.1). O

We now establish a few pleasant properties enjoyed by the Joyal model structure on Seta. We first note
that every object of Seta is cofibrant; in particular, the Joyal model structure is left proper (Proposition
A.2.3.2).

Remark 1.3.4.3. The Joyal model structure is not right proper. To see this, we note that the inclusion
A? C A? is a categorical equivalence, but it does not remain so after pulling back via the fibration A{0:2} C
A2,
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For the next few results, we will need the notion of an inner anodyne map of simplicial sets. We refer
the reader to §2 for a definition and the basic properties of this notion.

Corollary 1.3.4.4. Let f : A — B be a categorical equivalence of simplicial sets, and K an arbitrary
simplicial set. Then the induced map A x K — B x K is a categorical equivalence.

Proof. Choose an inner anodyne map B — @), where @ is an oo-category. Then B x K — @ x K is also inner
anodyne, hence a categorical equivalence (Lemma 1.3.4.2). It therefore suffices to prove that Ax K — Q x K
is a categorical equivalence. In other words, we may suppose to begin with that B is an oo-category.

"

Now choose a factorization A 2> R %> B where f' is an inner anodyne map and f” is an inner fibration.
Since B is an co-category, R is an oo-category. The map A x K — R x K is inner anodyne (since f’ is), and
therefore a categorical equivalence; consequently, it suffices to show that R x K — B x K is a categorical
equivalence. In other words, we may reduce to the case where A is also an oco-category.

Choose an inner anodyne map K — S, where S is an co-category. Then AXK — AxSand BXxK — BxS
are both inner anodyne, and therefore categorical equivalences. Thus, to prove that A x K — B x K is a
categorical equivalence, it suffices to show that A x S — B x S is a categorical equivalence. In other words,
we may suppose that K is an co-category.

Since A and K are oco-categories, h(A x K) ~ hA x hK; similarly h(B x K) ~ hB x hK. It follows that
A x K — B x K is essentially surjective, provided that f is essentially surjective. Furthermore, for any pair
of vertices (a, k), (¢', k") € (A x K)o, we have

HOH’I}}XK(((I, k)v (a/a k/)) = Homl}(aa a/) X Hom%(kv k/)

Hom, x((f(a), k), (f(a'), k")) = Hom§(f(a), f(a')) x Homje (k, k).

It follows that A x K — B x K is fully faithful, provided that f is fully faithful, which completes the
proof. O

Remark 1.3.4.5. Since every inner anodyne map is a categorical equivalence, it follows that every categor-
ical fibration p : X — S is a inner fibration (see Definition 2.0.0.3). The converse is false in general; however,
it is true when S is a point. In other words, the fibrant objects for the Joyal model structure on Seta are
precisely the co-categories. The proof will be given in §2.3.6, as Theorem 2.3.6.4. We will assume this result
for the remainder of the section. No circularity will result from this, since the proof of Theorem 2.3.6.4 will
not use any of the results proven below.

The functor €[e] does not generally commute with products. However, Corollary 1.3.4.4 implies that €
commutes with products in the following weak sense:

Corollary 1.3.4.6. Let S and S’ be simplicial sets. The natural map
€[S x 8] — €[9] x €[]
is an equivalence of simplicial categories.

Proof. Suppose first that there are fibrant simplicial categories C, € with S = N(€), S’ = N(€'). In this
case, we have a diagram

¢S x 8L e[ x e[s] L exe.

By the two-out-of-three property, it suffices to show that g and go f are equivalences. Both of these assertions
follow immediately from the fact that the counit map €[N(D)] — D is an equivalence for any fibrant simplicial
category D (Theorem 1.3.4.1).

In the general case, we may choose categorical equivalences S — T, 8" — T, where T and T’ are nerves
of fibrant simplicial categories. Since S x S’ — T x T" is a categorical equivalence, we reduce to the case
treated above. O
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Let K be a fixed simplicial set, and let € be a simplicial set which is fibrant with respect to the Joyal
model structure. Then € has the extension property with respect to all inner anodyne maps, and is therefore
a oo-category. It follows that the Fun(K, C) is also an oco-category. We might call two morphisms f,g: K — C
homotopic if they are equivalent when viewed as objects of Fun(XK, €). On the other hand, the general theory
of model categories furnishes another notion of homotopy: f and g are left homotopic if the map

fIle:E[[K—¢

can be extended over a mapping cylinder I for K.

Proposition 1.3.4.7. Let C be a oo-category and K an arbitrary simplicial set. A pair of morphisms
f,9: K — C are homotopic if and only if they are left-homotopic.

Proof. Choose a contractible Kan complex S containing a pair of distinct vertices, x and y. We note that
the inclusion
K[[K~Kx{z,y} CKxS

exhibits K x S as a mapping cylinder for K. It follows that f and g are left homotopic if and only if the
map f[Jg: K][ K — € admits an extension to K x S. In other words, f and g are left homotopic if and
only if there exists a map h : S — €% such that h(z) = f and h(y) = g. We note that any such map factors
through Z, where Z C Fun(K, @) is the largest Kan complex contained in eX. Now, by classical homotopy
theory, the map h exists if and only if f and g belong to the same path component of Z. It is clear that this
holds if and only if f and g are equivalent when viewed as objects of the co-category Fun(K, @). O

We are now in a position to prove Proposition 1.2.7.3, which was asserted without proof in §1.2.7. We
first recall the statement.

Proposition. Let K be an arbitrary simplicial set.
(1) For every oo-category C, the simplicial set Fun(K, C) is an oo-category.

(2) Let @ — D be a categorical equivalence of co-categories. Then the induced map Fun(K, €) — Fun(K, D)
is a categorical equivalence.

(3) Let C be an oo-category, and K — K’ a categorical equivalence of simplicial sets. Then the induced
map Fun(K’, C) — Fun(K, C) is a categorical equivalence.

Proof. We first prove (1). To show that Fun(K, Q) is an oco-category, it suffices to show that it has the
extension property with respect to every inner anodyne inclusion A C B. This is equivalent to the assertion
that € has the right lifting property with respect to the inclusion A x K C B x K. But C is an co-category
and A x K C B x K is inner anodyne (Corollary 2.2.2.4).

Let hSeta denote the homotopy category of Seta, taken with respect to the Joyal model structure. For
each simplicial set X, we let [X] denote the same simplicial set, considered as an object of h8eta. For every
pair of objects X,Y € Seta, [X x Y] is a product for [X] and [Y] in hS8eta. This is a general fact when X
and Y are fibrant; in the general case, we choose fibrant replacements X — X’, Y — Y”, and apply the fact
that the canonical map X xY — X’ x Y’ is a categorical equivalence (Proposition 1.3.4.7).

If @ is an oo-category, then C is a fibrant object of Seta (Theorem 2.3.6.4). Proposition 1.3.4.7 allows us
to identify Homyget, ([X], [C]) with the set of equivalence classes of objects in the co-category Fun(X, €). In
particular, we have a canonical bijections

Hompser, ([X] x [K], [€]) ~ Hompset, (X x K], [C]) = Hompsers ([X], [Fun(E, €))).

It follows that [Fun(K, C)] is determined up to canonical isomorphism by [K] and [€] (more precisely, it is
an exponential [C]I¥] in the homotopy category hSeta ), which proves (2) and (3). O
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Our description of the Joyal model structure on Setn is different from the definition given in [31]. Namely,
Joyal defines a map f: A — B to be a weak categorical equivalence if, for every co-category €, the induced
map

hFun(B, €) — hFun(4, @)

is an equivalence (of ordinary categories). To prove that our definition agrees with his, it will suffice to prove
the following.

Proposition 1.3.4.8. Let f : A — B be a map of simplicial sets. Then f is a categorical equivalence if and
only if it is a weak categorical equivalence.

Proof. Suppose first that f is a categorical equivalence. If C is an arbitrary oo-category, Proposition 1.2.7.3
implies that the induced map Fun(B,C) — Fun(4,C) is a categorical equivalence, so that hFun(B,C) —
hFun(A4, @) is an equivalence of categories. This proves that f is a weak categorical equivalence.
Conversely, suppose that f is a weak categorical equivalence. We wish to show that f induces an
isomorphism in the homotopy category of Seta with respect to the Joyal model structure. It will suffice
to show that for any fibrant object C, f induces a bijection [B,C] — [A4, €], where [X, €] denotes the set
of homotopy classes of maps from X to €. By Proposition 1.3.4.7, [X, C] may be identified with the set
of isomorphism classes of objects in the category hFun(X, ). By assumption, f induces an equivalence of
categories hFun(B, €) — hFun(4, €), and therefore a bijection on isomorphism classes of objects. O

Remark 1.3.4.9. The proof of Proposition 1.2.7.3 makes use of Theorem 2.3.6.4, which asserts that the
(categorically) fibrant objects of Seta are precisely the co-categories. Joyal proves the analogous assertion
for his model structure in [31]. We remark that one cannot formally deduce Theorem 2.3.6.4 from Joyal’s
result, since we need Theorem 2.3.6.4 to prove that Joyal’s model structure coincides with the one we have
defined above. On the other hand, our approach does give a new proof of Joyal’s theorem.

Remark 1.3.4.10. Proposition 1.3.4.8 permits us to define the Joyal model structure without reference to
the theory of simplicial categories (this is Joyal’s original point of view [31]). Our approach is less elegant,
but allows us to easily compare the theory of co-categories with other models of higher category theory, such
as simplicial categories. There is another approach to obtaining comparison results, due to Toén. In [50], he
shows that if C is a model category equipped with a cosimplicial object C'® satisfying certain conditions, then
C is (canonically) Quillen equivalent to Rezk’s category of complete Segal spaces. Toén’s theorem applies in
particular when € is the category of simplicial sets, and C*® is the “standard simplex” C™ = A™. In fact,
Seta is in some sense universal with respect to this property, since it is generated by C'® under colimits and
the class of categorical equivalences is dictated by Toén’s axioms. We refer the reader to [50] for details.
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Chapter 2

Fibrations of Simplicial Sets

Many classes of morphisms which play an important role in the homotopy theory of simplicial sets can be
characterized by lifting properties (see §A.1.2).

Example 2.0.0.1. A morphism p : X — S of simplicial sets which has the right lifting property with respect
to every horn inclusion A} C A" is called a Kan fibration. A morphism ¢ : A — B which has the left lifting
property with respect to every Kan fibration is said to be anodyne.

Example 2.0.0.2. A morphism p : X — S of simplicial sets which has the right lifting property with
respect to every inclusion 9 A™ C A™ is called a trivial fibration. A morphism i : A — B has the left lifting
property with respect to every trivial Kan fibration if and only if it is a cofibration; that is, if and only if ¢
is a monomorphism of simplicial sets.

By definition, a simplicial set S is a co-category if it has the extension property with respect to all horn
inclusions A? C A™ with 0 < i < n. As in classical homotopy theory, it is convenient to introduce a relative
version of this condition.

Definition 2.0.0.3 (Joyal). A morphism f: X — S of simplicial sets is
e a left fibration if f has the right lifting property with respect to all horn inclusions A} C A", 0 < ¢ < n.
o a right fibration if f has the right lifting property with respect to all horn inclusions A? C A™, 0 < i < n.

e an inner fibration if f has the right lifting property with respect to all horn inclusions A} C A",
0<i<n.

A morphism of simplicial sets i : A — B is

o left anodyne if i has the left lifting property with respect to all left fibrations.

e right anodyne if i has the left lifting property with respect to all right fibrations.
e inner anodyne if i has the left lifting property with respect to all inner fibrations.

Remark 2.0.0.4. Joyal uses the terms mid-fibration and mid-anodyne morphism for what we have called
inner fibrations and inner anodyne morphisms.

The purpose of this chapter is to study the notions of fibration defined above, which are basic tools in the
theory of oo-categories. In §2.1, we study the theory of right (left) fibrations p : X — S, which can be viewed
as the oo-categorical analogue of categories (co)fibered in groupoids over S. There is also an analogue of the
more general theory of (co)fibered categories (not necessarily in groupoids): the theory of (co)Cartesian
fibrations, which we will introduce in §2.3. Cartesian and coCartesian fibrations are both examples of inner
fibrations, which we will study in §2.2.
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Remark 2.0.0.5. To help orient the reader, we summarize the relationship between many of the classes
of fibrations which we will study in this book. If f : X — § is a map of simplicial sets, then we have the
following implications:

f is a trivial fibration

ﬂ

f is a Kan fibration

—

f is a left fibration f is a right fibration
f is a coCartesian fibration f is a Cartesian fibration

\

f is a categorical fibration

ﬂ

f is an inner fibration.

In general, none of these implications is reversible.

Remark 2.0.0.6. The small object argument (Proposition A.1.2.5) shows that every map X — Z of
simplicial sets admits a factorization

X2y 4Lz
where p is anodyne (left anodyne, right anodyne, inner anodyne, a cofibration) and ¢ is a Kan fibration (left

fibration, right fibration, inner fibration, trivial fibration).

Remark 2.0.0.7. The theory of left fibrations (left anodyne maps) is dual to the theory of right fibrations
(right anodyne maps): a map S — T is a left fibration (left anodyne map) if and only if the induced map
S°P — T°P is a right fibration (right anodyne map). Consequently, we will generally confine our remarks in
§2.1 to the case of left fibrations; the analogous statements for right fibrations will follow by duality.
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2.1 Left Fibrations

In this section, we will study the class of left fibrations between simplicial sets. We begin in §2.1.1 with a
review of some classical category theory: namely, the theory of categories cofibered in groupoids (over another
category). We will see that the theory of left fibrations is a natural co-categorical generalization of this idea.
In §2.1.2 we will show that the class of left fibrations is stable under various important constructions, such
as the formation of slice co-categories.

It follows immediately from the definition that every Kan fibration of simplicial sets is a left fibration.
The converse is false in general. However, it is possible to give a relatively simple criterion for testing whether
or not a left fibration f : X — S is a Kan fibration. We will establish this criterion in §2.1.3 and deduce
some of its consequences.

The classical theory of Kan fibrations has a natural interpretation in the language of model categories:
amap p: X — S is a Kan fibration if and only if X is a fibrant object of (Seta),s, where the category
(8eta),s is equipped with its usual model structure. There is a similar characterization of left fibrations:
amap p: X — S is a left fibration if and only if X is a fibrant object of (Seta) s with respect to certain
model structure, which we will refer to as the covariant model structure. We will define the covariant model
structure in §2.1.4, and give an overview of its basic properties (postponing some of the proofs until §3).

2.1.1 Left Fibrations in Classical Category Theory

We commence our study of left fibrations by recalling the following definition from classical category theory:

Definition 2.1.1.1. Let F': € — D be a functor between categories. We say that C is cofibered in groupoids
over D if the following conditions are satisfied:

(1) For every object C' € € and every morphism 7 : F(C) — D in D, there exists a morphism 7 : C' — D
such that F(77) = .

(2) For every morphism 7 : C' — C’ in € and every object C" € €, the map
Home(C’, C”) — Home(C, C”) XHom,D(F(C)’F(CH)) HOHID (F(Cl), F(C”))
is bijective.

The theory of left fibrations should be regarded as an oco-categorical generalization of Definition 2.1.1.1.
As evidence for this assertion, we offer the following:

Proposition 2.1.1.2. Let F : C — D be a functor between categories. Then C is cofibered in groupoids over
D if and only if the induced map N(F) : N(C) — N(D) is a left fibration of simplicial sets.

Proof. Proposition 1.1.2.2 implies that N(F) is an inner fibration. It follows that N(F') is a left fibration if
and only if it has the right lifting property with respect to A C A™ for all n > 0. When n = 1, the relevant
lifting property is equivalent to (1) of Definition 2.1.1.1. When n = 2 (n = 3) the relevant lifting property
is equivalent to the surjectivity (injectivity) of the map described in (2). For n > 3, the relevant lifting
property is automatic (since a map A — S extends uniquely to A™ when S is isomorphic to the nerve of a
category). O

In classical category theory, there is an alternative way to understand a category € which is cofibered in
groupoids over another category D. Namely, for each object D € D, the inverse image Cp = € xp{D} is a
groupoid, which depends covariantly on D. Our next goal is to establish a similar picture in the co-categorical
setting.

We begin our analysis of a general left fibration p : X — S by considering the situation where S is a
point. In this case, Proposition 1.2.5.1 asserts that p is a left fibration if and only if X is a Kan complex.
Since the class of left fibrations is stable under pullback, we deduce that for any left fibration p : X — S and
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any vertex s of S, the fiber X; = X xg {s} is a Kan complex. Moreover, these Kan complexes are related
to one another. More precisely, suppose that f : s — s’ is an edge of the simplicial set S and consider the
inclusion i : Xy ~ X, x {0} C X, x Al In §2.1.2, we will prove that i is left anodyne (Corollary 2.1.2.6). It
follows that we can solve the lifting problem

«
{0} x X, 2 X
Al x X, —=Al—> g

Restricting the dotted arrow to {1} x X, we obtain a map f : Xy — Xy . Of course, f; is not unique, but
it is uniquely determined up to homotopy.

Lemma 2.1.1.3. Let q: X — S be a left fibration of simplicial sets. The assignment
s€ Sy — X,
fesi—f
determines a (covariant) functor from the homotopy category hS into the homotopy category H of spaces.

Proof. Let f : s — s’ be an edge of S. We note the following characterization of the morphism fi in H. Let K
be any simplicial set, and suppose given homotopy classes of maps 1 € Homg¢ (K, X;), 7' € Homg (K, X).
Then 1’ = fyon if and only if there exists a map p : K x A' — X such that g o p is given by the composition

KxAl—=AlL s

7 is the homotopy class of p|K x {0}, and 5’ is the homotopy class of p|K x {1}.
Now consider any 2-simplex o : A2 — S, which we will depict as

7N

We note that the inclusion X, x {0} C X, x A? is left-anodyne (Corollary 2.1.2.6). Consequently there
exists a map p : X, x A2 — X such that p|X, x {0} is the inclusion X, C X and g o p is the composition
X, x A2 = A2 % S, Then fi ~ p|X, x {1}, hy = p|X, x {2}, and the map p|X, x AL} verifies the
equation

u

w.

hy = gy o fi
in Homg (X, Xo). O

We can summarize the situation informally as follows. Fix a simplicial set S. To give a left fibration
q : X — S, one must specify a Kan complex X, for each “object” of S, a map fi : Xy — X, for each
“morphism” f :s — s’ of S, and “coherence data” for these morphisms for each higher-dimensional simplex
of S. In other words, giving a left fibration ought to be more or less the same thing as giving a functor from
S to the oco-category 8 of spaces. In §2.1.4, we will formulate a precise assertion to this effect (Theorem
2.1.4.7).

We close this section by establishing two simple properties of left fibrations, which were already used in
the proof of Proposition 1.2.4.3:

Proposition 2.1.1.4. Let p: C — D be a left fibration of co-categories, and let f : X — Y be a morphism
in C such that p(f) is an equivalence in D. Then f is an equivalence in C.
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Proof. Let g be a homotopy inverse to p(f) in D, so that there exists a 2-simplex of D depicted as follows:

Since p is a left fibration, we can lift this to a diagram

Y
7N

id
x— = . x

in C. Tt follows that go f ~ idx, so that f admits a left homotopy inverse. Since p(g) = 7 is an equivalence in
D, the same argument proves that g has a left homotopy inverse. This left homotopy inverse must coincide
with f, since f is a right homotopy inverse to g. Thus f and g are homotopy inverse in the co-category C,
so that f is an equivalence as desired. O

Proposition 2.1.1.5. Let p : € — D be a left fibration of co-categories, let Y be an object of C, and let
f:X — p(Y) be an equivalence in D. Then there exists a morphism f: X — Y in C such that p(f) = f
(automatically an equivalence, in view of Proposition 2.1.1.4).

Proof. Letg:p(Y) — X be a homotopy inverse to fin €. Since p is a left fibration, there exists a morphism
g:Y — X such that § = p(g). Since f and g are homotopy inverse to one another, there exists a 2-simplex
of D which we can depict as follows:

s
~
Q
=
|

idp(y)

p(Y) p(Y).

Applying the assumption that p is a left fibration once more, we can lift this to a diagram

which proves the existence of f. O

2.1.2 Stability Properties of Left Fibrations

The purpose of this section is to show that left fibrations of simplicial sets exist in abundance. Our main
results are Proposition 2.1.2.2 (which is our basic source of examples for left fibrations) and Corollary 2.1.2.8
(which asserts that left fibrations are stable under the formation of functor categories).

Let C be an oco-category, and let 8§ denote the co-category of spaces. One can think of a functor from €
to 8 as a “cosheaf of spaces” on €. By analogy with ordinary category theory, one might expect that the
basic example of such a cosheaf would be the cosheaf corepresented by an object C' of C; roughly speaking
this should be given by the functor

D — Mape(C, D).
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As we saw in §2.1.1, it is natural to guess that such a functor can be encoded by a left fibration € — C.
There is a natural candidate for C: the undercategory Cc,. Note that the fiber of the map

f:€Co—C

over the object D € C is the Kan complex HomIé(C’, D). We will show in a moment that f is a left fibration.
First, we need a lemma.

Lemma 2.1.2.1 (Joyal [31]). Let f : Ag C A and g : By C B be inclusions of simplicial sets. Suppose either
that f is right anodyne, or that g is left anodyne. Then the induced inclusion

iu@%*B)II(A*EﬂgA*B
Aop*xBg
is inner anodyne.
Proof. We will prove that h is inner anodyne whenever f is right anodyne; the other assertion follows by a
dual argument.

Consider the class of all morphisms f for which the conclusion of the lemma holds (for any inclusion g).
This class of morphisms is saturated; to prove that it contains all right-anodyne morphisms, it suffices to
show that it contains each of the inclusions f : A7 C A" for 0 < j < n. We may therefore assume that f is
of this form.

Now consider the collection of all inclusions g for which h is inner anodyne (where f is now fixed).
This class of morphisms is also saturated; to prove that it contains all inclusions, it suffices to show that

the lemma holds when g is of the form 0 A™ C A™. In this case, h can be identified with the inclusion
A;-”rmﬂ C A™T™*1 which is inner anodyne because 0 < j <n <n+m+ 1. O

Proposition 2.1.2.2 (Joyal). Suppose given a diagram of simplicial sets
KhcK2%x%s
where q is an inner fibration. Let r =qop: K — S, pg = p|Ko, and ro = r|Ky. Then the induced map

¢1Xp/—>Xp0/ Xs Sr/

ro/

s a left fibration.

Proof. After unwinding the definitions, this follows immediately from Lemma 2.1.2.1. O
We are now in a position to deduce half of Proposition 1.2.9.3:

Corollary 2.1.2.3 (Joyal). Let C be an oo-category and p : K — € an arbitrary diagram. Then the
projection C,, — € is a left fibration. In particular, Cp,, is itself an oo-category.

Proof. Apply Proposition 2.1.2.2 in the case where X =€, S=%, A=(, B=K. O
We can also give the proof of Proposition 1.2.4.3, which was stated without proof in §1.2.4.

Proposition. Let C be an oo-category, and ¢ : A — C a morphism of €. Then ¢ is an equivalence if and
only if, for every n > 2 and every map fo : A — € such that fo| A0V = ¢, there exists an extension of fo
to A™.

Proof. Suppose first that ¢ is an equivalence, and let fy be as above. To find the desired extension of fj, we
must produce the dotted arrow in the associated diagram

{O} 4>G/An72
7
e g lq
-
- ’

A14¢>6/0An—2.
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The projection map p : €,5an—2 — C is a right fibration (Proposition 2.1.2.2). Since ¢’ is a preimage of
¢ under p, Proposition 2.1.1.4 implies that ¢’ is an equivalence. Because ¢ is a right fibration (Proposition
2.1.2.2 again), the existence of the dotted arrow follows from Proposition 2.1.1.5.

We now prove the converse. Let ¢ : X — Y be a morphism in €, and consider the map AZ — € indicated
in the following diagram:

The assumed extension property ensures the existence of the dotted morphism ¢ : Y — X and a 2-simplex
o which verifies the identity ¥ o ¢ ~ idx. We now consider the map

T : Ag (-780@%0) C.

Once again, our assumption allows us to extend 7y to a 3-simplex 7 : A% — €, and the face do7 verifies the
identity ¢ o = idy. It follows that v is a homotopy inverse to ¢, so that ¢ is an equivalence in C. O

For future reference, we record the following counterpart to Proposition 2.1.2.2:

Proposition 2.1.2.4 (Joyal). Let m : S — T be an inner fibration, p : B — S a map of simplicial sets,
A C B a right anodyne inclusion, pg = p|A, p' =mop, and py = wopy = p'|A. Then the induced map

¢ :Sp; — Spyy KTy Ty
s a trivial fibration.

Proof. Consider the class of all cofibrations i : A — B for which ¢ is a trivial fibration for every inner
fibration p : S — T. It is not difficult to see that this is a saturated class of morphisms; thus, it suffices to
consider the case where A = A", B= A", for 0 <i<m.

Let ¢ : 9A™ — S}, be a map, and suppose given an extension of ¢poq to A™. We wish to find a compatible
extension of q. Unwinding the definitions, we are given a map

ro(Amx0A") [ (AP xA") - S
AT %0 An

which we wish to extend to A™ x A™ in a manner that is compatible with a given extension A™ % A™ — T
of the composite map 7 o r. The existence of such an extension follows immediately from the assumption
that p has the right lifting property with respect to the horn inclusion A7+t C Antm+1, O

The remainder of this section is devoted to the study of the behavior of left fibrations under exponenti-
ation. Our goal is to prove an assertion of the following form: if p : X — S is a left fibration of simplicial
sets, then so is the induced map X — SX for every simplicial set K (this is a special case of Corollary
2.1.2.8 below). This is an easy consequence of the following characterization of left anodyne maps, which is
due to Joyal:

Proposition 2.1.2.5 (Joyal [31]). The following collections of morphisms all generate the same saturated
class of morphisms of Seta:

(1) The collection Ay of all horn inclusions A C A™, 0 <i<n.

(2) The collection Ay of all inclusions

(Amx{o}) J[ @amxa)ycamxaAl
o A™x{0}
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(3) The collection Az of all inclusions

(8" x {0} JJ (sxA")cs xAl
Sx{0}

where S C S'.

Proof. Let S C S’ be as in (3). Working cell-by-cell on S’, we deduce that every morphism in A3 can be
obtained as an iterated pushout of morphisms belonging to As. Conversely, A, is contained in As, which
proves that they generate the same saturated collection of morphisms.

To proceed with the proof, we must first introduce a bit of notation. The (n + 1)-simplices of A™ x Al
are indexed by order-preserving maps

[n+1] —[0,...,n] x [0,1].

We let o), denote the map
m,0 tfm<k
oo (m) = (m,0) .
(m—-1,1) ifm>k.

We will also denote by oy the corresponding (n + 1)-simplex of A™ x Al. We note that {o)}o<k<n are
precisely the nondegenerate (n + 1)-simplices of A™ x Al.

We define a collection {X (k)}o<p<ni1 of simplicial subsets of A" x A® by descending induction on k.
We begin by setting

X(n+1)=(A"x{0}) J] @Aa"xAlh).
A" x{0}

Assuming that X (k+ 1) has been defined, we let X (k) C A™ x Al be the union of X (k+ 1) and the simplex
o) (together with all the faces of oy,). We note that this description exhibits X (k) as a pushout

X(k+1) [T A,
Aptt
and also that X (0) = A™ x Al. It follows that each step in the chain of inclusions
Xn+1)CX(n)C...CX(1)CX(0)

is contained in the class of morphisms generated by A;, so that the inclusion X (n + 1) C X (0) is generated
by Al.

To complete the proof, we show that each inclusion in Ay is a retract of an inclusion in As. More
specifically, the inclusion A} C A™ is a retract of

(A" x{o}) JT ArxAhcamxal
AT x{0}
so long as 0 < ¢ < n. We will define the relevant maps
A" L AT X A S AR

and leave it to the reader to verify that they are compatible with the relevant subobjects. The map j is
simply the inclusion A" ~ A" x {1} € A" x Al. The map r is induced by a map of partially ordered sets,
which we will also denote by r. It may be described by the formulae

(m, 0) m ifm#i+1
T m =
’ i ifm=i+1

r(m,1) =m.
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Corollary 2.1.2.6. Leti: A — A’ be left-anodyne, and let j : B — B’ be a cofibration. Then the induced
map
(AxB) [[ (A xB)— A" x B
AxB

is left-anodyne.

Proof. This follows immediately from Proposition 2.2.2.1, which characterizes the class of left-anodyne maps
as the class generated by As (which is stable under smash products with any cofibration). O

Remark 2.1.2.7. A basic fact in the homotopy theory of simplicial sets is that the analogue of Corollary
2.1.2.6 holds also for the class of anodyne maps of simplicial sets. Since the class of anodyne maps is generated
(as a saturated class of morphisms) by the class of left anodyne maps and the class of right anodyne maps,
this classical fact follows from Corollary 2.1.2.6 (together with the dual assertion concerning right anodyne
maps).

Corollary 2.1.2.8. Let p: X — S be a left-fibration, and let i : A — B be any cofibration of simplicial
sets. Then the induced map q : XB — XA xga SB is a left fibration. If i is left anodyne, then q is a trivial
fibration.

Corollary 2.1.2.9 (Homotopy Extension Lifting Property). Let p : X — S be a map of simplicial sets.
Then p is a left fibration if and only if the induced map

)(Al — x1 X {0} SAI
s a trivial fibration of simplicial sets.

For future use, we record the following criterion for establishing that a morphism is left anodyne:

Proposition 2.1.2.10. Let p: X — S be a map of simplicial sets, let s : S — X be a section of p, and let
h € Homg(X x A', X) be a (fiberwise) simplicial homotopy from s op = h|X x {0} to idx = h|X x {1}.
Then s is left anodyne.

Proof. Consider a diagram

s—>y

!
7/
/g

where ¢ is a left fibration. We must show that it is possible to find a map f rendering the diagram commu-
tative. Define Fy : (S x Al) [ {03 (X x {0}) to be the composition of g with the projection onto S. Now
consider the diagram

F
(S % AY) g0y (X x {0}) — —3Y
| wee
- q
//// "oh
X x Al J Z.

Since q is a left fibration and the left vertical map is left anodyne, it is possible to supply the dotted arrow
F as indicated. Now we observe that f = F|X x {1} has the desired properties. O

72



2.1.3 A Characterization of Kan Fibrations

Let p: X — S be a left fibration of simplicial sets. As we saw in §2.1.1, p determines for each vertex s of S a
Kan complex X, and for each edge f : s — s’ a map of Kan complexes fi : X; — X (which is well-defined
up to homotopy). If p is a Kan fibration, then the same argument allows us to construct a map Xy — X5,
which is a homotopy inverse to fi. The main goal of this section is to prove the converse: if every map f; is
a homotopy equivalence, then p is a Kan fibration (Proposition 2.1.3.4).

Lemma 2.1.3.1. Let p : S — T be a left fibration of simplicial sets. Suppose that S and T are Kan
complezes, and that p is a homotopy equivalence. Then p induces a surjection from Sy to Tp.

Proof. Fix a vertex t € Ty. Since p is a homotopy equivalence, there exists a vertex s € Sy and an edge e
joining p(s) to t. Since p is a left fibration, this edge lifts to an edge e’ : s — s’ in S. Then p(s’) =+t. O

Lemma 2.1.3.2. Let p : S — T be a left fibration of simplicial sets. Suppose that T is a Kan complez.
Then p is a Kan fibration.

Proof. We note that the projection S — %, being a composition of left fibrations S — T and T' — , is a left
fibration, so that S is also a Kan complex. Let A C B be an anodyne inclusion of simplicial sets. We must
show that the map p : SB — S4 xra T8 is surjective on vertices. Since S and T are Kan complexes, the
maps T8 — T4 and SB — S4 are trivial fibrations. It follows that p is a homotopy equivalence and a left
fibration. Now we simply apply Lemma 2.1.3.1. O

Lemma 2.1.3.3. Let p: S — T be a left fibration of simplicial sets. Suppose that for every vertex t € T,
the fiber Sy is contractible. Then p is a trivial fibration.

Proof. Tt will suffice to prove the analogous result for right fibrations (we do this in order to keep the notation
we use below consistent with that employed in the proof of Proposition 2.1.2.5).

Since p has nonempty fibers, it has the right lifting property with respect to the inclusion ) = 9 A C A,
Let n >0, f: 0A™ — S any map, and g : A™ — T an extension of po f. We must show that there exists
an extension f: A" — S with g=po f.

Pulling back via the map G, we may suppose that T = A™ and g is the identity map, so that S is an
oo-category. Let t denote the initial vertex of T. There is a unique map ¢’ : A® x A! — T such that
g |A™ x {1} = g and ¢'|A™ x {0} is constant at the vertex ¢.

Since the inclusion 9 A™ x {1} € OA™ x A! is right anodyne, there exists an extension f’ of f to
9 A™ x Al which covers ¢'| 9 A" x Al. To complete the proof, it suffices to show that we can extend f’ to
a map f’ : A" x Al — S (such an extension is automatically compatible with ¢’ in view of our assumptions
that T'= A™ and n > 0). Assuming this has been done, we simply define f= f’|A" x {1}.

Recall the notation of the proof of Proposition 2.1.2.5, and filter the simplicial set A™ x Al by the
simplicial subsets

X(n+1)C...C X(0)=A" x A",

We extend the definition of f’ to X(m) by a descending induction on m. When m = n + 1, we note that
X (n+1) is obtained from d A™ x A! by adjoining the interior of the simplex & A™ x {0}. Since the boundary
of this simplex maps entirely into the contractible Kan complex Sy, it is possible to extend f’ to X (n + 1).

Now suppose the definition of f’ has been extended to X (i 4+ 1). We note that X (i) is obtained from
X (i + 1) by pushout along a horn inclusion A?*' C A"+l If j > 0, then the assumption that S is an
oo-category guarantees the existence of an extension of f’ to X(i). When i = 0, we note that f’ carries
the initial edge of ¢ into the fiber S;. Since S; is a Kan complex, f’ carries the initial edge of oy to an
equivalence in S, and the desired extension of f’ exists by Proposition 1.2.4.3. O

Proposition 2.1.3.4. Let p : S — T be a left fibration of simplicial sets. The following conditions are
equivalent:

(1) The map p is a Kan fibration.
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(2) For every edge f :t — t in T, the map fi : Sy — Sy is an isomorphism in the homotopy category H
of spaces.

Proof. The implication (1) = (2) is classical. Assume (2). A map is a Kan fibration if and only if it is both a
right fibration and a left fibration; consequently, it will suffice to prove that p is a right fibration. According
to Corollary 2.1.2.9, it will suffice to show that

q: SAI — S{l} Xp{1y TAl

is a trivial fibration. Corollary 2.1.2.8 implies that ¢ is a left fibration. By Lemma 2.1.3.3, it suffices to show
that the fibers of ¢ are contractible.

Fix an edge f :t — t’ in T. Let X denote the simplicial set of sections of the projection S xp Al — Al,
where A! maps into T via the edge f. Consider the fiber ¢’ : X — S of q over the edge f. Since the ¢ and
¢’ have the same fibers (over points of ST x 1y TA" whose second projection is the edge f), it will suffice
to show that ¢’ is a trivial fibration for every choice of f.

Consider the projection r : X — S;. Since p is a left fibration, r is a trivial fibration. Because S; is
a Kan complex, so is X. Lemma 2.1.3.2 implies that ¢’ is a Kan fibration. We note that fi is obtained
by choosing a section of r and then composing with ¢’. Consequently, assumption (2) implies that ¢ is a
homotopy equivalence, and thus a trivial fibration, which completes the proof. O

Remark 2.1.3.5. Lemma 2.1.3.3 is an immediate consequence of Proposition 2.1.3.4, since any map between
contractible Kan complexes is a homotopy equivalence. Lemma 2.1.3.2 also follows immediately, since if T’
is a Kan complex, then its homotopy category is a groupoid, so that any functor hT — I carries edges of
T to invertible morphisms in K.

2.1.4 The Covariant Model Structure

In §2.1.2, we saw that a left fibration p : X — S determines a functor y from hS to the homotopy category
H, carrying each vertex s to the fiber Xg = X xg {s}. In this section, we will formulate a sharper version of
this result. Namely, we will show that p determines a (simplicial) functor €[S] — Seta, which reduces to x
after passing to homotopy categories. Moreover, this construction is in some sense invertible. To make this
idea precise, it is convenient to use the language of model categories. Let X denote the category of simplicial
functors from €[S] to Seta, which we will endow with the projective model structure defined in §A.3.3. We will
construct a model structure on the category (Seta),s and a left Quillen functor Stg : (Seta),s — X. We will
refer to this model structure on (8eta),s as the covariant model structure and to Sts as the straightening
functor. Our main results are that Stg induces a Quillen equivalence, and that the (covariantly) fibrant
objects of (Seta),s are precisely the left fibrations X — S. However, we will defer the proofs of both of
these results until §3.

Definition 2.1.4.1. Let S be a simplicial set. We will say that a map f: X — Y in (Seta) /g is a:
(C) covariant cofibration if it is a monomorphism of simplicial sets.

(W) covariant equivalence if the induced map
xI[s—-v*]]s
X Y
is a categorical equivalence.

(F) covariant fibration if it has the right lifting property with respect to every map which is both a covariant
cofibration and a covariant equivalence.

Proposition 2.1.4.2. Let S be a simplicial set. The covariant cofibrations, covariant equivalences, and
covariant fibrations determine a perfect model structure on (Seta)/s.
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Proof. Tt suffices to show that conditions (1), (2), and (3) of Proposition A.2.9.5 are met. We consider each
in turn:

(1) The class (W) of weak equivalences is perfect. This follows from Corollary A.2.9.4, since the functor
X — X9]]y S commutes with filtered colimits,

(2) It is clear that the class (C) of cofibrations is generated by a set. We must show that weak equivalences
are stable under pushouts by cofibrations. In other words, suppose we are given a pushout diagram

XLy

in (S8eta)s where i is a covariant cofibration and j is a covariant equivalence. We must show that j’ is
a covariant equivalence. We obtain a pushout diagram in Seta

X[y § —— V][ S

i |

X)) x S —= )1y, S

which is homotopy coCartesian, since the Joyal model structure is left-proper. Since the upper hor-
izontal map is a categorical equivalence, so it the bottom horizontal map; thus j’ is a contravariant
equivalence.

(3) We must show that a map p: X — Y in Seta, which has the right lifting property with respect to every
map in (C), belongs to (W). We note in that case that p is a trivial Kan fibration, and in particular
a categorical equivalence. We now conclude by observing that the functor X +— S]]y X* preserves
categorical equivalences.

O

We will refer to the model structure of Proposition 2.1.4.2 as the covariant model structure on (8eta)s-
We will prove later that the covariantly fibrant objects of (Seta ), s are precisely the left fibrations X — S
(Proposition 3.3.1.2). For the time being, we will be content to make a much weaker observation:

Proposition 2.1.4.3. Let S be a simplicial set.

(1) Ewery left anodyne map in (Seta),g is a trivial cofibration (with respect to the covariant model struc-
ture).

(2) Every covariant fibration in (Seta) s is a left fibration of simplicial sets.
(3) Every fibrant object of (Seta) s corresponds to a left fibration X — S.

Proof. The implications (1) = (2) = (3) are clear. Therefore it will suffice to prove (1). By general
nonsense, it suffices to prove the result for a generating left anodyne inclusion of the form A} C A", where
0 < ¢ < n. For this, it suffices to show that for any map A™ — S, the associated inclusion A} C A™ is a
trivial cofibration in (Seta)s. In other words, we must show that A? C A™ is a covariant equivalence, which

is equivalent to the assertion that
RN | EEON |
A7 A

is a categorical equivalence. We now observe that ¢ is a pushout of the inner anodyne inclusion Af:ll -

An—i—l
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Our next result expresses the idea that the covariant model structure on (Seta),s depends functorially
on S:

Proposition 2.1.4.4. Let j : S — S’ be a map of simplicial sets. Let ji : (Seta);s — (Seta)/s: be the
forgetful functor (given by composition with j), and let j* : (Seta), s — (Seta) /s be its right adjoint, which
is given by the formula

j*X/ =X’ X g1 S.

Then we have a Quillen adjunction

Ji
(SetA)/SZ*)(SetA)/S/
J

(with the covariant model structures). If j is a categorical equivalence, then (ji, j*) is a Quillen equivalence.

Proof. Tt is clear that j) preserves cofibrations. For X € (8eta)s, the pushout diagram

S S
X[ S —= X4 &

is a homotopy pushout (with respect to the Joyal model structure). Thus j preserves covariant equivalences.
It follows that (ji,7*) is a Quillen adjunction.

Now suppose that j is a categorical equivalence. We wish to show that (ji, 7*) is a Quillen equivalence. In
other words, we must show that for any X € (Seta),s and any fibrant object Y € (8eta)/s/, amap jX — Y
is a covariant equivalence in (Seta),g if and only if the adjoint map X — j*Y is a covariant equivalence in
(8eta);s/. We have a commutative diagram of simplicial sets

X1y S Xy 8
GY) ey S L= VI, 5.

We wish to show that the left vertical map is a categorical equivalence if and only if the right vertical
map is a categorical equivalence. It therefore suffices to show that both horizontal maps are categorical
equivalences. For the upper horiztonal map, this follows immediately from the assumption that j is a
categorical equivalence (since the Joyal model structure is left proper). We can factor the map f as

GV s L Gy s L ve]]s-
Y 3% %

The map f’ is a homotopy pushout of j, and therefore a categorical equivalence. According to Proposition
2.14.3, Y — S’ is a left fibration. Proposition 3.3.2.3 implies that j*Y — Y is a categorical equivalence,
which implies that f” is a categorical equivalence. O

Proposition 2.1.4.5. The category (Seta) s is a simplicial model category (with respect to the covariant
model structure and the natural simplicial structure).

Proof. We will deduce this from Proposition A.2.12.2. The only nontrivial point is to verify that for any
X € (8eta)/s, the projection X x A™ — X is a covariant equivalence. But this map has a section X x {0} —
X x A™ which is left anodyne and therefore a covariant equivalence (Proposition 2.1.4.3). O
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Our next goal is to describe the relationship between left fibrations X — S and diagrams S — 8. To
facilitate comparison with the results of §3, we will work instead with right fibrations. Note that all of the
definitions and results above have obvious dual versions obtained by passing to opposite co-categories; in
particular, for every simplicial set .S we can also define the contravariant model structure on (Seta) s, whose
fibrant objects are right fibrations over S.

Fix a simplicial set S, a simplicial category € and a functor ¢ : €[S]°? — C. Given an object X € (Seta)/s,
let v denote the cone point of X”. We may view simplicial category

¢=exr IJ e
e[x]er
as a correspondence from {v} to €, which we may identify with a simplicial functor
Sty X : C — Seta .
This functor may be described by the formula
(St5X)(C) = Mape: (v, C).

We may regard Sty as a functor from (Seta)/g to (8eta)®. We refer to Sty as the straightening functor
associated to ¢. In the special case where € = €[S]°? and ¢ is the identity map, we will write Stg instead
of St¢.

Example 2.1.4.6. Let S = A°. Then we may regard Stg as a functor from the category of simplicial sets
to itself. Unwinding the definition, we see that StgX = |X|ge, where Q°® is the cosimplicial object of Seta
defined in §1.3.2.

By the adjoint functor theorem (or by direct construction), the straightening functor St, associated to
¢ : €[S]°P — C has a right adjoint, which we will denote by Un, and refer to as the unstraightening functor.

Theorem 2.1.4.7. Let S be a simplicial set, C a simplicial category, and ¢ : €[S]°P — € a simplicial functor.
The straightening and unstraightening functors determine a Quillen adjunction
Sty
(SetA)/S<:>(SetA)e ,
U’n(p

where (Seta),s is endowed with the contravariant model structure and (Seta)® with the projective model
structure. If ¢ is an equivalence of simplicial categories, then (Stg,Ung) is a Quillen equivalence.

We will give a proof of Theorem 2.1.4.7 in §3, after establishing a more refined correspondence in the
setting of marked simplicial sets (see Theorem 3.3.1.1).
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2.2 Inner Fibrations

In this section, we will study the theory of inner fibrations between simplicial sets. The condition that a
map f : X — S be an inner fibration has no counterpart in classical category theory: Proposition 1.1.2.2
implies that every functor between ordinary categories € — D induces an inner fibration N(€) — N(D).

In the case where S is a point, a map p : X — S is an inner fibration if and only if X is an oco-category.
Moreover, the class of inner fibrations is stable under base change: if

X —X

S —S5

is a pullback diagram of simplicial sets and p is an inner fibration, then so is p’. It follows that if p: X — S
is an arbitrary inner fibration, then each fiber X, = X xg {s} is an oco-category. We may therefore think of
p as encoding a family of co-categories parametrized by S. However, the fibers X, depend functorially on s
only in a very weak sense.

Example 2.2.0.1. Let F : C — €' be a functor between ordinary categories. Then the map N(C) — N(€')
is an inner fibration. Yet the fibers N(€)c = N(F~1(C)) and N(€)p = N(F~1(D)) over objects C, D € €’
can have wildly different properties, even if C' and D are isomorphic objects of €.

In order to describe how the different fibers of an inner fibration are related to one another, we will intro-
duce the notion of a correspondence between co-categories. We review the classical theory of correspondences
in §2.2.1, and explain how to generalize this theory to the co-categorical setting.

In §2.2.2, we will prove that the class of inner anodyne maps is stable under smash products with arbitrary
cofibrations between simplicial sets. As a consequence, we will deduce that the class of inner fibrations (and
hence the class of oo-categories) is stable under the formation of mapping spaces.

In §2.2.3, we will study the theory of minimal inner fibrations, a generalization of Quillen’s theory
of minimal Kan fibrations. In particular, we will define a class of minimal oco-categories and show that
every oo-category C is (categorically) equivalent to a minimal oo-category €', where € is well-defined up
to (noncanonical) isomorphism. We will apply this theory in §2.2.4, to obtain a description of the class of
oo-categories which are equivalent to n-categories (see §1.2.17).

2.2.1 Correspondences

Let € and €' be categories. A correspondence from € to € is a functor
M :CP x € — Set.

If M is a correspondence from C to €', we can define a new category Cx™ €’ as follows. An object of C+M €’
is either an object of € or an object of €’. For morphisms, we take

Home(X,Y) if X, Y €@
Home (X,Y) if X, Y €€
M(X,Y) ifXeCYed
0 ifXecl,yee.

HOIIl@ *M @/ (X, Y) =

Composition of morphisms is defined in the obvious way, using the composition laws in € and €', and the
functoriality of M(X,Y) in X and Y.

Remark 2.2.1.1. In the special case where F : €% x €' — 8Set is the constant functor taking the value ,
the category €« €’ coincides with the ordinary join C% €.
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For any correspondence M : C — €', there is an obvious functor F : Cx™ €’ — [1] (here [1] denotes
the linearly ordered set {0,1}, regarded as a category in the obvious way), uniquely determined by the
condition that F~1{0} = € and F~1{1} = €. Conversely, given any category M equipped with a functor
F : M — [1], we can define € = F~1{0}, ¢’ = F~1{1}, and a correspondence M : € — € by the formula
M(X,Y) = Homy(X,Y). We may summarize the situation as follows:

Fact 2.2.1.2. Gwing a pair of categories C, €' and a correspondence between them is equivalent to giving a
category M equipped with a functor M — [1].

Given this reformulation, it is clear how to generalize the notion of a correspondence to the co-categorical
setting.

Definition 2.2.1.3. Let € and €' be oo-categories. A correspondence from € to € is a oo-category M
equipped with a map F : M — A! and identifications € ~ F~1{0}, ¢’ ~ F~1{1}.

Remark 2.2.1.4. Let C and €’ be oco-categories. Fact 2.2.1.2 generalizes to the oo-categorical setting in
the following way: there is a canonical bijection between equivalence classes of correspondences from € to
€" and equivalence classes of functors € x €' — §, where § denotes the oo-category of spaces. In fact, it is
possible to prove a more precise result (a Quillen equivalence between certain model categories), but we will
not need this.

To understand the relevance of Definition 2.2.1.3, we note the following:

Proposition 2.2.1.5. Let C be an ordinary category, and let p : X — N(C) be a map of simplicial sets.
Then p is an inner fibration if and only if X is an oo-category.

Proof. This follows from the fact that any map A? — N(C), 0 < i < n, admits a unique extension to A™. [

It follows readily from the definition that an arbitrary map of simplicial sets p : X — S is an inner
fibration if and only if the fiber of p over any simplex of S is an co-category. In particular, an inner fibration
p associates to each vertex s of S an oco-category X,, and to each edge f : s — s’ in S a correspondence
between the oo-categories Xy and X . Higher dimensional simplices give rise to what may be thought of as
compatible “chains” of correspondences.

Roughly speaking, we might think of an inner fibration p : X — S as a functor from S into some
kind of oco-category of oco-categories, where the morphisms are given by correspondences. However, this
description is not quite accurate, since the correspondences are required to “compose” only in a weak sense.
To understand the issue, let us return to the setting of ordinary categories. If € and € are two categories,
then the correspondences from € to €’ themselves constitute a category, which we may denote by M (€, €").
There is a natural “composition” defined on correspondences. If we view an object F' € M (€, €) as a functor
CP x €' — 8et, and G € M(C',€"), then we can define (G o F)(C,C") to be the coend

/ F(C,C') x G(C, C™).
Cc’ee’

If we view F as determining a category €+ €' and G as determining a category € «¢ €”, then Cx%°F "
is obtained by forming the pushout
ex"e)JJEe e
Y
and then discarding the objects of €.

Now, giving a category equipped with a functor to [2] is equivalent to giving a triple of categories €, €,
€”, together with correspondences F € M (@, €"), G € M(C',€"), H € M(C,C") and amap a: Go F — H.
But the map « need not be an isomorphism. Consequently, the above data cannot literally be interpreted
as a functor from [2] into a category (or even a higher category) in which the morphisms are given by
correspondences.
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If € and €’ are categories, then a correspondence from € to €’ can be regarded as a kind of generalized
functor from @€ to €. More specifically, for any functor f : € — €, we can define a correspondence M ¢ by

the formula
My(X,Y) = Home (f(X),Y).

This construction gives a fully faithful embedding Mape,,(C,€") — M(C,€"). Similarly, any functor g :
€' — @ determines a correspondence M, given by the formula M,(X,Y) = Home(X, g(Y)); we observe that
My ~ M, if and only if the functors f and g are adjoint to one another.

If an inner fibration p : X — S corresponds to a “functor” from S to a higher category of oco-categories
with morphisms given by correspondences, then some special class of inner fibrations should correspond to
functors from S into an co-category of co-categories with morphisms given by actual functors. This is indeed
the case, and the appropriate notion is that of a (co)Cartesian fibration which we will study in §2.3.

2.2.2 Stability Properties of Inner Fibrations

Let € be an oco-category and K an arbitrary simplicial set. In §1.2.7, we asserted that Fun(K, Q) is an
oo-category (Proposition 1.2.7.3). In the course of the proof, we invoked certain stability properties of the
class of inner anodyne maps. The goal of this section is to establish the required properties, and deduce
some of their consequences. Our main result is the following analogue of Proposition 2.1.2.5:

Proposition 2.2.2.1 (Joyal [31]). The following collections all generate the same class of morphisms of
Seta:

(1) The collection Ay of all horn inclusions A C A™, 0 <i < n.

(2) The collection Ay of all inclusions

(A" x A} ] (@A™ x A% CA™ x A%
DA™ X A2

(3) The collection Az of all inclusions

(8" x A} ] (Sx A% C 8 xA?
SxA2

where S C 5.

Proof. We will employ the strategy that we used to prove Proposition 2.1.2.5, though the details are slightly
more complicated. Working cell-by-cell, we conclude that every morphism in Ag belongs to the saturated
class of morphisms generated by As. We next show that every morphism in A; is a retract of a morphism
belonging to As. More precisely, we will show that for 0 < ¢ < n, the inclusion A7 C A" is a retract of the
inclusion
(A" x A7) ] (A} x A%) C A" x A%,
AT X A2

To prove this, we embed A™ into A™ x A? via the map of partially ordered sets s : [n] — [n] x [2] given by

(7,0) ifj<i
s() =3 (1) ifj=i
(j,2) ifj>i.

and consider the retraction A™ x A2 — A™ given by the map

7 [n] x [2] = [n]
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i oifj<i k=0
r(j. k) =1 j ifj>ik=2

i otherwise.

We now show that every morphism in As is inner anodyne (that is, it lies in the saturated class of
morphisms generated by A;). Choose m > 0. For each 0 <1i < j < m, we let 0;; denote the (m+ 1)-simplex
of A™ x A? corresponding to the map

fij o [m+1] — [m] x [2]

(k,0) if0<k<i
i) =S (k=1,1) ifi+1<k<j+1
(k—1,2) ifj+2<k<m+1.

For each 0 <i < j <m, we let 7;; denote the (m + 2)-simplex of A™ x A? corresponding to the map
gij : [m+ 2] — [m] x [2]

(k,0) ifo<k<i
gij(k) =< (k—1,1) ifi+1<k<j+1
(k—2,2) ifj+2<k<m+2

Let X(0) = (A™ x A%)]_[meA%(aAm x A?%). For 0 < j < m, we let
X(]+1) :X(j)UO'ojU...UO'jj.
We have a chain of inclusions
X(]) QX(j)Uaoj c... CX(j)UO’OjU...UO'jj :X(j+1),

each of which is a pushout of a morphism in A; and therefore inner anodyne. It follows that each inclusion
X(j) € X(j+1). Set Y(0) = X(m), so that the inclusion X(0) C Y (0) is inner anodyne. We now set
Y(i+1)=Y({)Ur; U...UT;; for 0 < j < m. As before, we have a chain of inclusions

Y CY(y)Um; C€...CY;Ur;U...UT;; =Y(j+1)

each of which is a pushout of a morphism belonging to A;. It follows that each inclusion Y (j) C Y (j + 1)
is inner anodyne. By transitivity, we conclude that the inclusion X (0) C Y (m + 2) is inner anodyne. We
conclude the proof by observing that Y (m + 2) = A™ x A2, O

Corollary 2.2.2.2 (Joyal [31]). A simplicial set C is an co-category if and only if the restriction map
Fun(A?, €) — Fun(A?%, C)
s a trivial fibration.

Proof. By Proposition 2.2.2.1, € — x* is an inner fibration if and only if S has the extension property with
respect to each of the inclusions in the class A,. O

Remark 2.2.2.3. In §1.1.2, we asserted that the main function of the weak Kan condition on a simplicial
set C is that it allows us to compose the edges of €. We can regard Corollary 2.2.2.2 as an affirmation of this
philosophy: the class of co-categories C is characterized by the requirement that one can compose morphisms
in €, and the composition is well-defined up to a contractible space of choices.
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Corollary 2.2.2.4 (Joyal [31]). Leti: A — A’ be an inner anodyne map of simplicial sets, and letj : B — B’
be a cofibration. Then the induced map

(AxB) [] (A xB)— A" x B
AXxXB

is inmer anodyne.

Proof. This follows immediately from Proposition 2.2.2.1, which characterizes the class of inner anodyne
maps as the class generated by As (which is stable under smash products with any cofibration). O

Corollary 2.2.2.5 (Joyal [31]). Letp: X — S be an inner fibration, and let i : A — B be any cofibration
of simplicial sets. Then the induced map q : XB — X4 xga SB is an inner fibration. If i is inner anodyne,
then q is a trivial fibration. In particular, if X is a co-category, then so is X B for any simplicial set B.

2.2.3 Minimal Fibrations

One of the aims of homotopy theory is to understand the classification of spaces up to homotopy equivalence.
In the setting of simplicial sets, Quillen’s theory of minimal models provides an attractive reformulation of the
problem. More precisely, this theory introduces the notion of a minimal Kan complex. Every Kan complex
X is homotopy equivalent to a minimal Kan complex, and a map X — Y of minimal Kan complexes is a
homotopy equivalence if and only if it is an isomorphism. Consequently, the classification of Kan complexes
up to homotopy equivalence is equivalent to the classification of minimal Kan complexes up to isomorphism.
Of course, in practical terms, this is not of much use for solving the classification problem. Nevertheless,
the theory of minimal Kan complexes (and, more generally, minimal Kan fibrations) is a useful tool in the
homotopy theory of simplicial sets. The purpose of this section is to describe a generalization of the theory
of minimal models, in which Kan fibrations are replaced by inner fibrations. An exposition of this theory
can also be found in [31].
We begin by introducing a bit of terminology. Suppose given a commutative diagram

A—>X

1
i 0|
/

B—=g

of simplicial sets where p is an inner fibration, and suppose also that we have a pair f,f’ : B — X of
candidates for the dotted arrow which render the diagram commutative. We will say that f and f’ are
homotopic relative to A over S if they are equivalent when viewed as objects in the co-category given by the
fiber of the map
XB o XA xga S

Equivalently, f and f’ are homotopic relative to A over S if there exists a map F : B x A — X such that
FIBx{0}=f, FIBx{l1}=f',poF =vong, Fo(ixida1) =uoma, and F|{b} x Al is an equivalence
in the oo-category X, ) for every vertex b of B.

Definition 2.2.3.1. Let p : X — S be an inner fibration of simplicial sets. We will say that p is minimal if
f = [ for every pair of maps f, f' : A" — X which are homotopic relative to d A™ over S.
We will say that an co-category € is minimal if the associated inner fibration € — * is minimal.

Remark 2.2.3.2. In the case where p is a Kan fibration, Definition 2.2.3.1 recovers the usual notion of a
minimal Kan fibration. We refer the reader to [21] for a discussion of minimal fibrations in this more classical
setting.

82



Remark 2.2.3.3. Let p : X — A™ be an inner fibration. Then X is an oo-category. Moreover, p is a
minimal inner fibration if and only if X is a minimal co-category. This follows from the observation that
for any pair of maps f, f/ : A™ — X, a homotopy between f and f’ is automatically compatible with the
projection to A™.

Remark 2.2.3.4. If p: X — S is a minimal inner fibration and T" — S is an arbitrary map of simplicial
sets, then the induced map Xp = X xgT — T is a minimal inner fibration. Conversely, if p: X — S is an
inner fibration and if X xgA"™ — A" is minimal for every map o : A™ — S, then p is minimal. Consequently,
for many purposes the study of minimal inner fibrations reduces to the study of minimal co-categories.

Lemma 2.2.3.5. Let C be a minimal co-category, and let f : C — € be a functor which is homotopic to the
identity. Then f is a monomorphism of simplicial sets.

Proof. Choose a homotopy h : Al x € — € from ide to f. We prove by induction on n that the map f
induces an injection from the set of n-simplices of € to itself. Let 0,0’ : A™ — € be such that foo = foo’.
By the inductive hypothesis, we deduce that o| 9 A™ = ¢'| 9 A™ = 5. Consider the diagram

(A2 x DA™ [Tpz.0 an (A3 x A™) e

—
—
—

AZ x A"

where Go|A3 x A™ is given by amalgamating h o (ida1 X&) with ho (ida1 xo’), and Go|AZ x 9 A™ is given
by the composition

A?x QA" - Al xdA" B A xe L.
Since h|A! x {X} is an equivalence for every object X € €, Proposition 2.3.1.8 implies the existence of the

map G indicated in the diagram. The restriction G|A! x A™ is a homotopy between o and ¢’ relative to
O A™. Since € is minimal, we deduce that o = o’. O

Lemma 2.2.3.6. Let C be a minimal co-category, and let f : C — € be a functor which is homotopic to the
identity. Then f is an isomorphism of simplicial sets.

Proof. Choose a homotopy h : Al x € — € from ide to f. We prove by induction on n that the map f
induces a bijection from the set of n-simplices of C to itself. The injectivity follows from Lemma 2.2.3.5, so
it will suffice to prove the surjectivity. Choose an n-simplex o : A™ — €. By the inductive hypothesis, we
may suppose that o| 9 A™ = f o g{, for some map of, : 9 A™ — €. Consider the diagram

(A 5 DA™ [T 1y an ({1} x A7) “ e

—

—
—
—

Al x A™,

where Go|A! x 9 A™ = ho (ida1r xo})) and Go|[{1} x A™ = o. If n > 0, then the existence of the map G as
indicated in the diagram follows from Proposition 2.3.1.8; if n = 0 it is obvious. Now let o/ = G|{0} x A™.
To complete the proof, it will suffice to show that f oo’ =o.

Consider now the diagram

n n Ho
(A§ x A )HA%x@An(AQX@A ) —— C
N
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where Ho| AL x A" = ho (idar xo”), Ho|A1H2H x A" = G, and Hy|(A% x d A™) given by the composition
A2 X OA" — Al x oA B Al xe e,

The existence of the dotted arrow H follows once again from Proposition 2.3.1.8. The restriction H|A2} x
A™ is a homotopy from f o ¢’ to o relative to & A™. Since € is minimal, we conclude that f oo’ = o as
desired. O

Proposition 2.2.3.7. Let f : C — D be an equivalence of minimal co-categories. Then f is an isomorphism.

Proof. Since f is a categorical equivalence, it admits a homotopy inverse g : D — €. Now apply Lemma
2.2.3.6 to the compositions f o g and go f. O

The following result guarantees a good supply of minimal co-categories:

Proposition 2.2.3.8. Let p: X — S be a inner fibration of simplicial sets. Then there exists a retraction
r: X — X onto a simplicial subset X' C X with the following properties:

1) The restriction p| X’ : X' — S is a minimal inner fibration.

3) The map r is homotopic over S to idx relative to X'.

(
(
(
(

)

2) The retraction r is compatible with the projection p, in the sense that por = p.
)
)

4) For every map of simplicial sets T — S, the induced inclusion X' xg T C X xg T is a categorical

equivalence.

Proof. For every n > 0, we define a relation on the set of n-simplices of X: given two simplices o, 0’ :
A" — X, we will write 0 ~ ¢’ if o is homotopic to ¢’ relative to 8 A™. We note that o ~ ¢’ if and only if
o| 0 A™ = ¢’'| 0 A™ and o is equivalent to o’ where both are viewed as objects in the oo-category given by a
fiber of the map

XAW/ — XBA" X goan SAn
Consequently, ~ is an equivalence relation.

Suppose that o and ¢’ are both degenerate, and o ~ ¢’. From the equality 0| 9 A™ = ¢’| 9 A™ we deduce
that o = ¢’. Consequently, there is at most one degenerate n-simplex of X in each ~-class. Let Y(n) C X,
denote a set of representatives for the ~-classes of n-simplices in X, which contains all degenerate simplices.
We now define the simplicial subset X’ C X recursively as follows: an n-simplex o : A™ — X belongs to X'
if 0 € Y(n) and o| 9 A™ factors through X’.

Let us now prove (1). To show that p|X’ is an inner fibration, it suffices to prove that every lifting
problem of the form

Agl g X/

]

AY ——§

with 0 < ¢ < n has a solution f in X’. Since p is an inner fibration, this lifting problem has a solution
o’ : A" — X in the original simplicial set X. Let o = d;o : A" ! — X be the induced map. Then
ob| 0 A™~1 factors through X’. Consequently, o is homotopic over S, relative to & A"~! to some map
op: A1 — X', Let go : A x A" — X be a homotopy from o)) to 0¢, and let g; : Al x A" — X be
the result of amalgamating gg with the identity homotopy from s to itself. Let o1 = g1|{1} x O A™. Using
Proposition 2.3.1.8, we deduce that g; extends to a homotopy from ¢’ to some other map ¢” : A" — X
with ¢”| 9 A™ = 1. It follows that ¢” is homotopic over S relative to 9 A™ to a map o : A™ — X with the
desired properties. This proves that p|X’ is an inner fibration. It is immediate from the construction that
p| X’ is minimal.
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We now verify (2) and (3) by constructing a map h : X x Al — X such that h|X x {0} is the identity,
h|X x {1} is a retraction r : X — X with image X', and h is a homotopy over S and relative to X’. Choose
an exhaustion of X by a transfinite sequence of simplicial subsets

X' =x°cx'c...

where each X¢ is obtained from

x<o=Jx”"
B<a
by adjoining a single nondegenerate simplex, if such a simplex exists. We construct h, = h|X® x Al

by induction on «. By the inductive hypothesis, we may suppose that we have already defined h., =
h|X<* x Al If X = X<, then we are done. Otherwise, we can write X* = X <*][, . A" corresponding
to some nondegenerate simplex 7 : A" — X, and it suffices to define ho|A™ x Al. If 7 factors through X',
we define ho|A™ x Al to be the composition

A" x Al - A" 2 X,

Otherwise, we use Proposition 2.3.1.8 to deduce the existence of the dotted arrow A’ in the diagram

(Tyh<a)
(A" x {0}) [Ty an x oy (O A™ X Al) = ——=X
ho _ - - = -
- P
A" x Al T i S.

Let 7/ = R/|A™ x {1}. Then 7'|9 A" factors through X’. It follows that there is a homotopy h” : A™ x
A2} X from 7/ to 7/, which is over S and relative to d A™, and such that 7 factors through X’. Now
consider the diagram

n n Ho
(A XA%)HaAnfo(aA x A?) —= X
| S
A= P
A" x A2 T S

where Ho|A™ x A1 = /) Ho|A™ x ATM2 = B and Ho| 0 A™ x A? is given by the composition
A" x A2 — A" x A= X

Using the fact that p is an inner fibration, we deduce that there exists a dotted arrow H rendering the
diagram commutative. We may now define ho|A™ x Al = H|A™ x A{0:2} it is easy to see that this extension
has all the desired properties.

We now prove (4). Using Proposition 3.2.2.8, we can reduce to the case where T'= A™. Without loss of
generality, we can replace S by T'= A", so that X and X’ are oo-categories. The above constructions show
that r : X — X’ is a homotopy inverse of the inclusion i : X’ — X, so that 4 is an equivalence as desired. [

We conclude by recording a property of minimal co-categories which makes them very useful for certain
applications.

Proposition 2.2.3.9. Let C be a minimal co-category, and let o : A™ — C be an n-simplex of C such that
0’|A{i’i+1} =idc : C — C is a degenerate edge. Then o = s;00 for some og : A"~ — C.
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Proof. We work by induction on n. Let 09 = d;110 and let ¢’ = s;00. We will prove that ¢ = ¢’. Our first
goal is to prove that 0| 9 A™ = ¢’| 9 A™; in other words, that djo = djo’ for 0 < j <mn. If j =i+ 1 this is
obvious; if j ¢ {i,7+ 1} then it follows from the inductive hypothesis. Let us consider the case ¢ = j, and set
o1 = d'o. We need to prove that op = ;. The argument above establishes that oo| A"~ ! = 1|9 A"~ L.
Since € is minimal, it will suffice to show that oy and oy are homotopic relative to 9 A®~!. We now observe
that
(57,_10'0, Sn—200,.--, Si+10'0, 0,5, -101,..., 500'1)

provides the desired homotopy A"~! x Al — €.

Since o and ¢’ coincide on  A™, to prove that ¢ = ¢’ it will suffice to prove that o and ¢’ are homotopic
relative to 9 A™. We now observe that

/ / /
(SnO' gy Si420 ,8,0 ,8;0,8;_10,..., 800')
is a homotopy A™ x A! — € with the desired properties. O

We can interpret Proposition 2.2.3.9 as asserting that in a minimal co-category €, composition is “strictly
unital”. For example, in the special case where n = 2 and 7 = 1, Proposition 2.2.3.9 asserts that if f : X — Y
is a morphism in an co-category C, then f is the unique composition idy of.

2.2.4 A Characterization of n-Categories

In this section, we will combine the theory of n-categories ( §1.2.17) with the theory of minimal co-categories
( §2.2.3) to obtain a characterization of the class of co-categories which are equivalent to n-categories. First,
we need a definition from classical homotopy theory.

Definition 2.2.4.1. Let £ > —1 be an integer. A Kan complex X is k-truncated if, for every i > k and
every point x € X, we have
mi(X, x) = *.

By convention, we will also say that X is (—2)-truncated if X is contractible.

Remark 2.2.4.2. If X and Y are homotopy equivalent Kan complexes, then X is k-truncated if and only
if Y is k-truncated. In other words, we may view k-truncatedness as a condition on objects in the homotopy
category H of spaces.

Example 2.2.4.3. A Kan complex X is (—1)-truncated if it is either empty or contractible. It is O-truncated
if the natural map X — mpX is a homotopy equivalence (equivalently, X is O-truncated if it is homotopy
equivalent to a discrete space).

Proposition 2.2.4.4. Let C be an oo-category and n > —1. The following conditions are equivalent:
(1) There exists a minimal model C' C € such that € is an n-category.
(2) There exists a categorical equivalence D — €, where D is an n-category.
(3) For every pair of objects X, Y € C, the mapping space Mape(X,Y) € H is (n — 1)-truncated.

Proof. It is clear that (1) implies (2). Suppose next that (2) is satisfied; we will prove (3). Without loss of
generality, we may replace C by D and thereby assume that C is an n-category. If n = —1, the desired result
follows immediately from Example 1.2.17.2. Choose m > n and an element n € m,,(Mape(X,Y), f). We
can represent 1 by a commutative diagram of simplicial sets

oA —{f}

]

A™ —> HomE (X, Y).
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We can identify s with a map A™*+! — € whose restriction to d A™*! is specified. Since € is an n-category,
the inequality m + 1 > n shows that s is uniquely determined. This proves that m,,(Mape(X,Y), f) =~ *, so
that (3) is satisfied.

To prove that (3) implies (1), it suffices to show that if € is a minimal oo-category which satisfies (3),
then C is an n-category. We must show that the conditions of Definition 1.2.17.1 are satisfied. The first
of these conditions follows immediately from the assumption that € is minimal. For the second, we must
show that if m > n and f, f' : 9 A™ — C are such that f|O0A™ = f/|0A™, then f = f’. Since € is
minimal, it suffices to show that f and f’ are homotopic relative to 9 A™. We will prove that there is a map
g: A™tl — Csuch that dy,p19 = f, dmg = f', and d;g = d;Spn f = dism f' for 0 < i < m. Then the sequence
(sof,s1f,--s8m-1f,g) determines a map A™ x Al — € which gives the desired homotopy between f and
f! (relative to 9 A™).

To produce the map g, it suffices to solve the lifting problem depicted in the diagram

aAm-H Le
7

7
Ve
e
7

Aerl
Choose a fibrant simplicial category D and an equivalence of co-categories € — N(D). According to Propo-
sition A.2.4.1, it will suffice to prove that we can solve the associated lifting problem

oA+ p

7
Ve
j G/
Ve
-

clam™H.
Let X denote the initial vertex of A™*1, considered as an object of €[d A™*1], and Y the final vertex. Note
that Gy determines a map
eo s DA™ Map@[c’)Am+1](X7 Y) = Mapq (Go(X), Go(Y))
and that giving the desired extension G is equivalent to extending ey to a map
e: (AN)™ ~ Mapgam+1)(X,Y) — Mapsp (Go(X), Go(Y)).

The obstruction to constructing e lies in m,;,—1(Mapp (Go(X),Go(Y)),p) for an appropriately chosen base
point p. Since (m — 1) > (n — 1), condition (3) implies that this homotopy set is trivial, so that the desired
extension can be found. O

Corollary 2.2.4.5. Let X be a Kan complex. Then X is (categorically) equivalent to an n-category if and
only if it is n-truncated.

Proof. For n = —2 this is obvious. If n > —1, this follows from characterization (3) of Proposition 2.2.4.4
and the following observation: a Kan complex X is m-truncated if and only if, for every pair of vertices
z,y € Xp, the Kan complex

{a} xx X2 xx {y}
of paths from z to y is (n — 1)-truncated. O

Corollary 2.2.4.6. Let C be an oco-category and K a simplicial set. Suppose that, for every pair of objects
C,D € @, the space Mape(C, D) is n-truncated. Then the oco-category Fun(K, C) has the same property.

Proof. This follows immediately from Proposition 2.2.4.4 and Corollary 1.2.17.8, since the functor
C+— Fun(K, @)

preserves categorical equivalences between co-categories. O
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2.3 Cartesian Fibrations

Let p : X — S be an inner fibration of simplicial sets. Each fiber of p is an co-category, and each edge
f:s— & of S determines a correspondence between the fibers X and X, . In this section, we would like
to study the case in which each of these correspondences is associated to a functor f* : X — X,. Roughly
speaking, we can attempt to construct f* as follows: for each vertex y € X/, we choose an edge f:xz — y
lifting f, and set f*y = x. However, this recipe does not uniquely determine x, even up to equivalence, since
there might be many different choices for f. To get a good theory, we need to make a good choice of f. More
precisely, we should require that f be a p-Cartesian edge of X. In §2.3.1, we will introduce the definition of
p-Cartesian edges and study their basic properties. In particular, we will see that a p-Cartesian edge f is
determined up to equivalence by its target y and its image in S. Consequently, if there is a sufficient supply
of p-Cartesian edges of X, then we can use the above prescription to define the functor f*: X, — X,. This
leads us to the notion of a Cartesian fibration, which we will study in §2.3.2.

In §2.3.3, we will establish a few basic stability properties of the class of Cartesian fibrations (more such
results will be established in §3, after we have developed the language of marked simplicial sets). In §2.3.4 we
will show that if p : € — D is a Cartesian fibration of co-categories, then we can reduce many questions about
C to similar questions about the base D and about the fibers of p. This technique has many applications,
which we will discuss in §2.3.5 and §2.3.6. Finally, in §2.3.7, we will study the theory of bifibrations, which
is useful for constructing examples of Cartesian fibrations.

2.3.1 Cartesian Morphisms

Let € and €’ be ordinary categories, and let M : €% x €' — Set be a correspondence between them. Suppose
that we wish to know whether or not M arises as the correspondence associated to some functor g : €' — €.
This is the case if and only if, for each object C” € €', we can find an object C' € € and a point n € M(C,C")
having the property that the “composition with n” map

¢ : Home(D,C) — M(D,C")

is bijective, for all D € €. Note that 7 may be regarded as a morphism in the category Cx €. We will say
that 7 is a Cartesian morphism in €+ € if ¢ is bijective for each D € C. The purpose of this section is to
generalize this notion to the co-categorical setting and to establish its basic properties.

Definition 2.3.1.1. Let p: X — S be an inner fibration of simplicial sets. Let f : 2z — y be an edge in X.
We shall say that f is p-Cartesian if the induced map

Xyp = Xy X500, S/wth)
is a trivial Kan fibration.

Remark 2.3.1.2. Let M be an ordinary category, and let p : N(M) — A! be a map (automatically an
inner fibration), and let f : # — y be a morphism in M which projects isomorphically onto A'. Then f is
p-Cartesian in the sense of Definition 2.3.1.1 if and only if it is Cartesian in the classical sense.

We now summarize a few of the formal properties of Definition 2.3.1.1:

Proposition 2.3.1.3. (1) Letp: X — S be an isomorphism of simplicial sets. Then every edge of X is
p-Cartesian.

(2) Suppose given a pullback diagram



of simplicial sets, where p (and therefore also p') is an inner fibration. Let f be an edge of X'. If q(f)
is p-Cartesian, then f is p'-Cartesian.

(3) Letp: X =Y and q: Y — Z be inner fibrations, and let f : ' — x be an edge of X such that p(f) is
q-Cartesian. Then f is p-Cartesian if and only if f is (q o p)-Cartesian.

Proof. Assertions (1) and (2) follow immediately from the definition. To prove (3), we consider the commu-

tative diagram
(

x w//

X/ XY Yin(h)-

Xy X2 X2, om ey Z/(aon)(f)

The map 9" is a pullback of

Yio(r) = Yrn(@) X 2oy Z/(aon) (1)
and therefore a trivial fibration, in view of our assumption that p(f) is ¢-Cartesian. If ¢’ is a trivial fibration,
it follows that 1 is a trivial fibration as well, which proves the “only if” direction of (3).

For the converse, suppose that 1 is a trivial fibration. Proposition 2.1.2.2 implies that 1’ is a right
fibration. According to Lemma 2.1.3.3, it will suffice to prove that the fibers of 1)’ are contractible. Let ¢ be
a vertex of X/, Xy, Yyp(p), and let K = (")~ {¢”(t)}. Since ¢ is a trivial fibration, K is a contractible
Kan complex. Since 1 is a trivial fibration, the simplicial set (') "'K = ¢~ 1{t"(t)} is also a contractible
Kan complex. It follows that the fiber of 1)’ over the point ¢ is weakly contractible, as desired. O

Remark 2.3.1.4. Let p: X — S be an inner fibration of simplicial sets. Unwinding the definition, we see
that an edge f : A — X is p-Cartesian if and only if for every n > 2 and every commutative diagram

A{n—l,n}

AZ—>X

7
-
- p
-
-

An S’

there exists a dotted arrow as indicated, rendering the diagram commutative.

In particular, we note that Proposition 1.2.4.3 may be restated as follows:

(x) Let C be a oo-category, and let p : € — A denote the projection from € to a point. A morphism ¢ of
C is p-Cartesian if and only if ¢ is an equivalence.

In fact, it is possible to strengthen assertion (x) as follows:

Proposition 2.3.1.5. Let p: € — D be an inner fibration between oco-categories, and let f : C — C’ be a
morphism in C. The following conditions are equivalent:

(1) The morphism f is an equivalence in C.
(2) The morphism f is p-Cartesian and p(f) is an equivalence in D.

Proof. Let g denote the projection from D to a point. We note that both (1) and (2) imply that p(f) is an
equivalence in D, and therefore g-Cartesian by (x). The equivalence of (1) and (2) now follows from (x) and
the third part of Proposition 2.3.1.3. O
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Corollary 2.3.1.6. Let p: C — D be an inner fibration between co-categories. Fvery identity morphism of
C (in other words, every degenerate edge of C ) is p-Cartesian.

We now study the behavior of Cartesian edges under composition.

Proposition 2.3.1.7. Let p: C — D be an inner fibration between simplicial sets, and let o : A®> — € be a
2-simplex of C, which we will depict as a diagram

Suppose that g is p-Cartesian. Then f is p-Cartesian if and only if h is p-Cartesian.

Proof. We wish to show that the map

10 : G/h — e/Cg XD /picy) D/P(h)

is a trivial fibration if and only if
i1:Crp = €10y XD 000y Dinin)

is a trivial fibration. The dual of Proposition 2.1.2.2 implies that both maps are right fibrations. Conse-
quently, by (the dual of) Lemma 2.1.3.3, it suffices to show that the fibers of iy are contractible if and only
if the fibers of i; are contractible.

For any simplicial subset B C A2, let Xp = C/o|B XD, 5 D/o- We note that Xp is functorial in B, in
the sense that an inclusion A C B induces a map ja p : Xp — X4 (which is a right fibration, again by
Proposition 2.1.2.2). We note that ja st is the base change of ig by the map D,,,y — D/pn), and
that ja11) ato1y is the base change of i; by the map D/, — D/,(y). The maps

Dsoir) = Dypey = Dypny

are both surjective on objects (in fact, both maps have sections). Consequently, it suffices to prove that
Jaty afo1) has contractible fibers if and only if JAy atf02) has contractible fibers. Now we observe that the
compositions

XAz — XA{o‘z} — XA{Q}
XAZ — XA% — XA{LQ} — XA{Q}

coincide. By Proposition 2.1.2.4, j4, p is a trivial fibration whenever the inclusion A C B is left anodyne.
we deduce that ja 1 a2 is a trivial fibration if and only if jaq2y a2 is a trivial fibration. Consequently,
it suffices to show that jai.21 42 is a trivial fibration if and only if jany Aty is a trivial fibration.
Since Jatizy A2 is a pullback of ja(1) a0y, the “if” direction is obvious. For the converse, it suffices to
show that the natural map
Clg XD 0y Dypie) = Crer XD 01y Do)

is surjective on vertices. But this map is a trivial fibration, since the inclusion {1} C AtL2} g left anodyne.
O

Our next goal is to reformulate the notion of a Cartesian morphism in a form which will be useful later.
For convenience of notation, we will prove this result in a dual form. If p : X — S is an inner fibration
and f an edge of X, we will say that f is p-coCartesian if is Cartesian with respect to the morphism
p°P . X°P — SP,

90



Proposition 2.3.1.8. Letp:Y — S be an inner fibration of simplicial sets, and e : A' — Y an edge. Then
e is p-coCartesian if and only if for each n > 1 and each diagram

{0} x At

(A" x {0}) IT5 an x {0y m

Sy
h o= J{
- p
S

there exists a map h as indicated, rendering the diagram commutative.

—

Q

A" x Al

Proof. Let us first prove the “only if” direction. We recall a bit of the notation used in the proof of
Proposition 2.1.2.5; in particular, the filtration

X(n+1)C...C X(0)=A" x A!

of A™ x Al. We construct h|X (m) by descending induction on m. To begin, we set h|X(n + 1) = f. Now,
for each m the space X (m) is obtained from X (m + 1) by pushout along a horn inclusion At C A+ If
m > 0, the desired extension exists because p is an inner fibration. If m = 0, the desired extension exists
because of the hypothesis that e is a p-coCartesian edge.

We now prove the “if” direction. Suppose that e satisfies the condition in the statement of the Proposition.
We wish to show that e is p-coCartesian. In other words, we must show that for every n > 2 and every
diagram

A{0,1}

A — > X
f 1 l
7
- P
7
7
A" ——§

there exists a dotted arrow as indicated, rendering the diagram commutative. Replacing S by A™ and Y
by Y xg A™, we may reduce to the case where S is a co-category. We again make use of the notation (and

argument) employed in the proof of Proposition 2.1.2.5. Namely, the inclusion Aj C A™ is a retract of the
inclusion

(Ag xAY JT (Aa™x{o}) c A™x Al
Ag x{0}
The retraction is implemented by maps
A" L AT A L AT
which were defined in the proof of Proposition 2.1.2.5. We now set F = for, G=gor.
Let K = AtL2-n} C A" Then
FIOK xAY) [ (& x A"

O Kx{0}

carries {1} x Al into e. By assumption, there exists an extension of F' to K x A! which is compatible with
G. In other words, there exists a compatible extension F’ of F to

oA" x A ] A" x{o}.
A" x{0}
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Moreover, F' carries {0} x A! to a degenerate edge; such an edge is automatically coCartesian (by Corollary
2.3.1.6, since S is an oco-category), and therefore there exists an extension of F’ to all of A™ x A! by the
first part of the proof. O

Remark 2.3.1.9. Let p: X — S be an inner fibration of simplicial sets, = a vertex of X, and f : @ — p(x) an
edge of S ending at p(z). There may exist many p-Cartesian edges f : ' — x of X with p(f) = f. However,
there is a sense in which any two such edges having the same target x are equivalent to one another. Namely,
any p-Cartesian edge f : 2/ — x lifting f can be regarded as a final object of the co-category Xz X8 {7},
and is therefore determined up to equivalence by f and x.

We now spell out the meaning of Definition 2.3.1.1 in the setting of simplicial categories.

Proposition 2.3.1.10. Let F': € — D be a functor between simplicial categories. Suppose that € and D
are fibrant, and that for every pair of objects C,C’ € C, the associated map

Mape(C, C") — Map, (F(C), F(C"))
is a Kan fibration. Then:
(1) The associated map q : N(C) — N(D) is an inner fibration between co-categories.

(2) A morphism f : C" — C" in C is qg-Cartesian if and only if, for every object C € C, the diagram of
simplicial sets

Mape(C,C") Mape(C, C")

Map, (F(C), F(C")) —— Mapq, (F(C), F(C"))
is homotopy Cartesian.

Proof. Assertion (1) follows from Remark 1.1.5.10. Let f be a morphism in €. By definition, f : C’ — C”
is g-Cartesian if and only if

0:N(C)/r — N(C)/cn XN(D) (e N(D),r(s)

is a trivial fibration. Since 6 is a right fibration between right fibrations over C, f is ¢g-Cartesian if and only
if for every object C' € €, the induced map

Oc : {C} xn(e) N(€) /5 — {C} xn(ey N(C)jer XN (D), ooy N(D) /()
is a homotopy equivalence of Kan complexes. This is equivalent to the assertion that the diagram
N(€)s xe {C} ———=N(€)/cr xn(e) {C}
N(D)/F(f) XN(D) {F(C)} E— N(D)/F(C”) XN(‘D) {F(O)}

is homotopy Cartesian. In view of Theorem 1.1.5.12, this diagram is equivalent to the diagram of simplicial
sets

Mape(C,C") Mape(C, C")

C), F(C")) —— Mapy, (F(C), F(C")).
This proves (2). O

Map, (F/(
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We conclude with a somewhat technical result which will be needed in §3.1.1:

Proposition 2.3.1.11. Let p: X — S be an inner fibration of simplicial sets. Let f : x — y be an edge of
X Suppose that there is a 3-simplex o : A3 — X such that ' dio = sof and dyo = s1f. Suppose furthermore
that there ezists a p-Cartesian edge f T — y such that p(f) p(f). Then f is p-Cartesian.

Proof. We have a diagram of simplicial sets

a2y

AQ

Because fis p-Cartesian, there exists a map 7 rendering the diagram commutative. Let g = do(7), which
we regard as a morphism x — T in the oo-category X,y = X xg {p(z)}. We will show that g is an
equivalence in X,). It will follow that g is p-Cartesian and that f, being a composition of p-Cartesian
edges, is p-Cartesian (Proposition 2.3.1.7).

Now consider the diagram

A% (dodso,e,9) X

f “ dap(o) l

N g

The map 7’ exists since p is an inner fibration. Let ¢’ = d;7/. We will show that ¢’ : T — z is a homotopy
inverse to g in the oco-category X, ().
Using 7 and 7/, we construct a new diagram

(7'.dz0,e,7)

Ay BTy

7
~
0 -
- p
~
-
o)

~ “sodzp(

A3 ——— 5.

Since p is an inner fibration, we deduce the existence of # : A3 — X rendering the diagram commutative.
The simplex d () exhibits id, as a composition g’ o g in the oo-category X, ). It follows that g’ is a left
homotopy inverse to g.

We now have a diagram

A2 (929)
7

The indicated 2-simplex 7" exists since X, is an co-category, and exhibits d;(7") as a composition g o g'.
To complete the proof, it will suffice to show that dy(7”) is an equivalence in X, ().
Consider the diagrams

(doo,e,s1f,7") (1,0,d10",7"")
A3 Azf — X

X
7
J l j o J/
e p
g )

A3 ~ “sosop(f
—>

A ————S.
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Since p is an inner fibration, there exist 3-simplices #’,0” : A3 — X with the inducated properties. The
2-simplex dy (6”) identifies dy (7") as a map between two p-Cartesian lifts of p(f); it follows that d; (7”) is an
equivalence, which completes the proof. O

2.3.2 Cartesian Fibrations

In this section, we will introduce the study of Cartesian fibrations between simplicial sets. The theory of
Cartesian fibrations as a generalization of the theory of right fibrations, studied in §2.1: we still require the
Cp to depend contravariantly in D, but no longer require that the fibers be Kan complexes (see Proposition
2.3.2.7 below).

Definition 2.3.2.1. We will say that a map p : X — S of simplicial sets is a Cartesian fibration if the
following conditions are satisfied:

(1) The map p is an inner fibration.

(2) For every edge f:x — y of S and every vertex y of X with p(y) = y, there exists a p-Cartesian edge
f:Z—ywith p(f) = f.
We say that p is a coCartesian fibration if the opposite map p°? : X°P — S°P is a Cartesian fibration.

If a general inner fibration p : X — S associates to each vertex s € S an oco-category X and to each
edge s — s’ a correspondence from X, to X, then p is Cartesian if each of these correspondences arise from
an (canonically determined) functor Xy — X,. In other words, a Cartesian fibration with base S ought to
be roughly the same thing as a contravariant functor from S into an co-category of co-categories, where the
morphisms are given by functors. We will prove a precise assertion to this effect in §3.

Remark 2.3.2.2. Let F: € — € be a functor between (ordinary) categories. The induced map of simplicial
sets N(F) : N(€) — N(C€') of simplicial sets is automatically an inner fibration; it is Cartesian if and only if
F is a fibration of categories in the sense of Grothendieck.

The following formal properties follow immediately from the definition:
Proposition 2.3.2.3. (1) Any isomorphism of simplicial sets is a Cartesian fibration.
(2) The class of Cartesian fibrations between simplicial sets is stable under base change.
(3) A composition of Cartesian fibrations is a Cartesian fibration.

We now introduce a few technical results which will be useful for proving that certain maps are Cartesian
fibrations. Let p : X — S be an inner fibration of simplicial sets. We will say that an edge f : A’ — S is
locally p-Cartesian if it becomes p-Cartesian upon replacing S by A and X by X xgA!, and that p: X — S
is locally Cartesian if it becomes a Cartesian fibration after pullback along any map A! — S.

Proposition 2.3.2.4. An inner fibration p : X — S of simplicial sets is a Cartesian fibration if and only if
p is locally Cartesian and the class of locally p-Cartesian edges of X is stable under composition.

Remark 2.3.2.5. We say that a collection € of edges of a simplicial set X is stable under composition if it
contains every degenerate edge of X, and if for every 2-simplex

in X, where f and g belong to &, the edge h also belongs to €.
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Proof. Suppose first that p is a Cartesian fibration. We note that, in view of the characterization of locally
p-Cartesian morphisms as initial objects (see Remark 2.3.1.9), locally p-Cartesian lifts are unique up to
equivalence when they exist. The assumption that p is Cartesian ensures that p-Cartesian lifts always
exist; it follows that the class of locally p-Cartesian morphisms of X coincides with the class of p-Cartesian
morphisms of X. Since the class of Cartesian fibrations is stable under pullback, it is clear that p is locally
Cartesian. Corollary 2.3.1.6 implies that every degenerate edge of X is locally p-Cartesian, and Proposition
2.3.1.7 implies that the class of p-Cartesian edges of X is stable under composition.

We now prove the converse assertion. Suppose that p is locally Cartesian, and that the class of locally
Cartesian morphisms in X is stable under composition. We wish to show that p is Cartesian. It will suffice
to show that every locally Cartesian morphism f : ¢’ — C in X is actually Cartesian. In other words, we
must show that n: X,y — X,c Xs,, ) S/p(y) 1s a trivial fibration. Since n is a right fibration, it will suffice
to show that the fiber of 1 over any vertex is contractible. Any such vertex determines a map o : A? — §
with o|A{12} = p(f). Pulling back via o, we may suppose that S = A2,

It will be convenient to introduce a bit of notation: for every map ¢ : K — X, let Y,, C X/, denote the
full simplicial subset spanned by those vertices of X, which map to the initial vertex of S. We wish to show
that the natural map Y,y — Y)c is a trivial fibration. By assumption, there exists a locally p-Cartesian
morphism ¢ : C” — C” in X covering the edge A0} C S, Since X is an oo-category, there exists a 2-simplex
7: A% — X with da(7) = g and do(7) = f. Then h = d;(7) is a composite of f and g, and consequently
locally Cartesian. We have a commutative diagram

/ \Y/C
AN e

Yjrips ————— Y5

Moreover, all of these maps in this diagram are trivial fibrations except possibly ¢, which is known to be a
right fibration. It follows that ( is a trivial fibration as well, which completes the proof. O

Corollary 2.3.2.6. Let p: X — S be an inner fibration of simplicial sets. Then p is Cartesian if and only
if every pullback X xg A™ — A™ is a Cartesian fibration, for n < 2.

Recall that an oco-category € is a Kan complex if and only if every morphism in € is an equivalence. We
now establish a relative version of this statement:

Proposition 2.3.2.7. Let p: X — S be an inner fibration of simplicial sets. The following conditions are
equivalent:

(1) The map p is a Cartesian fibration and every edge in X is p-Cartesian.
(2) The map p is a right fibration.
(3) The map p is a Cartesian fibration and every fiber of p is a Kan complez.

Proof. In view of Remark 2.3.1.4, the assertion that every edge of X is p-Cartesian is equivalent to the
assertion that p has the right lifting property with respect to A} C A" for all n > 2. The requirement that
p be a Cartesian fibration further imposes the right lifting property with respect to A1 C Al. This proves
that (1) < (2).

Suppose that (2) holds. Since we have established that (2) implies (1), we know that p is Cartesian.
Furthermore, we have already seen that the fibers of a right fibration are Kan complexes. Thus (2) implies

(3)-
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We complete the proof by showing that (3) implies that every edge f : ¢ — y of X is p-Cartesian. Since p
is a Cartesian fibration, there exists a p-Cartesian edge f' : ' — y with p(f’) = p(f). Since f’ is p-Cartesian,
there exists a 2-simplex o : A? — X which we may depict as a diagram

x/
7N
x%y7

where p(c) = sop(f). Then g lies in the fiber X, ., and is therefore an equivalence (since X, is a Kan
complex). It follows that f is equivalent to f’ as objects of X/, x5, -~ {p(f)}, so that f is p-Cartesian as
desired. 0

Corollary 2.3.2.8. Let p: X — S be a Cartesian fibration. Let X' C X consist of all those simplices o of
X such that every edge of o is p-Cartesian. Then p|X' is a right fibration.

Proof. We first show that p| X’ is an inner fibration. It suffices to show that p| X’ has the right lifting property
with respect to every horn inclusion A}, 0 < i < n. If n > 2, then this follows immediately from the fact the
fact that p has the appropriate lifting property. If n = 2, then we must show that if f : A2 — X is such that
fIA? factors through X', then f factors through X’. This follows immediately from Proposition 2.3.1.7.
We now wish to complete the proof by showing that p is a right fibration. According to Proposition
2.3.2.7, it suffices to prove that every edge of X’ is p|X’-Cartesian. This follows immediately from the
characterization given in Remark 2.3.1.4, since every edge of X’ is p-Cartesian when regarded as an edge of
X. O

2.3.3 Stability Properties of Cartesian Fibrations

In this section, we will prove the class of Cartesian fibrations is stable under the formation of overcategories
and undercategories. Since the definition of a Cartesian fibration is not self-dual, we must treat these results
separately, using slightly different arguments (Propositions 2.3.3.2 and 2.3.3.3). We begin with the following
simple lemma.

Lemma 2.3.3.1. Let A C B be an inclusion of simplicial sets. Then the inclusion

{1}xB) J] A'x4) cA'«B
{1}xA

s inner anodyne.

Proof. Working by transfinite induction, we may reduce to the case where B is obtained from A by adjoining
a single non-degenerate simplex, and therefore to the universal case B = A", A = 0 A™. Now the inclusion
in question is isomorphic to A;”z C A2 O

Proposition 2.3.3.2. Let p : € — D be a Cartesian fibration of simplicial sets, and let ¢ : K — C be a
diagram. Then:

(1) The induced map p' : C/q — D pq is a Cartesian fibration.
(2) An edge f of C,4 is p'-Cartesian if and only if the image of f in C is p-Cartesian.

Proof. Proposition 2.1.2.4 implies that p’ is an inner fibration. Let us call an edge f of C,;, special if its
image in € is pCartesian. To complete the proof, it will suffice to show that:

(¢) Given a vertex g € €/, and an edge f: 7 — p/(Q), there exists a special edge f : 7 — g with p/(f) = f

11) Every special edge of €/, is p’-Cartesian.
/q
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To prove (i), let f" denote the image of f in D and ¢ the image of g in €. Using the assumption that p

is a coCartesian fibration, we can choose a p-coCartesian edge f’' : ¢ — d lifting f’. To extend this data to
the desired edge f of C/,, it suffices to solve the lifting problem depicted in the diagram

({1} * K) H{l} Al ——=C

-
i Phd P
-~
-

Al x K D

This lifting problem has a solution, since p is an inner fibration and 4 is inner anodyne (Lemma 2.3.3.1).
To prove (i), it will suffice to show that if n > 2, then any lifting problem of the form

AQ*KL>G

7
G 7
- p
d l
Ve
A" x K —=D

has a solution, provided that e = g(A{"=17}) is a p-Cartesian edge of C. Consider the set P of pairs
(K',Gk), where K’ C K and G- fits in a commutative diagram

e

ip

D.

Because e is p-Cartesian, there exists an element (), Gy) € P. We regard P as partially ordered, where
(K',Gg) < (K",Ggr) if K' C K" and G is a restriction of Gg~. Invoking Zorn’s lemma, we deduce
the existence of a maximal element (K',Gg) of P. If K’ = K, then the proof is complete. Otherwise, it
is possible to enlarge K’ by adjoining a single nondegenerate m-simplex of K. Since (K', Gk ) is maximal,
we conclude that the associated lifting problem

(A7 % ) TT gy rer (A" % K) Cr

A" % K

(A% % A™) Hanspam (A" xA™) ——= ¢

o -~ - l
- - p
AT x A™ D.
has no solution. The left vertical map is equivalent to the inclusion AZﬂ"H C A"+ which is inner
anodyne. Since p is an inner fibration by assumption, we obtain a contradiction. O

Proposition 2.3.3.3. Let p: C — D be a coCartesian fibration of simplicial sets, and let ¢ : K — C be a
diagram. Then:

(1) The induced map p’ : C/q — D g is a coCartesian fibration.
(2) An edge f of €/, is p'-coCartesian if and only if the image of f in C is p-coCartesian.

Proof. Proposition 2.1.2.4 implies that p’ is an inner fibration. Let us call an edge f of C/, special if its
image in € is p-coCartesian. To complete the proof, it will suffice to show that:

(i) Given a vertex g € €/, and an edge f: p'(q) — 7, there exists a special edge f : ¢ — T with p/(f) = f.

11) Every special edge of €/, is p’-coCartesian.
/q
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To prove (i), we begin a commutative diagram

Ay K¢ .
o
Alx K —=D

Let C € € denote the image under g of the cone point of A% x K, and choose a p-coCartesian morphism
u: C — O’ lifting f|Al. We now consider the collection P of all pairs (L, f1,), where L is a simplicial subset
of K and fr is a map fitting into a commutative diagram

fr

(A°x K) HT*L(N * L) 13
Al x K ! D

where fr|A! = v and fr|AY x K = §. We partially order the set P as follows: (L, fr) < (L', fr/) if L C L'
and f7, is equal to the restriction of f,. The partially ordered set P satisfies the hypotheses of Zorn’s lemma,
and therefore contains a maximal element (L, fr,). If L # K, then we can choose a simplex o : A” — K of
minimal dimension which does not belong to L. By maximality, we obtain a diagram

AT ——¢

L

Am+2 —> D

in which the indicated dotted arrow cannot be supplied. This is a contradiction, since the upper horizontal
map carries the initial edge of A8+2 to a p-coCartesian edge of C. It follows that L = K, and we may take
f = fr. This completes the proof of (7).

The proof of (i7) is similar. Suppose given n > 2 and a diagram

Ak e

7
Ve
Ve
‘.9
A"x K —=D
be a commutative diagram, where fo|K = q and fo|A{%1} is a p-coCartesian edge of €. We wish to prove

the existence of the dotted arrow f, indicated in the diagram. As above, we consider the collection P of all
pairs (L, f1,), where L is a simplicial subset of K and fr extends fo and fits into a commutative diagram

(A} * K) T pn (A" % L) i e
A" % K J D.

We partially order P as follows: (L, fr) < (L', fr/) it L C L’ and fr, is a restriction of fr,. Using Zorn’s
lemma, we conclude that P contains a maximal element (L, f1,). If L # K, then we can choose a simplex
o : A™ — K which does not belong to L, where m is as small as possible. Invoking the maximality of
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(L, fr), we obtain a diagram

h
Ag+m+1 e

[

An+m+1 . 'D

where the indicated dotted arrow cannot be supplied. However, the map h carries the initial edge of Am+tm+!
to a p-coCartesian edge of C, so we obtain a contradiction. It follows that L = K, so that we can take f = f,
to complete the proof. O

2.3.4 Mapping Spaces and Cartesian Fibrations
Let p: € — D be a functor between oo-categories, and let X and Y be objects of €. Then p induces a map

¢ : Mape(X,Y) — Mapq (p(X),p(Y)).

Our goal in this section is to understand the relationship between the fibers of p and the homotopy fibers of

o.

Lemma 2.3.4.1. Let p: € — D be an inner fibration of co-categories, and let X,Y € C. The induced map
¢ : HomB (X,Y) — Hom' (X,Y) is a Kan fibration.

Proof. Since p is an inner fibration, the induced map (E : €/x — Dypx)xp € is a right fibration by

Proposition 2.1.2.2. We note that ¢ is obtained from q~5 by restricting to the fiber over the vertex Y of C.
Thus ¢ is a right fibration; since the target of ¢ is a Kan complex, ¢ is a Kan fibration by Lemma 2.1.3.2. [J

Suppose the conditions of Lemma 2.3.4.1 are satisfied. Let us consider the problem of computing the fiber
of ¢ over a vertex € : p(X) — p(Y) of Hom% (X, Y). Suppose that there is a p-Cartesian edge e : X’ — Y
lifting €. By definition, we have a trivial fibration

Y:Cre =€y X, Dye.

Consider the 2-simplex o = s1(€), regarded as a vertex of D /z. Passing to the fiber, we obtain a trivial
fibration
F— ¢ '(e),

where F' denotes the fiber of C/. — Dz xp € over the point (o, X).

On the other hand, we have a trivial fibration €,. — D C/x+ by Proposition 2.1.2.4. Passing

XD p(x)
to the fiber again, we obtain a trivial fibration F — Homlép . (X, X’). We may summarize the situation as
follows:

Proposition 2.3.4.2. Let p : € — D be an inner fibration of oo-categories. Let X, Y € €, let € : p(X) —
p(Y) be a morphism in D, and let e : X' — Y be a p-Cartesian morphism of C lifting €. Then in the
homotopy category H of spaces, there is a fiber sequence

Mape, . (X, X') — Mape(X,Y) — Mapy (p(X), p(Y)).
Here the fiber is taken over the point classified by € : p(X) — p(Y).
A similar assertion can be taken as a characterization of Cartesian morphisms:

Proposition 2.3.4.3. Letp : € — D be an inner fibration of co-categories, and let f : Y — Z be a morphism
in C. The following are equivalent:

(1) The morphism f is p-Cartesian.
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(2) For every object X of C, composition with f gives rise to a homotopy Cartesian diagram

Mape(X,Y) ———— Mape (X, 2)

| l

Maps, (p(X), p(Y)) — Mapq, (p(X),p(Z)).

Proof. Let ¢ : €y — C/z XD,z D /p(r) be the canonical map; then (1) is equivalent to the assertion that
¢ is a trivial fibration. According to Proposition 2.1.2.2, ¢ is a right fibration. Thus, ¢ is a trivial fibration
if and only if the fibers of ¢ are contractible Kan complexes. For each object X € €, let

ox : Crp xe{X} = €z XD, Dyppy xe{X}

be the induced map. Then ¢x is a right fibration between Kan complexes, and therefore a Kan fibration;
it has contractible fibers if and only if it is a homotopy equivalence. Thus, (1) is equivalent to the assertion
that ¢x is a homotopy equivalence for every object X of C.

We remark that (2) is somewhat imprecise: although all the maps in the diagram are well defined in
the homotopy category H of spaces, we need to represent this by a commutative diagram in the category of
simplicial sets before we can ask whether or not the diagram is homotopy Cartesian. We therefore rephrase
(2) more precisely: it asserts that the diagram of Kan complexes

G/f XQ{X}—>G/Z XQ{X}

| |

D ppy X {p(X)} ——= D pz) xo{p(X)}

is homotopy Cartesian. Lemma 2.3.4.1 implies that the right vertical map is a Kan fibration, so the homotopy
limit in question is given by the fiber product

€1z XD,z Dypis) Xe{ X}

Consequently, assertion (2) is also equivalent to the condition that ¢x be a homotopy equivalence for every
object X € C. O

Corollary 2.3.4.4. Suppose given maps € 2> D % & of co-categories, such that both g and qop are Cartesian
fibrations. Suppose that p carries (q o p)-Cartesian edges of C to q-Cartesian edges of D, and that for every
object Z € &, the induced map Cz — Dy is a categorical equivalence. Then p is a categorical equivalence.

Proof. Proposition 2.3.4.2 implies that p is fully faithful. If Y is any object of D, then Y is equivalent in
the fiber D,y to the image under p of some vertex of Cy(yy. Thus p is essentially surjective and the proof
is complete. O

Corollary 2.3.4.5. Let p: C — D be a Cartesian fibration of co-categories. Let q : D' — D be a categorical
equivalence of co-categories. Then the induced map ¢’ : € =D’ xp C — C is a categorical equivalence.

Proof. Proposition 2.3.4.2 immediately implies that ¢’ is fully faithful. We claim that ¢’ is essentially
surjective. Let X be any object of €. Since ¢ is fully faithful, there exists an object y of T and an
equivalence € : ¢(Y) — p(X). Since p is Cartesian, we can choose a p-Cartesian edge e : Y/ — X lifting e.
Since e is p-Cartesian and p(e) is an equivalence, e is an equivalence. By construction, the object Y’ of S
lies in the image of ¢'. O

Corollary 2.3.4.6. Let p : € — D be a Cartesian fibration of co-categories. Then p is a categorical
equivalence if and only if p is a trivial fibration.

100



Proof. The “if” direction is clear. Suppose then that p is a categorical equivalence. We first claim that p
is surjective on objects. The essential surjectivity of p implies that for each Y € D there is an equivalence
Y — p(X), for some object X of €. Since p is Cartesian, this equivalence lifts to a p-Cartesian edge ¥ — X
of S, so that p(}N/) =Y.

Since p is fully faithful, the map Mape(X, X') — Mapq, (p(X), p(X’)) is a homotopy equivalence for any
pair of objects X, X’ € €. Suppose that p(X) = p(X’). Then, applying Proposition 2.3.4.2, we deduce
that Mape (X)(X , X') is contractible. It follows that the oo-category Cp(x) is nonempty with contractible
morphism spaces; it is therefore a contractible Kan complex. Proposition 2.3.2.7 now implies that p is a
right fibration. Since p has contractible fibers, it is a trivial fibration by Lemma 2.1.3.3. O

We have already seen that if a co-category S has an initial object, then that initial object is essentially
unique. We now establish a relative version of this result.

Lemma 2.3.4.7. Letp : C — D be a Cartesian fibration of oo-categories, and let C be an object of C. Suppose
that D = p(C) is an initial object of D, and that C is an initial object of the oco-category Cp = € xp{D}.
Then C is an initial object of C.

Proof. Let C’ be any object of €, and let D’ = p(C”). Since D is an initial object of D, the space Map, (D, D’)
is contractible. In particular, there exists a morphism f: D — D’ in D. Let f : D — C’ be a p-Cartesian
lift of f. According to Proposition 2.3.4.2, there exists a fiber sequence in the homotopy category H:

Mape,, (C, D) — Mapg(C,C") — Mapy, (D, D').

Since the first and last space in the sequence are contractible, we deduce that Mape(C,C”’) is contractible
as well, so that C' is an initial object of C. O

Lemma 2.3.4.8. Suppose given a diagram of simplicial sets

7
f
s

Ar—2 o g

where p is a Cartesian fibration and n > 0. Suppose that fo(0) is an initial object of the oco-category
Xg0) = X x5{g(0)}. Then there exists a map f: A" — S as indicated by the dotted arrow in the diagram,
which renders the diagram commutative.

Proof. Pulling back via g, we may replace S by A™ and thereby reduce to the case where S is an co-category
and ¢(0) is an initial object of S. It follows from Lemma 2.3.4.7 that fo(v) is an initial object of S, which
implies the existence of the desired extension f. O

Proposition 2.3.4.9. Let p : X — S be a Cartesian fibration of simplicial sets. Assume that, for each
vertexr s of S, the co-category Xs = X xg {s} has an initial object.

(1) Let X' C X denote the full simplicial subset of X spanned by those vertices x which are initial objects
of Xp(z)- Then p| X' is a trivial fibration of simplicial sets.

(2) Let € = Mapg(S, X) be the co-category of sections of p. An arbitrary section q : S — X is an initial
object of C if and only if q factors through X'.

Proof. Since every fiber X, has an initial object, the map p|X’ has the right lifting property with respect
to the inclusion ) C A%, If n > 0, then Lemma 2.3.4.8 shows that p|X’ has the right lifting property with
respect to 9 A™ C A™. This proves (1). In particular, we deduce that there exists a map ¢ : S — X’ which
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is a section of p. In view of the uniqueness of initial objects, (2) will follow if we can show that ¢ is an initial
object of €. Unwinding the definitions, we must show that for n > 0, any lifting problem

Sxoar o x
7

-
< q
-
e

S x A" —— §

can be solved, provided that f|S x {0} = ¢q. The desired extension can be constructed simplex-by-simplex,
using Lemma 2.3.4.8. O

2.3.5 Application: Invariance of Undercategories

Our goal in this section is to complete the proof of Proposition 1.2.9.3 by proving the following assertion:

(*) Let p: € — D be an equivalence of co-categories, and let j : K — € be a diagram. Then the induced
map
Cjs — Dpj/

is a categorical equivalence.

We will need a lemma.

Lemma 2.3.5.1. Let p: C — D be a fully faithful map of co-categories, and let j : K — C be any diagram
in C. Then, for any object x of C, the map of Kan complexes

€j; xefa} = Dpjy xp{p(z)}
is a homotopy equivalence.

Proof. For any map r : K’ — K of simplicial sets, let C, = €, xe{x} and D, = D,/ xp{p(x)}.

Choose a transfinite sequence of simplicial subsets K, of K, such that K, is the result of adjoining a
single nondegenerate simplex to K, and Ky = |J,. Ko whenever X is a limit ordinal (we include the case
where A = 0, so that Ky = (). Let i, : K, — K denote the inclusion. We claim the following:

(1) For every ordinal «, the map ¢, : C;, — D;_ is a homotopy equivalence of simplicial sets.

(2) For every pair of ordinals # < a, the maps C;, — C;, and D;, — D;, are Kan fibrations of simplicial
sets.

We prove both of these claims by induction on a. When a = 0, (2) is obvious and (1) follows since both
sides are isomorphic to A°. If a is a limit ordinal, (2) is again obvious, while (1) follows from the fact that
both C;, and D,_ are obtained as the inverse limit of a transfinite sequence of fibrations, and the map ¢,
is an inverse limit of maps which are individually homotopy equivalences.

Assume that o = 4 1 is a successor ordinal, so that K, ~ Kg[[ga. A" Let f: A" — K, be the
induced map, so that

Ci, = Cizs XCyloan Cy

Dia :Diﬁ XDf\aA" Df

We note that the projections Cy — Dyjgan and Cy — Dyjgan are left fibrations by Proposition 2.1.2.2,
and therefore Kan fibrations by Lemma 2.1.3.2. This proves (2), since the class of Kan fibrations is stable
under pullback. We also note that the pullback diagrams defining X, and Y;_ are also homotopy pullback
diagrams. Thus, to prove that ¢, is a homotopy equivalence, it suffices to show that ¢z and the maps

Crloan — Dyjgan
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are homotopy equivalences. In other words, we may reduce to the case where K is a finite complex.

We now work by induction on the dimension of K. Suppose that the dimension of K is n, and that the
result is known for all simplicial sets having smaller dimension. Running through the above argument again,
we can reduce to the case where K = A™. Let v denote the final vertex of A™. By Proposition 2.1.2.4, the
maps

Ci = Gy

Dj — Dj| vy

are trivial fibrations. Thus, it suffices to consider the case where K is a single point {v}. In this case, we have
C; = Hom§(j(v), ) and Y; = Hom#% (p(j(v)),p(x)). It follows that the map ¢ is a homotopy equivalence,
since p is assumed fully faithful. O

Proof of (x). Let p: € — D be a categorical equivalence of co-categories, and j : K — € any diagram. We
have a factorization ;

g
Lemma 2.3.5.1 implies that C;, and D,,;, xp C are fiberwise equivalent left-fibrations over €, so that f is a
categorical equivalence by Corollary 2.3.4.4 (we note that the map f automatically carries coCartesian edges
to coCartesian edges, since all edges of the target D,;, xp € are coCartesian). The map g is a categorical
equivalence by Corollary 2.3.4.5. It follows that g o f is a categorical equivalence, as desired. O

2.3.6 Application: Categorical Fibrations over a Point

Our goal in this section is to prove Theorem 2.3.6.4, which asserts that the co-categories are precisely those
simplicial sets which are fibrant with respect to the Joyal model structure introduced in §1.3.4. The proof
will be given at the end of this section, after we have established a few technical lemmas.

Lemma 2.3.6.1. Letp: C — D be a categorical equivalence of co-categories and m > 2 an integer. Suppose
given maps fo : d AL — @ and hg : A — D with ho|d AtL™r = po fo. Suppose further that the
restriction of h to A1} is an equivalence in D. Then there exist maps f : At @ h: A™ — D,
with h|Am = po f, fo = floATm} hg = hIA.

Proof. We may regard hg as a point of the simplicial set D/,of,. Since p is a categorical equivalence,
Proposition 1.2.9.3 implies that p’ : €5, — D/poy, is a categorical equivalence. It follows that hg lies in
the essential image of p’. Consider the linearly ordered set {0 < 0’ < 1 < ... < n} and the corresponding

simplex AL00%..m} By hypothesis, we can extend fy to a map f} : Aé?l""’m} — € and hp to a map
Bl A0} g ATLmt s D such that h| A0 is an equivalence and kA" ™ =po fi.

Since hy|AL0} and h)|ALO1} are both equivalences in D, we deduce that hj|A{%1} is an equivalence
in D. Since p is a categorical equivalence, it follows that f6|A{0 1} is an equivalence in C. Proposition
1.2.4.3 implies that f} extends to a map f’: Al%™} — €. The union of po f' and hj, determines a map

Aé?’o/""’m} — D; since D is an co-category, this extends to a map b’ : A0 mb D We may now take
f=f|Amband h = B/|A™. O

Lemma 2.3.6.2. Let p: € — D be a categorical equivalence of co-categories and A C B any inclusion of
simplicial sets. Let fo: A — €, g: B — D be any maps, and let hg : A x A' — D be an equivalence from
g|A to po fo. Then there exists a map f: B — C and an equivalence h : B x A* — D from g to po f, such
that fo = f|A and hg = h|A x Al.

Proof. Working cell-by-cell with the inclusion A C B, we may reduce to the case where B = A™, A =JA".
If n = 0, the existence of the desired extensions is a reformulation of the assumption that p is essentially
surjective. Let us assume therefore that n > 1.
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We consider the task of constructing h : A™ x A — D. Consider the filtration
X(n+1)C...C X(0)=A" x A!

described in the proof of Proposition 2.1.2.5. We note that the value of h on X (n+1) is uniquely prescribed
by ho and g. We extend the definition of h to X (i) by descending induction on i. We note that X (i) ~
X@+1]I At A" For i > 0, the existence of the required extension is guaranteed by the assumption
that D is an oo-category. Since n > 1, Lemma 2.3.6.1 allows us to extend h over the simplex o and to
define f so that the desired conditions are satisfied. O

Lemma 2.3.6.3. Let C C D be an inclusion of simplicial sets which is also a categorical equivalence. Suppose
further that C is an co-category. Then € is a retract of D.

Proof. Enlarging D by an inner anodyne extension if necessary, we may suppose that D is an oco-category.
We now apply Lemma 2.3.6.2 in the case where A =€, B =D. O

Theorem 2.3.6.4. Let C be a simplicial set. Then C is fibrant for the Joyal model structure if and only if
C is an oo-category.

Proof. The “only if” direction has already been established (Remark 1.3.4.5). For the converse, we must
show that if C is an co-category, then C has the extension property with respect to every inclusion of simplicial
sets A C B which is a categorical equivalence. Fix any map A — €. Since the Joyal model structure is
left-proper, the inclusion € C C]], B is a categorical equivalence. We now apply Lemma 2.3.6.3 to conclude
that C is a retract of €[], B. O

Warning 2.3.6.5. We may restate Theorem 2.3.6.4 as follows: if T is a point, then p : S — T is a categorical
fibration (in other words, a fibration with respect to the Joyal model structure on 8) if and only if it is an
inner fibration. However, the class of inner fibrations does not coincide with the class of categorical fibrations
in general.

2.3.7 Bifibrations

As we explained in §2.1.2, left fibrations p : X — S can be thought of as covariant functors from S into an
oo-category of spaces. Similarly, right fibrations ¢ : Y — T can be thought of as contravariant functors from
T into an oo-category of spaces. The purpose of this section is to introduce a convenient formalism which
encodes covariant and contravariant functoriality simultaneously.

Remark 2.3.7.1. The theory of bifibrations will not play an important role in the remainder of the book.
In fact, the only result from this section that we will actually use is Corollary 2.3.7.12, whose statement
makes no mention of bifibrations. A reader who is willing to take Corollary 2.3.7.12 on faith, or supply an
alternative proof, may safely omit the material covered in this section.

Definition 2.3.7.2. Let S, T, and X be simplicial sets, and p : X — S x T" a map. We shall say that p is
a bifibration if it is an inner fibration having the following properties:

e For every n > 1 and every diagram of solid arrows

A’n,

— X
7
-
s
v
v

A"4f>5><T

such that 77 o f maps A%} C A” to a degenerate edge of T, there exists a dotted arrow as indicated,
rendering the diagram commutative. Here mp denotes the projection S x T' — T.
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e For every n > 1 and every diagram of solid arrows

AZ—>X

L]

A"*JLSXT

such that mg o f maps A{*~17} C A" to a degenerate edge of T, there exists a dotted arrow as
indicated, rendering the diagram commutative. Here mg denotes the projection S x T — S.

Remark 2.3.7.3. The condition that p be a bifibration is not a condition on p alone, but refers also to a
decomposition of the codomain of p as a product S x T. We note also that the definition is not symmetric
in S and T instead, p: X — S x T is a bifibration if and only if p°? : X°P — TP x S°P is a bifibration.

Remark 2.3.7.4. Let p: X — S x T be a map of simplicial sets. If T' = %, then p is a bifibration if and
only if it is a left fibration. If S = %, then p is a bifibration if and only if it is a right fibration.

Roughly speaking, we can think of a bifibration p : X — ST as a bifunctor from S x T to an co-category
of spaces; the functoriality is covariant in S and contravariant in 7.

Lemma 2.3.7.5. Let p: X — S x T be a bifibration of simplicial sets. Suppose that S is an oco-category.
Then the composition ¢ = wr o p is a Cartesian fibration of simplicial sets. Furthermore, an edge e of X is
q-Cartesian if and only if ms(p(e)) is an equivalence.

Proof. The map ¢ is an inner fibration, since it is a composition of inner fibrations. Let us say that an
edge e : ¢ — y of X is quasi-Cartesian if ms(p(e)) is degenerate in S. Let y € Xy be any vertex of X, and
€:7T — q(y) an edge of S. The pair (e, soq(y)) is an edge of S x T whose projection to T is degenerate;
consequently, it lifts to a (quasi-Cartesian) edge e : * — y in X. It is immediate from Definition 2.3.7.2 that
any quasi-Cartesian edge of X is ¢-Cartesian. Thus, ¢ is a Cartesian fibration.

Now suppose that e is a g-Cartesian edge of X. Then e is equivalent to a quasi-Cartesian edge of X;
it follows easily that mg(p(e)) is an equivalence. Conversely, suppose that e : © — y is an edge of X and
that mg(p(e)) is an equivalence. We wish to show that e is g-Cartesian. Choose a quasi-Cartesian edge
e’ : 2’ — y with g(e’) = ¢(e). Since €’ is g-Cartesian, there exists a simplex o € X5 with doo = €', dio = e,
and q(o) = spq(e). Let f = da(o), so that wg(p(e’)) oms(p(f)) = msp(e) in the co-category S. We note that
[f lies in the fiber X (., which is left-fibered over S; since f maps to an equivalence in S, it is an equivalence
in X;(;). Consequently, f is g-Cartesian, so that e = ¢’ o f is g-Cartesian as well. O

Proposition 2.3.7.6. Let X 2> Y % S x T be a diagram of simplicial sets. Suppose that ¢ and qop are
bifibrations, and that p induces a homotopy equivalence X5y — Y(s 1) of fibers over each vertex (s,t) of
S xT. Then p is a categorical equivalence.

Proof. By means of a standard argument (see the proof of Proposition 1.3.2.8) we may reduce to the case
where S and T are simplices; in particular, we may suppose that S and T are co-categories. Fix t € T, and
consider the map of fibers p; : X; — Y;. Both sides are left-fibered over S x {t}, so that p; is a categorical
equivalence by (the dual of) Corollary 2.3.4.4. We may then apply Corollary 2.3.4.4 again (along with the
characterization of Cartesian edges given in Lemma 2.3.7.5) to deduce that p is a categorical equivalence. [

Proposition 2.3.7.7. Let p : X — S x T be a bifibration, let f : S' — S, g : T — T be categorical
equivalences between oco-categories, and let X' = X X gx7 (8" x T"). Then the induced map X' — X is a
categorical equivalence.

Proof. We will prove the result assuming that f is an isomorphism. A dual argument will establish the result
when ¢ is an isomorphism, and applying the result twice we will deduce the desired statement for arbitrary
f and g.
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Given amap i : A — S, let us say that 7 is good if the induced map X Xgx7 (AXT") = X Xgx1 (AXT")
is a categorical equivalence. We wish to show that the identity map S — S is good; it will suffice to show
that all maps A — S are good. Using the argument of Proposition 1.3.2.8, we can reduce to showing that
every map A" — S is good. In other words, we may assume that S = A™, and in particular that S is an
oo-category. By Lemma 2.3.7.5, the projection X — T is a Cartesian fibration. The desired result now
follows from Corollary 2.3.4.5. O

We next prove an analogue of Lemma 2.3.6.2.

Lemma 2.3.7.8. Let X 5 Y L S x T satisfy the hypotheses of Proposition 2.3.7.6. Let A C B be a
cofibration of simplicial sets over S x T. Let fo: A — X, g: B —Y be morphisms in (Seta),gxr and let
ho: A x A —Y be a homotopy (again over S x T) from g|A to po fo.

Then there exists a map f : B — X (of simplicial sets over S x T) and a homotopy h : B x A! — T
(over S x T) from g to po f, such that fo = f|A and hg = h|A x AL,

Proof. Working cell-by-cell with the inclusion A C B, we may reduce to the case where B = A", A = JA".
If n = 0, we may invoke the fact that p induces a surjection moX (s ) — moY(,) on each fiber. Let us assume
therefore that n > 1. Without loss of generality, we may pull back along the maps B — S, B — T, and
reduce to the case where S and T are simplices.

We consider the task of constructing h : A™ x Al — T. We now employ the filtration

X(n+1)C...C X(0)

described in the proof of Proposition 2.1.2.5. We note that the value of h on X (n+1) is uniquely prescribed
by ho and g. We extend the definition of h to X (i) by descending induction on i. We note that X (i) ~
XGE+1D]] ARt A"+l For i > 0, the existence of the required extension is guaranteed by the assumption
that Y is inner-fibered over S x T'.

We note that, in view of the assumption that S and T are simplices, any extension of of h over the
simplex g is automatically a map over S x T. Since S and T are oco-categories, Proposition 2.3.7.6 implies
that p is a categorical equivalence of co-categories; the existence of the desired extension of h (and the map
f now follows from Lemma 2.3.6.1. O

Proposition 2.3.7.9. Let X 5Y % S x T satisfy the hypotheses of Proposition 2.3.7.6. Suppose that p is
a cofibration. Then there exists a retraction r: Y — X (as a map of simplicial sets over S x T') such that
rop=idy.

Proof. Apply Lemma 2.3.7.8 in the case A =X, B=Y. O

Let ¢ : M — A! be an inner fibration, which we view as a correspondence from € = ¢~ {0} to D = ¢~ *{1}.
Evaluation at the endpoints of Al induces maps Map i1 (A, M) — €, Map: (AL, M) — D.

Proposition 2.3.7.10. For every inner fibration q : M — Al as above, the map p : Mapa1 (A, M) — € x D
is a bifibration.

Proof. We first show that p is an inner fibration. It suffices to prove that ¢ has the right-lifting property
with respect to
(A7 xAY JT (A" xoA!) C A" x A,
NN

for any 0 < i < n. But this is a smash product of d A C A! with the inner anodyne inclusion A? C A™.
To complete the proof that p is a bifibration, we verify that every n > 1, fo : A2 — X and g : A" — Sx T
with g|Al = po fo, if (m50g)| A%} is degenerate, then there exists f : A” — X with g = pof and fo = f|AJ.
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(The dual assertion, regarding extensions of maps A’ — X, is verified in the same way.) The pair (fo, g)
may be regarded as a map

ho: (A" x{0,1}) [ A§xAh)—M
AR x{0,1}
and our goal is to prove that hy extends to a map h : A" x Al — M.

Let {o;}o<i<n be the maximal-dimensional simplices of A™ x Al, as in the proof of Proposition 2.1.2.5.
We set

K@) =@A"x{0,1}) ] @§xAh

Agx{0,1}

and, for 0 < i < n, let K(i +1) = K(¢)|Jo;. We construct maps h; : K; — M, with h; = h;11]K;,
by induction on i. We note that for ¢ < n, K(i + 1) ~ K(7) ]_[Affll A"l 50 that the desired extension

exists in virtue of the assumption that M is an oco-category. If ¢ = n, we have instead an isomorphism
A" x A' = K(n+1) ~ K(n) HA61+1 A"*1. The desired extension of h,, can be found by Proposition 1.2.4.3,

since ho| A%} x {0} is an equivalence in @ C M by assumption. O

Corollary 2.3.7.11. Let C be an co-category. Evaluation at the endpoints gives a bifibration Fun(Al, C) —
CxC.

Proof. Apply Proposition 2.3.7.10 to the correspondence € xAl. O

Corollary 2.3.7.12. Let f: C — D be a functor between co-categories. The projection
Fun(A', D) XFun({1},0) € — Fun({0}, D)
is a Cartesian fibration.

Proof. Combine Corollary 2.3.7.11 with Proposition 2.3.7.5. O
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Chapter 3

The oo-Category of co-Categories

The power of category theory lies in its role as a unifying language for mathematics: nearly every class of
mathematical structures (groups, manifolds, algebraic varieties, etcetera) can be organized into a category.
This language is somewhat inadequate in situations where the structures need to be classified up to some
notion of equivalence less rigid than isomorphism. For example, in algebraic topology one wishes to study
topological spaces up to homotopy equivalence; in homological algebra one wishes to study chain complexes
up to quasi-isomorphism. Both of these examples are most naturally described in terms of higher category
theory (for example, the theory of co-categories used in this book).

Another source of examples arises in category theory itself. In classical category theory, it is generally
regarded as unnatural to ask whether two categories are isomorphic; instead, one asks whether or not they
are equivalent. The same phenomenon arises in higher category theory. Throughout this book, we generally
regard two oo-categories € and D as “the same” if they are categorically equivalent, even if they are not
isomorphic to one another as simplicial sets. In other words, we are not interested in the ordinary category
of co-categories (a full subcategory of Seta ), but in an underlying co-category which we now define.

Definition 3.0.0.1. The simplicial category Gatvo is defined as follows:
(1) The objects of Cat% are (small) co-categories.

(2) Given oo-categories € and D, we define Mape,;a (€, D) to be the largest Kan complex contained in
the oco-category Fun(€, D).

We let Cato, denote the simplicial nerve N(CatZ). We will refer to Cato, as the co-category of (small)
00-categories.

Remark 3.0.0.2. The mapping spaces in Gatvo are Kan complexes, so that Cat., is an co-category (Propo-
sition 1.1.5.9) as suggested by the terminology.

Remark 3.0.0.3. By construction, the objects of Cat,, are co-categories, morphisms are given by functors,
and 2-morphisms are given by homotopies between functors. In other words, Cat., discards all information
about noninvertible natural transformations between functors. If necessary, we could retain this information
by forming an co-bicategory of (small) co-categories. We do not wish to become involved in any systematic
study of co-bicategories, so we will be content to consider only Cat..

Our goal in this chapter is to study the co-category Cat.,. For example, we would like to show that Cat.,
admits limits and colimits. There are two approaches to proving this assertion. We can attack the problem
directly, by giving an explicit construction of the limits and colimits in question: see §3.3.4 and §3.3.5.
Alternatively, we can try to realize Cato, as the co-category underlying a (simplicial) model category A, and
deduce the existence of limits and colimits in Cat,, from the existence of homotopy limits and homotopy
colimits in A (Corollary 4.2.4.6). The objects of Cato, can be identified with the fibrant-cofibrant objects
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of Seta, with respect to the Joyal model structure. However, we cannot apply Corollary 4.2.4.6 directly,
because Seta is not a simplicial model category with respect to the Joyal model structure. We will remedy
this difficulty by introducing the category Setz of marked simplicial sets. We will explain how to endow Setz
with the structure of a simplicial model category in such a way that there is an equivalence of simplicial
categories GatOAo ~ (SetX)". This will allow us to identify Cat., with the oco-category underlying Setz, SO
that Corollary 4.2.4.6 can be invoked.

We will introduce the formalism of marked simplicial sets in §3.1. In particular, we will explain the
construction of a model structure not only on Setz itself, but also for the category (Setz) /5 of marked
simplicial sets over a given simplicial set S. The fibrant objects of (Set}) /s can be identified with Cartesian
fibrations X — S, which we can think of as contravariant functors from S into Cat,. In §3.2, we will justify
this intuition by introducing the straightening and unstraightening functors which will allow us to pass back
and forth between Cartesian fibrations over S and functors from S°P to Cat.,. This correspondence has
applications to both the study of Cartesian fibrations and to the study of the co-category Cat.,; we will
survey some of these applications in §3.3.

Remark 3.0.0.4. In the later chapters of this book, it will be necessary to undertake a systematic study
of co-categories which are not small. For this purpose, we introduce the following notational conventions:

Catoo will denote the simplicial nerve of the category of small co-categories, while @OO denotes the the
simplicial nerve of the category of co-categories which are not necessarily small.
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3.1 Marked Simplicial Sets

The Joyal model structure on Seta is a powerful tool in the study of oo-categories. However, in relative
situations it is somewhat inconvenient. Roughly speaking, a categorical fibration p : X — S determines a
family of co-categories X, parametrized by the vertices s of S. However, we are generally more interested in
those cases where X can be regarded as a functor of s. As we explained in §2.3.2, this naturally translates
into the assumption that p is a Cartesian fibration. According to Proposition 3.3.2.8, every Cartesian
fibration is a categorical fibration, but the converse is false. Consequently, it is natural to to try to endow
(8eta),s with some other model structure, in which the fibrant objects are precisely the Cartesian fibrations
over S.

Unfortunately, this turns out to be an unreasonable demand. In order to have a model category, we need
to be able to form fibrant replacements: in other words, we need the ability to enlarge an arbitrary map
p: X — S into a commutative diagram

where ¢ is a Cartesian fibration generated by p. A question arises: for which edges f of X should ¢(f) be
g-Cartesian edge of Y7 This sort of information is needed for the construction of Y; consequently, we need
a formalism in which certain edges of X have been distinguished, or marked.

Definition 3.1.0.1. A marked simplicial set is a pair (X, &) where X is a simplicial set and € is a set of
edges of X which contains every degenerate edge.

An edge of X will be called marked, or special, if it belongs to €.

A morphism f : (X,€) — (X’,€&’) of marked simplicial sets is a map f : X — X’ having the property
that f(€) C &'. The category of marked simplicial sets will be denoted by Set .

Every simplicial set .S may be regarded as a marked simplicial set, usually in many different ways. The
two extreme cases deserve special mention: if S is a simplicial set, we let S¥ = (S, S;) denote the marked
simplicial set in which every edge of S has been marked, and S” = (S, 50(Sp)) the marked simplicial set in
which only the degenerate edges of S have been marked.

Notation 3.1.0.2. Let S be a simplicial set. We let (Setz) /s denote the category of marked simplicial sets
equipped with a map to S (which might otherwise be denoted as (SetX) /s:).

Our goal in this section is to study the theory of marked simplicial sets, and in particular to endow each
(Setz)/s with the structure of a model category. We will begin in §3.1.1 by introducing the notion of a
marked anodyne morphism in Seta. In §3.1.2, we will establish a basic stability property of the class of
marked anodyne maps, which implies the stability of Cartesian fibrations under exponentiation (Proposition
3.1.2.1). In §3.1.3 we will introduce the marked model structure on (Setz)/s7 for every simplicial set S. In
§3.1.4, we will study these model categories; in particular, we will see that each (SetJAr)/S is a stmplicial model
category, whose fibrant objects are precisely the Cartesian fibrations X — S (with Cartesian edges of X
marked). Finally, we will conclude with §3.1.5, where we compare the marked model structure on (Set}) /5
with other model structures considered in this book (such as the Joyal and contravariant model structures).

3.1.1 Marked Anodyne Morphisms

In this section, we will introduce the class of marked anodyne morphisms in SetX. Every marked anodyne
morphism is a trivial cofibration with respect to the marked model structure (to be defined in §3.1.3), but
not conversely. In this respect, the class of marked anodyne morphisms of SetX is analogous to the class of
inner anodyne morphisms of Seta .
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Definition 3.1.1.1. The class of marked anodyne morphisms in Set{ is the smallest saturated (see §A.1.2)
class of morphisms such that:

(1) For each 0 < i < n, the inclusion (A?)” C (A™)" is marked anodyne.

(2) For every n > 0, the inclusion
(An, EN(AL)1) € (A", €)
is marked anodyne, where € denotes the set of all degenerate edges of A", together with the final edge
Aln—1n}

(3) The inclusion
(ADF TT a%) — (&%)

(A%
is marked anodyne.
(4) For every Kan complex K, the map K” — K* is marked anodyne.

Remark 3.1.1.2. The definition of a marked simplicial set is self-dual. However, Definition 3.1.1.1 is not
self-dual: if A — B is marked anodyne, then the opposite morphism A°? — B°P need not be marked-anodyne.
This reflects the fact that the theory of Cartesian fibrations is not self-dual.

Remark 3.1.1.3. In part (4) of Definition 3.1.1.1, it suffices to allow K to range over a set of representatives
for all isomorphism classes of Kan complexes with only countably many simplices. Consequently, we deduce
that the class of marked anodyne morphisms in Setz is of small generation, so that the small object argument
applies (see §A.1.2). We will refine this observation further: see Corollary 3.1.1.8, below.

Remark 3.1.1.4. In Definition 3.1.1.1, we are free to replace (1) by
(1) For every inner anodyne map A — B of simplicial sets, the induced map 4> — B’ is marked anodyne.

Proposition 3.1.1.5. Consider the following classes of morphisms in Setz:
(2) All inclusions
(AZM € m<A2)1) - (An7 8)’
where n > 0 and & denotes the set of all degenerate edges of A™, together with the final edge AT"—17},

(2) All inclusions
(@A™ x (A TT (A" x {1}F) < (a™)’ x (A1)
(8Am)bx {1}
(2") All inclusions
(4 ahh T (B x{1)F) € B> x (AN,
AP x{1}¢

where A C B is an inclusion of simplicial sets.

The classes (2') and (2") generate the same saturated class of morphisms of SetX, which contains the
saturated class generated by (2). Conversely, the saturated class of morphisms generated by (1) and (2) from
Definition 3.1.1.1 contains (2') and (2").
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Proof. To see that each of the morphisms specified in (2”) is contained in the saturated class generated by
(2'), it suffices to work cell-by-cell with the inclusion A C B. The converse is obvious, since the class of
morphisms of type (2') is contained in the class of morphisms of type (2”). To see that the saturated class
generated by (2”) contains (2), it suffices to show every morphism in (2) is a retract of a morphism in (2").
For this, we consider maps

A" L AT x AT S AT,

Here j is the composition of the identification A™ ~ A™ x {0} with the inclusion A™ x {0} C A" x Al and
r may be identified with the map of partially ordered sets

(m, i) n ifm=n-1,i=1
r(m,i) = .
m otherwise.

Now we simply observe that j and r exhibit the inclusion
(An, €N(AT)o) € (A™,E),

as a retract of
(A < @Ah: T (A™’ x{13%) < (A™)" x (AH*
(An)P x {1}
To complete the proof, we must show that each of the inclusions
(@amy xahh  JI  «amy’ x{13H) ca") x (Al
(0 Am)bx{1}#

of type (2’) belongs to the saturated class generated by (1) and (2). To see this, we consider the filtration
Y1 C€...CYy=A" x Al

which is the opposite of the filtration defined in the proof of Proposition 2.1.2.5. We let &; denote the
class of all edges of Y; which are marked in (A™)* x (AM%. Tt will suffice to show that each inclusion
fi» Yig1,€iv1) C (Y3, &) lies in the saturated class generated by (1) and (2). For ¢ # 0, the map f; is a

pushout of (A?T]_,)* € (A™1)". For i =0, f; is a pushout of

(AL1 EN(ARTL) € (AL 8),
where and & denotes the set of all degenerate edges of A", together with Al +1} O
We now characterize the class of marked-anodyne maps:

Proposition 3.1.1.6. A map p: X — S in SetX has the right lifting property with respect to all marked
anodyne maps if and only if the following conditions are satisfied:

(A) The map p is an inner fibration of simplicial sets.
(B) An edge e of X is marked if and only if p(e) is marked and e is p-Cartesian.

(C) For every object y of X and every marked edge e : T — p(y) in S, there exists a marked edge e : x — y
of X with p(e) =e.

Proof. We first prove the “only if” direction. Suppose that p has the right lifting property with respect to
all marked anodyne maps. By considering maps of the form (1) from Definition 3.1.1.1, we deduce that (A)
holds. Considering (2) in the case n = 0, we deduce that (C) holds. Considering (2) for n > 0, we deduce
that every marked edge of X is p-Cartesian. For the converse, let us suppose that e : z — y is a p-Cartesian
edge of X and that p(e) is marked in S. Invoking (C'), we deduce that there exists a marked edge e’ : 2/ — y
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with p(e) = p(e’). Since €’ is Cartesian, we can find a 2-simplex o of X with do(c) = €/, di(o) = e, and
p(o) = sip(e). Then dp(o) an equivalence between x and z’ in the oo-category X,). Let K denote the
largest Kan complex contained in X),(,. Since p has the right lifting property with respect to K * - Kt we
deduce that every edge of K is marked; in particular, dy(o) is marked. Since p has the right lifting property
with respect to the morphism described in (3) of Definition 3.1.1.1, we deduce that d; (o) = e is marked.

Now suppose that p satisfied the hypotheses of the proposition. We must show that p has the right
lifting property with respect to the classes of morphisms (1), (2), (3), and (4) of Definition 3.1.1.1. For (1),
this follows from the assumption that p is an inner fibration. For (2), this follows from (C') and from the
assumption that every marked edge is p-Cartesian. For (3), we are free to replace S by (A?)%; then p is a
Cartesian fibration over an oo-category S and we may apply Proposition 2.3.1.7 to deduce that the class of
p-Cartesian edges is stable under composition.

Finally, for (4), we may replace S by K*; then S is a Kan complex and p is a Cartesian fibration, so the
p-Cartesian edges of X are precisely the equivalences in X. Since K is a Kan complex, any map K — X
carries the edges of K to equivalences in X. O

By Quillen’s small object argument, we deduce that a map j: A — B in Setz is marked anodyne if and
only if it has the left lifting property with respect to all morphisms p : X — S satisfying the hypotheses of
Proposition 3.1.1.6. From this, we deduce:

Corollary 3.1.1.7. The inclusion
i (A3)F I (4% — (A%
(A3
is marked anodyne.
Proof. Tt will suffice to show that i has the left lifting property with respect to any of the morphisms

p: X — S described in Proposition 3.1.1.6. Without loss of generality, we may replace S by (A?)*; we now
apply Proposition 2.3.1.7. O

The following somewhat technical corollary will be needed in §3.1.3:
Corollary 3.1.1.8. In Definition 3.1.1.1, we can replace the class of morphisms (4) by
(4") the map j : A® — (A, s0A¢ U{f}), where A is the quotient of A3 which co-represents the functor

Homget, (A, X) = {0 € X5,e € X5 : dio = spe,dao = s1e}
and f € Ay is the image of A0} C A3 in A.

Proof. We first show that for every Kan complex K, the map i : K — K* lies in the saturated class of
morphisms generated by (4’). We note that ¢ can be obtained as an iterated pushout of morphisms having
the form K” — (K, s0Kq|J{e}), where e is an edge of K. It therefore suffices to show that there exists a
map p : A — K such that p(f) = e. In other words, we must prove that there exists a 3-simplex o : A3 — K
with dio = sge and dyo = sie. This follows immediately from the Kan extension condition.

To complete the proof, it will suffice to show that the map j is marked anodyne. To do so, it suffices to
prove that for any diagram

A——=X

7
-
-
- p
-
-

(A, 5040 U{f}) —= S

for which p satisfies the conditions of Proposition 3.1.1.6, there exists a dotted arrow as indicated, rendering
the diagram commutative. This is simply a reformulation of Proposition 2.3.1.11. O
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Definition 3.1.1.9. Let p : X — S be a Cartesian fibration of simplicial sets. We let X? denote the marked
simplicial set (X, &), where € is the set of p-Cartesian edges of X.

Remark 3.1.1.10. Our notation is slightly abusive, since X? depends not only on X but also on the map
X — 5.

Remark 3.1.1.11. According to Proposition 3.1.1.6, a map (Y, &) — S* has the right lifting property with
respect to all marked anodyne maps if and only if the underlying map ¥ — S is a Cartesian fibration and
(v,€) =Y"

We conclude this section with the following easy result, which will be needed later:

Proposition 3.1.1.12. Let p : X — S be an inner fibration of simplicial sets, and let f : A — B be a
marked anodyne morphism in Setz, let g : B — X be map of simplicial sets which carries each marked edge
of B to a p-Cartesian edge of X, and qo = qo f. Then the induced map

X/q = X/a0 XS040 S/pa
s a trivial fibration of simplicial sets.

Proof. Tt is easy to see that the class of all morphisms f of SetZ which satisfy the desired conclusion is
saturated. It therefore suffices to prove that this class contains collection of generators for the saturated
class of marked anodyne morphisms. If f induces a left anodyne map on the underlying simplicial sets, then
the desired result is automatic. It therefore suffices to consider the case where f is the inclusion

(A%, EN(ADL) € (A™,€)
as described in (2) of Definition 3.1.1.1. In this case, a lifting problem

oA™

X/q

7
-
-
~
-
-

-~

A" —— X /g0 XS, pa0 S/pa

can be reformulated as an equivalent lifting problem

n+m+1 90
An+m+1 —X

7
e
- p
Ve
e

Antmtl —> g,

This lifting problem admits a solution, since the hypothsis on ¢ guarantees that o carries A{ntm.ntm+1}
to a p-Cartesian edge of X. O
3.1.2 Stability Properties of Marked Anodyne Morphisms

Our main goal in this section is to prove the following stability result:

Proposition 3.1.2.1. Let p: X — S be a Cartesian fibration of simplicial sets, and let K be an arbitrary
simplicial set. Then:

(1) The induced map p* : XX — SK is a Cartesian fibration.

(2) An edge A' — XK is pK_Cartesian if and only if, for every vertex k of K, the induced edge A* — X
is p-Cartesian.
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We could easily have given an ad-hoc proof of this result in §2.3.3. However, we have opted instead to
give a proof using the language of marked simplicial sets.

Definition 3.1.2.2. A morphism (X, &) — (X', &) in Set is a cofibration if the underlying map X — X’
of simplicial sets is a cofibration.

The main ingredient we will need to prove Proposition 3.1.2.1 is the following;:

Proposition 3.1.2.3. The class of marked anodyne maps in SetX is stable under smash products with
arbitrary cofibrations. In other words, if f : X — X' is marked anodyne, and g : Y — Y’ is a cofibration,
then the induced map
(X xY) JT (X' xY) - X' xY’
XxXY

is marked anodyne.

Proof. The argument is tedious, but straightforward. Without loss of generality, we may suppose that f
belongs either to the class (2') of Proposition 3.1.1.5, or one of the classes specified in (1), (3), or (4) of

Definition 3.1.1.1. The class of cofibrations is generated by the inclusions (9 A™)” C (A™)” and (A1)’ C (A1)%;
thus we may suppose that g : Y — Y” is one of these maps. There are eight cases to consider:

(A1) Let f be the inclusion (A?)* C (A™)” and g the inclusion (9 A™)* — (A™)?, where 0 < i < n. Since the
class of inner anodyne maps between simplicial sets is stable under smash products with inclusions,
the smash product of f and g is marked-anodyne (see Remark 3.1.1.4).

(A2) Let f denote the inclusion (A?)” — (A™)’, and g the map (A')” — (A!)f, where 0 < i < n. Then the
smash product of f and g is an isomorphism (since A} contains all vertices of A™).

(B1) Let f be the inclusion

{1 @am)y  JI «Aah  x(@Aam)’) C (AN x (Am),
{1} (8 An)

and let g be the inclusion (9 A™)” — (A™)’. Then the smash product of f and g belongs to the class
(2") of Proposition 3.1.1.5.

(B2) Let f be the inclusion

{1¥x@my)  JI  «ahtx(@am’) c@ahf x @ary,
{1} x (9 Ay

and let g denote the map (A')* — (A')f. If n > 0, then the smash product of f and g is an isomorphism.
If n = 0, then the smash product may be identified with the map (A x Al &) — (A! x AN* where
€ consists of all degenerate edges together with {0} x Al {1} x Al, and Al x {1}. This map may be
obtained as a composition of two marked anodyne maps: the first is of type (3) in Definition 3.1.1.1
(adjoining the “diagonal” edge to &) and the second is the map described in Corollary 3.1.1.7 (adjoining
the edge A! x {0} to &).

(C1) Let f be the inclusion
(ADF IT (A% — (&%),
(

AR

and let g the inclusion (9 A™)” C (A™)°. Then the smash product of f and g is an isomorphism for
n > 0, and isomorphic to f for n = 0.
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(C2) Let f be the inclusion
(ADF TT (A% — (&%),
(A9)°
and let g be the canonical map (A')” — (A')f. Then the smash product of f and g is a pushout of the
map f.
(D1) Let f be the map K* — K* where K is a Kan complex, and let ¢ the inclusion (9 A™)” C (A™)°.

Then the smash product of f and g is an isomorphism for n > 0, and isomorphic to f for n = 0.

(D2) Let f be the map K* — K* where K is a Kan complex, and let g be the map (A')* — (A')f. The
smash product of f and g can be identified with the inclusion
(K x AL £) C (K x AL,

where € denotes the class of all edges e = (¢/,€”) of K x Al for which either ¢’ : A’ — K or
e’ : A — Al is degenerate. This inclusion can be obtained as a transfinite composition of pushouts
of the map

(ADF IT (A% — (a%)~.
(

AR

We now return to our main objective:

Proof of Proposition 3.1.2.1. Since p is a Cartesian fibration, it induces a map X% — S* which has the right
lifting property with respect to all marked anodyne maps. By Proposition 3.1.2.3, the induced map
(X0 = (59 = (57

has the right lifting property with respect to all marked anodyne morphisms. The desired result now follows
from Remark 3.1.1.10. O

3.1.3 Marked Simplicial Sets as a Model Category

In this section, we will introduce a model structure on the category SetJAr of marked simplicial sets, rendering
it Quillen equivalent with the Joyal model structure on Seta. With an eye toward later applications, we will
actually set up a relative version of this theory, which applies to marked simplicial sets equipped with a map
to S, where S is some fixed simplicial set.

The category SetX is Cartesian-closed; that is, for any two objects X,Y € SetX, there exists an internal
mapping object YX equipped with an “evaluation map” YX x X — Y which induces bijections

Homg,+ (Z,Y™) — Homg, + (Z x X,Y)
for every Z € Seta. We let Map®(X,Y) denote the underlying simplicial set of Y, and Map?(X,Y) C

Mapb(X, Y') the simplicial subset consisting of all simplices o C Map"(X, Y’) such that every edge of o is a
marked edge of YX. Equivalently, we may describe these simplicial sets by the mapping properties

Homser,, (K, Map’(X,Y)) =~ Homg, + (K x X,Y)

Homses,, (K, Map?(X,Y)) = Homg,  (K* x X, Y).

If X and Y are objects of (SetZ)/S, then we let MapﬂS(X, Y) and Map'zg(X, Y) denote the simplicial

subsets of Mapﬁ(X ,Y) and Mapb(X ,Y) classifying those maps which are compatible with the projections to
S.
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Remark 3.1.3.1. If X € (Set})s and p : ¥ — S is a Cartesian fibration, then Mapy(X,Y?) is an
oo-category, and Mapg(X, V%) is the largest Kan complex contained in Map’ (X, Y?).

Lemma 3.1.3.2. Let f: C — D be a functor between oco-categories. The following are equivalent:
(1) The functor f is a categorical equivalence.
(2) For every simplicial set K, the induced map Fun(K,C) — Fun(K, D) is a categorical equivalence.

(3) For every simplicial set K, the functor Fun(K, C) — Fun(K, D) induces a homotopy equivalence between
the largest Kan complex contained in Fun(K, C) and the largest Kan complex contained in Fun(K, D).

Proof. The implications (1) = (2) = (3) are obvious. Suppose that (3) is satisfied. Let K = D. According
to (3), there exists an object x of Fun(K, €) whose image in Fun(K, D) is equivalent to the identity map
K — D. We may identify x with a functor g : D — € having the property that f o ¢ is homotopic to the
identity idp. It follows that g also has the property asserted by (3), so the same argument shows that there
is a functor f’ : € — D such that g o f’ is homotopic to ide. It follows that f o g o f’ is homotopic to
both f and f’, so that f is homotopic to f’. Thus g is a homotopy inverse to f, which proves that f is an
equivalence. O

Proposition 3.1.3.3. Let S be a simplicial set, and let p : X — Y be a morphism in (SetX)/S. The
following are equivalent:

(1) For every Cartesian fibration Z — S, the induced map
Mapy (Y, Z%) — Map} (X, Z°)
s an equivalence of co-categories.

(2) For every Cartesian fibration Z — S, the induced map
Map, (Y, Z%) — Map, (X, Z%)
is a homotopy equivalence of Kan complezes.

Proof. Since Mapﬁs (M, Z%) is the largest Kan complex contained in Mapg (M, Z%), it is clear that (1) implies
(2). Suppose that (2) is satisfied, and let Z — S be a Cartesian fibration. We wish to show that

Mapj (Y, Z%) — Mapy(X, Z%)
is an equivalence of co-categories. According to Lemma 3.1.3.2, it suffices to show that
Mapis(Y, 29)" — Mapj (X, 29)"

induces a homotopy equivalence on the maximal Kan complexes contained in each side. Let Z(K) =
ZK x gk S. Proposition 3.1.2.1 implies that Z(K) — S is a Cartesian fibration, and that there is a natural
identification

Mapi (M, Z(K)*) = Map (M, Z(K)*).
The largest Kan complex contained in the right hand side is MapﬂS(M,Z(K)h). On the other hand, the
natural map

Map?, (Y, Z(K)") — Map’, (X, Z(K)*)
is homotopy equivalence by assumption (2). O

We will say that a map X — Y in (SetX) /s 1s a marked equivalence if it satisfies the equivalent conditions
of Proposition 3.1.3.3.
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Remark 3.1.3.4. Let f : X — Y be a morphism in (SetZ)/S which is marked anodyne when regarded
as a map of marked simplicial sets. Since the smash product of f with any inclusion A> C B’ is also
marked-anodyne, we deduce that the map

¢ : Map}(Y, Z%) — Map}(X, Z°)
is a trivial fibration for every Cartesian fibration Z — S. Consequently, f is a marked equivalence.

Let S be a simplicial set and let X,Y € (SGtX)/S. We will say a pair of morphisms f,g: X — Y are
strongly homotopic if there exists a contractible Kan complex K and a map K — Mapg(X ,Y), whose image
contains both of the vertices f and ¢g. If Y = Z% where Z — S is a Cartesian fibration, then this simply
means that f and g are equivalent when viewed as objects of the oco-category Mapg(X ,Y).

Proposition 3.1.3.5. Let X 2V % S be a diagram of simplicial sets, where both q and gop are Cartesian
fibrations. The following assertions are equivalent:

(1) The map p induces a marked equivalence X% — Y% in (Set})s.

(2) There exists a map v : Y — X which is a strong homotopy inverse to p, in the sense that p or and
r o p are both strongly homotopic to the identity.

(3) The map p induces a categorical equivalence Xy — Yy, for each vertex s of S.

Proof. The equivalence between (1) and (2) is easy, as is the assertion that (2) implies (3). It therefore
suffices to show that (3) implies (2). We will construct  and a homotopy from 7 o p to the identity. It then
follows that the map r satisfies (3), so the same argument will show that r has a right homotopy inverse; by
general nonsense this right homotopy inverse is automatically homotopic to p and the proof will be complete.

Choose a transfinite sequence of simplicial subsets S(a) C S, where each S(a) is obtained from (J4_,, S(5)
by adjoining a single nondegenerate simplex (if such a simplex exists). We construct 7o : Y xg S(a) — X
and an equivalence h, : (X xg S(a)) x Al — X x5 S(a) from r, o p to the identity, by induction on a. By
this device we may reduce to the case where S = A™, and the maps

Y = X
RO X' x A' 5 X

are already specified, where Y/ =Y xan QA" CY and X' = X xan 0 A™ C X. We may regard v’ and b’/
together as defining a map vy : Z' — X, where

z =y [ x'xay ] x.

X'x{0} X'x{1}
Let Z =Y ][]y, (0} X x A'; then our goal is to solve the lifting problem depicted in the following diagram:

7 x

e
e
VA

>A’I’L

in such a way that 1 carries {x} x Al to an equivalence in X, for every object z of X. We note that this
last condition is vacuous for n > 0.

If n = 0, the problem amounts to constructing a map ¥ — X which is homotopy inverse to p: this is
possible in view of the assumption that p is a categorical equivalence. For n > 0, we note that any map
¢ : Z — X extending ¢¢ is automatically compatible with the projection to S (since S is a simplex and
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Z' contains all vertices of Z). Since the inclusion Z’ C Z is a cofibration between cofibrant objects in the
model category Seta (with the Joyal model structure), and X is a co-category (since ¢ is an inner fibration
and A™ is a co-category), Proposition A.2.4.1 asserts that it is sufficient to show that the extension ¢ exists
up to homotopy. Since Corollary 2.3.4.4 implies that p is an equivalence, we are free to replace the inclusion
7' C Z with the weakly equivalent inclusion

(X x {1}) 11 (X xan OA" x {1}) C X x AL,
X XaAnd A" X AL

Since ¢g carries {x} x Al to a (gop)-Cartesian edge of X, for every vertex z of X, the existence of ¢ follows
from Proposition 3.1.1.5. O

Lemma 3.1.3.6. Let S be a simplicial set, let i : X — Y be a cofibration in (SetZ)/S, and let Z — S be a
Cartesian fibration. Then the associated map p : Mapg(Y, Z% — MapﬂS(X, Z%) is a Kan fibration.

Proof. Let A C B be an anodyne inclusion of simplicial sets. We must show that p has the right lifting
property with respect to p. Equivalently, we must show that Z! — S has the right lifting property with
respect to the inclusion
(B x X) J] (A*xY)C B xY.
Afx X

This follows from Proposition 3.1.2.3, since the inclusion AY C B! is marked anodyne. O

Proposition 3.1.3.7. Let S be a simplicial set. There exists a perfect model structure on (Setz)/s, which
may be described as follows:

(C) The cofibrations in (Set}),s are those morphisms p: X —Y in (Set}), s which are cofibrations when
regarded as morphisms of simplicial sets.

(W) The weak equivalences in (Set})s are the marked equivalences.

(F) The fibrations in (SetZ)s are those maps which have the right lifting property with respect to every
map which is simultaneously a cofibration and a marked equivalence.

Proof. It suffices to show that the hypotheses of Proposition A.2.9.5 are satisfied by the class (C') of cofibra-
tions and the class (W).

(1) The class (W) of marked equivalences is perfect, in the sense of Definition A.2.9.1. To prove this,
we first observe that the class of marked anodyne maps is generated by the classes (1), (2), (3) of
Definition 3.1.1.1 and (4’) of Corollary 3.1.1.8. By Proposition A.1.2.5, there exists a functor T' from
(SetX),s to itself and a (functorial) factorization

X X 7(x)% g

where ix is marked anodyne (and therefore a marked equivalence) and jx has the right lifting property
with respect to all marked anodyne maps, and therefore corresponds to a Cartesian fibration over S.
Moreover, the functor T' commutes with filtered colimits. According to Proposition 3.1.3.5, a map
X =Y in (SetX)/s is a marked equivalence if and only if, for each vertex s € S, the induced map
T(X)s — T(Y), is a categorical equivalence. It follows from Corollary A.2.9.4 that (W) is a perfect
class of morphisms.
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(2) The class of weak equivalences is stable under pushouts by cofibrations. Suppose given a pushout
diagram

2oy

p/
X —Y'
where 4 is a cofibration and p is a marked equivalence. We wish to show that p’ is also a marked

equivalence. In other words, we must show that for any Cartesian fibration Z — S, the associated
map Mapﬁs (Y, Z8) — Mapﬁs (X', Z%) is a homotopy equivalence. Consider the pullback diagram

Maph (Y, Z%) — Map (X', Z%)

l |

Maph (Y, Z8) — Maph (X, Z9).

Since p is a marked equivalence, the bottom horizontal arrow is a homotopy equivalence. According
to Lemma 3.1.3.6, the right vertical arrow is a Kan fibration; it follows that the diagram is homotopy
Cartesian and so the top horizontal arrow is an equivalence as well.

(3) Amapp: X - Y in (SetZ)/S which has the right lifting property with respect to every map in (C)
belongs to (W). Unwinding the definition, we see that p is a trivial fibration of simplicial sets, and
that an edge e of X is marked if and only if p(e) is a marked edge of Y. It follows that p has a section
s, with s o p fiberwise homotopic to idx. From this, we deduce easily that p is a marked equivalence.

O

3.1.4 Properties of the Marked Model Structure

In this section, we will establish some of the basic properties of marked model structures on (SetX) /s which
was introduced in §3.1.3. In particular, we will show that each (SetZ)/S is a simplicial model category, and
characterize its fibrant objects.

Proposition 3.1.4.1. An object X € (8et}) s is fibrant (with respect to the marked model structure) if and
only if X ~ Y%, where Y — S is a Cartesian fibration.

Proof. Suppose first that X is fibrant. The small object argument implies that there exists a marked anodyne
map j : X — Z' for some Cartesian fibration Z — S. Since j is marked anodyne, it is a marked equivalence.
Since X is fibrant, it has the extension property with respect to the trivial cofibration j; thus X is a retract
of Z%. Tt follows that X is isomorphic to Y%, where Y is a retract of Z.

Now suppose that ¥ — S is a Cartesian fibration; we claim that Y has the right lifting property
with respect to any trivial cofibration j : A — B in (Set}) /s- Since j is a marked equivalence, the

map 7 : MapﬁS(B 7Yh) — MapﬁS(A7 Yh) is a homotopy equivalence of Kan complexes. Hence, for any map

f:A— Z there is a map g : B — Z% such that g|A and f are joined by an edge e of Mapg(A,Z“). Let
M = (A x (ADHF) [ax e (B % {1}%) C B x (A')!. We observe that e and g together determine a map

M — Z%. Consider the diagram

M— 78

7
| >
B x (A — gt.

The left vertical arrow is marked anodyne, by Proposition 3.1.2.3. Consequently, there exists a dotted arrow
F as indicated. We note that F|B x {0} is an extension of f to B, as desired. O
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We now study the behavior of the marked model structures with respect to products.

Proposition 3.1.4.2. Let S and T simplicial sets, and let Z be an object of (SetX)T. Then the functor

(8etX)/s — (SetX)/sxr
X—XxZ
preserves marked equivalences.

Proof. Let f : X — Y be a marked equivalence in (Setz)/s. We wish to show that f x idz is a marked
equivalence in (Setz)/ng. Let X — X’ be a marked anodyne map where X’ € (SetZ)/S is fibrant. Now
choose a marked-anodyne map X'[[x Y — Y, where Y’ € (Set}) /s is fibrant. Since the product maps
XxZ—>X' xZandY x Z — Y’ x Z are also marked anodyne (by Proposition 3.1.2.3), it suffices to show
that X’ x Z — Y’ x Z is a marked equivalence. In other words, we may reduce to the situation where X
and Y are fibrant. By Proposition 3.1.3.5, f has a homotopy inverse g; then g x idy is a homotopy inverse
to f xidy. [

Corollary 3.1.4.3. Let f : A — B be a cofibration in (SetZ)/S and ' : A" — B’ a cofibration in (SetZ)/T.
Then the smash product map
(Ax B H(A’XB)—>A’><B’
AXB

s a coftbration in (SetZ)/SXT, which is trivial if either f or g is trivial.

Corollary 3.1.4.4. Let S be a simplicial set, and regard (SetZ)/s as a simplicial category with mapping
objects given by MapuS(X,Y). Then (Setz)/s is a simplicial model category.

Proof. Unwinding the definitions, we are reduced to proving the following: given a cofibration ¢ : X — X’
in (Set}),s and a cofibration j : Y — Y’ in Seta, the induced cofibration

(X' xvH J] (xxv*Hcx xy*
XxYt

in (SetX) /s is trivial if either ¢ is a marked equivalence of j is a weak homotopy equivalence. If i is trivial,
this follows immediately from Corollary 3.1.4.3. If j is trivial, the same argument applies, provided that we
can verify that Y¢ — Y’ ¥ is a marked equivalence in Setz. Unwinding the definitions, we must show that
for every co-category Z, the restriction map

6 : Map!(Y"*, Z%) — Map!(Y?, 2%

is a homotopy equivalence of Kan complexes. Let K be the largest Kan complex contained in Z, so that 6
can be identified with the restriction map

MapSetA (Yl? K) - MapSetA (K K)
Since j is a weak homotopy equivalence, this map is a trivial fibration. O

Remark 3.1.4.5. There is a second simplicial structure on (SetX) /5, where the simplicial mapping spaces
are given by Mapg(X ,Y). This simplicial structure is not compatible with the marked model structure: for
fixed X € (Set}),s, the functor

A A x X

does not carry weak homotopy equivalences (in the A-variable) to marked equivalences. It does, however,
carry categorical equivalences (in A) to marked equivalences, and consequently (SetZ) /s is endowed with
the structure of a Seta-enriched model category, where we regard Seta as equipped with the Joyal model
structure. This second simplicial structure reflects the fact that (SetZ) /s is really a model for an oo-
bicategory.
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Remark 3.1.4.6. Suppose S is a Kan complex. A map p: X — S is a Cartesian fibration if and only if it is
a coCartesian fibration (this follows in general from Proposition 3.3.2.9; if S = AY the main case of interest
for us, it is obvious). Moreover, the class p-coCartesian edges of X coincides with the class of p-Cartesian
edges of X: both may be described as the class of equivalences in X. Consequently, if A € (SetZ)/S, then

Map’s (A, X7) ~ Map., (A%, (XP)F)P,

where A°P is regarded as a marked simplicial set in the obvious way. It follows that a map A — B is a marked
equivalence in (Set}) /s if and only if A°? — B°P is a marked equivalence in (Set}) /ser. In other words,
the marked model structure on (SetJAr)/S is self-dual when S is a Kan compler. In particular, if S = A%, we
deduce that the functor

A AP

determines an autoequivalence of the model category Set{ ~ (Set}) JAO-

3.1.5 Comparison of Model Categories

Let S be a simplicial set. We now have a plethora of model structures on categories of simplicial sets over S:

(0) Let €y denote the category (Seta),s of simplicial sets over S endowed with the Joyal model structure
defined in §1.3.4: the cofibrations are monomorphisms of simplicial sets, and the weak equivalences are
categorical equivalences.

(1) Let C; denote the category (Set}{) s of marked simplicial sets over S, endowed with the marked
model structure of Proposition 3.1.3.7: the cofibrations are maps (X,€x) — (Y, Ey) which induce
monomorphisms X — Y, and the weak equivalences are the marked equivalences.

(2) Let €, denote the category (Set}),s of marked simplicial sets over S, endowed with the following
localization of the marked model structure: a map f : (X,€x) — (Y,E&y) is a cofibration if the
underlying map X — Y is a monomorphism, and a weak equivalence if f : X% — Y* is a marked
equivalence in (Set})s.

(3) Let C3 denote the category (Seta),g of simplicial sets over ., which is endowed with the contravariant
model structure described in §2.1.4: the cofibrations are the monomorphisms, and the weak equivalences
are the contravariant equivalences.

(4) Let C4 denote the category (Seta),s of simplicial sets over S, endowed with the usual homotopy-
theoretic model structure: the cofibrations are the monomorphisms of simplicial sets, and the weak
equivalences are the weak homotopy equivalences of simplicial sets.

The goal of this section is to study the relationship between these five model categories. We may
summarize the situation as follows:

Theorem 3.1.5.1. There exists a sequence of Quillen adjunctions
Coter B e B e ey

e e e, e e,
which may be described as follows:

(A0) The functor Gq is the forgetful functor from (SetZ)/S to (8eta),s, which ignores the collection of
marked edges. The functor Fy is the left adjoint to Go, which is given by X — X°. The Quillen
adjunction (Fo, Go) is a Quillen equivalence if S is a Kan complez.
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(A1) The functors Fy and Gy are the identity functors on (Set}),s.

(A2) The functor Fy is the forgetful functor from (SetX),s to (8eta);s, which ignores the collection of
marked edges. The functor G is the right adjoint to Fa, which is given by X — X%t The Quillen
adjunction (Fy,G2) is a Quillen equivalence for every simplicial set S.

(A3) The functors F3 and G5 are the identity functors on (Setz)/s. The Quillen adjunction (Fs,G3) is a
Quillen equivalence whenever S is a Kan complex.

The rest of this section is devoted to giving a proof of Theorem 3.1.5.1. We will organize our efforts as
follows. First, we verify that the model category Cs is well-defined (the analogous results for the other model
structures have already been established). We then consider each of the adjunctions (F;, G;) in turn, and
show that it has the desired properties.

Proposition 3.1.5.2. Let S be a simplicial set. There exists a perfect model structure on the category
(8etX) /s which may be described as follows:

(C) Amap f:(X,Ex) — (Y, Ey) is a cofibration if and only if the underlying map X — 'Y is a monomor-
phism of simplicial sets.

(W) A map f: (X,€x) — (Y,Ey) is a weak equivalence if and only if the induced map X* — Y* is a
marked equivalence in (Set})s.

(F) Amap f: (X, Ex) — (Y,Ey) is a fibration if and only if it has the right lifting property with respect
to all trivial cofibrations.

Proof. 1t suffices to show that the conditions of Proposition A.2.9.5 are satisfied. We check them in turn:

(1) The class (W) of marked equivalences is perfect, in the sense of Definition A.2.9.1. This follows from
Corollary A.2.9.4, since the class of marked equivalences is perfect, and the functor (X,€x) — X*
commutes with filtered colimits.

(2) The class of weak equivalences is stable under pushouts by cofibrations. This follows from the analogous
property of the marked model structure, since the functor (X, €x) — X 1 preserves pushouts.

(3) Amap p: (X,E€x) — (Y,Ey) which has the right lifting property with respect to every cofibration
is a weak equivalence. In this case, the underlying map of simplicial sets is a trivial fibration, so the
induced map X* — Y* has the right lifting property with respect to all trivial cofibrations, and is a
marked equivalence as observed in the proof of Proposition 3.1.3.7.

O

Proposition 3.1.5.3. Let S be simplicial set. Consider the adjoint functors
Fo N
(SetA)/ST> (SetA)/S
0
described by the formulas
Fo(X) = X"

Go(X, &) = X.

The adjoint functors (Fy, Go) determine a Quillen adjunction between (Seta) s (with the Joyal model struc-
ture) and (Set}) s (with the marked model structure). If S is a Kan complez, then (Fy,Gy) is a Quillen
equivalence.
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Proof. To prove that (Fy,Gy) is a Quillen adjunction, it will suffice to show that F; preserves cofibrations
and trivial cofibrations. The first claim is obvious. For the second, we must show that if X C Y is a
categorical equivalence of simplicial sets over S, then the induced map X” — Y? is a marked equivalence in
(SetJAr)/S. For this, it suffices to show that for any Cartesian fibration p : Z — S, the restriction map

Map (Y", Z%) — Map(X”, Z%)

is a trivial fibration of simplicial sets. In other words, we must show that for every inclusion A C B of
simplicial sets, it is possible to solve any lifting problem of the form

—— Maply(Y?, Z*)

P
-
~
7
-

B> Mapy(X*, Z5).

Replacing Y by Y x B and X by (X xB) [y, 4(Y xA), we may suppose that A = () and B = *. Moreover, we
may rephrase the lifting problem as the problem of constructing the dotted arrow indicated in the following
diagram:

X—7

7
v
Y——S8

By Proposition 3.3.2.8, p is a categorical fibration, and the lifting problem has a solution in virtue of the
assumption that X C Y is a categorical equivalence.

Now suppose that S is a Kan complex. We want to prove that (Fy, Go) is a Quillen equivalence. In
other words, we must show that for any fibrant object of (SetJAr) /s corresponding to a Cartesian fibration
Z — S,amap X — Z in (Seta),s is a categorical equivalence if and only if the associated map X’ — Z%is
a marked equivalence.

Suppose first that X — Z is a categorical equivalence. Then the induced map X* — Z° is a marked
equivalence, by the argument given above. It therefore suffices to show that Z” — Z% is a marked equivalence.
Since S is a Kan complex, Z is an oco-category; let K denote the largest Kan complex contained in Z. The
marked edges of Z% are precisely the edges which belong to K, so we have a pushout diagram

KbHKﬁ

L

A A

It follows that Z° — Z% is marked anodyne, and therefore a marked equivalence.

Now suppose that X” — Z% is a marked equivalence. Choose a factorization X Ly %z , where f is a
categorical equivalence and g is a categorical fibration. We wish to show that g is a categorical equivalence.
Proposition 3.3.2.9 implies that Z — S is a categorical fibration, so that X’ — S is a categorical fibration.
Applying Proposition 3.3.2.9 again, we deduce that ¥ — S is a Cartesian fibration. Thus we have a
factorization

X =Y - vh o 7

where the first two maps are marked equivalences by the arguments given above, and the composite map is
a marked equivalence. Thus Y — Z% is an equivalence between fibrant objects of (SetZ) /s, and therefore
admits a homotopy inverse. The existence of this homotopy inverse proves that g is a categorical equivalence,
as desired. 0
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Proposition 3.1.5.4. Let S be a simplicial set, and let F1 and G1 denote the identity functor from (SetX)/S
to itself. Then (F1,G1) determines a Quillen adjunction between Gy and Cs.

Proof. We must show that F; preserves cofibrations and trivial cofibrations. The first claim is obvious. For
the second, let B : (Set),s — (SetX) s be the functor defined by

B(M, &) = M*.

We wish to show that if X — Y is a marked equivalence in (Set}),s, then B(X) — B(Y) is a marked
equivalence.

We first observe that if X — Y is marked anodyne, then the induced map B(X) — B(Y') is also marked
anodyne: by general nonsense, it suffices to check this for the generators described in Definition 3.1.1.1,
for which it is obvious. Now return to the case of a general marked equivalence p : X — Y, and choose a
diagram

X —1> X/
i l \
P
Y —— X’ HX Y J*> Y’
in which X’ and Y’ are (marked) fibrant and ¢ and j are marked anodyne. It follows that B(i) and B(j) are
marked anodyne, and therefore marked equivalences. Thus, to prove that B(p) is a marked equivalence, it
suffices to show that B(q) is a marked equivalence. But ¢ is a marked equivalence between fibrant objects

of (Set}) /s, and therefore has a homotopy inverse. It follows that B(q) also has a homotopy inverse, and is
therefore a marked equivalence as desired. O

Remark 3.1.5.5. In the language of model categories, we may summarize Proposition 3.1.5.4 by saying
that the model structure of Proposition 3.1.5.2 is a localization of the marked model structure on (Setz)/g.

In the next argument, we will need the following fact: an object p: Z — S of (8eta) /g is contravariantly
fibrant if and only if p is a right fibration. The “only if” direction follows from Proposition 2.1.4.3. We will
establish the converse in §3.3.2 (Proposition 3.3.1.2).

Proposition 3.1.5.6. Let S be a simplicial set, and consider the adjunction

+y  _F2

(SetA)/S%G (Seta)/s
2

determined by the formulas

KX, &) =X

Go(X) = X%
The adjoint functors (Fa,G2) determines a Quillen equivalence between Co and Cs.

Proof. We first claim that Fy is conservative: that is, a map f: (X,Ex) — (Y, Ey) is a weak equivalence in
G, if and only if the induced map X — Y is a weak equivalence in C3. Unwinding the definition, f is a weak
equivalence if and only if X* — Y* is a marked equivalence. This holds if and only if, for every Cartesian
fibration Z — S, the induced map

¢ : Map (Y*, Z%) — Map (X*, Z%)

is a homotopy equivalence. Let Z° — S be the right fibration associated to Z — S (see Corollary 2.3.2.8).
There are natural identifications Mapg(Yﬁ,Zh) ~ Mapg(Y, Z°), Mapg(Xn,Zh) ~ Mapg (X, Z°). Conse-
quently, f is a weak equivalence if and only if, for every right fibration Z° — S, the associated map

Mapg (Y, Z2°) — Mapg (X, Z°)
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is a homotopy equivalence. Since C3 is a simplicial model category for which the fibrant objects are precisely
the right fibrations Z° — S (Proposition 3.3.1.2), this is equivalent to the assertion that X — Y is a weak
equivalence in Cs.

To prove that (F», G2) is a Quillen adjunction, it suffices to show that Fy preserves cofibrations and trivial
cofibrations. The first claim is obvious, and the second follows because Fy preserves all weak equivalences,
by the above argument.

To show that (F»,G2) is a Quillen equivalence, we must show that the unit and counit

LF5 0 RGy — id

id — RG2 o LF2

are weak equivalences. In view of the fact that Fy, = LF5 is conservative, the second assertion follows
from the first. As to the first, it suffices to show that if X is a fibrant object of €3, then the counit map
(Fy 0 G2)(X) — X is a weak equivalence. But this map is an isomorphism. O

Proposition 3.1.5.7. Let S be a simplicial set, and let F5 and G3 denote the identity functor from (Seta),s
to itself. Then (F3,Gs3) gives a Quillen adjunction between Cs and C4. If S is a Kan complex, then (F3,G3)
is a Quillen equivalence (in other words, the model structures on Cs and Cy4 coincide).

Proof. To prove that (Fs,Gs) is a Quillen adjunction, it suffices to prove that F3 preserves cofibrations and
weak equivalences. The first claim is obvious (the cofibrations in C3 and €4 are the same). For the second, we
note that both C3 and €4 are simplicial model categories in which every object is cofibrant. Consequently,
amap f : X — Y is a weak equivalence if and only if, for every fibrant object Z, the associated map
Map(Y, Z) — Map(X, Z) is a homotopy equivalence of Kan complexes. Thus, to show that Fj preserves
weak equivalences, it suffices to show that GG3 preserves fibrant objects. A map p : Z — S is fibrant as an
object of €4 if and only if p is a Kan fibration, and fibrant as an object of C3 if and only if p is a right
fibration (Proposition 3.3.1.2). Since every Kan fibration is a right fibration, it follows that F3 preserves
weak equivalences. If S is a Kan complex, then the converse holds: according to Lemma 2.1.3.3, every right
fibration p : Z — S is a Kan fibration. It follows that G35 preserves weak equivalences as well, so that the
two model structures under consideration coincide. O
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3.2 Straightening and Unstraightening

Let € be a_category, and let f : C?” — 8et be a functor. We can define a new category € as follows: the
objects of € are pairs (C,n), where C € € and n € f(C). Morphisms in € are defined by

Homg((C,n), (C", 1)) = {¢ € Home(C,C") :n = ¢™n'}.

The category Cis fibered over C in sets (see Definition 2.1.1.1). The functor f is determined (up to canonical
isomorphism) by é, in view of the formula f(C) ~ € xe {C}. Consequently, we obtain an equivalence of
categories between functors €°? — Set and categories fibered over € in sets.

The goal of this section is to establish an co-categorical version of the correspondence described above.
We will replace the category € by a simplicial set S, the category Set by the oco-category Cat.,, and the
fibration in sets € — € by a Cartesian fibration X — S. In this setting, we will obtain an equivalence
of oco-categories, which arises from a Quillen equivalence of simplicial model categories. On one side, we
have the category (SetJAr) /s, equipped with the marked model structure (a simplicial model category whose
fibrant objects are precisely the Cartesian fibrations X — S; see §3.1.4). On the other, we have category of
simplicial functors

€[S]? — Set},

equipped with the projective model structure (see §A.3.3), whose underlying co-category is equivalent to
Fun(S°P, Cats,) (Proposition A.3.6.1). The situation may be summarized as follows:

Theorem 3.2.0.1. Let S be a simplicial set, C a simplicial category, and ¢ : €[S] — C°? a functor between
simplicial categories. Then there exists a pair of adjoint functors

st
(Set) s === (8et )"
Ung

with the following properties:

(1) The functors (Stg,Un;f) determine a Quillen adjunction between (Set)) s (with the marked model
structure) and (SetX)€ (with the projective model structure).

(2) If ¢ is an equivalence of simplicial categories, then (St;ﬁ, Uan) is a Quillen equivalence.

We will refer to St:; and U n;' as the straightening and unstraightening functors, respectively. We will
give a construct these functors in §3.2.1, and establish part (1) of Theorem 3.2.0.1. Part (2) is more difficult
and requires some preliminary work; we will begin in §3.2.2 by analyzing the structure of Cartesian fibrations
X — A™. We will apply these analyses in §3.2.3 to complete the proof of Theorem 3.2.0.1 in the case where
S is a simplex. In §3.2.4, we will deduce the general result, using formal arguments to reduce to the special
case of a simplex.

3.2.1 The Straightening Functor

Let S be a simplicial set, and let ¢ : €[S] — C°? be a functor between simplicial categories, which we regard as
fixed throughout this section. Our objective is to define the straightening functor St;f : (SetZ)/S — (8et})®

and its right adjoint Unz. The intuition is that an object X of (SetJAr)/S associates co-categories to vertices of
S in a homotopy coherent fashion, and the functor Stj5 “straightens” this diagram to obtain an oo-category

valued functor on €. The right adjoint U n('g should be viewed as a forgetful functor, which takes a strictly
commutative diagram and retains the underlying homotopy coherent diagram.
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The functors St;ﬁ and U n:g are more elaborate versions of the straightening and unstraightening functors
introduced in §2.1.4. We begin by recalling the unmarked version of the construction. For each object
X € (8eta) /s, form a pushout diagram of simplicial categories

C[X] — > €[X"]

oy

op op
er ——Cy

where the left vertical map is given by composing ¢ with the map €[X] — €[S]. The functor Sty X : € — Seta
is defined by the formula
(5t X)(C) = Mapesr (C, %)

where * denotes the cone point of X",

We will define St(‘; by designating certain marked edges on the simplicial sets (St,X)(C), which depend
in a natural way on the marked edges of X. In order to describe this dependence, we need to introduce a
bit of notation.

Notation 3.2.1.1. Let X be an object of (Seta),g. Given an n-simplex o of the simplicial set Mapees (C, D),
we let 0* : (St X)(D),, — (St$X)(C), denote the associated map on n-simplices.

Let ¢ be a vertex of X, and C = ¢(c) € C. We may identify ¢ with a map ¢ : A° — X. Then
cxidpo : A — X is an edge of X", which determines a morphism C' — * in €%, which we may identify
with a vertex ¢ € (St X)(C).

Similarly, suppose that f : ¢ — d is an edge of X, corresponding to a morphism

cEDp

in the simplicial category C°?. We may identify f with a map f : A! — X. Then f xida1 : A2 — X*
determines a map €[A?] — Cx, which we may identify with a diagram (not strictly commutative)

N4

*

together with an edge

:¢—doF=F*d
in the simplicial set Mapesr (C,x) = (St X)(C).

Definition 3.2.1.2. Let S be a simplicial set, € a simplicial category, and ¢ : €[S] — C°? a simplicial
functor. Let (X, &) be an object of (Set)),s. Then

Stz(X, &) :C — Setk

is defined by the formula
St} (X, €)(C) = ((StsX)(C), €4(C))

where €4(C) is the set of all edges of (StyX)(C) having the form
G*f,

where f : d — e is a marked edge of X, giving rise to an edge f: d — F*¢in (StsX)(D), and G belongs to
Mapeor (C, D).
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Remark 3.2.1.3. The construction
(X, &) — St$(X78) = (Stff?Xv 8¢)

is obviously functorial in X. Note that we may characterize the subsets {€4(C) C (St,X)(C)1} as the
smallest collection of sets which contain f, for every f € &, and depend functorially on C'.

The following formal properties of the straightening functor follow immediately from the definition:

Proposition 3.2.1.4. (1) Let S be a simplicial set, C a simplicial category, and ¢ : €[S] — C a simplicial
functor; then the associated straightening functor

St} (SetX);s — (Set})®
preserves colimits.

(2) Letp:S" — S be a map of simplicial sets, C a simplicial category, and ¢ : €[S] — C°P a simplicial
functor, and let ¢’ : €[S'] — € denote the composition ¢ o €[p]. Let py: (Set}) ;s — (Setk), s denote
the forgetful functor, given by composition with p. There is a natural isomorphism of functors

St} op =~ St}

from (8et}),s to (Set})C.

(3) Let S be a simplicial set, ™ : C — €' a simplicial functor between simplicial categories, and ¢ : €[S] —
C°? a simplicial functor. Then there is a natural isomorphism of functors

Stjr'w ~ o St;’

from (8etk),s to (8etX)®. Here m : (Set{)® — (Setf)® is the left adjoint to the functor 7* :
Set£)¢ — (Setf)® given by composition with m: see §A.3.3.
A A

Corollary 3.2.1.5. Let S be a simplicial set, C a simplicial category, and ¢ : €[S] — C° any simplicial
functor. The straightening functor St;5 has a right adjoint

Un(‘g :(8et{)¢ — (Set})/s-

Proof. This follows from part (1) of Proposition 3.2.1.4 and the adjoint functor theorem. (Alternatively, one
can construct U n;f directly; we leave details to the reader.) O

Notation 3.2.1.6. Let S be a simplicial set, let € = €[S]°P, and let ¢ : €[S] — €°? be the identity map. In
this case, we will denote St by St& and Unj by Ung.

Our next goal is to show that the straightening and unstraightening functors (St;, U n;;) give a Quillen

adjunction between the model categories (Set}),s and (Set)®. The first step is to show that St:; preserves
cofibrations.

Proposition 3.2.1.7. Let S be a simplicial set, C a simplicial category, and ¢ : €[S] — C a simplicial
functor. The functor S?f;Lr carries cofibrations (with respect to the marked model structure on (Setz)/s ) to

cofibrations (with respect to the projective model structure on (Set{)) ).

Proof. Let j: A — B be a cofibration in (SetZ)/S; we wish to show that St(;;r (j) is a cofibration. By general

nonsense, we may suppose that j is a generating cofibration, either having the form (9 A™)” C (A™)” or
(A')> — (A% Using Proposition 3.2.1.4, we may reduce to the case where S = B, € = ¢[S], and ¢ is the
identity map. The result now follows from a straightforward computation. O
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To complete the proof that (St;;, Un;f) is a Quillen adjunction, it suffices to show that St;f preserves
trivial cofibrations. Since every object of (SetX) /s is cofibrant, this is equivalent to the apparently stronger

claim that if f : X — Y is a marked equivalence in (Set}) /s, then St(‘;(f) is a weak equivalence in (Set})®.
The main step is to establish this in the case where f is marked anodyne. First, we need a few lemmas.

Lemma 3.2.1.8. Let & be the set of all degenerate edges of A™ x A, together with the edge {n} x Al. Let
B C A™ x Al be the coproduct

(A" x {1y ] (@amxah.
A" x{1}
Then the map
i:(B,ENB;) C (A" x A €)

is marked anodyne.

Proof. We must show that ¢ has the left lifting property with respect to every map p : X — S satisfying the
hypotheses of Proposition 3.1.1.6. This is simply a reformulation of Proposition 2.3.1.8. O

Lemma 3.2.1.9. Let K be a simplicial set, K' C K a simplicial subset, and A a set of vertices of K. Let
& denote the set of all degenerate edges of K x Al, together with the edges {a} x Al where a € A. Let
B = (K'x AY) [Ty y (K x {1}) C K x A'. Suppose that, for every nondegenerate simplex o of K, either
o belongs to K', or the final vertex of o belongs to A. Then the inclusion

(B,ENBy) C (K x AL, €)
is marked anodyne.
Proof. Working cell-by-cell, we reduce to Lemma 3.2.1.8. O

Lemma 3.2.1.10. Let X be a simplicial set, and let & C &' be sets of edges of X containing all degenerate
edges. The following conditions are equivalent:

(1) The inclusion (X, &) — (X, &) is trivial cofibration in Setk (with respect to the marked model struc-
ture).

(2) For every co-category C and every map f : X — C which carries each edge of € to an equivalence in
C, f also carries each edge of € to an equivalence in C.

Proof. By definition, (1) holds if and only if for every oo-category €, the inclusion
J = Map’((X, &), €%) — Map’((X, €),€)

is a categorical equivalence. Condition (2) is the assertion that j is an isomorphism. Thus (2) implies (1).
Suppose that (1) is satisfied, and let f : X — € be a vertex of Mapb((X, &), C‘fh). By hypothesis, there exists
an equivalence f ~ f’, where f’ belongs to the image of j. Let e € &; then f/(e) is an equivalence in C.
Since f and f’ are equivalent, f(e) is also an equivalence in €. Consequently, f also belongs to the image of
7, and the proof is complete. O

Proposition 3.2.1.11. Let S be a simplicial set, C a simplicial category, and ¢ : €[S] — C°P a simplicial
functor. The functor St;f carries marked anodyne maps in (Set}) s (with respect to the marked model

structure) to trivial cofibrations in (Set})C.

Proof. Let f: A — B be a marked anodyne map in (Set}),s. We wish to prove that St;f(f) is a trivial
cofibration. It will suffice to prove this under the assumption that f is one of the generators for the class
of marked anodyne maps, as given in Definition 3.1.1.1. Using Proposition 3.2.1.4, we may reduce to the
case where S is the underyling simplicial set of B, € = €[S]°?, and ¢ is the identity. There are four cases to
consider:
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(1)

Suppose first that f is among the morphisms listed in (1) of Definition 3.1.1.1; that is, f is an inclusion
(A7)’ C (A™)°, where 0 < i < n. Let v; denote the kth vertex of A™, which we may also think of
as an object of the simplicial category €. We note that St;f( f) is an isomorphism when evaluated

at vy, for k # 0. Let K denote the cube (A!)U:0<i=nJ#i} et K’ = 9K, let A denote the set of all
vertices of K corresponding to subsets of {j : 0 < 7 < n,j # i} which contain an element > i, and
let € denote the set of all degenerate edges of K x A! together with all edges of the form {a} x A,
where a € A. Finally, let B = (K x {1}) [Ty 1, (K’ % A'). The morphism St;(f)(vn) is a pushout
of g : (B,ENB;) C (K x Al,€). Since i > 0, we may apply Lemma 3.2.1.9 to deduce that g is
marked-anodyne, and therefore a trivial cofibration in Setz

Suppose that f is among the morphisms of part (2) in Definition 3.1.1.1; that is, f is an inclusion
(A7, €N(AL)1) € (A", F),

where F denotes the set of all degenerate edges of A”, together with the final edge At"=17} If n > 1,
then one can repeat the argument given above in case (1), except that the set of vertices A needs to be
replaced by the set of all vertices of K which correspond to subsets of {j : 0 < j < n} which contain
n—1. If n =1, then we observe that St(‘;(f)(vn) is isomorphic to the inclusion {1} C (A')#, which is

again a marked anodyne map and therefore a trivial cofibration in Setz

Suppose next that f is the morphism

(ADF IT (a%)" — (A%

(AD)

specified in (3) of Definition 3.1.1.1. Simple computation shows that St:;( f)(vy) is an isomorphism for
n # 0, and St:;(f)(vo) is may be identified with the inclusion

(Al x A &) C (A x A,

where € denotes the set of all degenerate edges of Al x Al together with A x {0}, Al x {1}, and
{1} x A'. This inclusion may be obtained as a pushout of

(ADF TT (a%)" — (A%

(AD)

followed by a pushout of
(A3)F T (A% — (a2,
(A3
The first of these maps is marked-anodyne by definition; the second is marked anodyne by Corollary
3.1.1.7.

Suppose that f is the morphism K* — K¥ where K is a Kan complex, as in (4) of Definition 3.1.1.1.
For each vertex v of K, let St;‘(K")(v) = (X,, &), so that St:g(Ku) = X!. Given a morphism
g € Mapgg; (v,0" ), we let g* : X, x A™ — X,/ denote the induced map. We wish to show that the
natural map (X,,&,) — X! is an equivalence in SGtX. By Lemma 3.2.1.10, it suffices to show that
for every oo-category Z, if h : X, — Z carries each edge belonging to &, into an equivalence, then h
carries every edge of X, to an equivalence.

We first show that h carries € to an equivalence, for every edge e : v — ¢’ in K. Let m. : Al —
Mapeor (v,v") denote the degenerate edge at the vertex corresponding to e. Since K is a Kan complex,
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the edge e : Al — K extends to a 2-simplex ¢ : A2 — K depicted as follows

,U/
7N
id,
V— .
Let me @ A' — Mape(v',v) denote the degenerate edge corresponding to e’. The map o gives rise to
a diagram a diagram

~ e ~
v——=¢e*?’

lidg J{mz'é'

v ——=€*()*v
in the simplicial set X,. Since h carries the left vertical arrow and the bottom horizontal arrow into
equivalences, it follows that h carries the composition (m*e’) o € to an equivalence in Z; thus h(€) has

a left homotopy inverse. A similar argument shows that h(€) has a right homotopy inverse, so that
h(€) is an equivalence.

We observe that every edge of X, has the form g*¢, where g is an edge of Mape.» (v,v’) and e : v/ — v”
is an edge of K. We wish to show that h(g*€) is an equivalence in Z. Above, we have shown that this
is true if v = v’ and ¢ is the identity. We now consider the more general case where g is not necessarily
the identity, but is a degenerate edge corresponding to some map v’ — v in €. Let h’ denote the
composition

Xy — X, 2 7.
Then h(g*e) = h'(€) is an equivalence in Z by the argument given above.

Now consider the case where g : A! — Mapeo, (v,v’) is nondegenerate. In this case, there is a simplicial
homotopy G : Al x Al — Mape(v,v’) with g = G|A! x {0} and ¢’ = G|A' x {1} a degenerate edge
of Mapeor (v,v") (for example, we can arrange that ¢’ is the constant edge at an endpoint of g). The
map G induces a simplicial homotopy G(e) from g*¢ to (g')*e. Moreover, the edges G(e)|{0} x Al
and G(e)|{1} x A! belong to &,, and are therefore carried by h into equivalences in Z. Since h carries
(¢')*€ into an equivalence of Z, it carries g*€ into an equivalence of Z, as desired.

O
We now study the behavior of straightening functors with respect to products.

Notation 3.2.1.12. Given two simplicial functors ¥ : € — Setz, F.e - SetJAr, we let FRF :Cx € —
et} denote the functor described by the formula

(FRF)(C,C") = F(C) x F(C).

Proposition 3.2.1.13. Let S and S’ be simplicial sets, C and C" simplicial categories, and ¢ : €[S] — C°,
@ : €[S'] — (C)°P simplicial functors; let ¢ X ¢’ denote the induced functor €[S x S'] — (€ x €')°P. For
every M € (SetX)/S, M e (SetZ)/S/, the natural map

s Sthgy, (M x M') — St} (M) R St (M')

is a weak equivalence of functors € x € — Setz.

Proof. Since both sides are compatible with the formations of filtered colimits in M, we may suppose that
M has only finitely many nondegenerate simplices. We work by induction on the dimension n of M and
the number of n-dimensional simplices of M. If M = () there is nothing to prove. If n # 1, we may choose
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a nondegenerate simplex of M having maximal dimension and thereby write M = N [], An)b(A")b. By

the inductive hypothesis we may suppose that the result is known for N and (0 A”)b. The map sy is
a pushout of the maps sy pv and s anys prr OVEr Sy any pyv- Since SetZ is left-proper, this pushout is a
homotopy pushout; it therefore suffices to prove the result after replacing M by N, (9 A™)’, or (A™)°. In
the first two cases, the inductive hypothesis implies that s; - is an equivalence; we are therefore reduced
to the case M = (A™)". If n = 0, the result is obvious. If n > 2, we set

K =ACUTTAC2]... JT At~ can
{1} {2} {n-1}

The inclusion K C A™ is inner anodyne, so that K* C M is marked-anodyne. By Proposition 3.2.1.11, we
deduce that spz s is an equivalence if and only if s 5,/ is an equivalence, which follows from the inductive
hypothesis since K is 1-dimensional. l

We may therefore suppose that n = 1. Using the above argument, we may reduce to the case where M
consists of a single edge, either marked or unmarked. Repeating the above argument with the roles of M
and M’ interchanged, we may suppose that M’ also consists of a single edge. Applying Proposition 3.2.1.4,
we may reduce to the case where S = M, S’ = M’, € = ¢[S]°P, and €' = ¢[S’]°P.

Let us denote the vertices of M by x and y, and the unique edge joining them by e : * — y. Similarly, we
let 2’ and 3y’ denote the vertices of M’, and €’ : 2’ — ¢ the edge which joins them. We note that the map
sy,m induces an isomorphism when evaluated on any object of € x €' except (x,2'). Moreover, the map

smv(z,2) Stl;gd),(M x M) (x,2") — St(‘;(M)(x) x St;‘,(M’)(w/)

obtained from sa1ys (a1)» by successive pushouts along cofibrations of the form (A1)’ C (A1)E. Since Set}

is left proper, we may reduce to the case where M = M’ = (Al)b. The result now follows from a simple
explicit computation. O

We now study the situation in which S = A° € = €[5], and ¢ is the identity map. In this case, St;ﬁ

may be regarded as a functor T : SetJAr — Setz. As we saw in Example 2.1.4.6, the underlying functor of
simplicial sets is familiar: we have
T(X, &)= (|X|qes, &),

where @ denotes the cosimplicial object of Seta considered in §1.3.2. In that section, we exhibited a natural
map | X|ge — X which we proved to be a weak homotopy equivalence. We now prove a stronger version of
that result:

Proposition 3.2.1.14. For any marked simplicial set M = (X, &), the natural map | X|ge — X induces a
marked equivalence
T(M) — M.

Proof. As in the proof of Proposition 3.2.1.13, we may reduce to the case where M consists of a simplex
of dimension < 1 (either marked or unmarked). In these cases, the map T(M) — M is an isomorphism in
Set k. O

Corollary 3.2.1.15. Let S be a simplicial set, C a simplicial category, ¢ : €[S] — C°P a simplicial functor,
and X € (SetX)/S an object. For every K € Setz, there is a natural equivalence

Sty (M x K) — St[ (M)XK

of functors from C to SetZ

Proof. Combine the equivalences of Proposition 3.2.1.14 (in the case where S’ = A%, €' = €[$']°P, and ¢’ is
the identity ) and Proposition 3.2.1.15. O
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We can now complete the proof that (St;, U n;f) is a Quillen adjunction:

Corollary 3.2.1.16. Let S be a simplicial set, C a simplicial category, and ¢ : €[S]°? — € a simplicial
functor. The straightening functor St(‘g carries marked equivalences in (SetZ)/S to (objectwise) marked

; - +\¢
equivalences in (Sety)".

Proof. Let f : M — N be a marked equivalence in (SetZ)/S. Choose a marked anodyne map M — M’,
where M’ is fibrant; then choose a marked anodyne map M’'[[,, N — N’, with N’ fibrant. Since St;f
carries marked anodyne maps to equivalences by Proposition 3.2.1.11, it suffices to prove that the induced
map St:;(M N — St;f(N ") is an equivalence. In other words, we may replace M by M’ and N by N’, thereby
reducing to the case where M and N are fibrant.

Since f is an marked equivalence of fibrant objects, it has a homotopy inverse g. We claim that .S'tj5 (g) is
an inverse to St;f (f) in the homotopy category of (Set{)¢. We will show that St;ﬁ (f)o St?5 (g) is homotopic
to the identity; applying the same argument with the roles of f and g reversed will then establish the desired
result.

Since f o g is homotopic to the identity, there is a map h : N x K* — N, where K is a contractible Kan
complex containing vertices  and y, such that fog = h|N x {z} and idy = h|N x {y}. The map Stg(h)
factors as

Sth(N x K*) — 5t5(N) K K* — St (N)

where the left map is an equivalence by Corollary 3.2.1.15 and the right map because K is contractible. Since
St;(f og) and St(‘g (idy) are both sections of Stzg(h), they represent the same morphism in the homotopy

category of (Set})C. O

3.2.2 Cartesian Fibrations over a Simplex

A map of simplicial sets p : X — S is a Cartesian fibration if and only if the pullback map X xg A" — A"
is a Cartesian fibration, for each simplex of S. Consequently, we might imagine that Cartesian fibrations
X — A™ are the “primitive building blocks” out of which other Cartesian fibrations are built. The goal of this
section is to prove a structure theorem for these building blocks. This result has a number of consequences,
and will play a vital role in the proof of Theorem 3.2.0.1.

Note that A™ is the nerve of the category associated to the linearly ordered set

n]={0<1<...<n}

Since a Cartesian fibration p : X — S can be thought of as giving a (contravariant) functor from S to co-
categories, it is natural to expect a close relationship between Cartesian fibrations X — A™ and composable
sequences of maps between oo-categories

A — Al — A

In order to establish this relationship, we need to introduce a few definitions.
Suppose given a composable sequence of maps

p: A" — Al — AT

of simplicial sets. The mapping simplex M (@) of ¢ is defined as follows. If J is a nonempty finite linearly
ordered set with greatest element j, then to specify a map A’ — M (¢) one must specify an order-preserving
map f : J — [n] together with a map o : A7 — AfU). Given an order-preserving map p : J — J' of
partially ordered sets containing largest elements j and j’, there is natural map M (¢)(A”7 /) — M(9)(AY)
which carries (f, o) to (f op,eo o), where e : A7) — AF®P() is obtained from ¢ in the obvious way.

Remark 3.2.2.1. The mapping simplex M (¢) is equipped with a natural map p : M(¢) — A™; the fiber of
p over the vertex j is isomorphic to the simplicial set A7.
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Remark 3.2.2.2. More generally, let f : [m] — [n] be an order-preserving map, inducing a map A™ — A™.
Then M(¢) x an A™ is naturally isomorphic to M(¢’), where the sequence ¢’ is given by

ATO) A,

Notation 3.2.2.3. Let ¢ : A° «— ... < A" be a composable sequence of maps of simplicial sets. To give
an edge e of M(¢), one must give a pair of integers 0 < i < j < n and an edge € € A7. We will say that e
is marked if € is degenerate; let € denote the set of all marked edges of M (¢). Then the pair (M (), €) is a
marked simplicial set which we will denote by M?%(¢).

Remark 3.2.2.4. There is a potential ambiguity between the terminology of Definition 3.1.1.9 and that of
Notation 3.2.2.3. Suppose that ¢ : A° « ... « A" is a composable sequence of maps and that p : M (¢) — A"
is a Cartesian fibration. Then M(¢)? (Definition 3.1.1.9) and M?%(¢) (Notation 3.2.2.3) do not generally
coincide as marked simplicial sets. We feel that there is little danger of confusion, since it is very rare that
p is a Cartesian fibration.

Remark 3.2.2.5. The construction of the mapping simplex is functorial, in the sense that a commutative
ladder

¢: AO%...%AH
lfo L J{fn
'(/]: BO%.%BTL

induces a map M (f) : M(¢) — M(v). Moreover, if each f; is a categorical equivalence, then f is a categorical
equivalence (this follows by induction on n, using the fact that the Joyal model structure is left proper).

Definition 3.2.2.6. Let p: X — A™ be a Cartesian fibration, and let
$: A" — A"

be a composable sequence of maps. A map ¢q : M(¢) — X is a quasi-equivalence if it has the following
properties:

(1) The diagram

is commutative.

(2) The map ¢ carries marked edges of M(¢) to p-Cartesian edges of S; in other words, ¢ induces a map
M?%(¢) — X5 of marked simplicial sets.

(3) For 0 < i < n, the induced map A* — p~!{i} is a categorical equivalence.
The goal of this section is to prove the following:
Proposition 3.2.2.7. Let p: X — A" be a Cartesian fibration.

(1) There exists a composable sequence of maps
$: A — A — . — A"

and a quasi-equivalence q : M(¢) — X.
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(2) Let
$: AP — Al — A
be a composable sequence of maps and q : M(¢) — X a quasi-equivalence. For any map T — A™, the

induced map
M(¢) XAH T*)X XAn T

is a categorical equivalence.

We first show that, to establish (2) of Proposition 3.2.2.7, it suffices to consider the case where T is a
simplex:

Proposition 3.2.2.8. Suppose given a diagram
X—-Y—-Z

of simplicial sets. For any map T — Z, we let X7 denote X Xz T and Y7 denote Y xz T. The following
statements are equivalent:

(1) For any map T — Z, the induced map Xt — Yr is a categorical equivalence.
(2) For anym >0 and any map A™ — Z, the induced map Xan — Yan is a categorical equivalence.

Proof. Tt is clear that (1) implies (2). Let us prove the converse. Since the class of categorical equivalences
is stable under filtered colimits, it suffices to consider the case where T" has only finitely many nondegenerate
simplices. We now work by induction on the dimension of T, and the number of nondegenerate simplices
contained in 7. If T" is empty, there is nothing to prove. Otherwise, we may write T'=T" [ [, o» A™. By the
inductive hypothesis, the maps

XT’ — YT’

Xoan — Ygan

are categorical equivalences, and by assumption Xan — Yan is a categorical equivalence as well. We note
that
Xr=Xp [ Xar

Xpan

Yr = Yo ]_[ Yan.

Yo aAn

Since the Joyal model structure is left-proper, these pushouts are homotopy pushouts, and therefore cate-
gorically equivalent to one another. O

Suppose p : X — A" is a Cartesian fibration, and g : M(¢) — X is a quasi-equivalence. Let f : A™ — A"
be any map. We note (see Remark 3.2.2.5) that M (¢) xa» A™ may be identified with a mapping simplex
M(¢'), and that the induced map

M((bl) — X X An A™

is again a quasi-equivalence. Consequently, to establish (2) of Proposition 3.2.2.7, it suffices to prove that
every quasi-equivalence is a categorical equivalence. First, we need the following lemma.

Lemma 3.2.2.9. Let
$: A" — . — A"
be a composable sequence of maps between simplicial sets, where n > 0. Let y be a vertex of A™, and let the
edge e -y — y be the image of A=} x {y) under the map A" x A™ — M(¢). Let x be any vertex of
M () which does not belong to the fiber A™. Then composition with e induces a weak homotopy equivalence
of simplicial sets
Mape(ar () (25 4') — Mape(ar(g) (%, 9)-
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Proof. Replacing ¢ by an equivalent diagram if necessary (using Remark 3.2.2.5), we may suppose that the
map A™ — A" 1 is a cofibration. Let ¢’ denote the composable subsequence

A% AT
Let € = €[M(¢)] and let €_ = €[M(¢')] C C. There is a pushout diagram in Cata

C[A" x A1 — = €[A" x A"

| |

C_ C.

This diagram is actually a homotopy pushout, since Cata is a left proper model category and the top
horizontal map is a cofibration. Form now the pushout

LA™ x AP ——> €A™ x (A" ][,y Al bnd)]

| |

C_ Co.

This diagram is also a homotopy pushout. Since the diagram of simplicial sets

{n -1} —— Aln-1n}

L

Anfl ATL

is homotopy coCartesian (with respect to the Joyal model structure), we deduce that the natural map Gy — C
is an equivalence of simplicial categories. It therefore suffices to prove that composition with e induces a
weak homotopy equivalence

Mape, (2, y") — Mape(z,y).

Form a pushout square

€A™ x {n — 1,n}] —— €[A"] x ¢[A{n—1n}]

| |

Co e.

The left vertical map is a cofibration ( since A™ — A"~ is a cofibration of simplicial sets), and the upper
horizontal map is an equivalence of simplicial categories (Corollary 1.3.4.6). Invoking the left-properness of
Cata, we conclude that F' is an equivalence of simplicial categories. Consequently, it will suffice to prove
that Mape: (F(z), F(y')) — Mape (F(z), F(y)) is a weak homotopy equivalence. We now observe that this
map is an isomorphism of simplicial sets. O

Proposition 3.2.2.10. Let p: X — A" be a Cartesian fibration, let
G A — A"

be a composable sequence of maps of simplicial sets, and let q : M($) — X be a quasi-equivalence. Then q
is a categorical equivalence.
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Proof. We proceed by induction on n. The result is obvious if n = 0, so let us assume that n > 0. Let ¢’
denote the composable sequence of maps

AP — A — At

which is obtained from ¢ by omitting A”. Let v denote the final vertex of A", and let T = A{0--n—1}
denote the face of A™ which is opposite v. Let X, = X xan {v} and X7 = X Xan T.
We note that M(¢) = M(¢') [ gnyp(A™ x A™). We wish to show that the simplicial functor

F:e~eM(@g)]~eM(¢)) J] €A™ xA" - ¢X]
C[A" X T

is an equivalence of simplicial categories. We note that € decomposes naturally into full subcategories
Cy = €[A™ x {v}] and C_ = €[M(¢')], having the property that Mape(X,Y) =0 if x € C4, y € C_.
Similarly, D = €[X] decomposes into full subcategories Dy = €[X,] and D_ = €[X7], satisfying
Mapgp(z,y) = 0 if z € Dy and y € D_. We observe that F restricts to give an equivalence between
C_ and D_ by assumption, and gives an equivalence between €, and D by the inductive hypothesis. To
complete the proof, it will suffice to show that if x € C_ and y € €, then F induces a homotopy equivalence

Mape (2, y) — Maps (F(2), F(y)).

We may identify the object y € €4 with a vertex of A™. Let e denote the edge of M(¢) which is the
image of {y} x Al»=17} under the map A™ x A™ — M(¢). We let [e] : 4/ — y denote the corresponding
morphism in €. We have a commutative diagram

Mape (z,y') Mape(z,y)

| |

Mapy, (F(2), F(y')) — Mapyp (F(), F(y)).

Here the left vertical arrow is a weak homotopy equivalence by the inductive hypothesis, and the bottom
horizontal arrow (which is given by composition with [e]) is a weak homotopy equivalence because g(e) is
p-Cartesian. Consequently, to complete the proof, it suffices to show that the top horizontal arrow (given
by composition with e) is a weak homotopy equivalence. This follows immediately from Lemma 3.2.2.9. O

To complete the proof of Proposition 3.2.2.7, it now suffices to show that for any Cartesian fibration
p: X — A", there exists a quasi-equivalence M (¢) — X. In fact, we will prove something slightly stronger
(in order to make our induction work):

Proposition 3.2.2.11. Letp: X — A™ be a Cartesian fibration of simplicial sets and A another simplicial
set. Suppose given a commutative diagram of marked simplicial sets

S

AP x (AT

~

(Am)E.

Xt

Then there exists a sequence of composable morphisms

p: A" — A

)
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a map A — A™, and an extension

A % (AP ——> Mb(p) —— x5

~. 7

(A™)%.
of the previous diagram, such that f is a quasi-equivalence.

Proof. The proof goes by induction on n. We begin by considering the fiber s over the final vertex v of A”™.
The map s, : A — X, = X xan {v} admits a factorization

AL an Lo,
where g is a cofibration and h is a trivial Kan fibration. The smash product inclusion
({o}f > (A")) TT ((A™)F x A%) € (A™)F x (A7)
{v}Ex AP

is marked anodyne (Proposition 3.1.2.3). Consequently, we deduce the existence of a dotted arrow fy as
indicated in the diagram

A® x (A™)! —= X
7
(A7) x (A)F —= (A™:

of marked simplicial sets, where fo|(A™ x {n}) = h.
If n = 0, we are now done. If n > 0, then we apply the inductive hypothesis to the diagram

f |A"><An 1
(A7) x :

An 1 XXA A" 1)
An 1

to deduce the existence of a composable sequence of maps
@AY — L AT

amap A" — A" ! and a commutative diagram

(A™)’ x (A1) —— M¥(¢)) — XxAn An—1)A
\An 1 /

where f’ is a quasi-equivalence. We now define ¢ to be the result of appending the map A™ — A"~! to the
beginning of ¢’, and let f : M(¢) — X be the map obtained by amalgamating fy and f’. O

Corollary 3.2.2.12. Let p : X — S be a Cartesian fibration of simplicial sets, and let ¢ :' Y — S be a
coCartesian fibration. Define a new simplicial set Z equipped with a map Z — S by the formula

Homs(K, Z) ~ HomS(X X5 K,Y Xs K)
Then:

139



(1) The projection v : Z — S is a coCartesian fibration.

(2) An edge A' — Z is r-coCartesian if and only if the induced map Al xg X — Al xgY carries
p-Cartesian edges to q-coCartesian edges.

Proof. Let us say that an edge of Z is special if it satisfies the hypothesis of (2). Our first goal is to show
that there is a sufficient supply of special edges in Z. More precisely, we claim that given any edge ¢ : s — s
in S and any vertex s € Z covering s, which we may identify with a functor 5 : X, — Y, there exists a
special edge €: 5 — § of Z which covers e.

Using Proposition 3.2.2.7, we can choose a morphism ¢ : X! « X!, and a quasi-equivalence M (¢) —
X x5 A'. Composing with 3, we obtain a map X’ — Y. Applying Propositions 3.3.2.8 and A.2.4.1, we may
reduce to the problem of providing a dotted arrow in the diagram

X —y

|

M(¢p) — S

which carries the marked edges of M?%(¢) to g-coCartesian edges of Y. This follows from the the fact that
g% : YXs — 8% is a coCartesian fibration, and the description of the ¢*s-coCartesian edges (Proposition
3.1.2.1).

To complete the proofs of (1) and (2), it will suffice to show that = is an inner fibration and that every
special edge of Z is r-coCartesian. For this, it suffices to show that every lifting problem

Ar 20

L]

A" —— 8§

has a solution, provided that either 0 < i < n, or ¢ =0, n > 2, and O‘Q|A{O’1} is special. We can reformulate
this lifting problem using the diagram
X Xg A?’ —Y

f 7
7
- q
d l
e
X Xs A" —— S.
Using Proposition 3.2.2.7, we can choose a composable sequence of morphisms
v X)e—...— X

and a quasi-equivalence M (v)) — X xg A™. Invoking Propositions 3.3.2.8 and A.2.4.1, we may reduce to
the associated mapping problem

M () xan A} ——

/1Y
| ]
M(y) s

Since i < n, this is equivalent to the mapping problem

X x Al —Y

|

X x A" —— 5|

which admits a solution in virtue of Proposition 3.1.2.1. O
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We conclude by noting the following additional property of quasi-equivalences, using the terminology of
§3.1.3:

Proposition 3.2.2.13. Let S = A", let p: X — S be a Cartesian fibration, let
$: A" — A"

be a composable sequence of maps, and let q : M($) — X be a quasi-equivalence (see §3.2.2). The induced
map M*(¢) — X is a marked equivalence in (Set})/s-

Proof. We must show that for any Cartesian fibration ¥ — S, the induced map of co-categories
Mapy(X*,Y#) — Mapg(M*(¢), ")

is a categorical equivalence. Because S is a simplex, the left side may be identified with a full subcategory
of YX and the right side with a full subcategory of Y M%) Since ¢ is a categorical equivalence, the natural
map YX — Y M) js a categorical equivalence; thus, to complete the proof, it suffices to observe that a map
of simplicial sets f : X — Y is compatible with the projection to S and preserves marked edges if and only
if g o f has the same properties. O]

3.2.3 Straightening over a Simplex

Let S be a simplicial set, € a simplicial category, and ¢ : €[S]°? — € a simplicial functor. In §3.2.1, we
introduced the straightening and unstraightening functors

stf
(SetA) /S%ﬁ(setb@ ~
g

In this section, we will prove that (St;f, U n;f) is a Quillen equivalence provided that ¢ is a categorical
equivalence and S is a simplex (the case of a general simplicial set .S will be treated in §3.2.4).

Our first step is to prove the result in the case where S is a point and ¢ is an isomorphism of sim-
plicial categories. We can identify the functor Stzo with the functor T : Setg — Setg studied in §3.2.1.
Consequently, Theorem 3.2.0.1 is an immediate consequence of Proposition 3.2.1.14:

Lemma 3.2.3.1. The functor T : Setz — Setz has a right adjoint U, and the pair (T,U) is a Quillen
equivalence from SetX to itself.

Proof. We have already established the existence of the unstraightening functor U in §3.2.1, and proved that
(T,U) is a Quillen adjunction. To complete the proof, it suffices to show that the left derived functor of T
(which we may identify with T, since every object of SetX is cofibrant) is an equivalence from the homotopy
category of SetJAr to itself. But Proposition 3.2.1.14 asserts that T is isomorphic to the identity functor on
the homotopy category of SetX. O

Let us now return to the case of a general equivalence ¢ : €[S] — C°?. Since we know that (St;f, U n;f)
give a Quillen adjunction between (Set}),s and (8et})®, it will suffice to prove that the unit and counit

u:id — RUnj5 OLStj)
v LSt;Lr ORUn;' —id

are weak equivalences. Our first step is to show that RU n(‘g detects weak equivalences: this reduces the
problem of proving that v is an equivalence to the problem of proving that u is an equivalence.
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Lemma 3.2.3.2. Let S be a simplicial set, C a simplicial category, and ¢ : €[S] — C°P an essentially
surjective functor. Let p : F — G be a map between (weakly) fibrant objects of (SetX)€. Suppose that
Uan (p) : Uan J— Uan G is a marked equivalence. Then p is an equivalence.

Proof. Since ¢ is essentially surjective, it suffices to prove that F(C) — F(D) is a marked equivalence for
every object C' € € which lies in the image of ¢. Let s be a vertex of S with ¢(s) = C. Let ¢ : {s} — S
denote the inclusion, and ¢* : (SetZ) /s = Setz denote the functor of passing to the fiber over s:

"X =X, =X xg {s}"

Let 4y denote the left adjoint to i*. Let {C'} denote the trivial category with one object (and only the identity
morphism), and let j : {C} — C be the simplicial functor corresponding to the inclusion of C as an object
of €. According to Proposition 3.2.1.4, we have a natural identification of functors

Stfoir~jioT.
Passing to adjoints, we get another identification
"o U n;f ~Uoj*

from (Set{)® to SetX. Here U denotes the right adjoint of 7.

According to Lemma 3.2.3.1, the functor U detects equivalences between fibrant objects of Setz. Thus,
it suffices to prove that U(j* F) — U(5* 9) is a marked equivalence. Using the identification above, we are
reduced to proving that

Unlf(&")s — Un:g(S)s

is a marked equivalence. But U n;' (F) and Un;(S) are fibrant objects of (SetX),s, and therefore correspond
to Cartesian fibrations over S: the desired result now follows from Proposition 3.1.3.5. O

We have now reduced the proof of Theorem 3.2.0.1 to the problem of showing that if ¢ : €[S] — C is
an equivalence of simplicial categories, then the unit transformation

u:id—>RUn;§OSt$

is an isomorphism of functors from the homotopy category h(8et}),s to itself.
Our first step is to analyze the effect of the straightening functor St;f on a mapping simplex. We will

need a bit of notation. For any X € (8et}) s and any vertex s of S, we let X, denote the fiber X xg: {s}?,
and let i denote the composite functor

{s} = els] & e
of simplicial categories. According to Proposition 3.2.1.4, there is a natural identification
StE(X,) = i1T(X,),
and consequently an induced map
3 T(Xs) = St (X)(s).
Lemma 3.2.3.3. Let
0:A% — . .. — A"

be a composable sequence of maps of simplicial sets, and let Mh(Q) IS (SetX)An be its mapping simplex. For
each 0 < i <mn, the map

ME (o i .
wim O T(AT - SLL (ME(9)) (1)

3

18 a marked equivalence in Setz
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b
Proof. The proof goes by induction on n. We first observe that ¢£4 @) is an isomorphism; we may therefore
restrict our attention to i < n. Let 6’ be the composable sequence

A% — AL

and M?%(@') its mapping simplex, which we may regard either as an object of (SetX)/An or (SetZ)/An_l.
For i < n, we have a commutative diagram

Stan (MA(9")(i)

M//)’\

T((A%)) Stan (MF(9))(3).

By Proposition 3.2.1.4, St{, M*(0') ~ jiSt}, . M*(0'), where j : €[A"~'] — €[A"] denotes the inclusion.

Consequently, the inductive hypothesis implies that the maps
T(AY — Stf, . (M*®))(i)

are marked equivalences for ¢ < n. It now suffices to prove that f; is a marked equivalence, for ¢ < n.
We observe that there is a (homotopy) pushout diagram

(An)b % (A"—l)ﬁ - (An)b % (An)ﬁ .

i |

MA(O') ———— M*(0)
Since StJArn is a left Quillen functor, it induces a homotopy pushout diagram

SER((A™)? x (A"71)F) = StE, ((A")" x (A")F)

l |

St{. M5(6") St{. M5(0).

in (Setz)e. We are therefore reduced to proving that g induces a marked equivalence after evaluation at any
1< n.
According to Proposition 3.2.1.13, the vertical maps of the diagram

StAn ((A™)" x (A™1)F) —— St ((A")” x (A™)F)
T(A™)" K St (A" 1) —— T(A")* K St L, (A")*
are marked equivalences. To complete the proof we must show that
Sth, (A™HE — Sth, (A™)F
induces a marked equivalence when evaluated at any ¢ < n. Consider the diagram

{n = 1Jf —— (A1)

| |

(Aln=1nht —— (AP)E,
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The horizontal arrows are marked anodyne. It therefore suffices to show that
Stfa{n —1}* — StL.(Aln=tnhy
induces marked equivalences when evaluated at any ¢ < n. This follows from an easy computation. O

Proposition 3.2.3.4. Let n > 0. Then the Quillen adjunction

+

Stn
(Seth)/an ===(8et})*14"]
Unpn

is a Quillen equivalence.

Proof. As we have argued above, it suffices to show that the unit
id — RUn;f o Sth.

is an isomorphism of functors from h(SetJAr) An to itself. In other words, we must show that given an object
X € (8et})/an and a weak equivalence
Stl. X — 7,

where F € (8et{)%4"] is fibrant, the adjoint map
7: X — Unzn F

is a marked equivalence in (Set}), an.
Choose a fibrant replacement for X: that is, a marked equivalence X — Y where Y — A" is a Cartesian
fibration. According to Proposition 3.2.2.7, there exists a composable sequence of maps

0:A° — ... — A"

and a quasi-equivalence M*(f) — Y. Proposition 3.2.2.13 implies that M?%(#) — Y is a marked equivalence.
Thus, X is equivalent to M?(6) in the homotopy category of (Set}) san and we are free to replace X by
M?*(6), thereby reducing to the case where X is a mapping simplex.

We wish to prove that j is a marked equivalence. Since U nzn JF is fibrant, Proposition 3.2.2.13 implies
that it suffices to show that j is a quasi-equivalence: in other words, we need to show that the induced map
of fibers js : X — (UnX,, F)s is a marked equivalence, for each vertex s of A™. As in the proof of Lemma
3.2.3.2, we may identify (Un}, F)s with U(F(s)), where U is the right adjoint to 7. By Lemma 3.2.3.1,
Xs — U(F(s)) is a marked equivalence if and only if the adjoint map T(X;) — F(s) is a marked equivalence.
This map factors as a composition

T(X.) — Stha (X)(s) — F(s).

The map on the left is a marked equivalence by Lemma 3.2.3.3, and the map on the right in virtue of the
assumption that St{,X — F is a weak equivalence. O

3.2.4 Straightening in the General Case

Let S be a simplicial set and ¢ : €[S] — €°? an equivalence of simplicial categories. Our goal in this section
is to complete the proof of Theorem 3.2.0.1 by showing that (St(‘g, U n;') is a Quillen equivalence between
(Set})/s and (Set})®. In §3.2.3, we handled the case where S was a simplex (and ¢ an isomorphism),
by verifying that the unit map id — RU n;' o St;f is an isomorphism of functors from h(Set}) /s to itself.
Unfortunately, we do not know a direct proof of this statement in the general case. Our approach is instead to
prove the functor RUnj) is an equivalence from the homotopy category of (SetJAr)e to the homotopy category
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of (8et}),s. It will then follow that the left adjoint LSt;f is an inverse functor to RU n;f, so that the unit of
the adjunction is a weak equivalence.

Here is the idea of the proof. Without loss of generality, we may suppose that ¢ is an isomorphism (since
the pair (¢, ¢*) is a Quillen equivalence between (Set{)%1*1”” and (Set})¢, by Proposition A.3.3.5). We wish
to show that U n;f induces an equivalence from the homotopy category of (SetX)e to the homotopy category
of (8et}) /s- According to Proposition 3.2.3.4, this is true whenever S is a simplex. In the general case, we
would like to regard (Set})® and (Set}) /s as somehow built out of pieces which are associated to simplices,
and deduce that U n;f is an equivalence because it is an equivalence on each piece. In order to make this

argument work, it is necessary to work not just with the homotopy categories of (Set})® and (Set}) /s, but
with the simplicial categories which give rise to them.

We recall that both (SetX)® and (Set}) /s are simplicial model categories with respect to the simplicial
mapping spaces defined by

HomSetA (K, Map(getZ)e (‘rfv 9)) = Hom(setz)e (3'~ &Kﬁv 9)

Homge, (K, Map(setZ)S(X, Y)) = Homget, (K, MapﬁS(X, Y)) = Hom(SetZ)/s(X x K8 Y).

The functor Stg is not a simplicial functor. However, it is weakly compatible with the simplicial structure
in the sense that there is a natural map

StH(X R K') — (StfX)R K

for any X € (Setz)/s, K € 8eta. According to Corollary 3.2.1.15, this map is a weak equivalence in (Set})¢.
Passing to adjoints, we get natural maps

Map g+ )e (F,9) — MapﬁS(Unz F, Un:g 9).
In other words, Un_ does have the structure of a simplicial functor. We now invoke Proposition A.2.8.1 to
deduce the following:

Lemma 3.2.4.1. Let S be a simplicial set, C a simplicial category, and ¢ : €[S] — C° a simplicial functor.
The following are equivalent:

(1) The Quillen adjunction (St;, Un(‘;) 18 a Quillen equivalence.

(2) The functor Un('; induces an equivalence of simplicial categories
(Und)° = ((8etX)®)” — ((8et})/s)°,

where ((SetX)€)° denotes the full (simplicial) subcategory of ((SetX)®) consisting of fibrant-cofibrant
objects, and ((8etX),s)° denotes the full (simplicial) subcategory of (SetX) s consisting of fibrant-
cofibrant objects.

Consequently, to complete the proof of Theorem 3.2.0.1, it will suffice to show that if ¢ is an equivalence
of simplicial categories, then (U n;f)o is an equivalence of simplicial categories. The first step is to prove that

(U n:;)o is fully faithful.

Lemma 3.2.4.2. Let S’ C S be simplicial sets, and let p: X — S, q: Y — S be Cartesian fibrations. Let
X' =X xg8 andY' =Y xg8'. The restriction map

Map?, (X%, Y*) — Map, (X"%, Y'*)

is a Kan fibration.
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Proof. Tt suffices to show that the map Y? — S has the right lifting property with respect to the inclusion
(X x B%) ] (XFxA%)C X x B,
X'ix At

for any anodyne inclusion of simplicial sets A C B.
But this is a smash product of a marked cofibration X’* — X% (in (Setf),s) and a trivial marked

cofibration A* — B* (in Set}), and is therefore a trivial marked cofibration. We conclude by observing that
Y% is a fibrant object of (Set}),s (Proposition 3.1.4.1). O

Proposition 3.2.4.3. For every simplicial set S, the functor
(Un%)° : (8etX)5™ — (SetX),s
is fully faithful (as a functor between simplicial categories).

Proof. Let € = €[S]°P, and choose fibrant-cofibrant objects F,G € (Set{)®. We wish to show that the
natural map

Map(s,it)e (F,9) — Maph (UnE F,Unf G)

is a homotopy equivalence of Kan complexes.
According to Proposition A.3.6.1, there is an equivalence of co-categories

p: N((8et})€)° — Fun(S, Cato,).
Let F = p(F) and G = p(§). Let X = Homp,,(sor eary(F G), Yo = |Homg((SetX)c)o(ag)\Q., and
g = Map(setz)/s(Ung F, Un:g G). We have a chain of maps
fo R f1 f2 f3
XS — |HomFun(S"P,Gatm)(F’ G)|Q° — YS - Map(setz)e(?v 9) - ZS~

Note that fy and f; are weak homotopy equivalences, so their composition ig = fpof; : Yg — Xg is a weak
homotopy equivalence. Since fs is weak homotopy equivalence, the map f3 is a weak homotopy equivalence
if and only if the composition js = f3o fy : Yg — Zg is a weak homotopy equivalence. Consequently, our
goal is to prove that jg is a weak homotopy equivalence.

Let us first assume that S is finite-dimensional, and work by induction on the dimension n of S. Let
S’ denote the (n — 1)-skeleton of S, and let A denote the set of all nondegenerate n-simplices of S. Then
S~ S [1ganxa(A™ x A). By Lemma 2.3.4.1, the square

XS — > XS/
Xanxa —= Xganxa
is homotopy Cartesian. It follows that the equivalent square

Y ——— Yy

-

Yarxa ——=Yoanxa
is homotopy Cartesian. By Lemma 3.2.4.2, the square

ZS —— ZS/

L

Ianx A —>= ZoAnxA
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is homotopy Cartesian. Consequently, to prove that js is a weak equivalence, it suffices to show that jg/,
Joanxa, and janxa are weak equivalences. The first two of these assertions follow from the inductive
hypothesis. The third follows from Lemma 3.2.4.1 and Proposition 3.2.3.4.

Now suppose that S is not finite dimensional. Let S(¢) denote the i-skeleton of S. By Lemma 2.3.4.1,
each of the maps Xg(;11) — Xg(;) is a Kan fibration. It follows that Xg = lim; Xg(;) is also the homotopy
limit of the tower

e XS(Q) — XS(l) — Xs(o).

Since each of the maps ix is a homotopy equivalence, we deduce that Yg is a homotopy limit of the tower
e Y5(2) — YS(l) — Ys(o).

(This is not obvious, since the maps in this tower are not fibrations of simplicial sets, and Yy is not generally
the limit of the Yg;.)
By Lemma 3.2.4.2, the tower
- Zs(2) = Zs) = Zs (o)

is a tower of fibrations, so that Zg = 1&(1 Zs(iy is a homotopy limit. Since each jg(;) is an equivalence by the
arguments given above, we see that js : Yo — Zg is an equivalence, since it is a map between homotopy
limits of equivalent towers. [

To complete the proof of Theorem 3.2.0.1, we need to show that the unstraightening functor Un(‘g is
essentially surjective (on homotopy categories).

Proposition 3.2.4.4. Let S be a simplicial set, and C = €[S]|°P. For every object X € (Setz)/s, there exists
a (weakly) fibrant object F € (8et{)® and a marked equivalence X — Un¥ (F).

Proof. Choose a marked equivalence X — Z% where p : Z — S is a Cartesian fibration. Without loss of
generality, we may replace X by Z%. Choose simplicial subsets S(a) C S, where each S(a) is obtained by
adjoining a single nondegenerate simplex to

S(<a)=J 5.

B<a

provided that such a simplex exists. Let C, = €[S(a)]°? and Z(«a) = Z xg S(«). The objects Ccn, d<as
and Z(<«) are defined similarly.

We will construct, by induction on «, a compatible family of pairs F, : €7 — SetX, fa @ Z(a)F —
Unj)a Fo, where f, is a marked equivalence in (SetX)/s(a). Let us suppose, then, that F., and f-, have
already been constructed. Supposing that S(<«) # S, we may write

S(a) = S(<a) [ A™
BAn
Let € = C[A"]% and €} = €[ A"]P C €.
By Proposition 3.2.3.4, there exists a fibrant object § € (SetJAr)e and an equivalence g : Z% xg A" —
UnX.S. Let Gy = G|€y The objects Un}r. Go and Unfa.(F<a|C)) are equivalent in the homotopy
category of (SetZ)/aAn (since they are both equivalent to Z? x g & A™). Proposition 3.2.4.3 implies that G

and F_,, | €, are equivalent in the homotopy category of (Setz)e().
We may identify F.,, with a map Fc,, : S(<a) — Catl, and § with a map G : A™ — Cat2l. The above
argument shows that the maps F.,| 9 A™ and G| 9 A™ are homotopic. In other words, there exists a map

Hy: (@A™ xAY) [ (A" x{1}) — eat?
8 A x {1}
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such that Ho| 0 A" x {0} = F.,|0 A", Ho|A™ x {1} = G, and Hy|{v} x Al is an equivalence in Caty,, for
every vertex v of A", It follows that there exists an extension

H:A" x Al — (Cat?)"

of Hy; moreover, if n = 0 we may furthermore choose H to be an equivalence (for example, a degenerate
edge at the vertex Hy).

Now define F, to be the result of amalgamating F., with H|A" x {0}, and let F, : €, — Set{ be the
associated presheaf. Finally, let Y = U ngfa F,. To complete the proof, it will suffice to show that the map

f<a: Z(<a)? =Y can be extended to an equivalence f, : Z(a)? — Y.
Let fL,. denote the pullback of f<, to A™:

fga:szaA”HYst".

By hypothesis, the map f., is equivalent, in the homotopy category, to the restriction of g. It follows from
Proposition A.2.4.1 that f. , extends to a map

f(;:ZXSAnHYXSAn

which is isomorphic to g in the homotopy category (Setz) /an. Then f! is an equivalence, since g is an
equivalence. We now define f, to be the result of amalgamating f., and f.. It is clear that f, has the
desired properties, so the proof is complete. O]

We are now ready to complete the proof of our main result.

Proof of Theorem 3.2.0.1. Let ¢ : €[S] — C°? be an equivalence of simplicial categories. We wish to prove
that (St(‘g, Un;g) is a Quillen equivalence. Using Proposition A.3.3.5, we may reduce to the case where ¢

is an isomorphism. According to Lemma 3.2.4.1, it will suffices to show that (U n(‘;’)O is an equivalence of

simplicial categories. Proposition 3.2.4.3 guarantees that (Un('g)o is fully faithful, and Proposition 3.2.4.4
guarantees that Ung is essentially surjective. O
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3.3 Applications

The purpose of this section is to survey some applications of techniques developed in §3.1 and §3.2. We
begin in §3.3.1 by studying the unmarked straightening and unstraightening functors introduced in §2.1.4.
In §3.3.2, we give some applications to the theory of Cartesian fibrations. In §3.3.3, we will introduce the
language of classifying maps which will allow us to exploit the Quillen equivalence provided by Theorem
3.2.0.1. Finally, in §3.3.4 and §3.3.5, we will use Theorem 3.2.0.1 to give explicit constructions of limits and
colimits in the co-category Caty, (and also in the oo-category of spaces).

3.3.1 Straightening and Unstraightening in the Unmarked Case

Let S be a simplicial set and ¢ : €[S] — C° a simplicial functor. In §2.1.4, we defined straightening and

unstraightening functors

Sty

(SetA)/S:)(SetA)e .

Un¢
In §3.2, we studied the corresponding constructions in the context of marked simplicial sets, and proved that
(St;{, Ung) is a Quillen equivalence provided that ¢ is an equivalence of simplicial categories. This result can
be regarded as a marked version of Theorem 2.1.4.7, which asserts that (St,, Ung) is a Quillen equivalence
(under the same hypotheses). Our goal in this section is to use Theorem 3.2.0.1 to deduce Theorem 2.1.4.7.
The following statement summarizes both results, and the relationship between them:

Theorem 3.3.1.1. Let S be a simplicial set, € a simplicial category, and ¢ : €[S]°P — € a simplicial functor.
We have a commutative diagram of model categories and left Quillen functors

I t+ St:[ IS +\C
(Se A)/SH( etA)

.

(Seta)/s e, (Seta)®,

where the vertical arrows are given by forgetting the markings, and (8eta) s is endowed with the contravariant
model structure. Moreover, if ¢ is an equivalence of simplicial categories, then the horizontal arrows are
Quillen equivalences.

The proof of Theorem 3.3.1.1 uses Proposition 3.1.5.6, which in turn rests on the following characterization
of the contravariantly fibrant objects of (Seta),s:

Proposition 3.3.1.2. Let p : X — S be a map of simplicial sets. Then X is fibrant with respect to the
contravariant model structure on (Seta),s if and only if p is a right fibration.

Proof. The “only if” direction was established in Proposition 2.1.4.3. For the converse, suppose that p is a
right fibration. We wish to show that X has the extension property with respect to every contravariantly
trivial cofibration i : A — B in (Seta),s. Equivalently, we must show that Yt has the extension property
with respect to A* — Bf in (SetX)/S. Since p is a right fibration, Y# = Y is a marked fibrant object of
(SetX) /s; it therefore suffices to show that the cofibration A" — B is a marked equivalence. By Theorem
3.2.0.1, it suffices to show that f : St&A* — St&B* is an equivalence. But St&M* ~ (StgM)*; it therfore
suffices to prove that StgA — StgB is an equivalence. This is simply a reformulation of the assumption
that ¢ is a contravariant equivalence. O

Proof of Theorem 3.3.1.1. The commutativity of the diagram is an immediate consequence of the construc-
tion of St;. We have already shown that St;; is a left Quillen functor, and it follows from Theorem 3.1.5.1
that the vertical arrows are left Quillen functors. The first nontrivial point to check is that St, is a left
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Quillen functor. Since St clearly preserves cofibrations, it suffices to show that Sty preserves weak equiva-
lences. Let X, X’ € (Seta),s, and let I = Sty X, F' = St, F be the associated functors € — Seta. Suppose

f: X — X'is a contravariant equivalence. By Proposition 3.1.5.6, the induced map f : X# — X"isa
marked equivalence in (SetX) /s- By Corollary 3.2.1.16, the induced map

F = ST X - StEXF — (F)F

is a weak equivalence of functors € — SetX. Applying Proposition 3.1.5.6 again, we deduce that F — F is
an equivalence of functors € — Seta.

To complete the proof, it suffices to show that if ¢ is a categorical equivalence, then (St,,Ung) is a
Quillen equivalence. Let X be an object of Seta s and JF a fibrant object of (Set A)€. We need to show that
a map

u: X = UngF

is a contravariant equivalence in Seta /g if and only if the adjoint map
v Sti}X -7
is an equivalence in (Seta)®. By Proposition 3.1.5.6, u is an equivalence if and only if the associated map
o X Ung F
is an equivalence in (Setz) /s> and v is an equivalence if and only if the associated map
v St(‘;X gt

is an equivalence in (Set{)®. Theorem 3.2.0.1 asserts that u’ is an equivalence if and only if v’ is an
equivalence, which completes the proof. O

3.3.2 Structure Theory for Cartesian Fibrations

The purpose of this section is to prove that Cartesian fibrations between simplicial sets enjoy several pleasant
properties. For example, every Cartesian fibration is a categorical fibration (Proposition 3.3.2.8), and cate-
gorical equivalences are stable under pullbacks by Cartesian fibrations (Proposition 3.3.2.3). These results
are fairly easy to prove for Cartesian fibrations X — S in the case where S is an oo-category. Theorem
3.2.0.1 provides a method for reducing to this special case:

Proposition 3.3.2.1. Let p : S — T be a categorical equivalence of simplicial sets. Then the forgetful
functor

pr:(8etx) s — (8etA)r
and its right adjoint p* induce a Quillen equivalence between (Set}) s and (Set}) 7.

Proof. Let C = €[S]°P and D = €[T]°P. Consider the diagram of model categories and left Quillen functors:

(Setk) s —— (Seth)r -
isg lSt;
Q: 1
e— g

According to Proposition 3.2.1.4, this diagram commutes (up to natural isomorphism). Theorem 3.2.0.1
implies that the vertical arrows are Quillen equivalences. Since p is a categorical equivalence, €[p] is an
equivalence of simplicial categories, so that €[p], gives a Quillen equivalence by Proposition A.3.3.5. It
follows that (pi, p*) is a Quillen equivalence as well. O
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Corollary 3.3.2.2. Letp: X — S be a Cartesian fibration of simplicial sets, and let S — T be a categorical
equivalence. Then there exists a Cartesian fibration Y — T, and an equivalence of X with S xp Y (as
Cartesian fibrations over X ).

Proof. Proposition 3.3.2.1 implies that the right derived functor Rp* is essentially surjective. O

As we explained in Remark 1.3.4.3, the Joyal model structure on Seta is not right proper. In other
words, it is possible to have a categorical fibration X — S and a categorical equivalence T" — S such that
the induced map X xg7T — X is not a categorical equivalence. This poor behavior of categorical fibrations
is one of the reason that they do not play a prominent role in the theory of co-categories. Working with a
stronger notion of fibration corrects the problem:

Proposition 3.3.2.3. Letp: X — S be a Cartesian fibration, and let T — S be a categorical equivalence.
Then the induced map X xsT — X is a categorical equivalence.

Proof. We first suppose that the map 7" — S is inner anodyne. By means of a simple argument, we may
reduce to the case where 7' — S is a middle horn inclusion A? C A", where 0 < 7 < n. According Proposition

3.2.2.7, there exists a sequence of maps
p: A — A"

and a map M(¢) — X which is a categorical equivalence, such that M(¢) xgs T — X xg T is also a
categorical equivalence. Consequently, it suffices to show that the inclusion M(¢) xg T C M(¢) is a
categorical equivalence. But this map is a pushout of the inclusion A™ x A} C A" x A", which is inner
anodyne.

We now treat the general case. Choose an inner anodyne map T — T’ where T" is an oo-category. Then
choose an inner anodyne map 7" ][, S — S’, where S’ is also an oco-category. The map S — S’ is inner
anodyne; in particular it is a categorical equivalence, so by Corollary 3.3.2.2 there is a Cartesian fibration
X' — S and an equivalence X — X’ X g S of Cartesian fibrations over S. We have a commutative diagram

X’ XS/TL’>X' X T
X xgT X'.
X U>X’XS/S

Consequently, to prove that v is a categorical equivalence, it suffices to show that every other arrow in
the diagram is a categorical equivalence. The maps u and v’ are equivalences of Cartesian fibrations, and
therefore categorical equivalences. The other three maps are special cases of the assertion we are trying
to prove., For the map u”, we are in the special case of the map S’ — T’, which is an equivalence of oo-
categories: in this case we simply apply Corollary 2.3.4.5. For the maps v’ and v”, we need to know that the
assertion of the proposition is valid in the special case of the maps S — S’ and T — T". Since these maps
are inner anodyne, the proof is complete. O

Corollary 3.3.2.4. Let
X —X

|k

§S—9

be a pullback diagram of simplicial sets, where p' is a Cartesian fibration. Then the diagram is homotopy
Cartesian (with respect to the Joyal model structure).
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Proof. Choose a categorical equivalence S’ — S, where S” is an oo-category. Using Proposition 3.3.2.1, we
may assume without loss of generality that X’ ~ X" xg» S’, where X” — S is a Cartesian fibration. Now
choose a factorization

str%s

where ¢ is a categorical equivalence and 6” is a categorical fibration. The diagram

T_) SI/ — XII

is fibrant. Consequently, the desired conclusion is equivalent to the assertion that the map X — T xg» X"
is a categorical equivalence, which follows immediately from Proposition 3.3.2.3. O

We now prove a stronger version of Corollary 2.3.4.4, which does not require that the base S is a oo-
category.

Proposition 3.3.2.5. Suppose given a diagram of simplicial sets

where p and q are Cartesian fibrations, and f carries p-Cartesian edges to q-Cartesian edges. The following
conditions are equivalent:

(1) The map f is a categorical equivalence.
(2) For each vertex s of S, [ induces a categorical equivalence Xy — Y.
(3) The map X% — Y* is a marked equivalence in (Set}),s.

Proof. The equivalence of (2) and (3) follows from Proposition 3.1.3.5. We next show that (2) implies (1).
In virtue of Proposition 3.2.2.8, we may reduce to the case where S is a simplex. Then S is an co-category
and the desired result follows from Corollary 2.3.4.4. (Alternatively, we could observe that (2) implies that
f has a homotopy inverse.)

To prove that (1) implies (3), we choose an inner anodyne map j : S — S’, where S’ is an co-category. Let
X" denote the object of (SetZ)/s associated to the Cartesian fibration p : X — S, and let 5, X denote the
same marked simplicial set, regarded as an object of (Set}) 7 Choose a marked anodyne map ji X P X! h,
where X’ — §’ is a Cartesian fibration. By Proposition 3.3.2.1, the map X! — j*X’h is a marked equivalence,
so that X — X' xg/ S is a categorical equivalence. According to Proposition 3.3.2.3, the map X' xg/ S — X'
is a categorical equivalence; thus the composite map X — X’ is a categorical equivalence.

Similarly, we may choose a marked anodyne map

X/h H ]IYU — Y/h

JiX8

for some Cartesian fibration Y’ — S’. Since the marked model structure is left-proper, the map ;Y% — Y’ b
is a marked equivalence, so we may argue as above to deduce that Y — Y is a categorical equivalence. Now
consider the diagram

L,

X’LY’.
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We have argued that the vertical maps are categorical equivalences. The map f is a categorical equivalence
by assumption. It follows that f’ is a categorical equivalence. Since S’ is an oo-category, we may apply
Corollary 2.3.4.4 to deduce that X, — Y/ is a categorical equivalence for each object s of S’. It follows that
X" = Y% is a marked equivalence in (8etX) /s, so that we have a commutative diagram

Xt Yyt

L

j*th RN j*Y/h

where the vertical and bottom horizontal arrows are marked equivalences in (Set} ) ss- It follows that the
top horizontal arrow is a marked equivalence as well, so that (3) is satisfied. O

Corollary 3.3.2.6. Suppose given a diagram of simplicial sets
f
X—Y
P
q
S

where p and q are right fibrations. Then f is a contravariant equivalence in (8eta),s if and only if, for each
vertex s of S, the induced map fs: X5 — Y5 of fibers is a homotopy equivalence of Kan complexes.

Corollary 3.3.2.7. Let
W—X

L

Y———Z7——§

be a diagram of simplicial sets. Suppose that every morphism in this diagram is a right fibration, and that
the square is a pullback. Then the diagram is homotopy Cartesian with respect to the contravariant model
structure on (Seta)/g-

Proof. Let
X =Y 27
be a fibrant replacement for the diagram

X—=Y 7

in (S8eta)/s, and let W' = X’ xz Y’. We wish to show that the induced map i : W — W’ is a covariant
equivalence in (8eta),s. According to Corollary 3.3.2.6, it suffices to show that for each vertex s of S, the
map of fibers Wy — W/ is a homotopy equivalence of Kan complexes. To prove this, we observe that we
have a natural transformation of diagrams from

to



which induces homotopy equivalences
X, — X!

Y, - V!
Js — Z;
(Corollary 3.3.2.6), where both diagrams are homotopy Cartesian (Proposition 2.1.3.4). O

Proposition 3.3.2.8. Let p : X — S be a Cartesian fibration of simplicial sets. Then p is a categorical
fibration.

Proof. Consider a diagram
A— X
Ll
vt
7 g
B——S

of simplicial sets where ¢ is an inclusion and a categorical equivalence. We must demonstrate the existence
of the indicated dotted arrow. Choose a categorical equivalence j : S — T, where T is an oo-category. By
Corollary 3.3.2.2, there exists a Cartesian fibration ¢ : Y — T such that Y xS is equivalent to X. Thus,
there exist maps

u: X =Y xr S

v:Y xpS—>X

such that v o v and v o u are homotopic to the identity (over .S).

Consider the induced diagram
_ Y
T .
i /s
P / f/
B.

Since Y is an co-category, there exists a dotted arrow f’ making the diagram commutative. Let ¢’ = qo [ :
B — T. We note that ¢’'|A = (j o g)|A. Since T is an oo-category and i is a categorical equivalence, there
exists a homotopy B x Al — T from ¢’ to j o g which is fixed on A. Since ¢ is a Cartesian fibration, this
homotopy lifts to a homotopy from f’ to some map f” : B — Y, so that we have a commutative diagram

A—Y

]
i q
//f//

B——T.

Consider the composite map

"9
—

"B Y xp S5 X.

Since f’ is homotopic to f”, and v o u is homotopic to the identity, we conclude that f”/|A is homotopic to
fo (via a homotopy which is fixed over S). Since p is a Cartesian fibration, we can extend h to a homotopy
from f"”’ to the desired map f. O

In general, the converse to Proposition 3.3.2.8 fails: a categorical fibration of simplicial sets X — S need
not be a Cartesian fibration. This is clear, since the property of being a categorical fibration is self-dual
while the condition of being a Cartesian fibration is not. However, in the case where S is a Kan complex,
the theory of Cartesian fibrations is self-dual, and we have the following result:

Proposition 3.3.2.9. Letp: X — S be a map of simplicial sets, where S is a Kan complex. The following
assertions are equivalent:
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(1) The map p is a Cartesian fibration.
(2) The map p is a coCartesian fibration.

(3) The map p is a categorical fibration.

Proof. We will prove that (1) is equivalent to (3); the equivalence of (2) and (3) follows from a dual argument.
Proposition 3.3.2.8 shows that (1) implies (3) (for this implication, the assumption that S is a Kan complex
is not needed).

Now suppose that (3) holds. Then X is an oo-category. Since every edge of S is an equivalence, the
p-Cartesian edges of X are precisely the equivalences in X. It therefore suffices to show that if if y is a
vertex of X and €: T — p(y) is an edge of S, then € lifts to an equivalence e : ¢ — y in S. Since S is a Kan
complex, we can find a contractible Kan complex K and a map ¢ : K — S such that € is the image of an
edge ¢’ : ' — ¢ in K. The inclusion {y/'} C K is a categorical equivalence; since p is a categorical fibration,
we can lift § to a map ¢ : K — X with ¢(y’) = y. Then e = ¢g(e’) has the desired properties. O

3.3.3 Universal Fibrations

In this section, we will apply Theorem 3.2.0.1 to construct a universal Cartesian fibration. Recall that
Cato, is defined to be the nerve of the simplicial category Gatvo = (SetX)O of oco-categories. In particular,
we may regard the inclusion Caty — Set{ as a (weakly) fibrant object F € (SetZ)eati. Applying the
unstraightening functor U n‘é‘atgg, we obtain a fibrant object of (Set}) / eater, Which we may identify with
Cartesian fibration ¢ : Z — Cat?. We will refer to ¢ as the universal Cartesian fibration. We observe that
the objects of Cat,, can be identified with co-categories, and that the fiber of ¢ over an co-category C can be
identified with U(C), where U is the functor described in Lemma 3.2.3.1. In particular, there is a canonical
equivalence of co-categories

€ — U(€) = Z X guz {€).

Thus we may think of ¢ as a Cartesian fibration which associates to each object of Cat,, the associated
oo-category.

Remark 3.3.3.1. The oco-categories Cato, and Z are large. However, the universal Cartesian fibration ¢ is
small in the sense that for any small simplicial set S and any map f : S — CatZ?, the fiber product S xgor Z
is small. This is because the fiber product can be identified with Un(‘g (F|€[S]), where ¢ : €[S] — Set} is
the composition of €[f] with the inclusion.

Definition 3.3.3.2. Let p : X — S be a Cartesian fibration of simplicial sets. We will say that a functor
f:8 — Catll classifies p if there is an equivalence of Cartesian fibrations X — Z X e,qor S Ungf.

Dually, if p: X — S is a coCartesian fibration, then we will say that a functor f : S — Caty, classifies p
if f°P classifies the Cartesian fibration p°? : X°P — S°P.

Remark 3.3.3.3. Using Proposition 3.2.4.4, we can deduce that every Cartesian fibration X — S admits
a classifying map ¢ : S — CatZl, which is uniquely determined up to equivalence. This is one expression of
the idea that Z — CatZl is a universal Cartesian fibration.

Warning 3.3.3.4. The terminology of Definition 3.3.3.2 has the potential to cause confusion in the case
where p: X — S is both a Cartesian fibration and a coCartesian fibration. In this case, p is classified both
by a functor S — Cat (as a Cartesian fibration) and by a functor S — Cat. (as a coCartesian fibration).

The category Kan of Kan complexes can be identified with a full (simplicial) subcategory of Gatfo.
Consequently we may identify the oo-category 8 of spaces with the full simplicial subset of Cat.,, spanned
by the vertices which represent co-groupoids. We let 2° = 2 X eaer 87 be the restriction of the universal
Cartesian fibration. The fibers of ¢° : Z2° — 8° are Kan complexes (since they are equivalent to the oo-
categories represented by the vertices of 8). It follows from Proposition 2.3.2.7 that ¢° is a right fibration.
We will refer to ¢° as the universal right fibration.

Proposition 2.3.2.7 translates immediately into the following characterization of right fibrations:
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Proposition 3.3.3.5. Let p: X — S be a Cartesian fibration of simplicial sets. The following conditions
are equivalent:

(1) The map p is a right fibration.
(2) Every functor f : S — Cat? which classifies p factors through 8° C CatZk.
(3) There exists a functor f: S — 8°P which classifies p.

Consequently, we may speak of right fibrations X — S being classified by functors S — 8°7, and left
fibrations being classified by functors S — 8.

The oo-category A° corresponds to a vertex of Cato, which we will denote by *. The fiber of ¢ over this
point may be identified with UA® ~ A9 consequently, there is a unique vertex #¢ of Z lying over . We
note that * and *z belong to the subcategories 8 and Z°. Moreover, we have the following:

Proposition 3.3.3.6. Let ¢° : 2° — 8°P be the universal right fibration. The vertex xz is a final object of
the co-category Z°.

Proof. Let n > 0, and let fo : 9 A" — Z° have the property that fy carries the final vertex of A” to 7. We
wish to show that there exists an extension

aAnL)z
7
I

Ve
7

An

(in which case the map f automatically factors through ZO).
Let D denote the simplicial category containing 8% as a full subcategory, together with one additional
object X, with the morphisms given by
Mapq (K, X) = K

Mapq (X, X) = *
Mapq, (X, K) =0

for all K € 8%. Let € = €[A" x AY], and let €y denote the full subcategory Co = €[dA™ x A%. We will
denote the objects of € by {vg,...,v,41}. Giving the map fp is tantamount to giving a simplicial functor
Fy : Cp — D with Fy(v,+1) = X, and constructing f amounts to giving a simplicial functor F' : € — D
which extends Fjy.

We note that the inclusion Mapg, (vi,v;) — Mape(v;,v;) is an isomorphism, unless i = 0 and j €
{n,n + 1}. Consequently, to define F, it suffices to find extensions

Mape, (vo, Vn) —= Mapq (Fo(vo), Fo(vn))
Ed

—
—

—
—

Mape (vo, vn)

Mape, (vo, Vnt1) — Mapq (Fo(vo), Fo(vn41))

—

Mape(vo, ’Un+1)
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such that the following diagram commutes:

Mape (v, vn) X Mape(vn, Vn41) —= Mapq (Fo(vo), Fo(vn)) X Mapg (Fo(vn), Fo(vnt1))

| |

Mape (vo, Un+1) Map g (Fo(vo), Fo(vn+1))-

We note that Mape(vn, vnt1) is a point. In view of the assumption that fy carries the final vertex of
A™ to *gz, we see that Mapq (F(vp), F'(vn41)) is a point. It follows that, for any fixed choice of j’, there
is a unique choice of j for which the above diagram commutes. It therefore suffices to show that j' exists.
Since Mapq, (Fo(vo), X) is a Kan complex, it will suffice to show that the inclusion Mape, (vo, vnt1) —
Mape(vo, vn+1) is an anodyne map of simplicial sets. In fact, it is isomorphic to the inclusion

{x@hh  JT  @'xa@ahhcatxart
{1}xa(Al)n—1

which is the smash product of the cofibration 9(A)"~1 C (A1)"~! with the anodyne inclusion {1} C Al. O
Corollary 3.3.3.7. The universal right fibration ¢° : 2° — 8° is representable by the final object of 8.

Corollary 3.3.3.8. Let p: X — S be a left fibration of (small) simplicial sets. Then there exists a map
S — 8 and an equivalence of right fibrations X ~ S Xg 8.

Proof. Combine Corollary 3.3.3.7 with Remark 3.3.3.3. O

Remark 3.3.3.9. Nichols-Barrer has constructed a right fibration p : X — Y, equivalent to our universal
right fibration 2° — 8°P, but with a stronger universal property: every (small) right fibration X — S is
isomorphic to a pullback of p. We refer the reader to [41] for details.

3.3.4 Limits of co-Categories

The oo-category Caty, can be identified with the simplicial nerve of (SetZ)o. It follows from Corollary 4.2.4.6
that Cato, admits (small) limits and colimits, which can be computed in terms of homotopy (co)limits in
the model category Setz. For many applications, it is convenient to be able to construct limits and colimits
while working entirely in the setting of co-categories. We will describe the construction of limits in this
section; the case of colimits will be discussed in §3.3.5.

Let p : S — Caty, be a diagram in Cat.,. Then p classifies a Cartesian fibration ¢ : X — S. We
will show (Corollary 3.3.4.2 below) that the limit lim(p) € Cato, can be identified with the co-category of
Cartesian sections of q. We begin by proving a more precise assertion:

Proposition 3.3.4.1. Let K be a simplicial set, p : Ki—> Cat? a diagram in the oco-category of spaces,
X — K" a Cartesian fibration classified by p, and X = X X g» K. The following conditions are equivalent:

(1) The diagram D is a colimit of p = p| K.

(2) The restriction map
0 : Mapi. ((K*)%, X°) — Mapj (K*, X*)
is an equivalence of co-categories.

Proof. According to Proposition 4.2.3.14, there exists a small category € and a cofinal map f : N(€) — K;
let € = Cx[0] be the category obtained from € by adjoining a new final object, and let f : N(C) — K* be
the induced map (which is also cofinal). The maps f and f are contravariant equivalences in (Seta ), x>, and

therefore induce marked equivalences
N — K*
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N(@)F — (K*)%.

We have a commutative diagram

Map ((K*)f, X°) —— Maplg. (K*, X*)

| |

Mape (N(@)f, X*) — > Mapiy. (N(€)?, X7).

The vertical arrows are categorical equivalences. Consequently, condition (2) holds for p : K* — CatZl if

and only if condition (2) holds for the composition N(€) — K* — Cat?f. We may therefore assume without
loss of generality that K = N(C).

Using Corollary A.3.6.2, we may further suppose that p is obtained as the simplicial nerve of a functor
F:€" — (Set})°. Changing F if necessary, we may suppose that it is a strongly fibrant diagram in Set.
Let F = F| €. Let ¢ : €[K"]°? — € be the counit map, and ¢ : €[K]? — €% the restriction of ¢. We
may assume without loss of generality that X = St:;?. We have a (not strictly commutative) diagram of
categories and functors

xK*

Set L —— (Set}X)/k
lStj stf
Set L -5 (Set )¢,
where § denotes the diagonal functor. This diagram commutes up to a natural transformation
Sth(K* x Z) — St[(K¥) R StF (Z) — 6(Stf Z).

Here the first map is a weak equivalence by Proposition 3.2.1.13, and the second map is a weak equivalence
because LSt;; is an equivalence of categories (Theorem 3.2.0.1) and therefore carries the final object K* €

h(8etf),x to a final object of h(Set)C”". We therefore obtain a diagram of right derived functors
h Set} -~ h(8etX),x
RUnf{T RUn;T
h8et{ <—— h(8et{)®"”,

which commutes up to natural isomorphism, where we regard (SetZ)eop as equipped with the injective model
structure described in §A.3.3. Similarly, we have a commutative diagram

h Set X ~ h(8etX) /x>

RUnT T RUn% T
+ eor
h8ety <—— h(Set{)C .

Condition (2) is equivalent to the assertion that the restriction map I'" (Yh) — T'(X?!) is an isomorphism in
h8etX. Since the vertical functors in both diagrams are equivalences of categories (Theorem 3.2.0.1), this is
equivalent to the assertion that the map -

lIimJF — limF

— P
is a weak equivalence in Setz. Since € has an initial object v, (2) is equivalent to the assertion that F

exhibits F(v) as a homotopy limit of F in (Set})°. Using Theorem 4.2.4.1, we conclude that (1) < (2) as
desired. O
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It follows from Proposition 3.3.4.1 that limits in Cat, are computed by forming co-categories of Cartesian
sections:

Corollary 3.3.4.2. Let p: K — Catl be a diagram in the co-category Catoo of spaces and let X — K be a
Cartesian fibration classified by p. There is a natural isomorphism

; ~ Map’ (Kt xt
lim(p) ~ Mapj (K*, X¥)
in the homotopy category hCaty.

Proof. Let p: (K*)°? — Cat? be a limit of p, and let X’ — K" be a Cartesian fibration classified by p.
Without loss of generality we may suppose X ~ X’ x g K. We have maps

Mapi (K, X¥) — Maps (K*)%, X') — Maphe ({0}#, X"*),

where v denotes the cone point of K. Proposition 3.3.4.1 implies that the left map is an equivalence
of co-categories. Since the inclusion {v}* C (K™)* is marked anodyne, the map on the right is a trivial
fibration. We now conclude by observing that the space Map. ({v}?, X’h) ~ X' x g {v} can be identified
with p(v) = lim(p). O

Using Proposition 3.3.4.1, we can easily deduce an analogous characterization of limits in the oo-category
of spaces.

Corollary 3.3.4.3. Let K be a simplicial set, p : K9 — 8 a diagram in the oo-category of spaces, and
X — K9 a left fibration classified by p. The following conditions are equivalent:

(1) The diagram p is a limit of p = p| K.

(2) The restriction map
Map g« (K9, X) — Mapg«(K, X)

is a homotopy equivalence of Kan complexes.

Proof. The usual model structure on Seta is a localization of the Joyal model structure. It follows that
the inclusion Kan C Gatf‘o preserves homotopy limits (of diagrams indexed by categories). Using Theorem
4.2.4.1, Proposition 4.2.3.14, and Corollary A.3.6.2, we conclude that the inclusion § C Cat,, preserves
(small) limits. The desired equivalence now follows immediately from Proposition 3.3.4.1. O

Corollary 3.3.4.4. Let p : K — 8 be a diagram in the co-category 8 of spaces, and let X — K be a left
fibration classified by p. There is a natural isomorphism

lim(p) ~ Map (K, X)

piatt
in the homotopy category H of spaces.
Proof. Apply Corollary 3.3.4.2. O

Remark 3.3.4.5. It is also possible to adapt the proof of Proposition 3.3.4.1 to give a direct proof of
Corollary 3.3.4.3. We leave the details to the reader.

159



3.3.5 Colimits of co-Categories

In this section, we will address the problem of constructing colimits in the oo-category Cat.,. Let p :
S°P — Qat, be diagram, classifying a Cartesian fibration f : X — S. In §3.3.4, we saw that @(p) can be
identified with the co-category of Cartesian sections of f. To construct the colimit li_r)n(p)7 we need to find an
oo-category which admits a map from each fiber X,. The natural candidate, of course, is X itself. However,
because X is generally not an oco-category, we must take some care to formulate the correct statement.

Lemma 3.3.5.1. Let
X —X

L, b

g —1.g

be a pullback diagram of simplicial sets, where p is a Cartesian fibration and q°P is cofinal. The induced map
X" = X% is a marked equivalence (in Set} ).

Proof. Choose a cofibration S’ — K, where K is a contractible Kan complex. The map ¢ factors as a
composition

'L Sx KL S
It is obvious that the projection X! x K — XU is a marked equivalence. We may therefore replace S by
S x K and g by ¢, thereby reducing to the case where ¢ is a cofibration. Proposition 4.1.1.3 now implies
that g is left-anodyne. It is easy to see that the collection of cofibrations g : S’ — S for which the desired
conclusion holds is saturated. We may therefore reduce to the case where ¢ is a horn inclusion A} C A™,

where 0 <17 < n.
We now apply Proposition 3.2.2.7 to choose a sequence of composable maps

$: A" — A"
and a quasi-equivalence M (¢) — X. We have a commutative diagram of marked simplicial sets
M*(¢) X (anyt (AP)F —— xt

o

M*(¢) X

7

Using Proposition 3.2.2.13, we deduce that the horizontal maps are marked equivalences. To complete the
proof, it will suffice to show that ¢ is a marked equivalence. We now observe that 7 is a pushout of the inclusion
i" (A7) x (A™)> C (A™)F x (A™)°. Tt will therefore suffice to prove that i” is a marked equivalence. Using
Proposition 3.1.4.2, we are reduced to proving that the inclusion (A})# C (A™)f is a marked equivalence.
According to Proposition 3.1.5.7, this is equivalent to the assertion that the horn inclusion A} C A™ is a
weak homotopy equivalence, which is obvious. O

Proposition 3.3.5.2. Let K be a simplicial set, p : Kj — Cat?l be a diagram in the oo-category Cateo,
X — K9 a Cartesian fibration classified by D, and X = X X g« K. The following conditions are equivalent:

(1) The diagram p is a limit of p = p| K.
(2) The inclusion X% C X" is a marked equivalence in (Set}) /.

(3) The inclusion X% C X" is a marked equivalence in Set.
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Proof. Using the small object argument, we can construct a factorization
X5y L ke

where j is a Cartesian fibration, 7 induces a marked anodyne map X% — Y¥ and X ~Y Xy« K. Since i is
marked anodyne, we can solve the lifting problem

Xh Hyh

7
q -
[ Ve
v
s

yi—— (K9

Since i is a marked equivalence in (Set}), <, condition (2) is equivalent to the assertion that g is an
equivalence of Cartesian fibrations over K. Since ¢ induces an isomorphism over each vertex of K, this is
equivalent to:

(2') The map ¢, : Y, — X, is an equivalence of oo-categories, where v denotes the cone point of K.

We have a commutative diagram

e ¢

|

Yt — %",

Lemma 3.3.5.1 implies that the vertical maps are marked equivalences. It follows that (2') < (3), so that
(2) & (3).

To complete the proof, we will show that (1) < (2). According to Proposition 4.2.3.14, there exists a
small category € and a map p : N(€) — K such that p°® is cofinal. Let € = [0] x C be the category obtained
by adjoining an initial object to €. Consider the diagram

(X XK N(G))”<—> (Y X K< N(é))h

| |

X X

Lemma 3.3.5.1 implies that the vertical maps are marked equivalences (in SetX). It follows that the up-
per horizontal inclusion is a marked equivalence if and only if the lower horizontal inclusion is a marked
equivalence. Consequently, it will suffice to prove the equivalence (1) < (2) after replacing K by N(C).

Using Corollary A.3.6.2, we may further suppose that p is the nerve of a functor F: € — (8et})°. Let
¢ : €[K<] — € be the counit map, and let ¢ : €[K] — € be the restriction of ¢. Without loss of generality, we
may suppose that X = U ng F. We have a commutative diagram of homotopy categories and right derived
functors

h(Set})® — = h(Set})®
lRUnI lRUn;
B(Set}) (k) ——= h(Set) x

where G and G’ are restriction functors. Let F and F’ be the left adjoints to G and G’, respectively.
According to Theorem 4.2.4.1, assumption (1) is equivalent to the assertion that F lies in the essential image
of F. Since each of the vertical functors is equivalence of categories (Theorem 3.2.0.1), this is equivalent
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to the assertion that X lies in the essential image of F’. Since F’ is fully faithful, this is equivalent to the
assertion that the counit map o

FGX—-X
is an isomorphism in h(Set}) /K<), which is clearly a reformulation of (2). O

Corollary 3.3.5.3. Let p: K — CatX be a diagram, classifying a Cartesian fibration X — K. Then there
is a natural isomorphism

lim(p) ~ X"

p—

~ +
in hSetx.

Proof. Let p: K9 — Catf be a limit of p, classifying a Cartesian fibration X — K<. Let v denote the cone
point of K, so that lim(p) ~ X,. We now observe that the inclusions

Yhﬂ X' X
are both marked equivalences (Lemma 3.3.5.1 and Proposition 3.3.5.2). O

Warning 3.3.5.4. In the situation of Corollary 3.3.5.3, the marked simplicial set X is usually not a fibrant
object of Setz7 even when K is an oo-category.

Using exactly the same argument, we can establish a version of Proposition 3.3.5.2 which describes
colimits in the oco-category of spaces:

Proposition 3.3.5.5. Let K be a simplicial set, D : K* — 8 be a diagram in the co-category of spaces,
X — K" a left fibration classified by p, and X = X xXgv K. The following conditions are equivalent:

(1) The diagram D is a colimit of p = | K.
(2) The inclusion X C X is a covariant equivalence in (Seta) ko
(3) The inclusion X C X is a weak homotopy equivalence of simplicial sets.

Proof. Using the small object argument, we can construct a factorization
xSy LR

where ¢ is left anodyne, j is a left fibration, and the inclusion X C Y Xg» K is an isomorphism. Choose a
dotted arrow ¢ as indicated in the diagram
X—X
7
R
1]
Ve
Y

— K".

Since i is a covariant equivalence in (Seta) k», condition (2) is equivalent to the assertion that ¢ is an
equivalence of left fibrations over K”. Since ¢ induces an isomorphism over each vertex of K, this is
equivalent to the assertion that ¢, : Y, — X, is an equivalence, where v denotes the cone point of K>. We
have a commutative diagram

Qv
v

<~
e —

I
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Proposition 4.1.2.14 implies that the vertical maps are right anodyne, and therefore weak homotopy equiv-
alences. Consequently, g, is a weak homotopy equivalence if and only if ¢ is a weak homotopy equivalence.
Since the inclusion X C Y is a weak homotopy equivalence, this proves that (2) < (3).

To complete the proof, we will show that (1) < (2). According to Proposition 4.2.3.14, there exists a
small category € and a cofinal map N(C) — K. Let C = Cx[0] be the category obtained from € by adjoining
a new final object. Consider the diagram

X Xk N(€)<—> X X K> N(é)

| |

X————X.

Proposition 4.1.2.14 implies that X — K is smooth, so that the vertical arrows in the above diagram are
cofinal. In particular, the vertical arrows are weak homotopy equivalences, so that the upper horizontal
inclusion is a weak homotopy equivalence if and only if the lower horizontal inclusion is a weak homotopy
equivalence. Consequently, it will suffice to prove the equivalence (1) < (2) after replacing K by N(C).

Using Corollary A.3.6.2, we may further suppose that P is obtained as the nerve of a functor F : € — Kan.
Let ¢ : ¢[K”] — € be the counit map, and let ¢ : €[K] — € be the restriction of ¢. Without loss of
generality, we may suppose that X" =U ng F. We have a commutative diagram of homotopy categories
and right derived functors

h(Seta)® — > h(Seta)C

h(getA)/(KD)op L> h(SetA)/K

where G and G’ are restriction functors. Let F and F’ be the left adjoints to G and G’, respectively.
According to Theorem 4.2.4.1, assumption (1) is equivalent to the assertion that F lies in the essential image
of F. Since each of the vertical functors is equivalence of categories (Theorem 3.3.1.1), this is equivalent to
the assertion that X * lies in the essential image of F’. Since F” is fully faithful, this is equivalent to the
assertion that the counit map
FGX" - X"

is an isomorphism in h(8eta ), x>y, which is clearly equivalent to (2). This shows that (1) < (2) and
completes the proof. O

Corollary 3.3.5.6. Let p: K — § be a diagram which classifies a left fibration K — K, andlet X € 8 be a
colimit of p. Then there is a natural isomorphism

K~X
in the homotopy category H.

Proof. Let p: K — § be a colimit diagram which extends p, and K' — K" a left fibration classified by p.
Without loss of generality, we may suppose that K = K’ x x> K and X = K’ x k> {v}, where v denotes the
cone point of K”. Since the inclusion {v} C K" is right anodyne and the map K’ — K" is a left fibration,
Proposition 4.1.2.14 implies that the inclusion X C K'is right anodyne, and therefore a weak homotopy
equivalence. On the other hand, Proposition 3.3.5.5 implies that the inclusion K C K’ is a weak homotopy
equivalence. The composition _ _

X~K ~K

is the desired isomorphism in K. O
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Chapter 4

Limits and Colimits

This chapter is devoted to the study of limits and colimits in the co-categorical setting. Our goal is to provide
tools for proving the existence of limits and colimits, for analyzing them, and for comparing them to the
(perhaps more familiar) notion of homotopy limits and colimits in simplicial categories. We will generally
confine our remarks to colimits; analogous results for limits can be obtained by passing to the opposite
oo-categories.

We begin in §4.1 by introducing the notion of a cofinal map between simplicial sets. If f: A — B is
a cofinal map of simplicial sets, then we can identify colimits of a diagram p : B — € with colimits of the
induced diagram po f: A — C. This is a basic maneuver which will appear repeatedly in the later chapters
of this book. Consequently, it is important to have a good supply of cofinal maps. This is guaranteed by
Theorem 4.1.3.1, which can be regarded as an oco-categorical generalization of Quillen’s “Theorem A”.

In §4.2, we introduce a battery of additional techniques for analyzing colimits. We will explain how to
analyze colimits of complicated diagrams in terms of colimits of simpler diagrams. Using these ideas, we can
often reduce questions about the behavior of arbitrary colimits to questions about a few basic constructions,
which we will analyze explicitly in §4.4. We will also explain the relationship between the oco-categorical
theory of colimits and the more classical theory of homotopy colimits, which can be studied very effectively
using the language of model categories.

The other major topic of this chapter is the theory of Kan extensions, which can be viewed as relative
versions of limits and colimits. We will study the properties of Kan extensions in §4.3, and prove some
fundamental existence theorems which we will need throughout the later chapters of this book.
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4.1 Cofinality

Let € be an oco-category, and let p : K — C be a diagram in C indexed by a simplicial set K. In §1.2.13 we
introduced the definition of a colimit h_H)l(p) for the diagram p. In practice, it is often possible to replace p by
a simpler diagram without changing the colimit hi)n(p) In this section, we will introduce a general formalism
which will allow us to make replacements of this sort: the theory of cofinal maps between simplicial sets. We
begin in §4.1.1 with a definition of the class of cofinal maps, and show (Proposition 4.1.1.8) that if a map
q : K’ — K is cofinal, then there is an equivalence hi>n(p) ~ lii)n(poq) (provided that either colimit exists). In
§4.1.2 we will reformulate the definition of cofinality, using the formalism of contravariant model categories
(§2.1.4). We conclude in §4.1.3 by establishing an important recognition criterion for cofinal maps, in the
special case where K is an oo-category. This result can be regarded as a refinement of Quillen’s “Theorem

A”.
4.1.1 Cofinal Maps

The goal of this section is to introduce the definition of a cofinal map p : § — T of simplicial sets, and study
the basic properties of this notion. Our main result is Proposition 4.1.1.8, which characterizes cofinality in
terms of the behavior of T-indexed colimits.

Definition 4.1.1.1 (Joyal [31]). Let p: S — T be a map of simplicial sets. We shall say that p is cofinal if,
for any right fibration X — T, the induced map of of simplicial sets

MapT (Tv X) - MapT(Sv X)
is a homotopy equivalence.

Remark 4.1.1.2. The simplicial set Map,(S, X) parametrizes sections of the right fibration X — T. It
may be described as the fiber of the induced map X*° — T° over the vertex of T corresponding to the map
p. Since X¥ — T is a right fibration, the fiber Map;(S, X) is a Kan complex. Similarly, Map, (T, X) is a
Kan complex.

We begin by recording a few simple observations about the class of cofinal maps:
Proposition 4.1.1.3. (1) Any isomorphism of simplicial sets is cofinal.

(2) Let f: K — K' and g : K’ — K" be maps of simplicial sets. Suppose that f is cofinal. Then g is
cofinal if and only if go f is cofinal.

(3) If f : K — K’ is a cofinal map between simplicial sets, then f is a weak homotopy equivalence.
(4) An inclusion i : K C K' of simplicial sets is cofinal if and only if it is right anodyne.

Proof. Assertions (1) and (2) are obvious. We prove (3). Let S be a Kan complex. Since f is cofinal, the
composition

Mapg,, (K', ) = Mapg (K', S x K) — Mapg (K, S x K) = Mapg , (K, S)

is a homotopy equivalence. Passing to connected components, we deduce that K and K’ co-represent the
same functor in the homotopy category I of spaces. It follows that f is a weak homotopy equivalence, as
desired.

We now prove (4). Suppose first that ¢ is right-anodyne. Let X — K’ be a right fibration. Then the
induced map Hompg (K’, X) — Homg/ (K, X) is a trivial fibration, and in particular a homotopy equivalence.
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Conversely, suppose that 7 is a cofinal inclusion of simplicial sets. We wish to show that ¢ has the left
lifting property with respect to any right fibration. In other words, we must show that given any diagram
of solid arrows

K—=X

L

K ——=K/,

for which the right-vertical map is a right fibration, there exists a dotted arrow as indicated, rendering the
diagram commutative. Since 7 is cofinal, the map s is homotopic to a map which extends over K’. In other
words, there exists a map

s (K x Al [ (& x{1}) - X,
Kx{1}

compatible with the projection to K, such that s'|K x {0} coincides with s. Since the inclusion

(K xAY J] (K x{1}) € K" x A
Kx{1}

is right-anodyne, there exists a map s” : K’ x A! — X which extends s’, and is compatible with the
projection to K'. The map s”|K x {0} has the desired properties. O

Warning 4.1.1.4. The class of cofinal maps does not satisfy the “two-out-of-three” property. If f : K — K’
and g : K/ — K" are such that g o f and g are cofinal, then f need not be cofinal.

Our next goal is to establish an alternative characterization of cofinality, in terms of the behavior of
colimits (Proposition 4.1.1.8). First, we need a lemma.

Lemma 4.1.1.5. Let C be an oo-category, and let p : K — @, q : K' — @ be diagrams. Define simplicial
sets M and N by the formulas

Hom(X, M) ={f: (X xK)xK' = C: f|(X x K) =ponk, fIK' =q}

Hom(X,N)={g: Kx (X xK') = C: fIK =p, f|(X x K') =qomg}.
Here i and wg denote the projection from a product to the factor indicated by the subscript.

Then M and N are Kan complexes, which are (naturally) homotopy equivalent to one another.

Proof. We define a simplicial set D as follows. For every finite, nonempty, linearly ordered set J, to give a
map A7 — D is to supply the following data:

e A map A7 — Al corresponding to a decomposition of J as a disjoint union J_ [[J4, where J_ C J
is closed downwards and J; C J is closed upwards.

e Amape: (K x A/-)x (K’ x A’+) — C such that e|K x A/- = pony and e|K' x AT+ = qomg.

We first claim that D is an oco-category. Fix a finite linearly ordered set J as above, and let j € J be
neither the largest nor the smallest element of J. Let fy : A}J — D be any map; we wish to show that
there exists a map f : A — D which extends fo. We first observe that the induced projection A}-’ — Al
extends uniquely to A7 (since A! is isomorphic to the nerve of a category). Let J = J_ ][ J4 be the induced
decomposition of J. Without loss of generality, we may suppose that j € J_. In this case, we may identify
fo with a map

(K x A7)+ (K" x A”+)) I1 (K x A7) % (K'x 9A)) — €

(K XA )x(K'xd A”+)

166



and our goal is to find an extension
fi(K x AT )% (K' x A'+) = C.
Since € is an oo-category, it will suffice to show that the inclusion

(K x AJJ‘)*(K' x A7+)) H (K x A7=) % (K" x 0 A7+)) C (K x A=) % (K’ x A7+)

(K XA 7 )x(K'xd A+)

is inner anodyne. According to Lemma 2.1.2.1, it suffices to check that the inclusion K x A'j]‘ C K x A7-
is right anodyne. This follows from Corollary 2.1.2.6, since AJ‘-]‘ C A’- is right anodyne.

The oo-category D has just two objects, which we will denote by x and y. We observe that M =
Hom? (x,y) and N = Hom% (z,%). Proposition 1.2.2.3 implies that M and N are Kan complexes. Proposi-
tions 1.3.2.8 and 1.3.3.1 imply each these Kan complexes is weakly homotopy equivalent to Maqu] (x,y),
so that M and N are homotopy equivalent to one another as desired. O

Remark 4.1.1.6. In the situation of Lemma 4.1.1.5, the homotopy equivalence between M and N is
furnished by the composition of a chain of weak homotopy equivalences

M «— |M‘Q' - HOHlQ*[D](SC,y) — ‘N|Q' - N7
which is functorial in the triple (C,p: K — C,q: K/ — C).

Proposition 4.1.1.7. Letv : K' — K be a cofinal map and p : K — C a diagram in an co-category €. Then
the map ¢ : C,, — €, is an equivalence of left fibrations over S: in other words, it induces a homotopy
equivalence of Kan complexes after passing to the fiber over every object x of C.

Proof. We wish to prove that the map
Gp/ Xe{l‘} — (‘Epv/ Xe{x}

is a homotopy equivalence of Kan complexes. Lemma 4.1.1.5 implies that the left hand side is homotopy
equivalent Mape (K, €/,). Similarly, the right hand side can be identified with Mape(K’,C/,). Using the
functoriality implicit in the proof of Lemma 4.1.1.5 (see Remark 4.1.1.6), it suffices to show that the restriction
map

Mape (K, €/,) — Mape(K',C/,)

is a homotopy equivalence. Since v is cofinal, this follows immediately from the fact that the projection
€/, — C is a right fibration. O

Proposition 4.1.1.8. Let v : K’ — K be a map of (small) simplicial sets. The following conditions are
equivalent:

(1) The map v is cofinal.

(2) Given any oo-category € and any diagram p : K — €, the induced map C,, — C,,, is an equivalence
of co-categories, where p’ = pow.

(3) For every co-category C and every diagram p : K* — C which is a colimit of p = p|K, the induced map
P : K" — C is a colimit of p = P'|K’.

Proof. Suppose first that (1) is satisfied. Let p : K — € be as in (2). Proposition 4.1.1.7 implies that the
induced map €,, — €/, induces a homotopy equivalence of Kan complexes, after passing to the fiber over
any object of €. Since both €,, and €, are left-fibered over €, Corollary 2.3.4.4 implies that C,, — €,/ is
a categorical equivalence. This proves that (1) = (2).
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Now suppose that (2) is satisfied, and let p : K* — € be as in (3). Then we may identify p with an
initial object of the oco-category C,,. The induced map €,, — €,/ is an equivalence, and therefore carries
the initial object p to an initial object 7’ of €, /; thus 7’ is a colimit of p’. This proves that (2) = (3).

It remains to prove that (3) = (1). For this, we make use of the theory of classifying right fibrations
(83.3.3). Let X — K be a right fibration. We wish to show that composition with v induces a homotopy
equivalence Mapy (K, X) — Mapg(K’, X). Tt will suffice to prove this result after replacing X by any
equivalent right fibration. Let 8§ denote the oco-category of spaces. According to Corollary 3.3.3.8, there is a
classifying map p : K — 8°7 and an equivalence of right fibrations between X and (8, /)% xgor K, where *
denotes a final object of S.

The oo-category 8§ admits small limits (Corollary 4.2.4.6). It follows that there exists a map p : K* — 8
which is a colimit of p = p|K. Let = denote the image in § of the cone point of K. Let ' : K'” — 8° be
the induced map. Then, by hypothesis, p’ is a colimit of p’ = p'|K’. According to Lemma 4.1.1.5, there is a
(natural) chain of weak homotopy equivalences relating Map (K, X) with (8°”),,) xser {y/}. Similarly, there
is a chain of weak homotopy equivalences connecting Mapy (K’, X) with (87), / xser {y}. Consequently,
we are reduced to proving that the left vertical map in the diagram

(87P)py xsov {y} <—— (87 )p) x50 {y} —— (8)s) X500 {y}

| | l

(SOp)p// X gop {y} -~ (SOP)F/ X gop {y}  —— (SO‘D):C/ X gop {y}

is a homotopy equivalence. Since p and g are colimits of p and ¢, the left horizontal maps are trivial fibrations.
Since the inclusions of the cone points into K* and K’® are right anodyne, the right horizontal maps are
also trivial fibrations. It therefore suffices to prove that the right vertical map is a homotopy equivalence.
But this map is an isomorphism of simplicial sets. O

Corollary 4.1.1.9. Let p: K — K’ be a map of simplicial sets, and q : K' — K" a categorical equivalence.
Then p is cofinal if and only if q o p is cofinal. In particular, (taking p =idg ) q itself is cofinal.

Proof. Let € be an oo-category, r”’ : K" — € a diagram, and set 7’ = r” oq, r = 1’ op. Since q is a categorical
equivalence, C,», — C,, is a categorical equivalence. It follows that €,, — €, is a categorical equivalence
if and only if €, — €,/ is a categorical equivalence. We now apply the characterization (2) of Proposition
4.1.1.8. O

Corollary 4.1.1.10. The property of cofinality is homotopy invariant. In other words, if two maps f,g :
K — K’ have the same image in the homotopy category of Seta obtained by inverting all categorical equiv-
alences, then f is cofinal if and only if g is cofinal.

Proof. Choose a categorical equivalence K’ — €, where C is an co-category. In view of Corollary 4.1.1.9, we
may replace K’ by € and thereby assume that K’ is itself an co-category. Since f and g are homotopic, there
exists a cylinder object S equipped with a trivial fibration p : S — K, a map ¢ : S — C, and two sections
s,8' : K — S of p, such that f =qgos, g=gqos’. Since p is a categorical equivalence, so is every section of
p. Consequently, s and s’ are cofinal. We now apply Proposition 4.1.1.3 to deduce that f is cofinal if and
only if ¢ is cofinal. Similarly, g is cofinal if and only if ¢ is cofinal. O

Corollary 4.1.1.11. Let p: X — S be a map of simplicial sets. The following are equivalent:
(1) The map p is a cofinal right fibration.
(2) The map p is a trivial fibration.

Proof. Clearly any trivial fibration is a right fibration. Furthermore, any trivial fibration is a categorical
equivalence, hence cofinal by Corollary 4.1.1.9. Thus (2) implies (1). Conversely, suppose that p is a cofinal
right fibration. Since p is cofinal, the natural map Mapg(S, X) — Mapg(X, X) is a homotopy equivalence of
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Kan complexes. In particular, there exists a section f : S — X of p such that f op is (fiberwise) homotopic
to the identity map of X. Consequently, for each vertex s of S, the fiber Xy = X xg {s} is a contractible
Kan complex (since the identity map X, — X is homotopic to the constant map with value f(s)). The
dual of Lemma 2.1.3.3 now shows that p is a trivial fibration. O

Corollary 4.1.1.12. A map X — Z of simplicial sets is cofinal if and only if it admits a factorization
xLvysyg
where X — Y is right-anodyne and Y — Z is a trivial fibration.

Proof. The “if” direction is clear: if such a factorization exists, then f is cofinal (since it is right anodyne),
g is cofinal (since it is a categorical equivalence), and consequently g o f is cofinal (since it is a composition
of cofinal maps).

For the “only if” direction, let us suppose that X — Z is a cofinal map. By the small object argument
(Proposition A.1.2.5), there is a factorization

xLy 4z
where f is right-anodyne and g is a right fibration. The map g is cofinal by Proposition 4.1.1.3, and therefore
a trivial fibration by Corollary 4.1.1.11. O

Corollary 4.1.1.13. Let p : S — S’ be a cofinal map, and K any simplicial set. Then the induced map
K xS — K xS is cofinal.

Proof. Using Corollary 4.1.1.12, we may suppose that p is either right anodyne or a trivial fibration. Then
the induced map K x S — K x S’ has the same property. O

4.1.2 Smoothness and Right Anodyne Maps

In this section, we explain how to characterize the classes of right anodyne and cofinal morphisms in terms
of the contravariant model structures studied in §2.1.4. We also introduce a third class of maps between
simplicial sets, which we call smooth.

We begin with the following characterization of right anodyne maps:

Proposition 4.1.2.1. Leti: A — B be a map of simplicial sets. The following conditions are equivalent:
(1) The map i is right anodyne.

(2) For any map of simplicial sets j : B — C, the inclusion i is a trivial cofibration with respect to the
contravariant model structure on (8eta)/c-

(3) The map i is a trivial cofibration with respect to the contravariant model structure on (Seta)/p.

Proof. The implication (1) = (2) follows immediately from Proposition 2.1.4.3, and the implication (2) = (3)
is obvious. Suppose that (3) holds. To prove (1), it suffices to show that given any diagram

A— X

7

/

B——Y

such that p is a right fibration, one can supply the dotted arrow f as indicated. Replacing p : X — Y by
the pullback X xy B — B, we may reduce to the case where Y = B. Proposition 3.3.1.2 implies that X is
a fibrant object of (8eta),p (With respect to contravariant model structure) so that the desired map f can
be found. O
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Corollary 4.1.2.2. Suppose given maps A “plc of simplicial sets. If i and j o i are right anodyne,
and j is a cofibration, then j is right-anodyne.

Proof. By Proposition 4.1.2.1, i and j o i are contravariant equivalences in (8eta),c. It follows that j is a
trivial cofibration in (Seta),c, so that j is right anodyne (by Proposition 4.1.2.1 again). O

Corollary 4.1.2.3. Let

A< A——= A"
J/f/ lf lf//
B'<5—B—pB"
be a diagram of simplicial sets. Suppose that u and v are monomorphisms, and that f, ', and " are right

anodyne. Then the induced map
A/HA// N B/HB//
A B

is right anodyne.

Proof. According to Proposition 4.1.2.1, each of the maps f, f/, and f” is a contravariant equivalence in
(8eta)/p11, B~ The assumption on u and v guarantees that f’ ]_If f" is also a contravariant equivalence
in (Seta)/pr11, B, so that f’ Hf f" is right anodyne by Proposition 4.1.2.1 again. O

Corollary 4.1.2.4. The collection of right anodyne maps of simplicial sets is stable under filtered colimits.

Proof. Let f : A — B be a filtered colimit of right anodyne morphisms f, : A, — Bs. According to
Proposition 4.1.2.1, each f, is a contravariant equivalence in (Seta),p. Since contravariant equivalences are
stable under filtered colimits, we conclude that f is a contravariant equivalence in (Seta),p so that f is right
anodyne by Proposition 4.1.2.1. O

Proposition 4.1.2.1 has an analogue for cofinal maps:
Proposition 4.1.2.5. Leti: A — B be a map of simplicial sets. The following conditions are equivalent:
(1) The map i cofinal.
(2) For any map j : B — C, the inclusion i is a contravariant equivalence in (8eta) c.
(3) The map i is a contravariant equivalence in (Seta)p.

Proof. Suppose (1) is satisfied. By Corollary 4.1.1.12; ¢ admits a factorization as a right anodyne map
followed by a trivial fibration. Invoking Proposition 4.1.2.1, we conclude that (2) holds. The implication
(2) = (3) is obvious. If (3) holds, then we can choose a factorization

AL LB

of 4, where i’ is right anodyne and 7" is a right fibration. Then i is a contravariant fibration (in Seta ,p)
and a contravariant weak equivalence, and is therefore a trivial fibration of simplicial sets. We now apply
Corollary 4.1.1.12 to conclude that ¢ is cofinal. O

Corollary 4.1.2.6. Letp: X — S be a map of simplicial sets, where S is a Kan complex. Then p is cofinal
if and only if it is a weak homotopy equivalence.

Proof. By Proposition 4.1.2.5, p is cofinal if and only if it is a contravariant equivalence in (Seta),s. If S is
a Kan complex, then Proposition 3.1.5.7 asserts that the contravariant equivalences are precisely the weak
homotopy equivalences. O
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Let p: X — Y be an arbitrary map of simplicial sets. In §2.1.4 we showed that p induces a Quillen
adjunction (pi,p*) between the contravariant model categories (Seta),x and (Seta),y. The functor p* itself
has a right adjoint, which we will denote by p,; it is given by

p«(M) = Mapy (X, M).
The adjoint functors (p*, p.) are not Quillen adjoints in general. Instead we have:

Proposition 4.1.2.7. Let p: X — Y be a map of simplicial sets. The following conditions are equivalent:

(1) For any right-anodyne map i : A — B in (8eta))y, the induced map A xy X — B xy X is right-
anodyne.

(2) For every Cartesian diagram

y' —Y,
the functor p'* : (8eta) v+ — (8eta),x+ preserves contravariant equivalences.

(3) For every Cartesian diagram
X —X,

]

YIH)/;

the adjoint functors (p'*, pl.) give rise to a Quillen adjunction between the contravariant model categories
(SetA)/Y/ and (SetA)/X/ .

Proof. Suppose that (1) is satisfied; let us prove (2). Since property (1) is clearly stable under base change,
we may suppose that p’ = p. Let u: M — N be a contravariant equivalence in (8eta),y. If M and N are
fibrant, then w is a homotopy equivalence, so that p*(u) : p*M — p*N is also a homotopy equivalence. In
the general case, we may select a diagram

M—i>M/

LN

N%NHMM/#‘)N’

where M’ and N’ are fibrant, and the maps ¢ and j are right anodyne (and therefore 4’ is also right anodyne).
Then p*(v) is a contravariant equivalence, while the maps p*(7), p*(j), and p*(i’) are all right anodyne; by
Proposition 4.1.2.1 they are contravariant equivalences as well. It follows that p*(u) is a contravariant
equivalence.

To prove (3), it suffices to show that p'* preserves cofibrations and trivial cofibrations. The first statement
is obvious, and the second follows immediately from (2). Conversely the existence of a Quillen adjunction
(p’", p«) implies that p'™ preserves contravariant equivalences between cofibrant objects. Since every object
of (8eta),y is cofibrant, we deduce that (3) implies (2).

Now suppose that (2) is satisfied, and let i : A — B be a right-anodyne map in (8eta ),y as in (1). Then
i is a contravariant equivalence in (8eta), 5. Let p' : X Xy B — B be base change of p; then (2) implies that
the induced map i’ : p’*A — p'* B is a contravariant equivalence in (8eta)/Bxy x- By Proposition 4.1.2.1,
the map 7’ is right anodyne. Now we simply note that <" may be identified with the map A xy X — Bxy X
in the statement of (1). O
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Definition 4.1.2.8. We will say that a map p : X — Y of simplicial sets is smooth if it satisfies the
(equivalent) conditions of Proposition 4.1.2.7.

Remark 4.1.2.9. Let

L, b

S —85

be a pullback diagram of simplicial sets. Suppose that p is smooth and that f is cofinal. Then f’ is
cofinal: this follows immediately from characterization (2) of Proposition 4.1.2.7 and characterization (3) of
Proposition 4.1.2.5.

We next give an alternative characterization of smoothness. Let

X/qHX

vy Loy

be a Cartesian diagram of simplicial sets. Then we obtain an isomorphism Rp'*Rq* ~ Rq'*Rp* of right-
derived functors, which induces a natural transformation

Upq s LayRp'”™ — Rp*Lar.
Proposition 4.1.2.10. Let p: X — Y be a map of simplicial sets. The following conditions are equivalent:
(1) The map p is smooth.

(2) For every Cartesian rectangle
X// QH X/ _ X

lp// ip/ ip
Y/I $ Y/ - > }/’
the natural transformation 1y 4 is an isomorphism of functors from the homotopy category of (8eta )y

to the homotopy category of (Seta),x: (here all categories are endowed with the contravariant model
structure).

Proof. Suppose that (1) is satisfied, and consider any Cartesian rectangle as in (2). Since p is smooth, p’ and
p’" are also smooth. It follows that p'™ and p"'™ preserve weak equivalences, so they may be identified with
their right derived functors. Similarly, ¢ and ¢ preserve weak equivalences, so they may be identified with
their left derived functors. Consequently, the natural transformation 1, , is simply obtained by passage to
the homotopy category from the natural transformation

ap’” —p"q.

But this is an isomorphism of functors before passage to the homotopy categories.

Now suppose that (2) is satisfied. Let ¢ : Y” — Y’ be a right-anodyne map in (Seta),y, and form the
Cartesian square as in (2). Let us compute the value of the functors Lg/Rp”" and Rp'*Lq on the object
Y" of (8eta) y~. The composite Lg{Rp"™ is easy: because Y is fibrant and X" = p”"Y" is cofibrant, the
result is X, regarded as an object of (8eta),x/. The other composition is slightly trickier: Y is cofibrant,
but Y is not fibrant when viewed as an object of (Seta),y . However, in view of the assumption that ¢
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is right anodyne, Proposition 4.1.2.1 ensures that Y’ is a fibrant replacement for ¢;Y”; thus we may identify
Rp'* Lq) with the object p’*Y’ = X' of (8eta),x+. Condition (2) now implies that the natural map X" — X'
is a contravariant equivalence in (Seta),x/. Invoking Proposition 4.1.2.1, we deduce that ¢ is right anodyne,
as desired. O

Remark 4.1.2.11. The terminology “smooth” is suggested by the analogy of Proposition 4.1.2.10 with the
smooth base change theorem from algebraic geometry.

Proposition 4.1.2.12. Suppose given a commutative diagram

X4i>X'

Nk

X”LS

of simplicial sets. Assume that i is a cofibration, and that p,p’, and p’’ are smooth. Then the induced map
X'1lx X" — S is smooth.

Proof. This follows immediately from Corollary 4.1.2.3 and characterization (1) of Proposition 4.1.2.7. [
Proposition 4.1.2.13. The collection of smooth maps p : X — S is stable under filtered colimits in (Seta),s
Proof. Combine Corollary 4.1.2.4 with characterization (1) of Proposition 4.1.2.7. O
Proposition 4.1.2.14. Let p: X — S be a coCartesian fibration of simplicial sets. Then p is smooth.

Proof. Let i : B'" — B be a right anodyne map in (Seta),s; we wish to show that the induced map
B’ xg X — B xg X is right anodyne. By general nonsense, we may reduce ourselves to the case where i is
an inclusion A} C A™ where 0 < ¢ < n. Making a base change, we may suppose that S = B. By Proposition
3.2.2.7, there exists a composable sequence of maps

$: A" - . - A"
and a quasi-equivalence M°P(¢) — X. Consider the diagram

MOP($) X an AT —> X Xan A

J\f

MeP(¢p

The left vertical map is right-anodyne, since it is a pushout of the inclusion A% x A C A% x A™. Tt follows
that f is cofinal, being a composition of a right-anodyne map and a categorical equivalence. Since g is
cofinal (being a categorical equivalence) we deduce from Proposition 4.1.1.3 that h is cofinal. Since h is a
monomorphism of simplicial sets, it is right-anodyne by Proposition 4.1.1.3. O

Proposition 4.1.2.15. Let p: X — S x T be a bifibration. Then the composite map rgop: X — S is
smooth.

Proof. For every map T" — T, let X7+ = X x7T'. We note that X is a filtered colimit of X7, as T’ ranges
over the finite simplicial subsets of T'. Using Proposition 4.1.2.13, we can reduce to the case where T is finite.
Working by induction on the dimension and the number of nondegenerate simplices of T', we may suppose
that T = T [[4 ao» A", where the result is known for 7" and for 0 A™. Applying Proposition 4.1.2.12, we
can reduce to the case T = A™. We now apply Lemma 2.3.7.5 to deduce that p is a coCartesian fibration,
and therefore smooth by Proposition 4.1.2.14. O
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Lemma 4.1.2.16. Let C be an oo-category containing an object C, and let f : X — Y be a covariant
equivalence in (8eta)/e. The induced map

XxeG/CHYxeG/C

. . . . C
is also a covariant equivalence in e/,

Proof. Tt will suffice to prove that for every object Z — € of (8eta),e, the fiber product Z xe €% isa
homotopy product of Z with €/C in (8eta);e (with respect to the covariant model structure). Choose a
factorization 4 4
z5 7 Le,

where 7 is left anodyne and j is a left fibration. According to Proposition 3.3.1.2, we may regard Z’ as a
fibrant replacement for Z in (Seta),e. It therefore suffices to prove that the map i’ : Z x¢ /¢ = 7' xe@/C
is a covariant equivalence. According to Proposition 4.1.2.5, it will suffice to prove that ¢’ is left anodyne.
The map ¢’ is a base change of i by the projection p : /¢ C; it therefore suffices to prove that p°P is
smooth. This follows from Proposition 4.1.2.14, since p is a right fibration of simplicial sets. O

Proposition 4.1.2.17. Let C be an oco-category, and

f
X——Y
N
C
be a commutative diagram of simplicial sets. Suppose that p and q are smooth. The following conditions are
equivalent:
(1) The map f is a covariant equivalence in (Seta)/ .

(2) For each object C € C, the induced map of fibers X¢ — Yo is a weak homotopy equivalence.

Proof. Suppose that (1) is satisfied, and let C' be an object of €. We have a commutative diagram of
simplicial sets
Xc Yo

| i

XX@G/C*)YXQG/C.

Lemma 4.1.2.16 implies that the bottom horizontal map is a covariant equivalence. The vertical maps are
both pullbacks of the right anodyne inclusion {C'} C e/c along smooth maps, and are therefore right anodyne.
In particular, the vertical arrows and the bottom horizontal arrow are all weak homotopy equivalences; it
follows that the map X¢o — Y is a weak homotopy equivalence as well.

Now suppose that (2) is satisfied. Choose a commutative diagram

X—Y

l |

X/ > Y/

f/
p/
q/
C
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in (8eta);e, where the vertical arrows are left anodyne and the maps p’ and ¢’ are left fibrations. Using
Proposition 4.1.2.14, we conclude that p’ and ¢’ are smooth. Applying (1), we deduce that for each object
C € €, the maps X¢ — X[, and Yo — Y/, are weak homotopy equivalences. It follows that each fiber
f& + X — Y/ is a homotopy equivalence of Kan complexes, so that f’ is an equivalence of left fibrations
and therefore a covariant equivalence. Inspecting the above diagram, we deduce that f is also a covariant
equivalence, as desired. O

4.1.3 Quillen’s Theorem A for co-Categories

Suppose that f: € — D is a functor between oco-categories, and that we wish to determine whether or not
f is cofinal. According to Proposition 4.1.1.8, the cofinality of f is equivalent to the assertion that for any
diagram p : D — &, f induces an equivalence

lim(p) ~ lim(p o f).

One can always define a morphism
¢ :lim(po f) — lim(p)
(provided that both sides are defined); the question is whether or not we can define an inverse ¢ = ¢~1.

Roughly speaking, this involves defining a compatible family of maps ¢p : p(D) — h_rr}l(p o f), indexed by
D € D. The only reasonable candidate for ¢p is a composition

p(D) = (po /)(C) — lim(po f),

where the first map arises from a morphism D — f(C) in €. Of course, the existence of C' is not automatic.
Moreover, even if C' exists, it may is usually not unique. The collection of candidates for C' is parametrized
by the co-category €P/ = € xp DP/. In order to make the above construction work, we need the co-category
eP/ to be weakly contractible. More precisely, we will prove the following result:

Theorem 4.1.3.1 (Joyal [31]). Let f: C— D be a map of simplicial sets, where D is an oo-category. The
following conditions are equivalent:

(1) The functor f is cofinal.
(2) For every object D € D, the simplicial set Cxp Dp, is weakly contractible.
We first need to establish the following lemma:

Lemma 4.1.3.2. Let p: U — S be a Cartesian fibration of simplicial sets. Suppose that for every vertex s
of S, the fiber X, = p~1{s} is weakly contractible. Then p is cofinal.

Proof. Let g : N — S be a right fibration. For every map of simplicial sets T' — S, let Xp = Mapg(T, N)
and Yp = Mapg(T xg U, N). Our goal is to prove that the natural map Xg — Ys is a homotopy equivalence
of Kan complexes. We will prove, more generally, that for any map 7" — S, the map ¢r : Yr — Zr is a
homotopy equivalence. The proof goes by induction on the (possibly infinite) dimension of T. Choose a
transfinite sequence of simplicial subsets T'(a) C T, where each T'(«v) is obtained from T'(< o) = Ug_, T'(3)
by adjoining a single nondegenerate simplex of T' (if such a simplex exists). We prove that ¢, is a
homotopy equivalence by induction on «. Assuming that ¢ (g is a homotopy equivalence for every 8 < a,
we deduce that ¢7(q) is the homotopy inverse limit of a tower of equivalences, and therefore a homotopy
equivalence. If T'(a) = T(< «), we are done. Otherwise, we may write T'(o) = T(< «) [[gAn A™. Then
¢7(a) can be written as a homotopy pullback of ¢p (o) with ¢an over ¢pgan. The third map is a homotopy
equivalence by the inductive hypothesis. Thus, it suffices to prove that ¢~ is an equivalence. In other
words, we may reduce to the case T' = A™.
By Proposition 3.2.2.7, there exists a composable sequence of maps

0:A° — ... — A"
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and a quasi-equivalence f : M(0) — X xg T, where M () denotes the mapping simplex of the sequence 6.
Given amap T — T, we let Zp» = Mapg(M (0) xpT’, N). Proposition 3.3.2.8 implies that ¢ is a categorical
fibration. It follows that, for any map 77 — T, the categorical equivalence M (0) xr T' — U xg T" induces
another categorical equivalence ¢7v = Yy — Zp/. Since Y and Zp/ are Kan complexes, the map
is a homotopy equivalence. Consequently, to prove that ¢ is an equivalence, it suffices to show that the
composite map

XT — YT — ZT

is an equivalence.
Consider the composition

w: Xant % Zant o Mapg(A™! x A" N) "% Mapg({n — 1} x A", N)

Using the fact that ¢ is a right fibration and that A™ is weakly contractible, we deduce that u and v’ are
homotopy equivalences. The inductive hypothesis implies that 4’ is a homotopy equivalence. Consequently,
u” is also a homotopy equivalence. The space Zr fits into a homotopy Cartesian diagram

Zr Zan—1

\Lv// luu

Mapg(A™ x A", N) —— Mapg(A"~! x A", N).
It follows that v” is a homotopy equivalence. Now consider the composition
Vi Xan % Zan U Mapg(A™ x A", N) % Mapg({n} x A", N).

Again, because ¢ is a right fibration and A" is weakly contractible, the maps v and v"” are homotopy
equivalences. Since v is a homotopy equivalence, we deduce that v’ is a homotopy equivalence, as desired. [

Proof of Theorem 4.1.3.1. Using the small object argument, we can factor f as a composition
elelon

where f’ is a categorical equivalence and f” is an inner fibration. Then f” is cofinal if and only if f is cofinal
(Corollary 4.1.1.10). For every D € D, the map Dp, — D is a left fibration, so the induced map €p, — G’D/
is a categorical equivalence (Proposition 3.3.2.3). Consequently, it will suffice to prove that (1) < (2) for
the morphism f” : € — D. In other words, we may assume that the simplicial set € is an co-category.

Suppose first that (1) is satisfied, and choose D € D. The projection Dp, — D is a left fibration,
and therefore smooth (Proposition 4.1.2.14). Applying Remark 4.1.2.9, we deduce that the projection
€xpDp, — Dp is cofinal, and therefore a weak homotopy equivalence (Proposition 4.1.1.3). Since Dp,
has an initial object, it is weakly contractible. Therefore C xp Dp, is weakly contractible, as desired.

We now prove that (2) = (1). Let M = Fun(A',D) Xpyn({1},0) €. Then the map f factors as a
composition

elmlo
where f’ is the obvious map and f” is given by evaluation at the vertex {0} C Al. Note that there is
a natural projection map 7m : M — €, that f’ is a section of 7, and that there is a simplicial homotopy
h: Al x M — M from idy; to f’om which is compatible with the projection to C. It follows from Proposition
2.1.2.10 that f’ is right anodyne.

Corollary 2.3.7.12 implies that f” is a Cartesian fibration. The fiber of f” over an object D € D is
isomorphic to € xqp pP/ , which is equivalent to € xp Dp, and therefore weakly contractible (Proposition
4.2.1.5). By assumption, the fibers of f” are weakly contractible. Lemma 4.1.3.2 asserts that f” is cofinal.
It follows that f, as a composition of cofinal maps, is also cofinal. O
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Using Theorem 4.1.3.1 we can easily deduce the following classical result of Quillen:

Corollary 4.1.3.3 (Quillen’s Theorem A). Let f : € — D be a functor between ordinary categories. Suppose
that, for every object D € D, the fiber product category C xp Dp, has weakly contractible nerve. Then f
induces a weak homotopy equivalence of simplicial sets N(€) — N(D).

Proof. The assumption implies that N(f) : N(€) — N(D) satisfies the hypotheses of Theorem 4.1.3.1. It
follows that N(f) is a cofinal map of simplicial sets, and therefore a weak homotopy equivalence (Proposition
41.1.3). O
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4.2 Techniques for Computing Colimits

In this section, we will introduce various techniques for computing, analyzing, and manipulating colimits.
We begin in §4.2.1 by introducing a variant on the join construction of §1.2. The new join construction is
(categorically) equivalent to the version we are already familiar with, but has better formal behavior in some
contexts. For example, they permit us to define a parametrized version of overcategories and undercategories,
which we will analyze in §4.2.2.

In §4.2.3, we address the following question: given a diagram p: K — € and a decomposition of K into
“pieces”, how is the colimit h_n)l(p) related to the colimits of those pieces? For example, if K = AU B, then
it seems reasonable expect an equation of the form

lim(p) = (limpl4) [] (imp|B).
lim(p|ANB)

Of course there are many variations on this theme; we will lay out a general framework in §4.2.3, and apply

it to specific situations in §4.4.

Although the oo-categorical theory of colimits is elegant and powerful, it can be be difficult to work
with because the colimit h_H)l(p) of a diagram p is only well-defined up to equivalence. This problem can
sometimes be remedied by working in the more rigid theory of model categories, where the notion of oco-
categorical colimit should be replaced by the notion of homotopy colimit (see §A.3.5). In order to pass
smoothly between these two settings, we need to know that the co-categorical theory of colimits agrees with
the more classical theory of homotopy colimits. A precise formulation of this result (Theorem 4.2.4.1) will
be formulated and proven in §4.2.4. The proof depends on a rather technical lemma, whose proof we will
give in §4.2.5.

4.2.1 Alternative Join and Slice Constructions

In §1.2.8, we introduced the join functor * on simplicial sets. In [31], Joyal introduces a closely related
operation ¢ on simplicial sets. This operation is equivalent to = (Proposition 4.2.1.2) but is more technically
convenient in certain contexts. In this section we will review the definition of the operation ¢ and to establish
some of its basic properties (see also [31] for a discussion).

Definition 4.2.1.1 ([31]). Let X and Y be simplicial sets. The simplicial set X ¢Y is defined to be pushout

x J] xxyxah J] v

X XY x{0} X XY x{1}

We note that since X x Y x (9A!) — X x Y x Al is a monomorphism, the pushout diagram defining
X oY is a homotopy pushout in Seta (with respect to the Joyal model structure). Consequently, we deduce
that categorical equivalences X — X', Y — Y” induce a categorical equivalence X ¢ Y — X' o Y.

The simplicial set X oY admits amap p: XoY — Al with X ~ p~1{0} and Y ~ p~1{1}. Consequently,
there is a unique map X oY — X Y which is compatible with the projection to A and induces the identity
maps on X and Y.

Proposition 4.2.1.2. For any simplicial sets X and Y, the natural map ¢ : X oY — X xY is a categorical
equivalence.

Proof. Since both sides are compatible with the formation of filtered colimits in X, we may suppose that X
contains only finitely many nondegenerate simplices. If X is empty, then ¢ is an isomorphism and the result
is obvious. Working by induction on the dimension of X and the number of nondegenerate simplices in X,
we may write
x=x"]] A"
9 A™
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and we may assume that the statement is known for the pairs (X’,Y) and (9 A™,Y). Since the Joyal model
structure on Seta is left-proper, we have a map of homotopy pushouts

(X'oY) [T (Amey)— (X'«xY) [ (A"xY),
9 AmeY dATKY
and we are therefore reduced to proving the assertion in the case where X = A™. The inclusion
AOBTT... JT At~ can
{1 {n-13

is inner anodyne. Thus, if n > 1, we can conclude by induction. Thus we may suppose that X = A° or
X = Al. By a similar argument, we may reduce to the case where Y = A? or Y = Al. The desired result
now follows from an explicit calculation. O

Corollary 4.2.1.3. Let S — T and S’ — T’ be categorical equivalences of simplicial sets. Then the induced
map
SxS —TxT

is a categorical equivalence.

Proof. This follows immediately from Proposition 4.2.1.2, since the operation ¢ has the desired property. [
Corollary 4.2.1.4. Let X and Y be simplicial sets. Then the natural map

CIX +Y] — C[X]xC[Y]
is an equivalence of simplicial categories.

Proof. Using Corollary 4.2.1.3, we may reduce to the case where X and Y are oo-categories. We note
that €[X % Y] is a correspondence from €[X] to €[Y]. To complete the proof, it suffices to show that
Mapex.y(2,y) is weakly contractible, for any pair of objects z € X, y € Y. Since X xY is an oo-category,
we can apply Theorem 1.1.5.12 to deduce that the mapping space Mapg|x,y (z,y) is weakly homotopy

equivalent to Homi*y(x, y), which consists of a single point. O
For fixed X, the functor
Y— XoY
Seta — (SetA)X/

preserves all colimits. By the adjoint functor theorem (or by direct construction), this functor has a right
adjoint

(p: X — @) e
Since the functor Y — X oY preserves cofibrations and categorical equivalences, we deduce that the passage
from € to €7/ preserves categorical fibrations and categorical equivalences between oco-categories. Moreover,
Proposition 4.2.1.2 has the following consequence:

Proposition 4.2.1.5. Let C be an oco-category, and let p: X — € be a diagram. Then the natural map
Cpy — er/
is an equivalence of co-categories.

According to Definition 1.2.13.4, a colimit for a diagram p : X — € is an initial object of the co-category
Cp/. In view of the above remarks, an object of C,, is a colimit for p if and only if its image in e?/ is an

initial object; in other words, we canl replace C,, by er/ (and % by ¢) in Definition 1.2.13.4.
By Proposition 2.1.2.2, for any oco-category € and any map p : X — C, the induced map C,; — Cis a

left fibration. We now show that €/ has the same property:
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Proposition 4.2.1.6. Suppose given a diagram of simplicial sets
KihCK&5Xx %49
where q is a categorical fibration. Let r =qop: K — S, pg = p|Ky, and ro = r|Ky. Then the induced map
¢ XP — XP/ x g, 8T/
is a left fibration.

Proof. We must show that ¢ has the right lifting property with respect to every left-anodyne inclusion
Ag € A. Unwinding the definition, this amounts to proving that ¢ has the right lifting property with respect
to the inclusion
i:(Ago K) H (Ao Ky) CACK.
AgoKo

Since ¢ is a categorical fibration, it suffices to show that i is a categorical equivalence. The above pushout is
a homotopy pushout, so it will suffice to prove the analogous statement for the weakly equivalent inclusion

@%*K)II(A*KﬁgA*K.
AoxKo

But this map is inner anodyne (Lemma 2.1.2.1). O

Corollary 4.2.1.7. Let C be an oco-category, and let p : K — € be any diagram. For every vertex v of C,
the map Cp,, xe{v} — er/ xe{v} is a homotopy equivalence of Kan complezes.

Proof. The map C,, — e is a categorical equivalence of left fibrations over C; now apply Proposition
3.3.2.5. O

Corollary 4.2.1.8. Let C be an oo-category containing vertices x and y. The maps
Hom%(x, y) — Home(z,y) < Hom% (z,v)

are homotopy equivalences of Kan complezes (see §1.2.2 for an explanation of this notation).

Proof. Apply Corollary 4.2.1.7 (the dual of Corollary 4.2.1.7) to the case where p is the inclusion {z} C C
(the inclusion {y} C C). O

Remark 4.2.1.9. The above ideas dualize in an evident way; given a map of simplicial sets p: K — X, we
can define a simplicial set X/? with the universal mapping property

Homgeq, (K, X/7) = Homsera) ., (K’ K, X).

4.2.2 Parametrized Colimits

Let p : K — € be a diagram in an co-category C. The goal of this section is to make precise the idea that the
colimit h_n)l(p) depends functorially on p (provided that hi>n(p) exists). We will prove this in a very general
context, in which not only the diagram p but also the simplicial set K is allowed to vary. We begin by
introducing a relative version of the o-operation.

Definition 4.2.2.1. Let S be a simplicial set, and let X,Y € (Seta),s. We define

XogV =X J] Xxs¥YxAlH) J[ Y e(Seta)s.
XxgY x{0} XxgsYx{1}
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We observe that the operation og is compatible with base change in the following sense: for any map
T — S of simplicial sets and any objects X,Y € (8eta),s, there is a natural isomorphism

(XT o YT) ~ (X o9 Y)T,

where we let Zp denote the fiber product Z xg T. We also note that in the case where S is a point, the
operation ¢g coincides with the operation ¢ introduced in §4.2.1.
Fix K € (8eta)/s. We note that functor (Seta);s — ((8eta)/s)x, defined by

X»—>K<>SS

has a right adjoint; this right adjoint associates to a diagram

K—2 Sy

NS

S

the simplicial set Y75/, defined by the property that Homg (X, YPs / ) classifies commutative diagrams

K—2 oy

|

Kog X —=§.

The base-change properties of the operation ¢g imply similar base-change properties for the relative slice
construction: given a map ps : K — Y in (8eta),s and any map 7' — S, we have a natural isomorphism

YPs/ xgT ~ (Y xg T)PT/

where pr denotes the induced map Ky — Yz. In particular, the fiber of Y?S/ over a vertex s of S can be
identified with the absolute slice construction Y o/ studied in §4.2.1.

Remark 4.2.2.2. Our notation is somewhat abusive: the simplicial set Y?s/ depends not only on the map
ps : K — Y, but also on the simplicial set S. We will attempt to avoid confusion by always indicating the
simplicial set S by a subscript in the notation for the map in question; we will only omit this subscript in
the case S = A®, in which case the functor described above coincides with the definition given in §4.2.1.

Lemma 4.2.2.3. Let n > 0, and let

B=(AnxAY) J] (A"xoA)C A" x Al
A xd Al

Suppose given a diagram of simplicial sets

AxBfO—>Y

7
fo J{
- q
b

pe

AX A" x Al ——= 8

in which q is a Cartesian fibration, and that fo carries {a} x A"=17 x {1} to a q-Cartesian edge of Y, for
each vertex a of A. Then there exists a morphism [ rendering the diagram commutative.
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Proof. Invoking Proposition 3.1.2.1, we may replace ¢ : Y — S by the induced map Y4 — S4, and thereby
reduce to the case where A = A°. We now recall the notation introduced in the proof of Proposition 2.1.2.5:
more specifically, the family {o;}o<;<n of nondegenerate simplices of A™ x Al. Let B(0) = B, and more
generally set B(n) = BUo, U...Uo,+1—; so that we we have a filtration

B(0)C...CB(n+1)=A" x Al.

A map fp : B(0) — Y has been prescribed for us already; we construct extensions f; : B(i) — Y by induction
on i. For i < n, there is a pushout diagram

A"~ B(3)

|

Anrtl ——= B(i+1)

Thus, the extension f;;; can be found in virtue of the assumption that ¢ is an inner fibration. For i = n,
we obtain instead a pushout diagram

An+1

ntl B(Tl)

|

At ——= B(n+1)

i

and the desired extension can be found in virtue of the assumption that fy carries the edge Aln=1m} x {11
to a g-Cartesian edge of Y. O

Proposition 4.2.2.4. Suppose given a diagram of simplicial sets

\\ l
S.
Let p's = qops. Suppose further that:

(1) The map q is a Cartesian fibration.

(2) The map s is a coCartesian fibration.

Then the induced map r : XPS/ — YPs/ is a Cartesian fibration; moreover an edge of XPS/ is r-Cartesian
if and only if its image in X is q-Cartesian.

Proof. We first show that r is an inner fibration. Suppose given 0 < ¢ < n and a diagram

A ——— xps/

j 1 J’

e
Ve
Ve

< /

A" ——YyPs/,

we must show that it is possible to provide the dotted arrow. Unwinding the definitions, we see that it
suffices to produce the indicated arrow in the diagram

KOSA?HX

7
-
- q
7
-

KOSAHHY.
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Since q is a Cartesian fibration, it is a categorical fibration by Proposition 3.3.2.8. Consequently, it suffices
to show that the inclusion
Kog Al C Kog A"

is a categorical equivalence. In view of the definition of K ¢g M as a (homotopy) pushout
K ]_[ (K xg M x AY) ]_[ M,
KxgsMx{0} KxgMx{1}

it suffices to verify that the inclusions
A? C A"

K xg A CK xg A"

are categorical equivalences. The first statement is obvious; the second follows from (the dual of) Proposition
3.3.2.3.

Let us say that an edge of X?5/ is special if its image in X is ¢-Cartesian. To complete the proof, it will
suffice to show that every special edge of XPs/ is r-Cartesian, and that there are sufficiently many special
edges of XPs/. More precisely, consider any n > 1 and any diagram

A7 LN xps/
[ ’ J/
s
Ve
Ve
s
A" —— P/,
We must show that:

e If n = 1, then there exists a dotted arrow rendering the diagram commutative, classifying a special
edge of XPs/.

e Ifn>1and h|A{"’1’"} classifies a special edge of X?s/, then there exists a dotted arrow rendering
the diagram commutative.

Unwinding the definitions, we have a diagram

KOSAZLX

7
f -
- q
-
7

KogA" — >y

and we wish to prove the existence of the indicated arrow f. As a first step, we consider the restricted
diagram

folAL
AZ — X
7
v

Jfl/ iq
7
Y

An >
By assumption, fo|A? carries A{n=1n} 465 a ¢-Cartesian edge of X (if n > 1), so there exists a map f;
rendering the diagram commutative (and classifying a ¢-Cartesian edge of X if n = 1). It now suffices to
produce the dotted arrow in the diagram

(K 05 A7) [Ty, A" — X

i _ - q

Kog A" ——> Y,
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where the top horizontal arrow is the result of amalgamating fo and f;.
Without loss of generality, we may replace S by A™. By (the dual of) Proposition 3.2.2.7, there exists a
composable sequence of maps
$: A" - . A"

and a quasi-equivalence M°P(¢) — K. We have a commutative diagram

(MP(9) 05 A7) [Tay A" —— (K 05 A7) [1a, A"

: :

MP(8) o5 A" K og A"

Since ¢ is a categorical fibration, Proposition A.2.4.1 shows that it suffices to produce a dotted arrow f’ in
the induced diagram

(M7(9) 05 A7) [Ty A" —— X .

;-

i _ - q
~

~

MoP(¢)og A" — >y

Let B be as the statement of Lemma 4.2.2.3; then we have a pushout diagram

A0 % B (MP(6) 05 A7) ITa, A

™

A9 x A" x Al ———— MP(¢) o5 A™.

Consequently, it suffices to prove the existence of the map f” in the diagram

Ay B—2— > X .

" /7
i f/ - lq

-
-

AV x A" x Al ——Y
Here the map g carries {a} x A{»=17} x {1} to a ¢-Cartesian edge of Y, for each vertex a of A°. The

existence of f” now follows from Lemma 4.2.2.3. O

Remark 4.2.2.5. In most applications of Proposition 4.2.2.4, we will have Y = §. In that case, YPs/ can
be identified with S, and the conclusion is that the projection X?s/ — S is a Cartesian fibration.

Remark 4.2.2.6. The hypothesis on s in Proposition 4.2.2.4 can be weakened: all we need in the proof is
existence of maps M°P(¢) — K x g A™ which are universal categorical equivalences (that is, induce categorical
equivalences M°P(¢) xan T — K xg T for any T — A™). Consequently, Proposition 4.2.2.4 remains valid
when K ~ S x K°, for any simplicial set K° (not necessarily an co-category). It seems likely that Proposition
4.2.2.4 remains valid whenever s is a smooth map of simplicial sets, but we have not been able to prove this.

We can now express the idea that the colimit a diagram should depend functorially on the diagram (at
least for “smoothly parametrized” families of diagrams):

Proposition 4.2.2.7. Let ¢: Y — S be a Cartesian fibration, let pg : K — Y be a diagram. Suppose that:
(1) For each vertex s of S, the restricted diagram ps : Ky — Y, has a colimit in the co-category Y.

(2) The composition q o pg is a coCartesian fibration.
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There exists a map py rending the diagram

KogS§S——8
commutative, and having the property that for each vertex s of S, the restriction pl, : Ks o {s} — Y; is a

colimit of ps. Moreover, the collection of all such maps is parametrized by a contractible Kan complez.

Proof. Apply Proposition 2.3.4.9 to the Cartesian fibration Y?s/, and observe that the collection of sections
of a trivial fibration constitutes a contractible Kan complex. O

4.2.3 Decomposition of Diagrams

Let € be an oo-category, and p : K — C a diagram indexed by a simplicial set K. In this section, we will try
to analyze the colimit lim(p) (if it exists) in terms of the colimits {lim(p|K)}, where {K} is some family
of simplicial subsets of K. In fact, it will be useful to work in slightly more generality: we will allow each
K7 to be an arbitrary simplicial set mapping to K (not necessarily via a monomorphism).

Throughout this section, we will fix a simplicial set K, an ordinary category J, and a functor F' : J —
(8eta) /- It may be helpful to imagine that J is a partially ordered set and that I is an order-preserving map
from J to the collection of simplicial subsets of K; this will suffice for many but not all of our applications.
We will denote F'(I) by K, and the tautological map K; — K by =.

Our goal is to show that, under appropriate hypotheses, we can recover the colimit of a diagram p : K — C
in terms of the colimits of diagrams pon; : K; — €. Our first goal is to show that the construction of these
colimits is suitably functorial in I. For this, we need an auxiliary construction.

Notation 4.2.3.1. We define a simplicial set Kr as follows. A map A" — Kp is determined by the
following data:

(i) A map A" — Al corresponding to a decomposition [n] = {0,...,i} U{i+1,...,n}.
(ii) A map e_ : A0 L |

(iii) A map ey : Ali+1m}  N(7), which we may view as a chain of composable morphisms
I(i—i—l) —>—>I(n)
in the category J.

(iv) For each j € {i+1,...,n}, a map e; which fits into a commutative diagram

Moreover, for j < k we require that e, is given by the composition
e
A 2 Ky — K-

Remark 4.2.3.2. In the case where ¢ < n, the maps e_ and {e;};~; are completely determined by e;1,
which can be arbitrary.
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The simplicial set K is equipped with a map Kr — A'. Under this map, the preimage of the vertex {0}
is K C Kp, and the preimage of the vertex {1} is N(J) C Kp. For I € J, we will denote the corresponding
vertex of N(J) C K by X;. We note that, for each I € J, there is a commutative diagram

s
K, — >

.

Tr
Ky " K

where 7 carries the cone point of K} to the vertex X of Kp.

Let us now suppose that p : K — C is a diagram in an oo-category €. Our next goal is to prove
Proposition 4.2.3.4, which will allow us to extend p to a larger diagram Krp — € which carries each vertex
X7 to a colimit of pony: K — C. First, we need a lemma.

Lemma 4.2.3.3. Let C be an co-category, and let o : A™ — € be a simplex having the property that o(0) is
an initial object of C. Let 0o = |0 A™. The natural map C,; — Cyo, is a trivial fibration.

Proof. Unwinding the definition, we are reduced to solving the extension problem depicted in the diagram

n m n m fo
QA" x A™) [T angp am (A" ¥ O A™) —5 €

—

—
—
—
—
—
—
—

A" % AT

We can identify the domain of fy with @ A"*™+1 Our hypothesis guarantees that f,(0) is an initial object
of €, which in turn guarantees the existence of f. O

Proposition 4.2.3.4. Let p: K — € be a diagram in an oo-category C, let J be an ordinary category, and
let F':J — (Seta)/k be a functor. Suppose that, for each I € J, the induced diagram pr =pony: Kf — C
has a colimit qr : K5 — C.

There exists a map q : Kp — C such that g o 77 = q; and q|K = p. Furthermore, for any such g, the
induced map €,y — €,/ is a trivial fibration.

Proof. For each X C N(J), we let Kx denote the simplicial subset of K consisting of all simplices o € Kp
such that o NN(J) € X. We note that Ky = K and that Kyy) = Kp.

Define a transfinite sequence Y, of simplicial subsets of N(J) as follows. Let Yy = (), and let Y, = U,Y Y,
when ) is a limit ordinal. Finally, let Y, 41 be obtained from Y, by adjoining a single nondegenerate simplex,
provided that such a simplex exists. We note that for a sufficiently large, such a simplex will not exist and
we set Yg =Y, for all > a.

We define a sequence of maps g3 : Ky, — € so that the following conditions are satisfied:
(1) We have go =p: Ky = K — C.
(2) If @ < 3, then ¢, = gg| Ky, .
(3) I {X;} CY,, then gy oy =¢q; : K% — C.

Provided that such a sequence can be constructed, we may conclude the proof by setting ¢ = ¢, for «
sufficiently large.

The construction of g, goes by induction on a. If & = 0, then ¢, is determined by condition (1); if « is a
(nonzero) limit ordinal, then ¢, is determined by condition (2). Suppose that g, has been constructed; we
give a construction of gu41.
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There are two cases to consider. Suppose first that Y, 11 is obtained from Y, by adjoining a vertex X7.
In this case, go+1 is uniquely determined by conditions (2) and (3).

Now suppose that X, is obtained from X, by adjoining a nondegenerate simplex ¢ of positive dimen-
sion, corresponding to a sequence of composable maps

Ip—...—1,

in the category J. We note that the inclusion Ky, C Ky, ,, is a pushout of the inclusion

+1

K[O*aUgKIO*O'.

Consequently, constructing the map g, 41 is tantamount to finding an extension of a certain map sg : 0o —
Cp,, to the whole of the simplex o. By assumption, so carries the initial vertex of o to an initial object
of €,,/, so that the desired extension s can be found. For use below, we record a further property of our
construction: the projection C,_ .,/ — €,/ is a pullback of the map (C,,,)s; — (Cp,/)s,/, Which is a trivial
fibration.

We now wish to prove that for any extension ¢ with the above properties, the induced map €¢,, — €, is a
trivial fibration. We first observe that the map g can be obtained by the inductive construction given above:
namely, we take g, to be the restriction of ¢ to Ky, . It will therefore suffice to show that, for every pair of
ordinals o < f3, the induced map €,,, — €, , is a trivial fibration. The proof of this goes by induction on
(B: the case 8 = 0 is clear, and if 3 is a limit ordinal we observe that the inverse limit of transfinite tower of
trivial fibrations is itself a trivial fibration. We may therefore suppose that 3 = v+ 1 is a successor ordinal.
Using the factorization

Cas/ = Car/ = Cauy

and the inductive hypothesis, we are reduced to proving this in the case where [ is the successor of «, which
was treated above. O

Let us now suppose that we are given diagrams p : K — C, F': J — (8eta),x as in the statement of
Proposition 4.2.3.4, and let ¢ : K — € be a map which satisfies the conclusions of the Proposition. Since
€,/ — Cp/ is a trivial fibration, we may identify colimits of the diagram ¢ with colimits of the diagram p (up
to equivalence). Of course, this is not useful in itself, since the diagram ¢ is more complicated than p. Our
objective now is to show that, under the appropriate hypotheses, we may identify the colimits of g with the
colimits of ¢| N(J). First, we need a few lemmas.

Lemma 4.2.3.5 (Joyal [31]). Let f : Ag C A and g : By C B be inclusions of simplicial sets, and suppose
that g is a weak homotopy equivalence. Then the induced map

h:(AgxB) [] (AxBy) CAxB
AopxBo

is right anodyne.

Proof. Our proof follows the pattern of Lemma 2.1.2.1. The collection of all maps f which satisfy the
conclusion (for any choice of g) forms a saturated class of morphisms. It will therefore suffice to prove that
the h is right anodyne when f is the inclusion 0 A™ C 9 A™. Similarly, the collection of all maps g which
satisfy the conclusion (for fixed f) forms a saturated class. We may therefore reduce to the case where g is
a horn inclusion A7 C A™. In this case, we may identify h with the horn inclusion A7F"+t € Amtntl

itntl
which is clearly right-anodyne. O

Lemma 4.2.3.6. Let Ay C A be an inclusion of simplicial sets, and let B be weakly contractible. Then the
inclusion Ag* B C Ax B is right anodyne.
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Proof. As above, we may suppose that the inclusion Ay C A is identified with 9 A™ C A™. If K is a point,
then the inclusion Ag x B C A x B is isomorphic to AZﬂ C A™*!, which is clearly right-anodyne.

In the general case, B is nonempty, so we may choose a vertex b of B. Since B is weakly contractible,
the inclusion {b} C B is a weak homotopy equivalence. We have already shown that Ay x {b} C A x {b} is
right anodyne. It follows that the pushout inclusion

Ao« BC (Ax{b}) [] (Ao*B)
Aop*{b}

is right anodyne. To complete the proof, we apply Lemma 4.2.3.5 to deduce that the inclusion

(Ax{b}) J] (AoxB)C AxB
Aox{b}

is right anodyne. O

Notation 4.2.3.7. Let 0 € K, be a simplex of K. We define a category J, as follows. The objects of
J, are pairs (I,¢’), where I € J, 0’ € (Kp),, and m;(¢’) = 0. A morphism from (I’,¢’) to (I"”,¢”) in I,
consists of a morphism « : I’ — I" in J with the property that F(a)(c’) = o”. We let I C J, denote
the full subcategory consisting of pairs (I,o’) where ¢’ is a degenerate simplex in K;. Note that if o is
nondegenerate, J/ is empty.

Proposition 4.2.3.8. Let K be a simplicial set, J an ordinary category, and F':J — (Seta),x a functor.
Suppose further that:

(1) For each nondegenerate simplex o of K, the category J, is acyclic (that is, the simplicial set N(J,) is
weakly contractible).

(2) For each degenerate simplex o of K, the inclusion N(J.)) C N(J,) is a weak homotopy equivalence.
Then the inclusion N(J) C Kg is right anodyne.

Proof. Consider any family of subsets {L,, C K,} which is stable under the “face maps” d; on K (but not
necessarily the degeneracy maps s;, so that the family {L,} does not necessarily have the structure of a
simplicial set). We define a simplicial subset Lp C Kp as follows: a nondegenerate simplex A" — Kp
belongs to L if and only if the corresponding (possibly degenerate) simplex A0 K belongs to
L; C K; (see Notation 4.2.3.1).

We note that if L = @), then Ly = N(J). If L = K, then Lr = K (so that our notation is unambiguous).
Consequently, it will suffice to prove that for any L C L', the inclusion Ly C L' is right-anodyne. By
general nonsense, we may reduce to the case where L' is obtained from L by adding a single simplex o € K,,.

We now have two cases to consider. Suppose first that the simplex o is nondegenerate. In this case, it is
not difficult to see that the inclusion Lp C L' is a pushout of d 0 * N(J,) C 0« N(J,). By hypothesis, N7,
is weakly contractible, so that the inclusion Ly C L’ is right anodyne by Lemma 4.2.3.6.

In the case where o is degenerate, we observe that Ly C L’ is a pushout of the inclusion

@0%N(I,) [ (e+N(,)) < oxN(,),
8 oxN(7.)

which is right anodyne by Lemma 4.2.3.5. O

Remark 4.2.3.9. Suppose that J is a partially ordered set, and that F' is an order-preserving map from J
to the collection of simplicial subsets of K. In this case, we observe that J/. = J, whenever o is a degenerate
simplex of K, and that J, = {I € J: 0 € K;} for any 0. Consequently, the conditions of Proposition
4.2.3.8 hold if and only if each of the partially ordered subsets J, C J has a contractible nerve. This holds
automatically if J is directed and K = J;.4 K.
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Corollary 4.2.3.10. Let K be a simplicial set, J a category, and F :J — (8eta)/k a functor which satisfies
the hypotheses of Proposition 4.2.3.8. Let C be an co-category, p: K — C any diagram, and let ¢ : Kp — C
be an extension of p which satisfied the conclusions of Proposition 4.2.3.4. The natural maps

Cps = Cqy = Conpay/
are trivial fibrations. In particular, we may identify colimits of p with colimits of q| N(J).

Proof. This follows immediately from Proposition 4.2.3.8, since the right anodyne inclusion NJ C Kp is
cofinal and therefore induces a trivial fibration C,, — €4 n(7), by Proposition 4.1.1.8. O

We now illustrate the usefulness of Corollary 4.2.3.10 by giving a sample application. First, a bit of
terminology. If x and 7 are regular cardinals, we will write 7 < & if, for any cardinals 79 < 7, ko < K,
we have k(® < k (we refer the reader to Definition 5.4.2.8 and the surrounding discussion for more details
concerning this condition).

Corollary 4.2.3.11. Let C be an co-category and 7 < k regular cardinals. Then C admits k-small colimits
if and only if C admits T-small colimits and colimits indexed by (the nerves of) k-small, T-filtered partially
ordered sets.

Proof. The “only if” direction is obvious. Conversely, let p : K — € be any k-small diagram. Let J denote
the partially ordered set of 7-small simplicial subsets of K. Then J is directed and (J;q K7 = K, so that
the hypotheses of Proposition 4.2.3.8 are satisfied. Since each p; = p o 7y has a colimit in C, there exists
a map q : Kp — C satisfying the Proposition 4.2.3.4. Since €;,, — C,, is an equivalence of co-categories,
p has a colimit if and only if ¢ has a colimit. By Corollary 4.2.3.10, ¢ has a colimit if and only if ¢| N(J)
has a colimit. It is clear that J is a 7-filtered partially ordered set. Furthermore, it is xk-small provided that
T K K. O

Similarly, we have:

Corollary 4.2.3.12. Let f: C — € be a functor between co-categories, and let T < k be reqular cardinals.
Suppose that C admits k-small colimits. Then f preserves k-small colimits if and only if it preserves T-small
colimits, and all colimits indexed by (the nerves of ) k-small, T-filtered partially ordered sets.

We will conclude this section with another application of Proposition 4.2.3.8, in which J is not a partially
ordered set, and the maps n; : K; — K are not (necessarily) injective. Instead, we take J to be the category
of simplices of K. In other words, an object of I € J consists of a map o7 : A™ — K, and a morphism from
I to I’ is given by a commutative diagram

For each I € J, we let K denote the domain A™ of o7, and we let 7 =07 : K — K.

Lemma 4.2.3.13. Let K be a simplicial set, and let J denote the category of simplices of K (as defined
above). Then there is a retraction r : Kp — K which fizes K C Kp.

Proof. Given a map e : A™ — Kp, we will describe the composite map roe: A™ — K. The map e classifies
the following data:

(i) A decomposition [n] ={0,...,i}U{i+1,...,n}.
(i) Amape_: A" — K.
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(#i1) A string of morphisms
AT 5 AT K

(iv) A compatible family of maps {e; : A" — A™i};_; having the property that each composition A’ 5
A™i — K coincide with e_.

If i = n, we set r o e = e_. Otherwise, we let r o e denote the composition
A LA
where f: A" — A™n is defined as follows:

e The restriction f|A? coincides with e,,.

e For i < j <n, welet f(j) denote the image in A™» of the final vertex of A™.

O
Proposition 4.2.3.14. For every simplicial set K, there exists a category J and a cofinal map f : N(J) — K.

Proof. We take J to be the category of simplices of K, as defined above, and f to the composition of the
inclusion N(J) C K with the retraction r of Lemma 4.2.3.13. To prove that f is cofinal, it suffices to show
that the inclusion N(J) C K is right anodyne, and that the retraction r is cofinal.

To show that N(J) C K is right anodyne, it suffices to show that the hypotheses of Proposition 4.2.3.8
are satisfied. Let 0 : A7 — K be a simplex of K. We observe that the category J, may be described as
follows: its objects consist of pairs of maps (s : A7 — AM ¢ : AM — K) with t o s = 0. A morphism from
(s,t) to (s',t’) consists of a map

a: AM 5 AM

with s’ = a0 s, t =t o a. In particular, we note that J, has an initial object (idas, o). It also has a final
object: namely, a pair (s,t) such that s is surjective and t : AM — K is nondegenerate. It follows that
N(J,) is weakly contractible for any simplex o of K. Moreover, if z is degenerate, then any final object of
Jo belongs to I/ (and is therefore a final object of J7)). We conclude that N(J!) is weakly contractible when
o is degenerate, so that the inclusion N(J/) C N(J,) is a weak homotopy equivalence. This completes the
verification of the hypotheses of Proposition 4.2.3.8.

We now show that r is cofinal. According to Proposition 4.1.1.8, it suffices to show that for any oo-
category € and any map p : K — C, the induced map €,, — C,, is a categorical equivalence, where ¢ = por.
This follows from Proposition 4.2.3.4. [

Variant 4.2.3.15. Let K be a simplicial set, and let J be the category of simplices of K as above. Let I’ be
the full subcategory of J spanned by the nondegenerate simplices of K. The inclusion 7' C J has a left adjoint
L. Tt follows immediately from Theorem 4.1.3.1 that the inclusion N(J') C N(J) is cofinal. Consequently,
we obtain also a cofinal map f : N(J') — K. The simplicial set N(J') can be identified with the barycentric
subdivision of K. The assertion that f is cofinal can be regarded as a generalization of the classical fact that
barycentric subdivision does not change the weak homotopy type of a simplicial set.

Note the category of nondegenerate simplices of N(J') can be identified with a partially ordered set.
The nerve of this partially ordered set can be identified with the second barycentric subdivision K of K.
Applying the above argument twice, we conclude that there is a cofinal map K(?) — K. Consequently, we
obtain the following refinement of Proposition 4.2.3.14: for every simplicial set K, there exists a partially
ordered set A and a cofinal map N(A) — K.
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4.2.4 Homotopy Colimits
The goal of this section is to prove the following result:

Theorem 4.2.4.1. Let € be a fibrant simplicial category, J an ordinary category, and let J = Ix{z} be the
category obtained from J by adjoining o final object x. Let p: I — C be a functor, and let p =Dp|J. Then the
following conditions are equivalent:

(1) The functor D realizes P(x) as a homotopy colimit of p (see §A.3.5).
(2) The induced map G : N(J)®> — N(C) is a colimit of ¢ =q|N(J) : N(J) — N(C).
The proof of Theorem 4.2.4.1 will occupy the remainder of this section.
Remark 4.2.4.2. Theorem 4.2.4.1 can be generalized to the case where indexing category J is a simplicial
category. However, we will not need this generalization: our primary interest in homotopy colimits is as a

tool for establishing properties of co-categorical colimits. In view of Proposition 4.2.3.14, questions about
arbitrary colimits can usually be reduced to questions about colimits indexed by ordinary categories.

Suppose given a fibrant simplicial category € and a diagram p : J — €, where J is an ordinary category.
Let S = N(@), and let ¢ : N(J) — S be the induced map. Every object Z € € determines a functor
Fz :J°? — 8eta, given by the formula

Fz(I) = Mape(p(1), Z).

The main step of the proof of Theorem 4.2.4.1 is to reconstruct the functor Fz using only the oco-category
S. For each object I € J, Z € €, we may regard ¢(I) and Z as objects of S, and form the mapping space
Hom&(¢(I), Z). In virtue of Theorem 1.1.5.12, this space is homotopy equivalent to F(I). Unfortunately,
Hom5(¢(I), Z) does not depend functorially on 1.

To obtain a simplicial set which is functorial in I, we make two observations. First of all, Homlg(q(l ), Z)

is the fiber of the left fibration S;;), — S over the point Z. For each I € J, let g; denote the composition
N(I,r) — N(J) L s.
Since J,; contains id; as a final object, the natural map

Sar/ = Sany/
is a trivial fibration of simplicial sets. We now define Gz(I) to be the fiber product

{Z} Xs qu/,

and we observe that Gz is functor from J° to the category of Kan complexes.

Our proof of Theorem 4.2.4.1 hinges on a comparison between the functors Fz and Gz. Morally, they
are the same: G'z(I) is homotopy equivalent to the fiber of S5y, — S over Z, which may be identified with
the simplicial set Hom¥(q(I), Z). However, this equivalence is not functorial in I. Consequently, we cannot
use it to compare the functors Fz and Gz directly. Nevertheless:

Lemma 4.2.4.3. Let C be a fibrant simplicial category, J an ordinary category, p : J — C a functor, and
Z € C an object. Let
Fy;. Gz :7°% — Kan

be defined as above.
There exists a functor H from I°P to the category of compactly generated Hausdorff spaces which is
equipped with natural transformations

|F2(D)] &2 H(I) 2 |G (1)

having the property that for each I € J, the maps oy and By are homotopy equivalences.
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The proof of Lemma 4.2.4.3 is somewhat technical, and will be given in §4.2.5. In this section, we will
show that Lemma 4.2.4.3 implies Theorem 4.2.4.1.

It follows from Lemma 4.2.4.3 that Fy and Gz are weakly equivalent as objects of (Seta)’””. Here
we regard (Seta)’” as endowed with the projective model structure described in §A.3.3. Our next step is
to show that the functor Gz is (strongly) fibrant, and therefore suitable for use in recognizing homotopy
colimits. First, we need a lemma.

Lemma 4.2.4.4. Let X be a simplicial set, and let j : A — B be a weak homotopy equivalence of simplicial
sets. The induced map

(X xoA") J] (XxAxAh)—(xxoAl) ][] X xBxaAh
XXAxO AL XxBxo Al

is a categorical equivalence.

Proof. For every map j : A — B of simplicial sets, let

F(j):0a" J] (AxAh)—oAt J] BxAh.
Axo AL Bxd Al

We need to show that if j is a weak homotopy equivalence, then F(j) is a categorical equivalence. This will
imply the desired result, since forming the product with X preserves categorical equivalences.

First suppose that j is the inclusion {0} C A!. In this case, the result follows by a simple explicit
computation.

Now suppose that j : A — B is a cofibration such that F(j) is a categorical equivalence, and let
j'+ A — B’ be another cofibration of simplicial sets. Let

ing (AxB) [] (BxA)— (BxB)
AxA!

denote the smash product of j with j'. We now observe that there is a homotopy pushout diagram

idB’XaAl —_—— ldaAl

| |

FG) N ——=F(G A

in the category of arrows of Seta. It follows that F'(j A j') is a categorical equivalence.

The class of all cofibrations j such that F(j) is a categorical equivalence is saturated. The above ar-
guments show that it contains the smash product of {0} C A! with any other cofibration. By Proposition
2.1.2.5, we deduce that F(j) is a categorical equivalence whenever j is a left anodyne. A dual argument
shows that F'(j) is a categorical equivalence whenever j is right anodyne. It follows that F'(j) is a categorical
equivalence whenever j is anodyne: that is, whenever j is simultaneously a cofibration and a weak homotopy
equivalence of simplicial sets.

We now treat the general case, when j is not assumed to be a cofibration. Choose a cofibration of
simplicial sets i : A — K, where K is a contractible Kan complex. Consider the diagram

K x B

ixj l
T™B

AL > B

Since ¢ X j is a cofibration and a weak homotopy equivalence, the above arguments show that F(i x j) is
a categorical equivalence. Consequently, to prove that F'(j) is a categorical equivalence, it suffices to show
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that F'(7p) is a categorical equivalence. But g admits a section s : B — K x B. The map s is a cofibration
and a weak homotopy equivalence, so that F(s) is a categorical equivalence. Since F'(s) is a right inverse of
F(mpg), we conclude that F(7g) is a categorical equivalence. O

Before giving the next proof, we recall the notion of a coend. Suppose given a pair of functors T': J — C,
T’ :J°? — C, where C is any category with finite products and (small) colimits. The coend

/ T(I)xT'(I)
Ied
is defined to be the coequalier of the evident pair of maps
e T X T'(I") — I, T(I) x T'(1)

Proposition 4.2.4.5. Let C be a fibrant simplicial category, J an ordinary category, p : J — C a functor,
and Z € € an object. The functor Gz : I°P — Seta is strongly fibrant (Definition A.3.3.1) when considered
as an object of (Seta)””".

Proof. Let ¥ C ' be an inclusion of functors J° — Seta, which induces a weak equivalence when evaluated
at each I € J. We need to show that Gz has the right extension property with respect to the inclusion
F C J'. Translating this into the language of co-categories, we see that it suffices to prove that S = N(C)
has the right extension property with respect to the inclusion

§:N@ JT M@ <N [T M@,
)

M(F) M(F

where M (JF') is defined to be the coend = F'(I) x N(J,r), and M(F) C M(F') is defined similarly. Since
S is an oo-category, it will suffice to prove that j is a categorical equivalence. Working cell-by-cell on N(J),
we may reduce to the problem of showing that the inclusions

jreA" I @rxgarycar [ A" xF(1)7)
AnxF(I) AnxF'(I)

are categorical equivalences.
In view of Proposition 4.2.1.2, we are free to replace F(I)> = F(I) » A® by F(I) o A° and F'(I)> by
F'(I) o A°. After this replacement, the relevant map is a pushout of the inclusion

(A" x 9 AY) [T @ xa"xAh)c@arxoAl 11 (F(I) x A™ x Ab).
F(I)xAnx0 Al FI(I)xA™xd Al

This map is a cofibration, and furthermore a categorical equivalence by Lemma 4.2.4.4. O

Proof of Theorem 4.2.4.1. Let C be a fibrant simplicial category, J an ordinary category, and p : Ix{z} — C
a functor; let ¢ : N(J)» — S = N(C) be the induced map of oo-categories. We wish to show that D is a
homotopy colimit of p = p|J if and only if § is a colimit of ¢ = g| N(J).

By definition, p is a homotopy colimit of p if and only if, for each Z € €, the associated functor Fz
exhibits Fz(z) as a homotopy limit of the diagram Fz|J. In view of Proposition 4.2.4.3, this is equivalent to
the assertion that Gz exhibits Gz(x) as a homotopy limit of the diagram G|J. Applying Proposition 4.2.4.5
to J, we deduce that the homotopy limit of Gz|J is simply the limit of the diagram Gz|J. Consequently, p
is a homotopy colimit of p if and only if

¢z : Gz(x) = limGz(I)
Ied

is a weak homotopy equivalence (for each Z € C).
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We now observe that Gz () is isomorphic to the fiber of S5, — S over Z, while the limit lim 1e0 G z(I) is
isomorphic to the fiber of S;, — S over Z. Thus, p is a homotopy colimit of p if and only if the projection
¢ : S5, — 8, induces a homotopy equivalence of Kan complexes after taking the fiber over each vertex Z of
S. If G is a colimit of ¢, then ¢ is a trivial fibration, so that p is a homotopy colimit of p. For the converse,
we observe that ¢ is a left fibration. Consequently, ¢ is a trivial fibration if and only if the fibers of ¢ are
contractible Kan complexes. If p is a homotopy colimit of p, then for each Z € S, the induced map

¢z Sqy xs {2} = Sy xs{Z}

is a left fibration and a homotopy equivalence of Kan complexes, hence a (trivial) Kan fibration (Lemma
2.1.3.2). It follows that the fibers of ¢, are contractible, as desired. O

Corollary 4.2.4.6. Let A be a perfect simplicial model category. The associated co-category S = N(A°)
admits (small) limits and colimits.

Proof. We give the argument for colimits; the case of limits follows by a dual argument. Let p : K — S
be a (small) diagram in S. By Proposition 4.2.3.14, there exists a (small) category J and a cofinal map
q : N(J) — K. Since ¢ is cofinal, p has a colimit in S if and only if p o ¢ has a colimit in S; thus we may
reduce to the case where K = N(J). By Corollary A.3.6.2, we may suppose that p is the nerve of a functor
p' +J — A°. Without loss of generality, we may suppose that p’ is a strongly fibrant object of A?. Let
P’ : Ix{x} — A7 be a limit of p/, so that ' is a homotopy limit diagram in A. Now choose a trivial fibration
P’ — P in A7, where p” is cofibrant. The simplicial nerve of ” determines a colimit diagram f : N(J)> — S,
by Theorem 4.2.4.1. We now observe that f = f|N(J) is equivalent to p, so that p also admits a colimit in
S. O

4.2.5 Completion of the Proof

In this section, we will finish the proof of Theorem 4.2.4.1 by establishing Lemma 4.2.4.3. Throughout this
section, we will fix a fibrant simplicial category C, an ordinary category J, a functor p : J — C, and an object
Z € C. Welet Fz,Gz : J°? — Kan denote the functors constructed in §4.2.4. We will construct a functor
H :J°°? — @G and natural transformations

|Fz| & H 2 |Gyl

which induce homotopy equivalences for each object I € J; here CG denotes the category of compactly
generated Hausdorff spaces.

Notation 4.2.5.1. We let S denote the nerve of the simplicial category €, and ¢ : N(J) — S the induced
map. For I € J, we let g; denote the composition

N(I/r) = N(9) = 5,
and ¢’ : N(J;/) — S,/ the induced map.
Definition 4.2.5.2. For each I € J, the topological space H(I) is defined as follows.

(1) Let o denote a commutative diagram

A{O,...,m}( A" )A{m+l7...,n}
S
I
N(I1) —— Sq/ S {2}
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and let Cy = {k : [n] — [0,1] : (k(n) = 1) A (3i < m)[k(i) = 1]} C [0,1]"". Then there exists a
continuous map

C, — H(I)
k— ol[k]].
(2) Let o be as in (1), and let k, k" € O, be such that
(Fi >m)[k(i) = 1A (V5 <i)[k(G) =K ()]
Then o[[k]] = o[[k']] € H(I).

(3) Let o be as in (1), let k € C,, and suppose that k(i) = 0 for some 0 < i < n. Let ¢’ denote the
commutative diagram obtained from o by deleting the ith vertex of A™ (and A™, if i < m), and let
k' € Cys be the function obtained by omitting the value of & on i. Then

ol[k]) = o'[[K']] € H(I).

(4) The topological space H(I) is the quotient of the disjoint union [[  C, obtained by imposing the
relations indicated in (2) and (3).

We observe that H(I) is contravariantly functorial in I. More precisely, suppose that v : I’ — I is a
morphism in I, and let o be a commutative diagram in (1). We can form a composite diagram

A{O,...,m}( A" 7A{m+1,...,n}

S

N(Oy) e Sy — 5 (2)
NOp) L8y, 5 (7).

Let ¢’ denote the commutative diagram obtained by omitting the middle line, so that we have a map
C,» — H(I'). There is a uniquely determined map H () with the property that each of the diagrams

c, .,
H%I) o) H(if’)

is commutative.

Definition 4.2.5.3. If T is an object of J, then the subspace H'(I) C H(I) is defined to be the images of
all maps

C, — H(I)
where o is a commutative diagram of the form
AOC N OALLn}
L
N(9;/) . Sar/ s (7).

where o classifies a map
(N@1) # {T}) # AL

which factors through N(J,7) x All-n},
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Warning 4.2.5.4. The subspaces H'(I) € H(I) are not stable under the maps H(y) defined above. In
other words, H'(I) does not depend functorially on 1.

Lemma 4.2.5.5. For each object I € J, the inclusion H'(I) — H(I) is a homotopy equivalence.

Proof. We will define a map h : H(I)x [0, 1] — H(I) having the property that h|H(I) x {0} is the identity on
H(I), and h|H(I) x {1} is a retraction H(I) — H'(I) (which is therefore a homotopy inverse to the inclusion
H'(I) C H(I)). ( The map h will not have the property that it induces the identity H'(I) x {t} — H'(I)
for 0 < t < 1, but this is not important. )

Let o be a diagram as in Definition 4.2.5.2, so that the map C, — H(I) is defined. We can identify the
map oo : A™ — N(J;/) with a diagram

I — 0p(0) = 0p(1) — ... = gg(m)
in the category J. We define o) : A™Tt — N(J;/) to classify the diagram
Iid—{f—>00(0) — ... — ao(m).
Similarly, if o1 : A™ — S, classifies a map N(J,;) x A" — S, then we let o} classify the induced map
(N@)1) # {1}) % A" — 5,
obtained by composing with the retraction
NQ@r) > {1} = N(@r).

Together, o(, and ¢} determine a diagram

A0, m+13C Antl IALm+1,...n}
N(I1)) —— S/ S {2}

We define a map h, : C, x [0,1] — C, as follows:

2t ift<i
ho (k)(0) { N
1oift>3

k(i —1) ift<1,i>0

ho(k)(z) = {k(l o 1)(2 _ Qt) if ¢t > %,Z’ > 0.

The desired map h : H(I) x [0,1] — H(I) is uniquely determined by the requirement that the diagrams

C, % [0,1] 2,

L

H(I) x [0,1] 2— H(I)
commute. O

We now construct the natural transformation

ar: H(I) — |Fz(I)).

196



First, we need to introduce a bit of notation. Let o be as in Definition 4.2.5.2, and let 0 < ¢ < m. We let
C,[i] denote the closed subset of C, consisting of those points k € C,, such that k(¢) = 1. In this case, o¢(7)
determines a morphism 1 : I — I’ in J. Let 7 = o1 |Al%"} and let ¢ = ¥/|{i,...,n}. Using the notation
of §1.3.3, we have a morphism 7[q] € | Map¢(g)(p(I’), Z)|. Composing with 1 and with the counit map, we
obtain a point 1;[k] € | Mape(p(I), Z)| = |Fz(I)|. Allowing k to vary, we obtain a continuous map

Vi 2 Coli] — |Fz(I)].

The map aj is determined by the requirement that the diagrams

C,[i]C Cs, H(I)
K ial
[Fz (1)

commute, for all o and i as above. The uniqueness of a; follows from the observation that Co = y<;<,, Coli]
(by constructlon) The existence follows readily by examining the relations in Definition 4.2.5.2. It is not
difficult to check that this construction is functorial in I. The following claim is somewhat less obvious:

Lemma 4.2.5.6. Let I € J be an object. Then the map oy : H(I) — |Fz(I)| is a homotopy equivalence.
Proof. For each ¢ as in Definition 4.2.5.2 and each i < m, we observe that the composition
Colil = H(I) = |Fz(I)]

factors through Map ¢/ (p(I), Z) (by construction). These maps are not strictly compatible with one
another, so the map a; does not itself factor through Map, ¢(g) (p(I), Z). However, it is easy to see that
these maps are compatible when restricted to H'(T), so we have a commutative diagram of topological spaces

H'(I) —L> Map, ¢ (g1 (p(1), Z)

f |

H(I) — "~ |F, ().

The left vertical map is a homotopy equivalence by Lemma 4.2.5.5, and the right vertical map is a homotopy
equivalence by Theorem 1.1.5.12. Consequently, it will suffice to prove that o/ is a homotopy equivalence.
We observe that « factors as a composition

9 9 9
H'(I) = [Sq,) x5 {Z}as = |Spry; X5 {Z}as = Map ¢(g)(0(I), Z).

We can show that 6; is a homotopy equivalence using the the proof of Lemma 1.3.3.3. The map 65 is a
homotopy equivalence because the projection Sy, , — Sy(1, is a trivial fibration of simplicial sets. Proposition
1.3.3.1 implies that 65 is a homotopy equivalence. It follows that o/} is a homotopy equivalence, as desired. [

To complete the proof of Lemma 4.2.4.3, it remainss to construct the natural transformation
Br:H(I) — |Gz(I)].

We will obtain (; as a composition

H(I) 2 1G2(D)]ar — 1G2(D)].

The second map is a homotopy equivalence (Proposition 1.3.2.8), so it will suffice to construct 8} and to
prove that 37 is a homotopy equivalence. We first construct an auxiliary space Xj.
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Definition 4.2.5.7. For I € J, the topological space X7 is defined as follows:

(1) Let 7: A™ — S,/ fit in a commutative diagram
Ar ——— A"
k |
Sq) —= S <—{Z}.
and let D, = {k: [n] — [0,1] : (k(n) = 1)} C [0,1]""!. Then there exists a continuous map
D, — Xr
k— T[[K]].
(2) Let 7 be as in (1), and let k, k' € D, be such that
(Fi > m)[k(i) = 1A (V5 < 0)[k() =K (7)]].
Then 7([k]] = 7[[k']] € X;.

(3) Let 7 be as in (1), let k € D,, and suppose that k(i) = 0 for some 0 < ¢ < n. Let 7/ = d;7, and let
k' € D, be obtained from k by omitting the ith value. Then

T[[K]] = 7[[]] € X

(4) The topological space X is the quotient of the disjoint union [ D, obtained by imposing the relations
indicated in (2) and (3).

The argument of Proposition 1.3.3.1 shows that there is a canonical homotopy equivalence 6 : X; —
|Gz(I)|qs. We define the map 3} to be the composition of § with a map 37 : H(I) — X, which is uniquely
determined by the requirement that if o is as Definition 4.2.5.2 and k € C,,, then

7(ol[k]]) = 7[[K]] € X1,

where 7 = g|A{m+1n} and & is obtained by restricting k to the range {m + 1,...,n}. It is not difficult
to check that (7 is well-defined and functorial in I. To show that it is a homotopy equivalence, we observe
that the restriction 5}|H’(I) is a homeomorphism and apply Lemma 4.2.5.5.
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4.3 Kan Extensions

Let € and J be ordinary categories. There is an obvious “diagonal” functor ¢ : € — @, which carries an
object C' € C to the constant diagram J — C taking the value C. If C admits small colimits, then the functor
& has a left adjoint €’ — €. This left adjoint admits an explicit description: it carries an arbitrary diagram
f:J — C to the colimit h_H)l( f). Consequently, we can think of the theory of colimits as the study of left
adjoints to diagonal functors.

More generally, if one is given a functor i : J — J’ between diagram categories, then composition with i
induces a functor i* : €7 — €. Assuming that € has a sufficient supply of colimits, one can construct a left
adjoint to i*. We then refer to this left adjoint as left Kan extension along 1.

In this section, we will study the oco-categorical analogue of the theory of left Kan extensions. In the
extreme case where J’' is the one-object category *, this theory simply reduces to the theory of colimits
introduced in §1.2.13. Our primary interest will be at the opposite extreme, when i is a fully faithful
embedding; this is the subject of §4.3.2. We will treat the general case in §4.3.3.

With a view toward later applications, we will treat not only the theory of absolute left Kan extensions,
but also a relative notion which works over a base simplicial set S. The most basic example is the case of a
relative colimit which we study in §4.3.1.

4.3.1 Relative Colimits

In §1.2.13, we introduced the notions of limit and colimit for a diagram p : K — € in an co-category C. For
many applications, it is convenient to have a relative version of these notions, which makes reference not to
an oo-category € but to an arbitrary inner fibration of simplicial sets.

Definition 4.3.1.1. Let f: € — D be an inner fibration of simplicial sets, let p : K* — € be diagram, and
let p = p|K. We will say that p is an f-colimit of p if the map

€/ = Cpy Xvy,, Dipy
is a trivial fibration of simplicial sets. In this case, we will also say that p is an f-colimit diagram.

Remark 4.3.1.2. Let f : € — D and p : K* — € be as in Definition 4.3.1.1. Then P is an f-colimit of
p = p|K if and only if the map
qf) : Gﬁ/ — Gp/ X@fp/ Dfﬁ/
is a categorical equivalence. The “only if” direction is clear. The converse follows from Proposition 2.1.2.2
(which implies that ¢ is a left fibration), Proposition 3.3.2.8 (which implies that ¢ is a categorical fibration),
and the fact that a categorical fibration which is a categorical equivalence is a trivial Kan fibration.
Observe that Proposition 2.1.2.2 also implies that the map

Dspy = Dy
is a left fibration. Using Propositions 3.3.2.3 and 3.3.2.8, we conclude that C,; xn, Dy, is a homotopy
fiber product of €,, with D 45, over Dy, (with respect to the Joyal model structure on Seta ). Consequently,
we deduce that P is an f-colimit diagram if and only if the diagram of simplicial sets

Cp ——Dip/

|

ep/ - 1)fp/

is homotopy Cartesian.
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Example 4.3.1.3. Let C be an co-category and f : € — % the projection of € to a point. Then a diagram

p: K” — @ is an f-colimit if and only if it is a colimit in the sense of Definition 1.2.13.4.

Example 4.3.1.4. Let f : @ — D be an inner fibration of simplicial sets, and let e : Al = (A%)> — € be an
edge of C. Then e is an f-colimit if and only if it is f-coCartesian.

The following basic stability properties follow immediately from the definition:
Proposition 4.3.1.5. (1) Let f : € — D be a trivial fibration of simplicial sets. Then every diagram
p: K" — @ is an f-colimit.
(2) Let f:C— D and g : D — & be inner fibrations of simplicial sets, and let p: K> — C be a diagram.
Suppose that f op is a g-colimit. Then D is an f-colimit if and only if D is a g o f-colimit.

(3) Let f : € — D be an inner fibration of oco-categories, and let p,q : K® — € be diagrams which are
equivalent when viewed as objects of the co-category Fun(K®>, ). Then D is an f-colimit if and only if
q is an f-colimit.

(4) Suppose given a Cartesian diagram
g
/

C
if’ J{f
D——=D
of simplicial sets, where f (and therefore also f') is an inner fibration. Let p: K> — €' be a diagram.
If goP is an f-colimit, then P is an f’-colimit.
Proposition 4.3.1.6. Suppose give a commutative diagram of oo-categories

f

C——2¢

D——7D

/

where the horizontal arrows are categorical equivalences and the vertical arrows are inner fibrations. Let
q: K* — @ be a diagram and let ¢ = G| K Then G is a p-colimit of q if and only if f oq is a p'-colimit of
feoaq.

Proof. Consider the diagram

Ca/ ra/

/ /
eq/ ><‘qu/ Dpa/ ef‘l/ XD;/fq/ gp/fﬁ/

According to Remark 4.3.1.2, it will suffice to show that the left vertical map is a categorical equivalence
if and only if the right vertical map is a categorical equivalence. For this, it suffices to show that both of

the horizontal maps are categorical equivalences. Proposition 1.2.9.3 implies that the maps G5, — C?'fq/,
!
p'fq

Gy — C/fq/, Dyas — D;,ﬁ/, and Dy,, — D
show that the diagrams

, are categorical equivalences. It will therefore suffice to

/ !/
Cq/ Xm,,, Ppg/ — Cqy Cras XD Dy sz —— e/fq/
@i v @l :D’l v D’J/
pg/ —— > “'pa/ vfe/ T Tpfa/
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are homotopy Cartesian (with respect to the Joyal model structure). This follows from Proposition 3.3.2.3,
since 1 and 1)’ are coCartesian fibrations. O

The next pair of results can be regarded as a generalization of Proposition 4.1.1.8. They assert that,
when computing relative colimits, we are free to replace any diagram by a cofinal subdiagram.

Proposition 4.3.1.7. Let p: C — D be an inner fibration of oco-categories, let i : A — B be a cofinal map,
and let G : B> — C be a diagram. Then q is a p-colimit if and only if Go i is a p-colimit.

Proof. Recall (Remark 4.3.1.2) that g is a relative colimit diagram if and only if the diagram

Cq) ——Cy/

L

Dg,y — Dyy/

is homotopy Cartesian with respect to the Joyal model structure. Since ¢ and * are both cofinal, this is
equivalent to the assertion that the diagram

eqlb/ —_— eql/

-

Daoz‘b/ —_— ®q0i/
is homotopy Cartesian, which (by Remark 4.3.1.2) is equivalent to the assertion that gos® is a relative colimit
diagram. O

Proposition 4.3.1.8. Let p: C — D be a coCartesian fibration of co-categories, let i : A — B be a cofinal

map, and let

B—Lr.p

L. b

B> ——D
be a diagram. Suppose that q o i has a relative colimit lifting G, 0 ©*. Then q has a relative colimit lifting G, .

Proof. Let qo = G,|B. We have a commutative diagram

f
Cqy —— Cqiy XD,0i) Dpgy — Cyiy

| | |

%/ qu/ qui/

D

where the horizontal maps are categorical equivalences (since i is cofinal, and by Proposition 3.3.2.3). Propo-
sition 2.3.3.2 implies that the vertical maps are coCartesian fibrations, and that f preserves coCartesian
edges. Applying Proposition 3.3.2.5 to f, we deduce that the map ¢ : C;/ xo, {@} — Cyiy XD, {7i"}
is a categorical equivalence. Since ¢ is essentially surjective, we conclude that there exists an extension
q : B® — € of ¢ which covers g, such that go 4" is a p-colimit diagram. We now apply Proposition 4.3.1.7
to conclude that § is itself a p-colimit diagram. O

Let p : X — S be a coCartesian fibration. The following results will allow us to reduce the theory of
p-colimits to the theory of ordinary colimits in the fibers of p.
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Proposition 4.3.1.9. Let p : X — S be a coCartesian fibration of oco-categories, K a simplicial set, and
h:A' x K» — X a natural transformation from hg = h|{0} x K” to hy = h|{1} x K. Suppose that:

(1) For every vertex x of K®, the restriction h|A! x {z} is a p-coCartesian edge of X .
(2) The composition
Alx{oo}gAlbeiX&S
is a degenerate edge of S, where oo denotes the cone point of K.
Then hg is a p-colimit if and only if hy is a p-colimit.

Proof. Let h = h|A! x K, hg = h|{0} x K, and h; = h|{1} x K. Consider the diagram

[
KTy X5/ X5,/

| | |

4
Xho/ Xspho/ Spﬁo <;Xh/ Xsph/ Spﬁ/ 4>Xh1/ Xsphl/ Spﬁl/

According to Remark 4.3.1.2, it will suffice to show that the left vertical map is a categorical equivalence
if and only if the right vertical map is a categorical equivalence. For this, it will suffice to show that
each of the horizontal arrows is a categorical equivalence. Because the inclusions {1} x K C A! x K and
{1} x K> C Al x K” are right anodyne, the horizontal maps on the right are trivial fibrations. We are
therefore reduced to proving that ¢ and v are categorical equivalences.

Let f: x — y denote the edge of X obtained by restricting h to the cone point of K”. The map ¢ fits
into a commutative diagram

XE/L’,XW

|

Since the inclusion of the cone point into K* is right anodyne, the vertical arrows are trivial fibrations.
Moreover, hypotheses (1) and (2) guarantee that f is an equivalence in X, so that the map Xy, — X,/ is a
trivial fibration. This proves that ¢ is a categorical equivalence.

The map ¢ admits a factorization

w/ w//
Xh/ ><Sph/ Spﬁ/ - XhO/ ><Spho/ Spﬁ/ - Xho ><Spho/ Spﬁo/'

To complete the proof, it will suffice to show that 1)’ and 1" are trivial fibrations of simplicial sets. We first
observe that v’ is a pullback of the map

Xn) = Xno/ XSpng, Sphs

which is a trivial fibration (Proposition 3.1.1.12). The map v" is a pullback of the left fibration vy : Spr) =

Spﬁo / It therefore suffices to show that 1 is a categorical equivalence. To prove this, we consider the

diagram

w//
Spﬁ/ — SpTLo/

.

Sp(f)) — Sp(a)/

As above, we observe that the vertical arrows are trivial fibrations, and 7 is a trivial fibration because the
morphism p(f) is an equivalence in S. It follows that ¢ is a categorical equivalence, as desired. O
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Proposition 4.3.1.10. Let g : X — S be a coCartesian fibration of co-categories, let s be an object of S,
and let p: K* — X, be a diagram. The following conditions are equivalent:

(1) The map P is a g-colimit diagram.

(2) For every morphism e : s — s’ in S, the associated functor ey : Xy — X has the property that e; o p
is a colimit diagram in the co-category X .

Proof. Let e : s — s’ be an morphism of S, and choose a coCartesian transformation @ : K> x A! — X from
P to p’, which covers the composition
K> x Al - Al 5 8.
Let a = a|K x Al and p’ = 7| K.
Let ¢ denote the vertex of Sz, corresponding to the map

(KDXAI)DH(Al)D—)Alis,

let o denote the image of # in Sz, and #; its image in Sy /. Define ¢, to, and t; analogously. Consider the
diagram

X5/ %, {fo} =— Xa/ X 5,0, {B} —= Xy x5, {Ta}

S

Xp/ Xs {to} <7Xa/ qua/ {t} *>Xp// ngp,/ {t1}.

ap/

Note that the vertical maps are left fibrations (Proposition 2.1.2.2). Since the inclusion K” x {1} C K> x Al
is right anodyne, the upper right horizontal map is a trivial fibration. Similarly, the lower right horizontal
map is a trivial fibration. Since @ is a coCartesian transformation, we deduce that the left horizontal maps
are also trivial fibrations. Condition (2) is equivalent to the assertion that h; is a trivial fibration (for
each edge e : s — s’ of S). Since hy is a left fibration, and therefore a categorical fibration (Proposition
3.3.2.8), this is equivalent to the assertion that h; is a categorical equivalence. Chasing through the diagram,
we deduce that (2) is equivalent to the assertion that hg is a categorical equivalence, which (by the same
argument) is equivalent to the assertion that hg is a trivial fibration.

Consider the left fibration ¢ : X5, — X,/ X5, Sgp/. Using Lemma 2.1.3.3, we deduce that ¢ is a trivial

fibration if and only if, for every object fg € Sgp/, the map of fibers
=/
Ot : Xp/ %55, {lo} = Xp/ %s,,, {to}

has contractible fibers, where #, denotes the image of %, in Sgp)- It follows that (1) = (2). For the converse,
it suffices to prove that every object fg € Sgp/ is equivalent to the object #y determined by the edge e

corresponding to the image of f:) under the projection 1) : Sz, — Ss/. We now observe that o and fg lie in
the same fiber of ¥, and that 1 is a trivial Kan fibration (since the inclusion of the cone point into K> is
right anodyne). O

Corollary 4.3.1.11. Let p : X — S be a coCartesian fibration of co-categories, and let K be a simplicial
set. Suppose that:

(1) For each vertex s of S, the fiber X5 = X Xg {s} admits colimits for all diagrams indezed by K.
(2) For each edge f : s — s, the associated functor Xy — Xy preserves colimits of K -indexed diagrams.

Then for every diagram

q
_—

K—"sx
7
L]
7

T .5

K* ——

\ <l
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there exists a map q as indicated, which is a p-colimit.

Proof. Consider the map K x A! — K® which is the identity on K x {0} and carries K x {1} to the cone
point of K*. Let F' denote the composition

KxA'—Kk* L g

and let @ : K x A — X be a coCartesian lifting of ' to X, so that Q is a natural transformation from ¢ to
amap ¢ : K — X, where s is the image under f of the cone point of K”. In view of assumption (1), there
exists a map ¢ : K — X, which is a colimit of ¢. Assumption (2) and Proposition 4.3.1.10 guarantee that
q is also a p-colimit diagram, when regarded as a map from K> to X.

We have a commutative diagram

(@Q.7)
(K x Al)HKx{1}(K'> x {1}) —q;X

—

- P
—

—

(K x Al S.

The left vertical map is an inner fibration, so there exists a morphism r as indicated, rendering the diagram
commutative. We now consider the map K” x A" — (K x A')” which is the identity on K x A" and carries
the other vertices of K” x A to the cone point of (K x Al)>. Let Q denote the composition

K> x A' — (K x A'Y 5 X,

and let § = Q| K> x {0}. Then @ can be regarded as a natural transformation § — g’ of diagrams K> — X.
Since ¢ is a p-colimit diagram, Proposition 4.3.1.9 implies that g is a p-colimit diagram as well. [

Proposition 4.3.1.12. Let p: X — S be a coCartesian fibration of co-categories, and let G: K* — X be a
diagram. Assume that:

(1) The map G carries each edge of K to a p-coCartesian edge of K.
(2) The simplicial set K is weakly contractible.
Then G is a p-colimit diagram if and only if it carries every edge of K* to a p-coCartesian edge of X.

Proof. Let s denote the image under p o g of the cone point of K”. Consider the map K* x A! — K> which
is the identity on K” x {0} and collapses K* x {1} to the cone point of K”. Let h denote the composition

KxA' - KL x2g,

which we regard as a natural transformation from p o g to the constant map with value s. Let H : ¢ — ¢
be a coCartesian transformation from g to a diagram g’ : K — X,. Using Proposition 2.3.1.7, we conclude
that ¢’ carries each edge of K to a p-coCartesian edge of X, which is therefore an equivalence in Xj.

Let us now suppose that g carries every edge of K* to a p-coCartesian edge of X. Arguing as above,
we conclude that §’ carries each edge of K to an equivalence in X,. Let e : s — s’ be an edge of S and
er: Xy — Xy an associated functor. The composition

K?ixgli
carries each edge of K to an equivalence in X, and is therefore a colimit diagram in X,/ (Corollary 4.4.4.10).

Proposition 4.3.1.10 implies that ¢’ is a p-colimit diagram, so that Proposition 4.3.1.9 implies that 7 is a
p-colimit diagram as well.
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For the converse, let us suppose that g is a p-colimit diagram. Applying Proposition 4.3.1.9, we conclude
that g is a p-colimit diagram. In particular, g is a colimit diagram in the oo-category X,. Applying
Corollary 4.4.4.10, we conclude that g’ carries each edge of K” to an equivalence in X,;. Now consider an
arbitrary edge f : x — y of K”. If f belongs to K, then g(f) is p-coCartesian by assumption. Otherwise,
we may suppose that y is the cone point of K. The map H gives rise to a diagram

() 2 gy

)|

@ ¢
_ ) _
7 (x) —=7q(y)
in the co-category X xg Al. Here @' (f) and ¢ are equivalences in X, so that g(f) and ¢ are equivalent as
morphisms A! — X x5 Al. Since ¢ is p-coCartesian, we conclude that g(f) is p-coCartesian, as desired. []
Lemma 4.3.1.13. Let p : € — D be an inner fibration of oco-categories, let C' € C be an object, and let
D = p(C). Then C is a p-initial object of C if and only if (C,idp) is an initial object of € xp Dp,.

Proof. We have a commutative diagram

Coy xoy,, Didp i Cey

L)

GXDDD/:GX'D@D/

where the vertical arrows are left fibrations, and therefore categorical fibrations (Proposition 3.3.2.8). We
wish to show that ¢ is a trivial fibration if and only if ¢’ is a trivial fibration. This is equivalent to proving
that ¢ is a categorical equivalence if and only if ¢’ is a categorical equivalence. For this, it will suffice to
show that v is a categorical equivalence. But ¢ is a pullback of the trivial fibration Diq,, ; — Dp,, and
therefore itself a trivial fibration. O

Proposition 4.3.1.14. Suppose given a diagram of co-categories
e— P 9
\{ /
&
where p and T are inner fibrations, q is a Cartesian fibration, and p carries q-Cartesian morphisms to
r-Cartesian morphisms.

Let C € € be an object, D = p(C), and E = q(C). Let Cg = Cx¢{E}, Dgp =D xe{E}, and pg : Cp —
DEg the induced map. Suppose that C is a pg-initial object of Cr. Then C is a p-initial object of C.

Proof. Our hypothesis, together with Lemma 4.3.1.13, implies that (C,idp) is an initial object of
GE XDE(DE)D/ ~ (G XD DD/) XgE/ {ldE}

We will prove that the map ¢ : € xp Dp, — Ep, is a Cartesian fibration. Since idg is an initial object of
€g/, Lemma 2.3.4.7 will allow us to conclude that (C,idp) is an initial object of € xp Dp,. We can then
conclude the proof by applying Lemma 4.3.1.13 once more.

It remains to prove that ¢ is a Cartesian fibration. Let us say that a morphism of C xp Dp, is special
if its image in € is ¢g-Cartesian. Since ¢ is obviously an inner fibration, it will suffice to prove the following
assertions:
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(1) Given an object X of € xp Dp, and a morphism f : Y — ¢(X) in €5/, we can write f = ¢(f) where
f is a special morphism of € xp Dp,.

(2) Every special morphism in € xp Dp, is ¢-Cartesian.

To prove (1), we first identify X with a pair consisting of an object C"” € € and a morphism D — p(C"”)
in D, and f with a 2-simplex 7 : A? — & which we depict as a diagram:

.
N
E q(C").

Since ¢ is a Cartesian fibration, the morphism g can be written as ¢(g) for some morphism g : ¢/ — C” in
C. We now have a diagram

p(C")

W\

D p(C//)

in D. Since p carries g-Cartesian morphisms to r-Cartesian morphisms, we conclude that p(g) is r-Cartesian,
so that the above diagram can be completed to a 2-simplex o : A? — D such that r(c) = 7.
We now prove (2). Suppose n > 2, and we have a commutative diagram

Ag%GxDDD/
7
7 l
e
’e
J RS

where o carries the final edge of A} to a special morphism of € xp Dp,. We wish to prove the existence of
the morphism ¢ indicated in the diagram. We first let 79 denote the composite map

n

A"QGXQDD/AG.

Consider the diagram
7
T 7
L)
e
A" —— &

Since TO(A{”_l’”}) is g-Cartesian, there exists an extension 7 as indicated in the diagram. The morphisms
7 and og together determine a map 6y which fits into a diagram

To complete the proof, it suffices to prove the existence of the indicated arrow 6. This follows from the fact
that 6 (A1) = (po7p)(AT"~17}) is an r-Cartesian morphism of D. O

Proposition 4.3.1.14 immediately implies the following slightly stronger statement:
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Corollary 4.3.1.15. Suppose given a diagram of co-categories
P
C——D
X /
&
where q and r are Cartesian fibrations, p is an inner fibration, and p carries q-Cartesian morphisms to

r-Cartesian morphisms. Let f : K” — C be a diagram such that q o f is constant at a vertex E € €. Then f
is a p-colimit diagram if and only if [ is a colimit diagram relative to pg : Cp — Dg.

Proof. Let f = f|K. The “only if” direction is obvious, and the “if” direction follows by applying Proposition
4.3.1.14 to the diagram

Csy Dty

N

qu/'

4.3.2 Kan Extensions along Inclusions

In this section, we introduce the theory of left Kan extensions. Let F': € — D be a functor between oo-
categories, and let €Y be a full subcategory of C. Roughly speaking, the functor F is a left Kan extension
of its restriction Fy = F| @Y if the values of F are as “small” as possible, given the values of Fyy. In order to
make this precise, we need to introduce a bit of terminology.

Notation 4.3.2.1. Let C be an oco-category, and let €% be a full subcategory. If p : K — C is a diagram, we
let G(/)p denote the fiber product €/, x¢ @Y. In particular, if C'is an object of €, then G?C denotes the full

subcategory of €, spanned by the morphisms C" — C where C’ € ev.
Definition 4.3.2.2. Suppose given a commutative diagram of co-categories

GOFHOD

b

Cpa—

where p is an inner fibration and the left vertical map is the inclusion of a full subcategory €% C €.
We will say that F is a p-left Kan extension of Fy at C € C if the induced diagram

exhibits F(C) as a p-colimit of F¢.

We will say that F' is a p-left Kan extension of Fy if it is a p-left Kan extension of Fy at C, for every
object C' € C.

In the case where D' = A°, we will omit mention of p simply say that F is a left Kan extension of Fy if
the above condition is satisfied.
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Remark 4.3.2.3. Consider a diagram

s

b

C——7

as in Definition 4.3.2.2. If C is an object of €°, then the functor F¢ : (G?c)l> — D is automatically a
p-colimit. To see this, we observe that ide : C' — C is a final object of G(/)C. Consequently, the inclusion
{id¢} — (690) is cofinal and we are reduced to proving that F(id¢) : A — D is a colimit of its restriction
to {0}, which is obvious.

Example 4.3.2.4. Consider a diagram

vd

The map § is a p-left Kan extension of ¢ if and only if it is a p-colimit of ¢. The “only if” direction is clear
from the definition, and the converse follows immediately from Remark 4.3.2.3.

We first note a few basic stability properties for the class of left Kan extensions.

Lemma 4.3.2.5. Consider a commutative diagram of co-categories

TH®
e——=17'

as in Definition 4.3.2.2. Let C and C' equivalent objects of C. Then F is a p-left Kan extension of Fy at C
if and only if F is a p-left Kan extension of Fy at C'.

Proof. Let f: C — C’ be an equivalence, so that the restriction maps
Cro—=Crp = Cer

are trivial fibrations of simplicial sets. Let 6(/) = O xeC /f» S0 that we have trivial fibrations

GC(_e/f_)e/C"

N
N o

Consider the associated diagram

e/C/
This diagram does not commute, but the functors Fo o G and For o G’ are equivalent in the oco-category
0
D). Consequently, FooG is a p-colimit diagram if and only if Fov oG’ is a p-colimit diagram (Proposition
4.3.1.5). Since g and ¢’ are cofinal, we conclude that F is a p-colimit diagram if and only if Fr is a p-colimit
diagram (Proposition 4.3.1.7). O
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Lemma 4.3.2.6. (1) Let C be an co-category, p: D — D' an inner fibration of co-categories, and F, F’ :
C — D be two functors which are equivalent in DE. Let €° be a full subcategory of €. Then F is a
p-left Kan extension of F| @Y if and only if F' is a p-left Kan extension of F/| Q.

(2) Suppose given a commutative diagram of co-categories

e e D e
N
e/0 e/ F’ ®/ P’ 8/

be a commutative diagram of oco-categories, where the left horizontal maps are inclusions of full subcate-
gories, the right horizontal maps are inner fibrations, and the vertical maps are categorical equivalences.
Then F is a p-left Kan extension of F|C® if and only if F' is a p'-left Kan extension of F’|(?’0

Proof. Assertion (1) is follows immediately from Proposition 4.3.1.5. Let us prove (2). Choose an object

C € @, and consider the diagram
P

(€)e) D e

| N

(e (/)G(C)) —— ¢

We claim that the upper left horizontal map is a p-colimit diagram if and only if the bottom left horizontal
map is a p’-colimit diagram. In view of Proposition 4.3.1.6, it will suffice to show that each of the vertical
maps is an equivalence of co-categories. For the middle and right vertical maps, this holds by assumption.
To prove that the left vertical map is a categorical equivalence, we consider the diagram

0 0
Crc —=Cqc)

o

G/C R — GI/G(C) .

The bottom horizontal map is a categorical equivalence by Proposition 1.2.9.3, and the vertical maps are
inclusions of full subcategories. It follows that the top horizontal map is fully faithful, and its essential image
consists of those morphisms C’ — G(C) where C" is equivalent (in ') to the image of an object of C°. Since

G is essentially surjective, this is the whole of Gl?G(C)‘

It follows that if F’ is a p’-left Kan extension of F’|€"0, then F is a p-left Kan extension of F|C°.

Conversely, if F' is a p-left Kan extension of F|€", then F’ is a p/-left Kan extension of F’ |€'O at G(C), for
every object C' € C. Since G is essentially surjective, Lemma 4.3.2.5 implies that F” is a p’-left Kan extension
of F’|€'0 at every object of €. This completes the proof of (2). O

Lemma 4.3.2.7. Suppose given a diagram of co-categories

e —>D

ol

C——=7
as in Definition 4.5.2.2, where F is a left Kan extension of Fy relative to p. Then the induced map

DF/ — fD;F/ X,D;Fo/ ®F0/
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is a trivial fibration of simplicial sets. In particular, we may identify p-colimits of F with p-colimits of Fy.

Proof. Using Lemma 4.3.2.6, we may reduce to the case where € is minimal. Let us call a simplicial subset
& C C complete if it has the following property: for any simplex o : A" — C, if 0|A{0 """ i} factors through
€Y and o|Ali+1n} factors through &, then o factors through €. Note that if € is complete, then el ce.
We next define a transfinite sequence of complete simplicial subsets of €

celc...

as follows: if A is a limit ordinal, we let C* = Uaer €% If €% = €, then we set @21 = €. Otherwise, choose
some simplex o : A" — € which does not belong to €%, where the dimension n of o is chosen as small as
possible, and let €™ be the smallest complete simplicial subset of € containing C* and the simplex o.

Let F, = F|C%. We will prove that for every 8 < a the projection

bap: Dry = Dyp,y *wy,  Dry)

is a trivial fibration of simplicial sets. Taking o > 3 = 0, we have €% = € and the proof will be complete.

Our proof proceeds by induction on a. If o = 3, then ¢, g is an isomorphism and there is nothing to
prove. If o > 3 is a limit ordinal, then the inductive hypothesis implies that ¢ g is the inverse limit of a
transfinite tower of trivial fibrations, and therefore a trivial fibration. It therefore suffices to prove that if
®a,p is a trivial fibration, then ¢o1,g is a trivial fibration. We observe that ¢o413 = (b’a’ﬁ O Pat1,a;, Where
qb'a) 5 1s a pullback of ¢, g and therefore a trivial fibration by the inductive hypothesis. Consequently, it will
suffice to prove that ¢,11,, is a trivial fibration. The result is obvious if et = @%, so we may assume
without loss of generality that €*™! is the smallest complete simplicial subset of € containing €% together
with a simplex ¢ : A™ — €, where o does not belong to €%. Since n is chosen to be minimal, we may suppose
that o is nondegenerate, and that the boundary of o already belongs to C%.

Form a pushout diagram

€Y, xd A" —— @~
G(/)O_ *A" ——= @
By construction there is an induced map € — @, which is easily shown to be a monomorphism of simplicial
sets; we may therefore identify & with its image in C. Since € is minimal, we can apply Proposition 2.2.3.9
to deduce that € is complete, so that €' = €**. Let G denote the composition
), xA" — € 5D
and Gy = G| GOU *0 A", It follows that ¢ny1.« is a pullback of the induced map
. /
¢ : 'Dcv/ — DpG/ XD;’Ga/ ®G0/'
To complete the proof, it will suffice to show that v is a trivial fibration of simplicial sets.
Let Gy = G| G(/)U. Let &€ = D¢/, & = D;OQO/, and let ¢ : &€ — &' be the induced map. We can identify
G with a map ¢’ : A™ — &. Let o}, = ¢/| 9 A™. Then we wish to prove that the map
/. /
w : 80// — 8q0// XE;U()/ 8‘1"6/
is a trivial fibration. Let C = o(0).

The projection G(/)U — 890 is a trivial fibration of simplicial sets, and therefore cofinal. Since F' is a p-left
Kan extension of Fy at C, we conclude that o/(0) is a g-initial object of €.
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To prove that ¢ is a trivial fibration, it will suffice to prove that ¢ has the right lifting property with
respect to the inclusion 9 A™ C A™, for each m > 0. Unwinding the definitions, this amounts to the
existence of a dotted arrow as indicated in the diagram

9 Antm+l s o e

7
-
/lq
-
-

Artmtl —— g’

However, the map s carries the initial vertex of A"*™*1 to a vertex of € which is ¢-initial, so that the desired
extension can be found. O

Proposition 4.3.2.8. Let F' : € — D be a functor between oo-categories, p : D — D' an inner fibration
of co-categories, and C° C @' C @ full subcategories. Suppose that F| @' is a p-left Kan extension of F| ev.
Then F is a p-left Kan extension of F| @Y if and only if F is a p-left Kan extension of F| ev.

Proof. Let C be an object of €; we will show that F is a p-left Kan extension of F| €Y at C if and only if F
is a p-left Kan extension of F| @' at C. Consider the composition

1
> Fo

Fo (690)‘> c (e}c) —

We wish to show that Fg is a p-colimit diagram if and only if Fé is a p-colimit diagram. According to
Lemma 4.3.2.7, it will suffice to show that F}| G}C is a left Kan extension of F2. Let f : C’ — C be an

object of G}C. We wish to show that the composite map

€9, — (€ )" & D
(/f) —’(/Cf) -

is a p-colimit diagram. Since the projection G(/) F G(/)C, is cofinal (in fact, a trivial fibration), it will suffice

to show that F2, is a p-colimit diagram (Proposition 4.3.1.7). This follows from our hypothesis that F|C!
is a p-left Kan extension of F| €. O

Proposition 4.3.2.9. Let F : @ x €' — D be a functor between co-categories, p : D — D’ an inner fibration
of oo-categories, and C° C @ a full subcategory. The following conditions are equivalent:

(1) The functor F is a p-left Kan extension of F|C° x €.

(2) For each object C' € €', the induced functor For : Cx{C'} — D is a p-left Kan extension of
Fer| €0 x{C"}.

Proof. Tt suffices to show that F is a p-left Kan extension of F|C%x € at an object (C,C") € €x € if
and only if Fe is a p-left Kan extension of Fp|C® x{D} at C. This follows from the observation that the
inclusion G(/JC x{ider} C 69(; X € is cofinal (because ides is a final object of €)c). O

Lemma 4.3.2.10. Let m > 0, n > 1 be integers, and let

A™ x A"~ S

be a diagram of simplicial sets, where p is an inner fibration and fy(0,0) is a p-initial vertex of X. Then
there exists a morphism f: A™ x A™ — X rendering the diagram commutative.
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Proof. Choose a sequence of simplicial sets

@AamxA") [ (A™x9A") =Y(0)C...CY(k)=A"x A",
DA™ XD AP
where each Y (i 4+ 1) is obtained from Y (¢) by adjoining a single nondegenerate simplex whose boundary

already lies in Y'(¢). We prove by induction on ¢ that f; can be extended to a map f; such that the diagram

i) I x
L
A™ x A" —— §

is commutative. Having done so, we can then complete the proof by choosing i = k.
If ¢ = 0, there is nothing to prove. Let us therefore suppose that f; has been constructed, and consider
the problem of constructing f;11 which extends f;. This is equivalent to the lifting problem

6ATL)X
7
o,
~
AT — S,

It now suffices to observe that where r > 0 and 0¢(0) = f,(0,0) is a p-initial vertex of X (since every simplex
of A™ x A™ which violates one of these conditions already belongs to Y (0) ). O

Lemma 4.3.2.11. Suppose given a diagram of simplicial sets

X—F——>Y

N

where p is an inner fibration. Let K be a simplicial set, let gs € Mapg(K x S, X), and let ¢ = poqs. Then

the induced map
X4s/ _, yas/

is an inner fibration (where the above simplicial sets are defined as in §4.2.2).
Proof. Unwinding the definitions, we see that every lifting problem
— x4s/
7
. e
s/
B——Yyuas/
is equivalent to a lifting problem
(Ax (Ko A) T4, k(B x K) —=X
&/ - / ip
Bx (KoAY) — V.
We wish to show that this lifting problem has a solution, provided that 4 is inner anodyne. Since p is an

inner fibration, it will suffice to prove that ¢’ is inner anodyne, which follows from Corollary 2.2.2.4. O
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Lemma 4.3.2.12. Consider a diagram of co-categories
e—-D &D

where p is an inner fibration. Let C° C € be a full subcategory.
Suppose given n > 0 and a commutative diagram

9 A" — > Mapy, (€, D)

7
ro- l

-

A" 2> Map,, (€°, D)

with the property that the functor F : C — D, determined by evaluating fo at the verter {0} C A", is a
p-left Kan extension of F| @Y. Then there exists a dotted arrow f rendering the diagram commutative.

Proof. The proof uses the same strategy as that of Lemma 4.3.2.7. Using Lemma 4.3.2.6 and Proposition
A.2.4.1, we may replace C by a minimal model and thereby assume that € is minimal. As in the proof of
Lemma 4.3.2.7, let us call a simplicial subset € C € complete if it has the following property: for any simplex
o: A" — C,if 0|A{07“"i} factors through €° and U\A{i+1""’"} factors through &, then o factors through €&.
Let P denote the partially ordered set of pairs (€, fe), where € C € is complete and fe¢ is a map rendering
commutative the diagram

OA™ L Map, (€, D)

|

Map, (€, D)

o

A" —— Mapy, (€°, D).

fe

A'n.

We partially order P as follows: (€, fe) < (&', fer) if € C &' and fe = fe| €. Using Zorn’s lemma, we deduce
that P has a maximal element (&, fe). If € = €, we may take f = fe and the proof is complete. Otherwise,
choose a simplex ¢ : A™ — € which does not belong to €, where m is as small as possible. It follows that o
is nondegenerate, and that the boundary of o belongs to €. Form a pushout diagram

€l x0A" — ¢

]

Cl KA gl

As in the proof of Lemma 4.3.2.7, we may identify & with a complete simplicial subset of €, which strictly
contains €. Since (€, f¢) is maximal, we conclude that fe does not extend to &’. Consequently, we deduce
that there does not exist a dotted arrow rendering the diagram

ey, 0 A™ Fun(A”, D)

— 7
—
—
—
—
—
—
—

€9, *A™ > Fun(A", D) X pun(o an,p) Fun(d A", D)
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commutative. Let ¢ : 690 — Fun(A"™, D) be the restriction of the upper horizontal map, and let ¢’ : G(/)J —
Fun(A™, D), qa : G(/)U — Fun(0 A™, D), ¢} : (300 — Fun(0 A", D) be defined by composition with q. It
follows that there exists no solution to the associated lifting problem

dA™ Fun(A", D),/

7
—
—
—
—
—
—
—

—

A™ /;> Fun(A”, 9/),1// X Fun(9 AnvD’)q’a/ Fun(a An, D)qa/'

Applying Proposition A.2.4.1, we deduce also the insolubility of the equivalent lifting problem

0A™ Fun(A", D)4/

— 7
—
—
—
—
—
—
—
—

—

Am s Fun(A”, D')q// X

Fun(8 An, D7)/ Fun(9 A", D)%/,

Let gan denote the map G?U XA"™ — D xA" determined by ¢, and let and let X = (D xA"™)9a"/ he

the simplicial set constructed in §4.2.2. Let ¢n : €, xA" — D' x A" and X' = (D’ xA")%/ be defined
similarly. We have natural isomorphisms

Fun(A™, D)7 ~ Mapa. (A", X)
Fun(d A", D)%/ ~ Map . (0 A", X).
Fun(A™, D)7/ ~ Map A (A", X)
Fun(d A™, D)%/ ~ Map . (0 A", X).

These identifications allow us reformulate our insoluble lifting problem once more:

(DA™ x A™) [Ty oo an (AT X DA") —2—5 ¢
AWLXATL/ xl

We have a commutative diagram
P

N

Proposition 4.2.2.4 implies that r and 7’ are Cartesian fibrations, and that i carries r-Cartesian edges to
r’-Cartesian edges. Lemma 4.3.2.11 implies that 1 is an inner fibration. Let ¢ : X3 — DCf{O} be the
diagram induced by taking the fibers over the vertex {0} C A™. We have a commutative diagram

X

xl

Deg, 7 Deg, X{0}

.

/
'D%?Um)/ -~ ‘DC%/ _— DCf{O}
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in which the horizontal arrows are categorical equivalences. The vertex go(0,0) € DC’{O} lifts to a vertex of
De? , whose image in De? ©/ is f-initial (in virtue of our assumption that F' is a p-left Kan extension of

F| @Y. Tt follows that go(0,0) is 1o-initial when regarded as a vertex of X{0y- Applying Proposition 4.3.1.14,
we deduce that go(0,0) is ¢-initial when regarded as a vertex of X. Lemma 4.3.2.10 now guarantees the
existence of the dotted arrow g, contradicting the maximality of (€, fe). O

The following result addresses the existence problem for left Kan extensions:

Lemma 4.3.2.13. Suppose given a diagram of co-categories

GOLD

JF 1l
7 p
/
7/

C——7D'

where p is an inner fibration, and the left vertical arrow is the inclusion of a full subcategory. The following
conditions are equivalent:

(1) There exists a functor F : € — D rendering the diagram commutative, such that F is a p-left Kan
extension of Fy.

(2) For every object C € C, the diagram given by the composition
e — " 8D
admits a p-colimit.

Proof. Tt is clear that (1) implies (2). Let us therefore suppose that (2) is satisfied; we wish to prove that
Fy admits a left Kan extension. We will follow the basic strategy used in the proofs of Lemmas 4.3.2.7
and 4.3.2.12. Using Proposition A.2.4.1 and Lemma 4.3.2.6, we can replace the inclusion €Y C @ by any
categorically equivalent inclusion e’ C €. Using Proposition 2.2.3.8, we can choose € to be a minimal
model for €; we thereby reduce to the case where C is itself a minimal co-category.

We will say that a simplicial subset & C € is complete if it has the following property: for any simplex
o: A" — @, if | A%} factors through €° and | Ati+1-n} factors through &, then o factors through &.
Note that if & is complete, then €° C €. Let P be the set of all pairs (&, fe) where & C @ is complete, fe is
a map of simplicial sets which fits into a commutative diagram

and every object C € &€, the composite map
() € (€/cf — e 55D
is a p-colimit diagram. We view P as a partially ordered set, with (€, fe) < (€, fer)if € C € and fe/| € = fe.

This partially ordered set satisfies the hypotheses of Zorn’s lemma, and therefore has a maximal element
which we will denote by (&, fe). If € = C, then f¢ is a p-left Kan extension of Fj and the proof is complete.
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Suppose that & # C. Then there is a simplex o : A™ — € which does not factor through &; choose such
a simplex where n is as small as possible. The minimality of n guarantees that o is nondegenerate, that
0| & A™ factors through &, and (if n > 0) that ¢(0) ¢ €°. Form a pushout diagram

Q) xOA" —>¢

|

QY *A" — > ¢/

This diagram induces a map & — @€, which is easily shown to be a monomorphism of simplicial sets; we may
therefore identify & with its image in €. Since € is minimal, we can apply Proposition 2.2.3.9 to deduce
that & C € is complete. Since (€, Fe¢) € P is maximal, it follows that we cannot extend Fe to a functor
Fer : & — D such that (€', Fg/) € P.
Let g denote the composition
) ey,

The map fe determines a commutative diagram

aAnL)Dq/
s

7
g - ,
7 p
s

An > D;q/ :

Extending fe to a map fe such that (€', fe/) € P is equivalent to producing a morphism g : A" — Dyy
rendering the above diagram commutative which, if n = 0, is a p-colimit of ¢. In the case n = 0, the existence
of such an extension follows from assumption (2). If n > 0, let C = ¢(0); then the projection G(/JU — G?c is
a trivial fibration oco-categories and ¢ factors as a composition

€y — Co - D.

We obtain therefore a commutative diagram

Dq/ %Dq//

)

! !
DPQ/ i qu’/

where the horizontal arrows are categorical equivalences. Since (€, fe) € P, (rogp)(0) is a p”-initial vertex of
Dy/. Applying Proposition 4.3.1.6, we conclude that go(0) is a p’-initial vertex of D,,, which guarantees the
existence of the desired extension g. This contradicts the maximality of (€, f¢) and completes the proof. [

Corollary 4.3.2.14. Let p : D — & be a coCartesian fibration of co-categories. Suppose that each fiber
of p admits small colimits, and that for every morphism E — E' in &, the associated functor Dy — D
preserves small colimits. Let C be a small co-category, and C° C © a full subcategory. Then every functor
Fy: C® — D admits a left Kan extension relative to p.

Proof. This follows immediately from Lemma 4.3.2.13 and Corollary 4.3.1.11. O

Combining Lemmas 4.3.2.12 and 4.3.2.13, we deduce:
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Proposition 4.3.2.15. Suppose given a diagram of co-categories
e—D L&D,

where p is an inner fibration. Let C° be a full subcategory of C. Let K C Mapq (€, D) be the full subcategory
spanned by those functors F : @ — D which are p-left Kan extensions of F|C’. Let X' C Mapq, (€%, D) be
the full subcategory spanned by those functors Fy : €Y — D with the property that, for each object C € C,
the induced diagram G(/)C — D has a p-colimit. Then the restriction functor X — K is a trivial fibration of
simplicial sets.

Corollary 4.3.2.16. Suppose given a diagram of co-categories
D L&D,

where p is an inner fibration. Let C° be a full subcategory of C. Suppose further that, for every functor
Iy e MapD/(GO,D), there exists a functor F € Mapq, (€, D) which is a p-left Kan extension of Fy. Then
the restriction map i* : Mapq, (€, D) — Mapq, (€%, D) admits a section iy, whose essential image consists of
precisely of those functors F' which are p-left Kan extensions of F| ev.

In the situation of Corollary 4.3.2.16, we will refer to 4, as a left Kan extension functor. We note that
Proposition 4.3.2.15 proves not only the existence of i;, but also its uniqueness up to homotopy (the collection
of all such functors is parametrized by a contractible Kan complex). The following characterization of i,
gives an alternative explanation for its uniqueness:

Proposition 4.3.2.17. Suppose given a diagram of co-categories
D L&D,

where p is an inner fibration. Let i : €° C @ be the inclusion of a full subcategory, and suppose that
every functor Fy € MapD/(@O,D) admits a p-left Kan extension. Then the left Kan extension functor i :
Mapg, (€%, D) — Mapqy (C, D) is a left adjoint to the restriction functor i* : Mapq, (€, D) — Mapq, (€°, D).

Proof. Since i* o, is the identity functor on Mapq, (€%, D), there is an obvious candidate for the unit
w:id — 1% o4

of the adjunction: namely, the identity. According to Proposition 5.2.2.7, it will suffice to prove that for
every F' € Mapq, (€%, D), G € Mapy, (€, D), composition with u induces a homotopy equivalence

MaPytap,, (e,0) ((tF; G) = Mapyp, o0y (it F,i*G) = Mapyg, |, (e0,0)(F,i*G)
in the homotopy category H. This morphism in H is represented by the restriction map
Homyy,,,, ,(e,0) (0 F, G) — Homy, oo ) (F,i*G)
which is a trivial fibration by Lemma 4.3.2.12. O

Remark 4.3.2.18. Throughout this section we have focused our attention on the theory of (relative) left
Kan extensions. There is an entirely dual theory of right Kan extensions in the co-categorical setting, which
can be obtained from the theory of left Kan extensions by passing to opposite co-categories.
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4.3.3 Kan Extensions along General Functors

Our goal in this section is to generalize the theory of Kan extensions to the case where the change of diagram
category is not necessarily given by a fully faithful inclusion €° C €. As in §4.3.2, we will discuss only the
theory of left Kan extensions; a dual theory of right Kan extensions can be obtained by passing to opposite
oo-categories.

The ideas introduced in this section are relatively elementary extensions of the ideas of §4.3.2. However,
we will encounter a new complication. Let § : @ — € be a change of diagram oo-category, f : € — D a
functor, and &(f) : €' — D its left Kan extension along & (to be defined below). Then one does not generally
expect that §*0;(f) to be equivalent to the original functor f. Instead, one has only a unit transformation
f—6*8(f). To set up the theory, this unit transformation must be taken as part of the data. Consequently,
the theory of Kan extensions in general requires more elaborate notation and terminology than the special
case treated in §4.3.2. We will compensate for this by considering only the case of absolute left Kan extensions.
It is straightforward to set up a relative theory as in §4.3.2, but we will not need such a theory in this book.

Definition 4.3.3.1. Let § : K — K’ be a map of simplicial sets, let D be an co-category, and let f : K — D
be a diagram. A left extension of f along § consists of a map f/: K/ — D and a morphism f — f/o¢ in the
oo-category Fun(K, D).

Equivalently, we may view a left extension of f : K — D along 6 : K — K’ as a map F : M°?(§) — D
such that F|K = f, where M°P(§) = M(§°)°P = (K x A!) [k 1y K’ denotes the mapping cylinder of 4.

Definition 4.3.3.2. Let 6 : K — K’ be a map of simplicial sets, and let F : M°P(§) — D be a diagram in
an oo-category D (which we view as a left extension of f = F|K along ¢). We will say that F is a left Kan
extension of f along ¢ if there exists a commutative diagram

’

mor) s g
W
Al

where F" is a categorical equivalence, X is an co-category, I' = ' o F”, and F’ is a left Kan extension of
F'|X xa1{0}.

Remark 4.3.3.3. In the situation of Definition 4.3.3.2, the map p : X — A' is automatically a coCartesian
fibration. To prove this, choose a factorization

M(5°P)" 5 (K')F — (A1)

where i is marked anodyne, and X' — A is a Cartesian fibration. Then 4 is a quasi-equivalence, so that
Proposition 3.2.2.7 implies that M (5°?) — K’ is a categorical equivalence. It follows that X is equivalent to
(X')°P (via an equivalence which respects the projection to A'), so that the projection p is a coCartesian
fibration.

The following result asserts that the condition of Definition 4.3.3.2 is essentially independent of the choice
of X.

Proposition 4.3.3.4. Let § : K — K’ be a map of simplicial sets, and let F : M°P(§) — D be a diagram in
an oo-category D which is a left Kan extension along 0. Let

F//
MeP —

Nk

Al
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be a diagram where F" is both a cofibration and a categorical equivalence of simplicial sets. Then F' = F'oF” |
for some map F' : X — D which is a left Kan extension of F'| K x A1{0}.

Proof. By hypothesis, there exists a commutative diagram

MoP(5) G %’ & )

7
r 7
F// / q
7
e

K —— Al

where K is an co-category, F' = G’ o G”, and G” is a categorical equivalence, and G’ is a left Kan extension
of G'| K’ xa1{0}. Since X’ is an co-category, there exists a map r as indicated in the diagram such that
G" = r o F”. We note that r is a categorical equivalence so that the commutativity of the lower triangle
p = g or follows automatically. We now define F/ = G’ o r, and note that part (2) of Lemma 4.3.2.6 implies
that F” is a left Kan extension of F'| X x A1{0}. O

We have now introduced two different definitions of left Kan extensions: Definition 4.3.2.2, which applies
in the situation of an inclusion €° C € of a full subcategory into an co-category €, and Definition 4.3.3.2
which applies in the case of a general map § : K — K’ of simplicial sets. These two definitions are essentially
the same. More precisely, we have the following assertion:

Proposition 4.3.3.5. Let € and D be oco-categories, and let § : C° — @ denote the inclusion of a full
subcategory.

(1) Let f:C — D be a functor, fy its restriction to €%, so that (f,idy,) can be viewed as a left extension of
fo along 6. Then (f,idy,) is a left Kan extension of fo along § if and only if f is a left Kan extension

of fo-
(2) A functor fo: €Y — D has a left Kan extension if and only if it has a left Kan extension along 8.

Proof. Let X denote the full subcategory of € x A! spanned by the objects (C,{i}) where either C' € €° or
i =1, so that we have inclusions
M°P(§) C K C € xAL

To prove (1), suppose that f: C — D is a left Kan extension of fo = f] €° and let F denote the composite
map

xcexA weLo.

It follows immediately that F is a left Kan extension of F|€" x{0}, so that F|M°(¢) is a left Kan extension
of fy along J.

To prove (2), we observe that the “only if” follows from (1); the converse follows from the existence
criterion of Lemma 4.3.2.13. O

Suppose that § : K° — K is a map of simplicial sets, D an oo-category, and that every diagram K° — D
admits a left Kan extension along §. Choose a diagram

MoP(6) d %
N

where j is inner anodyne and X is an co-category, which we regard as a correspondence from K° = K x a1 {0}
to K! = K xa1{1}. Let € denote the full subcategory of Fun(X, D) spanned by those functors F' : X — D
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such that F is a left Kan extension of Fy = F|X". The restriction map p : € — Fun(K°, D) can be written

as a composition of € — px’ (a trivial fibration by Proposition 4.3.2.15) and Fun(X", D) — Fun(K°, D)
(a trivial fibration since K — K° is inner anodyne), and is therefore a trivial fibration. Let 8y be the
composition of a section of p with the restriction map € C Fun(X, D) — Fun(M°?(§), D), and let & denote
the composition of §; with the restriction map Fun(M°P(6), D) — Fun(K!,D). Then J; and 4 are well-
defined up to equivalence, at least once X has been fixed (independence of the choice of X will follow from
the characterization given in Proposition 4.3.3.7). We will abuse terminology by referring to both 6, and &
as left Kan extension along ¢ (it should be clear from context which of these functors is meant in a given
situation). We observe that &, assigns to each object fo : K — D a left Kan extension of fy along 6.

Example 4.3.3.6. Let € and D be co-categories, and let 7 : @° — @€ be the inclusion of a full subcategory.
Suppose that i, : Fun(€’, D) — Fun(€, D) is a section of i*, which satisfies the conclusion of Corollary
4.3.2.16. Then 14, is a left Kan extension along i in the sense defined above; this follows easily from Proposition
4.3.3.5.

Left Kan extension functors admit the following characterization:

Proposition 4.3.3.7. Let § : K% — K be a map of simplicial sets, let D be an oco-category, let §* :
Fun(K!, D) — Fun(K°, D) be the restriction functor, and let 8, : Fun(K°, D) — Fun(K?', D) be a functor of
left Kan extension along §. Then & is a left adjoint of 6*.

Proof. The map d can be factored as a composition
K9 % MoP(5) L K!

where r denotes the natural retraction of M°P(§) onto K!. Consequently, 6* = i* o r*. Proposition 4.3.2.17
implies that the left Kan extension functor ¢, is a left adjoint to i*. By Proposition 5.2.2.5, it will suffice
to prove that r* is a right adjoint to the restriction functor j* : Fun(M°P(4), D) — Fun(K',D). Using
Corollary 2.3.7.12, we deduce that j* is a coCartesian fibration. Moreover, there is a simplicial homotopy
Fun(M°P(6), D) x Al — Fun(M°P(5), D) from the identity to r* o j*, which is a fiberwise homotopy over
Fun(K!,D). It follows that for every object F of Fun(K', D), r*F is a final object of the co-category
Fun(M°P(6), D) Xpun(x1,») {F}. Applying Proposition 5.2.4.3, we deduce that r* is right adjoint to j* as
desired. O

Let § : K° — K be a map of simplicial sets and D an oo-category which which that left Kan extension & :
Fun(K°, D) — 6 Fun(K!, D) is defined. In general, the terminology “Kan extension” is perhaps somewhat
unfortunate: if F: K9 — D is a diagram, then §*6,F need not coincide with F', even up to equivalence. If §
is fully faithful, then the unit map F — §*6,F is an equivalence: this follows from Proposition 4.3.3.5. We
will later need the following more precise assertion:

Proposition 4.3.3.8. Let 6 : €° — €' and fy : C° — D be functors between co-categories, and let f1 : C1 —
D, a: fo— 0*f1 = f100 be aleft Kan extension of fo along 8. Let C' be an object of C° such that, for every
C' € @Y, the functor & induces an isomorphism

Mapeo (C’, C') — Mape:1 (6C’, 6C)
in the homotopy category H. Then the morphism a(C) : fo(C) — f1(6C) is an equivalence in D.

Proof. Choose a diagram

MeP(§) £ vt

N

Al
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where M is a correspondence from C° to €' associated to 8, F is a left Kan extension of fo=F] €%, and
F o G is the map M°P(§) — D determined by fo, f1, and «. Let u : C — §C be the morphism in M given
by the image of {C} x Al C M°P(§) under G. Then «(C) = F(u), so it will suffice to prove that F(u) is an
equivalence. Since F' is a left Kan extension of fy at §C, the composition

(€%c)” = M5 D

is a colimit diagram. Consequently, it will suffice to prove that v : C'— §C' is a final object of (?950. Consider
the diagram
0 0 4 o0
G/C — (‘f/u — (‘3/50 .

The oco-category on the left has a final object id¢, and the map on the left is a trivial fibration of simplicial
sets. We deduce that s%u is a final object of C(}u. Since q(su) = u € (3950, it will suffice to show that ¢ is an

equivalence of co-categories. We observe that ¢ is a map of right fibrations over €°. According to Proposition
3.3.2.5, it will suffice to show that for each object C’ in €°, the map ¢ induces a homotopy equivalence of

Kan complexes
€), X eo{C"} = 50 xeo{C'}.

This map can be identified with the map
Mapeo (C’, C') — Mapy,(C’, 6C) ~ Mape: (6C’, 6C),
in the homotopy category H, and is therefore a homotopy equivalence by assumption. O
We conclude this section by proving that the construction of left Kan extensions behaves well in families.
Lemma 4.3.3.9. Suppose given a commutative diagram

@0L>€4F>'D

O

of co-categories, where p and q are coCartesian fibrations, i is the inclusion of a full subcategory, and i carries
q-coCartesian morphisms of €Y to p-coCartesian morphisms of €. The following conditions are equivalent:

(1) The functor F is a left Kan extension of F|C°.
(2) For each object E € &, the induced functor Fg : Cg — D is a left Kan extension of Fg| G%.

Proof. Let C be an object of € and let E = p(C'). Consider the composition
el F,
(6(1)5)70 - (690)‘> = D.
We will show that F¢ is a colimit diagram if and only if Fo o G* is a colimit diagram. For this, it suffices
to show that the inclusion G : (G%)/C C 69(; is cofinal. According to Proposition 2.3.3.3, the projection

p': €c — €/ is a coCartesian fibration, and a morphism

!

NS

C

Cl C//
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in €¢ is p’-coCartesian if and only if f is p-coCartesian. It follows that p’ restricts to a coCartesian fibration
G//c — &,p. We have a pullback diagram of simplicial sets

G
(€%)/c ——= €

|

The right vertical map is smooth (Proposition 4.1.2.14) and Gy is right anodyne, so that G is right anodyne
as desired. O

s
X—Y
P
q
S
be a commutative diagram of simplicial sets, where p and q are coCartesian fibrations, and § carries p-

coCartesian edges to q-coCartesian edges. Let fo : X — € be a diagram in an oo-category C, and let
f1:Y —=C, a: fg— fio0d be a left extension of fo. The following conditions are equivalent:

Proposition 4.3.3.10. Let

(1) The transformation « exhibits f1 as a left Kan extension of fo along §.

(2) For each vertex s € S, the restriction as : fo|Xs — (f1 0 0)|Xs exhibits f1|Ys as a left Kan extension
of folXs along §s : Xs — Ys.

Proof. Choose an equivalence of simplicial categories €(S) — &, where € is fibrant, and let [1] denote the
linearly ordered set {0, 1}, regarded as a category. Let ¢’ denote the induced map €(S x A') — & x[1]. Let
M denote the marked simplicial set

(xmix@ahh) I rene

(x°P)fx{0}

Let St¢f : (Seth)(sxaner — (8etf)€*[) denote the straightening functor defined in §3.2.1, and choose a
fibrant replacement
StiM — Z

in (8et{)€ >, Let S = N(€), so that S’ x A ~ N(€ x[1]), and let 1 : €(S" x A') — € x[1] be the counit
map. Then
Unjp'(Z)

is a fibrant object of (SetZ)/(S/XN)DP, which we may identify with a coCartesian fibration of simplicial sets
M— S x AL
We may regard M as a correspondence from M = M x21{0} to M' = M x a1 {1}. By construction, we
have a unit map
w: MP(6) — M xgS.

Theorem 3.2.0.1 implies that the induced maps ug : X — M" xg/S, u1 : ¥ — M! xg/S are equivalences
of coCartesian fibrations. Proposition 3.3.2.3 implies that the maps M°? x ¢S — M?, M xg/5 — M' are
categorical equivalences.
Let u’ denote the composition
MP(5) % MxgS — M,
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and let u) : X — M", w} : Y — M" be defined similarly. The above argument shows that u) and u}
are categorical equivalences. Consequently, the map u’ is a quasi-equivalence of coCartesian fibrations over
A, and therefore a categorical equivalence (Proposition 3.2.2.7). Replacing M by the product M x K if
necessary, where K is a contractible Kan complex, we may suppose that u’ is a cofibration of simplicial sets.
Since D is an oo-category, there exists a functor F': M — D as indicated in the diagram below:

M0p(5) (fo,f1,a) D

Consequently, we may reformulate condition (1) as follows:
(1') The functor F is a left Kan extension of F|M°.

Proposition 3.3.2.5 now implies that, for each vertex s of S, the map X3 — Mg is a categorical equivalence.
Similarly, for each vertex s of S, the inclusion Y; — M; is a categorical equivalence. It follows that the
inclusion M°P(§)s — M; is a quasi-equivalence, and therefore a categorical equivalence (Proposition 3.2.2.7).
Consequently, we may reformulate condition (2) as follows:

(2') For each vertex s € S, the functor F|M; is a left Kan extension of F|M?.

Using Lemma 4.3.2.6, it is easy to see that the collection of objects s € S’ such that F| M is a left Kan
extension of F| Mg is stable under equivalence. Since the inclusion S C S’ is a categorical equivalence, we
conclude that (2') is equivalent to the following apparently stronger condition:

(2") For every object s € S’, the functor F| M, is a left Kan extension of F| M.

The equivalence of (1’) and (2") follows from Lemma 4.3.3.9. O
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4.4 Examples of Colimits

In this section, we will analyze in detail the colimits of some very simple diagrams. Our first three examples
are familiar from classical category theory: coproducts (§4.4.1), pushouts (§4.4.2), and coequalizers (§4.4.3).

Our fourth example is slightly more unfamiliar. Let € be an ordinary category which admits coproducts.
Then C is naturally tensored over the category of sets. Namely, for each C € C and S € Set, we can
define C' ® S to be the coproduct of a collection of copies of C, indexed by the set S. The object C' ® S is
characterized by the following universal mapping property:

Home(C ® S, D) ~ Homge (S, Home(C, D)).

In the oo-categorical setting, it is natural to try to generalize this definition by allowing S to an object of 8.
In this case, C'® S can again be viewed as a kind of colimit, but cannot be written as a coproduct unless S
is discrete. We will study the situation in §4.4.4.

Our final objective in this section is to study the theory of retracts in an co-category €. In §4.4.5, we
will see that there is a close relationship between retracts in € and idempotent endomorphisms, just as in
classical homotopy theory. Namely, any retract of an object C' € € determines an idempotent endomorphism
of C'; conversely, if C is idempotent complete, then every idempotent endomorphism of C' determines a retract
of C. We will return to this idea in §5.1.4.

4.4.1 Coproducts

In this section, we discuss the simplest type of colimit: namely, coproducts. Let A be a set; we may regard
A as a category with
x ifI=J

Homa(l,J) = {(z) i1 .

We will also identify A with the (constant) simplicial set which is the nerve of this category. We note a
functor G : A — 8Seta is strongly fibrant if and only if it takes values in the category Kan of Kan complexes.
If this condition is satisfied, then the product [] . 4 G(c) is a homotopy limit for G.

Let F: A — € be a functor from A to a fibrant simplicial category; in other words, F' specifies a collection
{Xo}aca of objects in €. A homotopy colimit for F' will be referred to as a homotopy coproduct of the objects
{Xo}aca. Unwinding the definition, we see that a homotopy coproduct is an object X € € equipped with
morphisms ¢, : X, — X such that the induced map

Mape(X,Y) — [ Mape(Xa,Y)
acA

is a homotopy equivalence for every object Y € €. Consequently, we recover the description given in Example
1.2.13.1. As we noted earlier, this characterization can be stated entirely in terms of the enriched homotopy
category hC: the maps {¢,} exhibit X as a homotopy coproduct of the family {X, }nca if and only if the
induced map
Mape(X,Y) — H Mape(Xa,Y)
a€cA

is an isomorphism in the homotopy category H of spaces, for each Y € C.

Now suppose that € is an co-category, and let p : A — € be a map. As above, we may identify this with
a collection of objects { X }aca of C. To specify an object of €, is to give an object X € € together with
morphisms ¢, : X, — X for each « € A. Using Theorem 4.2.4.1, we deduce that X is a colimit of the
diagram p if and only if the induced map

Mape(X,Y) — [ Mape(Xa,Y)
acA
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is an isomorphism in H, for each object Y € C. In this case, we say that X is a coproduct of the family

{Xa}a€A~
In either setting, we will denote the (homotopy) coproduct of a family of objects { X4 }aca by

H X;.

acA

It is well-defined up to (essentially unique) equivalence.
Using Corollary 4.2.3.10, we deduce the following:

Proposition 4.4.1.1. Let C be an oo-category, and let {po : Ko — Claca be a family of diagrams in C
indezed by a set A. Suppose that each p, has a colimit X, in C. Let K = [[ K., and let p: K — C be the
result of amalgamating the maps po. Then p has a colimit in C if and only if the family {Xo}taca has a
coproduct in C; in this case, one may identify colimits of p with coproducts HQGA Xa-

4.4.2 Pushouts

Let C be an oco-category. A square in € is a map A' x Al — €. We will typically denote squares in € by
diagrams

X —4=x

)

Y/$YV7

with the “diagonal” morphism r : X’ — Y and homotopies r ~ qo p’, r ~ p o ¢’ being implicit.
We have isomorphisms of simplicial sets

(A2)” ~ Al x At ~ (A2

Consequently, given a square o : Al x Al — €, it makes sense to ask whether or not ¢ is a limit or colimit
diagram. If o is a limit diagram, we will also say that o is a pullback square or a Cartesian square, and we
will informally write X’ = X Xy Y’. Dually, if ¢ is a colimit diagram, we will say that o is a pushout square
or a coCartesian square, and write Y = X [, Y.

Now suppose that € is a (fibrant) simplicial category. By definition, a commutative diagram

’

X/pHX

.

y L sy

is a homotopy pushout square if, for every object Z € C, the diagram

Mape(Y, Z) —— Mape(Y', Z)

l |

Mape(X, Z) — Mape (X', Z)

is a homotopy pullback square in Kan. Using Theorem 4.2.4.1, we can reduce questions about pushout
diagrams in an arbitrary co-category to questions about homotopy pullback squares in Kan.

The following basic transitivity property for pushout squares will be used repeatedly throughout this
book:
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Lemma 4.4.2.1. Let € be an co-category, and suppose given a map o : A? x A' — € which we will depict
as a diagram

X—Y——7

L

X —Y —7.
Suppose that the left square is a pushout in C. Then the right square is a pushout if and only if the outer

square is a pushout.

Proof. For every subset A of {z,y,z,2',y,2'}, let D(A) denote the corresponding full subcategory of A% x
Al and let o(A) denote the restriction of o to D(A). We may regard o as determining an object & €
Co({y,z,2",y’,2'})/- Consider the maps

¢ P
Co(za 2/ < Colly,z w21/ = Colya )/

The map on ¢ is the composition of the trivial fibration

Colzary =)/ = Col{za,2})/
with a pullback of

Cotty,zw =1/ = Cottzy )/
also a trivial fibration in virtue of our assumption that the square

Y——Z7

L

Y/ > Z/

is a pullback in €. The map % is a trivial fibration because the inclusion D({y,z’,y'}) C D({y, z,2', ¢, 2'})
is left anodyne. It follows that ¢(c) is an initial object of Cy(( 4 21, if and only if 1(c) is an initial object
of Co({y,a,y'})/» s desired. O

Our next objective is to apply Proposition 4.2.3.8 to show that in many cases, complicated colimits may
be decomposed as pushouts of simpler colimits. Suppose given a pushout diagram of simplicial sets

I ——

L

K —K

and a diagram p : K — C, where C is an oco-category. Suppose furthermore that p|K’, p|L’, and p|L admit
colimits in €, which we will denote by X, Y, and Z, respectively. If we suppose further that the map ¢ is
a cofibration of simplicial sets, then the hypotheses of Proposition 4.2.3.4 are satisfied. Consequently, we
deduce:

Proposition 4.4.2.2. Let C be an oo-category, and let p : K — C be a map of simplicial sets. Suppose given
a decomposition K = K'[[;, L, where L' — L is a monomorphism of simplicial sets. Suppose further that
p| K’ has a colimit X € C, p|L' has a colimit Y € €, and p|L has a colimit Z € C. Then one may identify
colimits for p with pushouts X [[y Z.

Remark 4.4.2.3. The statement of Proposition 4.4.2.2 is slightly vague. Implicit in the discussion is that
identifications of X with the colimit of p|K’ and Y with the colimit of p|L’ induce a morphism ¥ — X in
C (and similarly for Y and Z). This morphism is not uniquely determined, but it is determined up to a
contractible space of choices: see the proof of Proposition 4.2.3.4.

226



It follows from Proposition 4.4.2.2 that any finite colimit can be built using initial objects and pushout
squares. For example, we have the following:

Corollary 4.4.2.4. Let C be an oco-category. Then C admits all finite colimits if and only if C admits
pushouts and has an initial object.

Proof. The “only if” direction is clear. For the converse, let us suppose that € has pushouts and an initial
object. Let p: K — € be any diagram, where K is a finite simplicial set: that is, K has only finitely many
nondegenerate simplices. We will prove that p has a colimit. The proof goes by induction: first on the
dimension of K, then on the number of simplices of K having the maximal dimension.

If K is empty, then an initial object of C is a colimit for p. Otherwise, we may fix a nondegenerate
simplex of K having the maximal dimension, and thereby decompose K ~ K¢ ][5A» A™. By the inductive
hypothesis, p|K( has a colimit X and p| 0 A™ has a colimit Y. The oco-category A™ has a final object, so
p|A™ has a colimit Z (which we may take to be p(v), where v is the final vertex of A™). Now we simply
apply Proposition 4.4.2.2 to deduce that X [[, Z is a colimit for p. O

Using the same argument, one can show:

Corollary 4.4.2.5. Let f : C — €' be a functor between oo-categories. Assume that C has all finite colimits.
Then f preserves all finite colimits if and only if f preserves initial objects and pushouts.

We conclude by showing how all colimits can be constructed out of simple ones.

Proposition 4.4.2.6. Let C be an oco-category. Suppose that C admits pushouts and k-small coproducts.
Then € admits colimits for all k-small diagrams.

Proof. If k = w, we have already shown this as Corollary 4.4.2.4. Let us therefore suppose that x > w, and
that € has pushouts and k-small sums.

Let p: K — € be a diagram, where K is x-small. We first suppose that the dimension n of K is finite:
that is, K has no nondegenerate simplices of dimension > n. We prove that p has a colimit, working by
induction on n.

If n = 0, then K consists of a finite disjoint union of fewer than x vertices. The colimit of p exists by the
assumption that € has x-small sums.

Now suppose that every diagram indexed by a k-small simplicial set of dimension n has a colimit. Let
p: K — C be a diagram, with the dimension of K equal to n + 1. Let K™ denote the n-skeleton of K, and
K] ., € K,y the set of all nondegenerate (n + 1)-simplices of K, so that there is a pushout diagram of
simplicial sets

Kk I KxAT)~K.

’ 1
K], x0Ant

By Proposition 4.4.2.2, we can construct a colimit of p as a pushout, using colimits for p|K™, p|(K],; x
O A1) and p|(K),; x A™1). The first two exist by the inductive hypothesis; the last, because it is a sum
of diagrams which possess colimits.

Now let us suppose that K is not necessarily finite dimensional. In this case, we can filter K by its
skeleta {K™}. This is a family of simplicial subsets of K indexed by the set Z>o of nonnegative integers.
By what we have shown above, each p|K™ has a colimit z,, in C. Since this family is directed and covers K,
Corollary 4.2.3.10 shows that we may identify colimits of p with colimits of a diagram N(Z>q) — € which
we may write informally as

Tro — L1 — ...

Let L be the simplicial subset of N(Z>() which consists of all vertices, together with the edges which
join consecutive integers. A simple computation shows that the inclusion L C N(Zx() is a categorical
equivalence, and therefore cofinal. Consequently, it suffices to construct the colimit of a diagram L — C.
But L is 1-dimensional, and is x-small since x > w. O

227



The same argument proves also the following:

Proposition 4.4.2.7. Let k be a reqular cardinal, and let f : € — D be a functor between oco-categories,
where C admits k-small colimits. Then f preserves k-small colimits if and only if f preserves pushout squares
and k-small coproducts.

Let D be an oo-category containing an object X, and suppose that D admits pushouts. Then D x, admits
pushouts, and these pushouts map be computed in D. In other words, the projection f : Dy, — D preserves
pushouts. In fact, this is a special case of a very general result; it requires only that f is a left fibration and
the simplicial set A3 is weakly contractible.

Proposition 4.4.2.8. Let f : € — D be a left fibration of co-categories, and let p : K — C be a diagram.
Suppose that K is weakly contractible. Then:

(1) Letp: K* — C be an extension of p. Then D is a colimit of p if and only if f oD is a colimit of f o p.

(2) Letq: K*> — D be a colimit of fop. Thenq= fop, wherep is an extension ( automatically a colimit,
in virtue of (1)) of p.

Proof. To prove (1), fix an extension p: K — €. We first claim that the map
¢ : Gﬁ/ — Gp/ XDfOp/ ®foﬁ/

is a trivial fibration of simplicial sets. In other words, we must show that we can solve any lifting problem
of the form
(K xA) [ gun, (K" *xA) ——=¢

7
—
—~
—~
—~
_ f
—~
—

K% A

D.

Since f is a left fibration, it will suffice to prove that the left vertical map is left anodyne, which follows
immediately from Lemma 4.2.3.5.
We have a commutative diagram

[ Y’
85/ e (‘fp/ X@fp/ 'Dfﬁ/ _— Gp/

Lo,k

Dypy Dy -

If fopis a colimit diagram, the map ) is a trivial fibration. Since 1)’ is a pullback of 1, we conclude that 1)’
is a trivial fibration. It follows that v’ o ¢ is a trivial fibration, so that P is a colimit diagram. This proves
the “if” direction of (1).

To prove the converse, let us suppose that p is a colimit diagram. The maps ¢ and 1)’ o ¢ are both trivial
fibrations. It follows that the fibers of ¢’ are contractible. Using Lemma 4.2.3.6, we conclude that the map
0 is a trivial fibration, and therefore surjective on vertices. It follows that the fibers of 1 are contractible.
Since v is a left fibration with contractible fibers, it is a trivial fibration (Lemma 2.1.3.3). Thus fopis a
colimit diagram and the proof is complete.

To prove (2), it suffices to show that f has the right lifting property with respect to the inclusion
i: K C K”. Since f is a left fibration, it will suffice to show that 4 is left anodyne, which follows immediately
from Lemma 4.2.3.6. O
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4.4.3 Coequalizers
Let J denote the category depicted by the diagram

F

X—=Y.
G

In other words, J has two objects, X and Y, with Homg(X, X) = Homg(Y,Y) = %, Homy(Y, X) = , and
Homy(X,Y) = {F,G}.

To give a diagram p : N(J) — C in an oo-category C, one must give a pair of morphisms f = p(F),
g = p(G) in €, having the same domain x = p(X) and the same codomain y = p(Y). A colimit for the
diagram p is said to be a coequalizer of f and g.

Applying Corollary 4.2.3.10, we deduce the following:

Proposition 4.4.3.1. Let K and A be a simplicial sets, and let ig,i1 : A — K be embeddings having disjoint
images in K. Let K' denote the coequalizer of ig and i1; in other words, the simplicial set obtained from K
by identifying the image of ig with the image of i1. Let p : K' — @ be a diagram in an oo-category S, and
let g : K — C be the composition

K- K %8

Suppose that the diagrams q oig = q o i1 and q possess colimits x and y in S. Then iy and i1 induce maps
Jo,j1: ¢ — y (well-defined up to homotopy); colimits for p may be identified with coequalizers of jo and j;.

Like pushouts, coequalizers are a basic construction out of which other colimits can be built. More
specifically, we have the following:

Proposition 4.4.3.2. Let C be an oco-category and k a regular cardinal. Then C has all k-small colimits if
and only if C has coequalizers and k-small coproducts.

Proof. The “only if” direction is obvious. For the converse, suppose that € has coequalizers and k-small
coproducts. In view of Proposition 4.4.2.6, it suffices to show that C has pushouts. Let p : AZ be a
pushout diagram in €. We note that A2 is the quotient of A0 TT A102} obtained by identifying the initial
vertex of A0} with the initial vertex of A1%2}. In view of Proposition 4.4.3.1, it suffices to show that
p| (AL TT A92H) and p|{0} possess colimits in €. The second assertion is obvious. Since € has finite sums,
to prove that there exists a colimit for p|(A1O1 ] A{02}) it suffices to prove that p|A{®!} and p|A{02}
possess colimits in . This is immediate, since A1} and A1%2} both have final objects. O

Using the same argument, we deduce:

Proposition 4.4.3.3. Let k be a regular cardinal and C be an oco-category which admits k-small colimits.
A full subcategory D C C is stable under k-small colimits in C if and only if D is stable under coequalizers
and under k-small sums.

4.4.4 Tensoring with Spaces

Every ordinary category € can be regarded as a category enriched over 8et. Moreover, if € admits coproducts,
then € can be regarded as tensored over Set, in an essentially unique way. In the co-categorical setting, one
has a similar situation: if € is an oco-category which admits all small limits, then € may be regarded as
tensored over the co-category 8 of spaces. To make this idea precise, we would need a good theory of
enriched co-categories, which lies outside the scope of this book. We will instead settle for a slightly ad-hoc
point of view which nevertheless allows us to construct the relevant tensor products. We begin with a few
remarks concerning representable functors in the oco-categorical setting.
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Definition 4.4.4.1. Let D be a closed monoidal category, and let C be a category enriched over D. We
will say that a D-enriched functor G : C°? — D is representable if there exists an object C' € € and a map
7 : 1lp — G(C) such that the induced map

Mape (X, C) ~ Mape (X, C) @ 1p — Mape (X, C) ® G(C) — G(X)
is an isomorphism, for every object X € C. In this case, we will say that (C,n) represents the functor F.

Remark 4.4.4.2. In the situation of Definition 4.4.4.1, we will sometimes abuse terminology and simply
say that the functor F is represented by the object C.

Remark 4.4.4.3. The dual notion of a corepresentable functor is may be defined in an obvious way.

Definition 4.4.4.4. Let C be an oco-category, and let 8 denote the co-category of spaces. We will say that
a functor F : C°? — § is representable if the underlying functor

hF :hC? — h8 ~ K

of ( H-enriched ) homotopy categories is representable. We will say that a pair C' € C, n € noF(C) represents
F if the pair (C,n) represents hF.

Proposition 4.4.4.5. Let f : €—Cblea right fibration of co-categories, let C be an object ofé, C= f(é) €
C, and let F : C°? — 8§ be a functor which classifies [ (§3.3.3). The following conditions are equivalent:

(1) Let n € mF(C) ~ mo(C xe {C}) be the connected component containing C. Then the pair (C,n)
represents the functor F.

(2) The object C € € is final.
(3) The inclusion {é} C C is a contravariant equivalence in (Seta) e

Proof. We have a commutative diagram of right fibrations

> ¢

6/5—>

|

o —>

Observe that the left vertical map is actually a trivial fibration. Fix an object D € €. The fiber of the upper
horizontal map _ _
(bD : 6/5 Xe {D} — C Xe {D}

can be identified, in the homotopy category H, with the map
Mape(D, C) — F(C).

The map ¢p is a right fibration of Kan complexes, and therefore a Kan fibration. If (1) is satisfied, then ¢p
is a homotopy equivalence, and therefore a trivial fibration. It follows that the fibers of ¢ are contractible.
Since ¢ is a right fibration, it is a trivial fibration (Lemma 2.1.3.3). This proves that C is a final object of C.
Conversely, if (2) is satisfied, then ¢p is a trivial Kan fibration and therefore a weak homotopy equivalence.
Thus (1)  (2).
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If (2) is satisfied, then the inclusion {C~’} CCis right anodyne, and therefore a contravariant equivalence
by Proposition 4.1.2.1. Thus (2) = (3). Conversely, suppose that (3) is satisfied. The inclusion {id¢} C €,¢
is right anodyne, and therefore a contravariant equivalence. It follows that the lifting problem

O
{i 0}4;6

e 7
// f
e

C/c——¢

has a solution. We observe that e is a contravariant equivalence of right fibrations over €, and therefore a
categorical equivalence. By construction, e carries a final object of €,c to C, so that C is a final object of

C. O
We will say that a right fibration €—Cis representable if € has a final object.

Remark 4.4.4.6. Let C be an oo-category, and let p : K — C be a diagram. Then the right fibration
C/p — C is representable if and only if p has a limit in €.

Remark 4.4.4.7. All of the above ideas dualize in an evident way, so that we may speak of corepresentable
functors and corepresentable left fibrations in the setting of co-categories.

Notation 4.4.4.8. For each diagram p : K — C in an oo-category C, we let JF, denote the JH-enriched
functor
hC — H

corresponding to the left fibration P /e
If p : ¥ — € is the inclusion of an object X of €, then we write Fx for F,. We note that Fx is the functor
co-represented by X:
Fx(Y) = Mape(X,Y).

Now suppose that X is an object in an co-category €, and let p : K — € be a constant map taking the
value X. For every object Y of €, we have an isomorphism of simplicial sets (C/) x ¢ {Y'} ~ (€% xe{Y )X,
This identification is functorial up to homotopy, so we actually obtain an equivalence

Fp(Y) ~ Mape (X, V)]

in the homotopy category H of spaces, where [K] denotes the simplicial set K regarded as an object of H.
Applying Proposition 4.4.4.5, we deduce the following;:

Corollary 4.4.4.9. Let C be an oco-category, X and object of C, and K a simplicial set. Let p : K — C be
the constant map taking the value X. The objects of the fiber

e xe{Y}
are classified, up to equivalence, by maps
¢+ [K] — Mape(X,Y)
in the homotopy category H. Such a map ¥ classifies a colimit for p if and only if it induces isomorphisms
Mapg (Y, Z) = Mapg(X, Z)!¥]

in the homotopy category H, for every object Z of C.
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In the situation of Corollary 4.4.4.9, we will denote a colimit for p by X ® K, if such a colimit exists. We
note that X ® K is well defined up to (essentially unique) equivalence, and that it depends (up to equivalence)
only on the weak homotopy type of the simplicial set K.

Corollary 4.4.4.10. Let C be an co-category, let K be a weakly contractible simplicial set, and letp : K — C
be a diagram which carries each edge of K to an equivalence in C. Then:

(1) The diagram p has a colimit in C.

(2) An arbitrary extension p : K* — € is a colimit for C if and only if P carries each edge of K* — € to
an equivalence in C.

Proof. Let @' C @ be the largest Kan complex contained in €. By assumption, p factors through €’. Since K
is weakly contractible, we conclude that p : K — €’ is homotopic to a constant map p’ : K — €'. Replacing
p by p’ if necessary, we may reduce to the case where p is constant, taking value equal to some fixed object
CecC.

Let p : K — C be the constant map with value C. Using the characterization of colimits in Corollary
4.4.4.9, we deduce that p is a colimit diagram in €. This proves (1), and (in view of the uniqueness of colimits
up to equivalence) the “only if” direction of (2). To prove the converse, we suppose that p’ is an arbitrary
extension of p which carries each edge of K™ to an equivalence in €. Then §’ factors through €’. Since K® is
weakly contractible, we conclude as above that p’ is homotopic to a constant map, and is therefore a colimit
diagram. O

4.4.5 Retracts and Idempotents

Let € be a category. An object Y € C is said to be a retract of an object X € C if there is a commutative

diagram
Y Y

idy

in C. In this case we can identify Y with a subobject of X via the monomorphism i, and think of r as a
retraction from X onto Y C X. We observe also that the map ior : X — X is idempotent. Moreover,
this idempotent determines Y up to canonical isomorphism: we can recover Y as the equalizer of the pair of
maps (idx,ior): X — X (or, dually, as the coequalizer of the same pair of maps). Consequently, we obtain
an injective map from the collection of isomorphism classes of retracts of X to the set of idempotent maps
f: X — X. We will say that C is idempotent complete if this correspondence is bijective for every X € C:
that is, if every idempotent map f : X — X comes from a (uniquely determined) retract of X. If € admits
equalizers (or coequalizers), then C is idempotent complete.

These ideas can be adapted to the oo-categorical setting in a straightforward way. If X and Y are objects
of an oco-category C, then we say that Y is a retract of X if it is a retract of X in the homotopy category hC.
Equivalently, Y is a retract of X if there exists a 2-simplex A? — € corresponding to a diagram

X
/idy\

Y ———Y.

As in the classical case, there is a correspondence between retracts Y of X and idempotent maps f: X — X.
However, there are two important differences: first, the notion of an idempotent map needs to be interpreted
in an oo-categorical sense. It is not enough to require that f = f o f in the homotopy category hC. This
would correspond to the condition that there is a path p joining f to f o f in the endomorphism space of
X, which would give rise to two paths from f to fo fo f. In order to have a hope of recovering Y, we need
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these paths to be homotopic. This condition does not even make sense unless p is specified; thus we must
take p as part of the data of an idempotent map. In other words, in the oco-categorical setting, idempotence
is not merely a condition, but involves additional data (see Definition 4.4.5.4).

The second important difference between the classical and co-categorical theory of retracts is that in the
oo-categorical case, one cannot recover a retract Y of X as the limit (or colimit) of a finite diagram involving
X.

Example 4.4.5.1. Let R be a commutative ring, and let Co(R) be the category of complexes of finite free
R-modules, so that an object of C4(R) is a chain complex

oMy — My — M_1 — ...

such that each M; is a finite free R-module, and M; = 0 for |i| > 0; morphisms in Ce(R) are given by
morphisms of chain complexes. There is a natural simplicial structure on the category C,(R), for which the
mapping spaces are Kan complexes; let € = N(C,(R)) be the associated co-category. Then € admits all finite
limits and colimits (€ is an example of a stable co-category, which will study in detail in [34]). However, €
is idempotent complete if and only if every finitely generated projective R-module is stably free.

The purpose of this section is to define the notion of an idempotent in an co-category €, and to obtain a
correspondence between idempotents and retracts in C.

Definition 4.4.5.2. The simplicial set Idem™ is defined as follows: for every nonempty, finite, linearly
ordered set J, Homg, (A7, Idem™) can be identified with the set of pairs (Jo, ~), where Jo C J and ~ is
an equivalence relation on Jy which satisfies the following condition:

(¥) Let i < j <k be elements of J such that i,k € Jy, and i ~ k. Then j € Jy, and i ~ j ~ k.

We let Idem denote the simplicial subset of Idem™, corresponding to those pairs (Jo,~) such that J = Jy.
We let Ret C Idem™ denote the simplicial subset corresponding to those pairs (Jo,~) such that the
quotient Jy/ ~ has at most one element.

Remark 4.4.5.3. The simplicial set Idem has exactly one nondegenerate simplex in each dimension n
(corresponding to the equivalence relation ~ on {0,1,...,n} given by (i ~ j) < (i = j) ), and the set of
nondegenerate simplices of Idem is stable under passage to faces. In fact, Idem is characterized up to unique
isomorphism by these two properties.

Definition 4.4.5.4. Let C be an oco-category.

(1) An idempotent in C is a map of simplicial sets Idem — €. We will refer to Fun(Idem, C) as the
oo-category of idempotents in C.

(2) A weak retraction diagram in € is a map of simplicial sets Ret — €. We will refer to Fun(Ret, C) as
the oo-category of weak retraction diagrams in C.

(3) A strong retraction diagram in € is a map of simplicial sets Idem™ — €. We will refer to Fun(Idem™, @)
as the oco-category of strong retraction diagrams in C.

We now spell out Definition 4.4.5.4 in more concrete terms. We first observe that Idem™ has precisely
two vertices. Once of these vertices, which we will denote by x, belongs to Idem, and the other, which we
will denote by y, does not. The simplicial set Ret can be identified with the quotient of A% obtained by
collapsing A{%2} to the vertex y. A weak retraction diagram F : Ret — € in an oo-category € can therefore

be identified with a 2-simplex

ldy
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where X = F(z) and Y = F(y). In other words, it is precisely the datum that we need in order to exhibit
Y as a retract of X in the homotopy category hC.

To give an idempotent F' : Idem — € in C, it suffices to specify the image under F' of each nondegenerate
simplex of Idem in each dimension n > 0. Taking n = 0, we obtain an object X = F(z) € €. Taking n = 1,
we get a morphism f : X — X. Taking n = 2, we get a 2-simplex of C corresponding to a diagram

"
f
which verifies the equation f = fo f in the homotopy category hC. Taking n > 2, we get higher-dimensional
diagrams which express the idea that f is not only idempotent “up to homotopy”, but “up to coherent
homotopy”.

The simplicial set Idem™ can be thought of as “interweaving” its simplicial subsets Idem and Ret, so
that giving a strong retraction diagram F : Idem™ — € is equivalent to giving a weak retraction diagram

X
/ idy\

Y ——Y

X

X

together with a coherently idempotent map f =ior: X — X. Our next result makes precise the sense in
which f really is “determined” by Y.

Lemma 4.4.5.5. Let J C{0,...,n}, and let K C A™ be the simplicial subset spanned by the nondegenerate
simplices of A™ which do not contain A”. Suppose that there exist 0 < i < j < k < n such that i,k € J,
j ¢ J. Then the inclusion K C A™ is inner anodyne.

Proof. Let P denote the collection of all subset J' C {0,...,n} which contain J U {j}. Choose a linear
ordering

{J(1) <...< J(m)}
of P, with the property that if J(i) C J(j), then ¢ < j. Let
K(k)y=Ku ] a’%.
1<i<k
Note that there are pushout diagrams

AJD —— AT

b
K(i—1) —= K(i).

It follows that the inclusions K (i — 1) C K(i) are inner anodyne. Therefore the composite inclusion K =
K(0) C K(m) = A™ is also inner anodyne. O

Proposition 4.4.5.6. The inclusion Ret C Idem™ is an inner anodyne map of simplicial sets.

Proof. Let Ret,, C Idem™ be the simplicial subset defined so that (Jy,~) : A’ — Idem™ factors through
Ret,, if and only if the quotient Jy/ ~ has cardinality < m. We observe that there is a pushout diagram

K —— A2

L

Ret,,_1 —— Ret,,
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where K C A?™ denote the simplicial subset spanned by those faces which do not contain A{l:3:
If m > 2, Lemma 4.4.5.5 implies that the upper horizontal arrow is inner anodyne, so that the inclusion
Ret,,—1 C Ret,, is inner anodyne. The inclusion Ret C Idem™ can be identified with an infinite composition

Ret = Ret; C Rety C ...
of inner anodyne maps, and is therefore inner anodyne. O
Corollary 4.4.5.7. Let C be an oco-category. Then the restriction map
Fun(Idem™, @) — Fun(Ret, @)

from strong retraction diagrams to weak retraction diagrams is a trivial fibration of simplicial sets. In
particular, every weak retraction diagram in C can be extended to a strong retraction diagram.

We now study the relationship between strong retraction diagrams and idempotents in an co-category €.
We will need the following lemma, whose proof is somewhat tedious.

Lemma 4.4.5.8. The simplicial set Idem™ is an co-category.

Proof. Suppose given 0 < i < n and a map A} — Idem™, corresponding to a compatible family of pairs
{(Jk, ~k)} ki, where J, C{0,...,k—1,k+1,...,n} and ~y, is an equivalence relation J;, defining an element
of Homgeg, (A0 k=LE+1nt Tdem™). Let J = |J Ji, and define a relation ~ on J as follows: if a,b € J,
then a ~ b if and only if either

(3k #9)[(a,b € J) A (a ~p b)]

or

(a£b#i#a)N(Fce JyNdp)[(a~pc)A(b~g ).

We must prove two things: that (J,~) € Homge, (A", Idem™), and that the restriction of (J,~) to
{0,...,k—=1,k+1,...,n} coincides with (Ji, ~) for k # i.

We first check that ~ is an equivalence relation. It is obvious that ~ is reflexive and symmetric. Suppose
that a ~ b and that b ~ ¢; we wish to prove that a ~ c¢. There are several cases to consider:

e Suppose that there exists j # 4, k # i such that a,b € J;, b,c € Ji, and a ~; b ~p c. If a # k, then
also a € Ji and a ~j, b, and we may conclude that a ~ ¢ by invoking the transitivity of ~j. Therefore
we may suppose that a = k. By the same argument, we may suppose that b = j; we therefore conclude
that a ~ c.

e Suppose that there exists k # @ with a,b € Ji, that b # ¢ # i # b and there exists d € J, N J. with
a~pbr~ede~y e If a=0or a=c there is nothing to prove; assume therefore that a # b and a # c.
Then a € J. and a ~. b, so by transitivity a ~. d. Similarly, a € J, and a ~ d so that a ~; ¢ by
transitivity.

e Suppose that a # b # i # a, b # ¢ # i # b, and that there exist d € J, N Jp and e € J, N J. such
that a ~p d ~, b ~. e ~ c. It will suffice to prove that a ~p c¢. If ¢ = d, this is clear; let us therefore
assume that ¢ # d. By transitivity, it suffices to show that d ~; e. Since ¢ # d, we have d € J. and
d ~¢ b, so that d ~. e by transitivity, and therefore d ~y e.

To complete the proof that (J,~) belongs to Homge, (A", Idem™), we must show that if a < b < ¢,
a€J,ceJ,and a ~ ¢, then also b € J and a ~ b ~ ¢. There are two cases to consider. Suppose first that
there exists k # j such that a,c € J; and a ~j ¢. These relations hold for any & ¢ {i,a,c}. If it is possible
to choose k # b, then we conclude that b € J, and a ~p b ~p ¢ as desired. Otherwise, we may suppose that
the choices k = 0 and & = n are impossible, so that a = 0 and ¢ = n. Then a < i < ¢, so that ¢ € J, and
a ~yp 1 ~p c. Without loss of generality we may suppose b < i. Then a ~ i, so that b € J. and a ~. b ~. 1
as desired.

235



We now claim that (J,~) : A" — Idem™ is an extension of the original map A? — Idem™. In other
words, we claim that for k # i, J, = JN{0,...,k—1,k+1,...,n} and ~y is the restriction of ~ to Jx. The
first claim is obvious. For the second, let us suppose that a,b € J, and a ~ b. We wish to prove that a ~y, b.
It will suffice to prove that a ~; b for any j ¢ {i,a,b}. Since a ~ b, either such a j exists, or a #b # i # a
and there exists ¢ € J, N J, such that a ~p ¢ ~, b. If there exists j ¢ {a,b,c,i}, then we conclude that
a ~j ¢ ~; band hence a ~; b by transitivity. Otherwise, we conclude that ¢ = k # ¢ and that 0,n € {a,b, c}.
Without loss of generality, i < ¢; thus 0 € {a,b} and we may suppose without loss of generality that a < i.
Since a ~y ¢, we conclude that i € J, and a ~y i ~ ¢. Consequently, i € J, and i ~, ¢ ~4 b, so that i ~, b
by transitivity and therefore ¢ ~. b. We now have a ~. ¢ ~. b so that a ~. b as desired. O]

Remark 4.4.5.9. It is clear that Idem C Idem™ is the full simplicial subset spanned by the vertex z, and
therefore an co-category as well.

According to Corollary 4.4.5.7, every weak retraction diagram

in an co-category € can be extended to a strong retraction diagram F : Idem™ — @, which restricts to give
an idempotent in €. Our next goal is to show that F is canonically determined by the restriction F'| Idem.

Our next result expresses the idea that if an idempotent in € arises in this manner, then F' is essentially
unique.

Lemma 4.4.5.10. The oo-category Idem is weakly contractible.

Proof. An explicit computation shows that the topological space | Idem | is connected, simply connected, and
has vanishing homology in degrees greater than zero. (Alternatively, we can deduce this from Proposition
4.4.5.15 below.) O

Lemma 4.4.5.11. The inclusion Idem C Idem™ is a cofinal map of simplicial sets.

Proof. According to Theorem 4.1.3.1, it will suffice to prove that the simplicial sets Idem,, and Idem,, are
weakly contractible. The simplicial set Idem,,, is an oo-category with an initial object, and therefore weakly
contractible. The projection Idem,, — Idem is an isomorphism, and Idem is weakly contractible by Lemma
4.4.5.10. O

Proposition 4.4.5.12. Let C be an oo-category, and let F : Idemt — @ be a strong retraction diagram.
Then F is a left Kan extension of F|Idem.

Remark 4.4.5.13. Passing to opposite oco-categories, it follows that a strong retraction diagram F' :
Idem™ — € is also a right Kan extension of F'|Idem.

Proof. We must show that the induced map
(Idem, )" — (Idem;ry)'> & Idem™ £ €
is a colimit diagram. Consider the commutative diagram

Idem/y - Idemj'y

-

Idem —— Idem™ .
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The lower horizontal map is cofinal by Lemma 4.4.5.11, and the vertical maps are isomorphisms: therefore
the upper horizontal map is also cofinal. Consequently, it will suffice to prove that F'oG is a colimit diagram,
which is obvious. O

We will say that an idempotent F' : Idem — € in an oco-category € is effective if it extends to a map
Idem™ — €. According to Lemma 4.3.2.13, F is effective if and only if it has a colimit in €. We will say
that C is idempotent complete if every idempotent in C is effective.

Corollary 4.4.5.14. Let C be an oo-category, and let D C Fun(Idem, C) be the full subcategory spanned by
the effective idempotents in C. The restriction map Fun(Idem+, C) — D is a trivial fibration. In particular,
if € is idempotent complete, then we have a diagram

Fun(Ret, €) + Fun(Idem™, €) — Fun(Idem, €)
of trivial fibrations.
Proof. Combine Proposition 4.4.5.12 with Proposition 4.3.2.15. O

By definition, an co-category C is idempotent complete if and only if every idempotent Idem — C has a
colimit. In particular, if € admits all small colimits, then it is idempotent complete. As we noted above, this
is not necessarily true if € admits only finite colimits. However, it turns out that filtered colimits do suffice:
this assertion is not entirely obvious, since the co-category Idem itself is not filtered.

Proposition 4.4.5.15. Let A be a linearly ordered set with no largest element. Then there exists a cofinal
map p : N(A) — Idem.

Proof. Let p : N(A) — Idem be the unique map which carries nondegenerate simplices to nondegenerate
simplices. Explicitly, this map carries a simplex A7 — N(A) corresponding to a map s : J — A of linearly
ordered sets to the equivalence relation (i ~ j) < (s(i) = s(j)). We claim that p is cofinal. According to
Theorem 4.1.3.1, it will suffice to show that the fiber product N(A) Xigem Idem,, is weakly contractible.
We observe that N(A) X1gem Idem, ~ N(A’), where A’ denote the set A x {0,1} equipped with the partial
ordering

(0,) < (o) & (G = D) Afa < o).

For each v € A, let Ac, ={a/ € A: ' < a} and let
A, ={(a,i) e A": (o <)V ((e,i) = (a, 1))}

By hypothesis, we can write A as a filtered union (J, .4 A<a. It therefore suffices to prove that for each
o € A, the map
f : N(A<a) X1dem Idemx,/ - N(A) XIdem Idem¢/

has a nullhomotopic geometric realization |f|. But this map factors through N(A’), and | N(A.)| is con-
tractible because A/, has a largest element. O

Corollary 4.4.5.16. Let k be a reqular cardinal, and suppose that C is an co-category which admits k-filtered
colimits. Then C is idempotent complete.

Proof. Apply Proposition 4.4.5.15 to the linearly ordered set consisting of all ordinals less than x (and
observe that this linearly ordered set is k-filtered). O
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Chapter 5

Presentable and Accessible
oo-Categories

Many categories which arise naturally, such as the category A of abelian groups, are large: they have a
proper class of objects, even when the objects are considered only up to isomorphism. However, though A
itself is large, it is in some sense determined by the much smaller category Ag of finitely generated abelian
groups: A is naturally equivalent to the category of Ind-objects of Ag. This remark carries more than simply
philosophical significance. When properly exploited, it can be used to prove statements such as the following:

Proposition 5.0.0.1. Let F : A — 8et be a contravariant functor from A to the category of sets. Then F
is representable by an object of A if and only if it carries colimits in A to limits in Set.

Proposition 5.0.0.1 is valid not only for the category A of abelian groups, but for any presentable cat-
egory: that is, any category which possess all (small) colimits and satisfies mild set-theoretic assumptions
(such categories are referred to as locally presentable in [1]). Our goal in this chapter is to develop an oco-
categorical generalization of the theory of presentable categories, and to obtain higher-categorical analogues
of Proposition 5.0.0.1 and related results (such as the adjoint functor theorem).

The most basic example of a presentable co-category is the co-category 8 of spaces. More generally, we
can define an oo-category P(C) of presheaves (of spaces) on an arbitrary small co-category €. We will study
the properties of P(€) in §5.1; in particular, we will see that there exists a Yoneda embedding j : € — P(C)
which is fully faithful, just as in ordinary category theory. Moreover, we give a characterization of P(C) in
terms of C: it is, in some sense, freely generated by the essential image of j under (small) colimits.

The presheaf co-categories P(C) are all presentable. Conversely, any presentable oo-category can be
obtained as a localization of some presheaf co-category P(C) (Proposition 5.5.1.1). To make sense of this
statement, we need a theory of localizations of oco-categories. We will develop such a theory in §5.2, as part
of a more general theory of adjoint functors between co-categories.

In §5.3 we will introduce, for every small co-category €, an oco-category Ind(C) of Ind-objects of C.
Roughly speaking, this is an co-category which is obtained from € by freely adjoining colimits for all filtered
diagrams. It is characterized up to equivalence by the fact that Ind(€) contains a full subcategory equivalent
to €, which generates Ind(C) under filtered colimits and consists of compact objects.

The construction of Ind-categories will be applied in §5.4 to the study of accessible co-categories. Roughly
speaking, an oo-category C is accessible if it is generated under (sufficiently) filtered colimits by a small
subcategory Y C €. We will prove that the class of accessible oco-categories is stable under a various
categorical constructions. Results of this type will play an important technical role later this book: they
generally allow us to dispense with the set-theoretic aspects of an argument (such as cardinality estimation),
and to focus instead on the more conceptual aspects.

We will say that an co-category C is presentable if C is accessible and admits (small) colimits. In §5.5, we
will describe the theory of presentable co-categories in detail. In particular, we will generalize Proposition
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5.0.0.1 to the oo-categorical setting, and prove an analogue of the adjoint functor theorem. We will also
study localizations of presentable oco-categories, following ideas of Bousfield. The theory of presentable
oo-categories will play a vital role in the study of oo-topoi, which is the subject of the next chapter.
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5.1 oo-Categories of Presheaves

The category of sets plays a central role in classical category theory. The primary reason for this is Yoneda’s
lemma, which asserts that for any category C, the “Yoneda embedding”

j:C— Set®”

C +— Home (o, C)

is fully faithful. Consequently, objects in € can be thought of as a kind of “generalized sets”, and various
questions about the category € can be reduced to questions about the category of sets.

If C is an oo-category, then the mapping sets of the above discussion should be replaced by mapping
spaces. Consequently, one should expect the Yoneda embedding to take values in presheaves of spaces,
rather than presheaves of sets. To formalize this, we introduce the following notation:

Definition 5.1.0.1. Let S be a simplicial set. We let P(S) denote the simplicial set Fun(S°?, §); here 8§
denotes the co-category of spaces defined in §1.2.16. We will refer to P(S) as the co-category of presheaves
on S.

Remark 5.1.0.2. More generally, for any co-category €, we might refer to Fun(S°?, C) as the co-category
of C-valued presheaves on S. Unless otherwise specified, the word “presheaf” will always refer to a 8-valued
presheaf. This is somewhat nonstandard terminology: one usually understands the term “presheaf” to refer
to a presheaf of sets, rather than a presheaf of spaces. The shift in terminology is justified by the fact that
the important role of Set in ordinary category theory is taken on by 8 in the co-categorical setting.

Our goal in this section is to establish the basic properties of P(S). We begin in §5.1.1 by reviewing
two other possible definitions of P(S): one via the theory of right fibrations over S, another via simplicial
presheaves on the category €[S]. Using the “straightening” results of §3.3.1 and §A.3.6, we will show that
all three of these definitions are equivalent.

The presheaf oo-categories P(S) are examples of presentable co-categories (see §5.5). In particular, each
P(S) admits all (small) limits and colimits. We will give a proof of this assertion in §5.1.2, by reducing to
the case where S is a point.

The main question regarding the co-category P(S) is how it relates to the original simplicial set S. In
§5.1.3 we will construct a map j : S — P(S), which is an oco-categorical analogue of the usual Yoneda
embedding. Just as in classical category theory, the Yoneda embedding is fully faithful. In particular, we
note that any oco-category € can be embedded in a larger co-category which admits limits and colimits; this
observation allows us to construct an idempotent completion of C, which we will study in §5.1.4.

In §5.1.5, we will characterize the oo-category P(S) in terms of the Yoneda embedding j : S — P(S5).
Roughly speaking, we will show that P(S) is freely generated by S under colimits (Theorem 5.1.5.6). In
particular, if € is a category which admits colimits, then any diagram f : S — € extends uniquely (up to
homotopy) to a functor F' : P(S) — €. In §5.1.6, we will give a criterion for determining whether or not F
is an equivalence.

5.1.1 Other Models for P(5)

Let S be a simplicial set. We have defined the co-category P(S) of presheaves on S to be the mapping space
Fun(S°P, 8). However, there are several equivalent models which would serve equally well; we discuss two of
them in this section.

Let Py (S) denote the full subcategory of (Seta) /s spanned by the right fibrations X — S. We define
P'(S) to be the simplicial nerve N(P(S)). Because P/ (S) is a fibrant simplicial category, P'(S) is an
oo-category. We will see in a moment that P'(S) is (naturally) equivalent to P(S). In order to do this, we
need to introduce a third model.
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Let ¢ : €[S]°? — € be an equivalence of simplicial categories. Let Setg denote the category of simplicial
functors € — 8eta (which we may view as simplicial presheaves on C°”). We regard Seti as endowed
with the projective model structure defined in §A.3.3. With respect to this structure, Setg is a simplicial
model category; we let P (¢) = (Setg)o denote the full simplicial subcategory consisting of fibrant-cofibrant
objects, and we define P”(4) to be the simplicial nerve N(P'x (¢)).

We are now ready to describe the relationship between these different models:

Proposition 5.1.1.1. Let S be a simplicial set, and let ¢ : €[S]°P — € be an equivalence of simplicial
categories. Then there are (canonical) equivalences of co-categories

P(S) L P (¢) L P(S).

Proof. The map f was constructed in Proposition A.3.6.1; it therefore suffices to give a construction of g.

Recall that the category (Seta),s of simplicial sets over S may be endowed with a perfect model structure,
the contravariant model structure defined in §2.1.4. Moreover, this model structure is simplicial (Proposition
2.1.4.5) and the fibrant objects are precisely the right fibrations over S (Proposition 3.3.1.2). Thus, we may
identify P/ (S) with the simplicial category (Seta)jg of fibrant-cofibrant objects of (Seta);s-

According to Theorem 2.1.4.7, the straightening and unstraightening functors (St,,Un,) determine a
Quillen equivalence between (8eta)® and (Seta),s. Moreover, for any X € (8eta),s and any simplicial set
K, there is a natural chain of equivalences

Sty(X x K) — (St X) @ |K|ge — (StpX) ® K.

( The fact that the first map is an equivalence follows easily from Proposition 3.2.1.13. ) It follows from
Proposition A.2.8.1 that Un, is endowed with the structure of a simplicial functor, and induces an equivalence
of simplicial categories

(Setg)o — (SetA)75.

We obtain the desired equivalence g by passing to the simplicial nerve. O

5.1.2 Colimits in co-Categories of Functors

Let S be an arbitrary simplicial set. Our goal in this section is to prove that the oo-category P(S) of
presheaves on S has all (small) limits and colimits. There are (at least) three approaches to proving this:

(1) According to Proposition 5.1.1.1, we may identify P(S) with the co-category underlying the simplicial

]

model category Seti[s . We can then deduce the existence of limits and colimits in P(S) by invoking

Corollary 4.2.4.6.

(2) Since the oo-category 8 classifies left fibrations, the co-category P(S) classifies left fibrations over S°P:
in other words, homotopy classes of maps K — P(S) can be identified with equivalence classes of
left fibrations X — K x S°P. It is possible to generalize Proposition 3.3.5.5 and Corollary 3.3.4.3 to
describe limits and colimits in P(S) entirely in the language of left fibrations. The existence problem
can then be solved by exhibiting explicit constructions of left fibrations.

(3) Applying either (1) or (2) in the case where S is a point, we can deduce that § ~ P(x) admits limits
and colimits. We can then attempt to deduce the same result for P(S) = Fun(S°, §) using a general
result about (co)limits in functor categories (Proposition 5.1.2.2).

Although approach (1) is probably the quickest, we will adopt approach (3) because it gives additional
information: our proof will show that the formation of limits and colimits in P(S) are computed pointwise.
The same proof will also apply to co-categories of C-valued presheaves in the case where C is not necessarily
the oo-category 8 of spaces.
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Lemma 5.1.2.1. Let q: Y — S be a Cartesian fibration of simplicial sets, and let C = Mapg(S,Y") denote
the oo-category of sections of q. Let p : S — Y be an object of C having the property that p(s) is an initial
object of the fiber Yy for each vertex s of S. Then p is an initial object of C.

Proof. By Proposition 4.2.2.4, the map Y?$/ — S is a Cartesian fibration. By hypothesis, for each vertex
s of S, the map YPs/ xg {s} — Y, is a trivial fibration. It follows that the projection Y?s/ — Y is an
equivalence of Cartesian fibrations over S, and therefore a categorical equivalence; taking sections over S we
obtain another categorical equivalence

Mapg (S, Y?5/) — Mapg(Y, S).

But this map is just the left fibration j : €P / C; it follows that j is a categorical equivalence. Applying

Propostion 3.3.2.5 to the diagram
er/ ]—> e
ide
¢,

we deduce that j induces categorical equivalences C,, xe{t} — {t} for each vertex ¢ of Q. Thus the fibers
of j are contractible Kan complexes, so that j is a trivial fibration (by Lemma 2.1.3.3) and p is an initial
object of C, as desired. O

Proposition 5.1.2.2. Let K be a simplicial set, ¢ : X — S a Cartesian fibration, and p : K — Mapg(S, X)
a diagram. For each vertex s of S, we let ps : K — X be the induced map. Suppose, furthermore, that each
ps has a colimit in the co-category Xs. Then:

(1) There exists a map p : K o AY — Mapg(S, X) which extends p and induces a colimit diagram p :
Ko A® — X, for each vertex s € S.

(2) An arbitrary extensionp : KoA® — Mapg(S, X) of p is a colimit for p if and only if each by : KoAY —
X is a colimit for ps.

Proof. Choose a factorization K — K’ — Mapg(S, X) of p, where K — K’ is inner anodyne (and therefore a
categorical equivalence) and K’ — € is an inner fibration (so that K’ is an co-category). The map K — K’
is a categorical equivalence, and therefore cofinal. We are free to replace K by K’, and may thereby assume
that K is an oo-category.

We apply Proposition 4.2.2.7 to the Cartesian fibration X — S and the diagram pg : K x § — X
determined by the map p. We deduce that there exists a map

Pg: (K x8)osS=(KoA") xS — X

having the property that its restriction to the fiber over each s € S is a colimit of pg; this proves (1).
The “if” direction of (2) follows immediately from Lemma 5.1.2.1. The “only if” follows from (1) and
the fact that colimits, when they exist, are unique up to equivalence. O

Corollary 5.1.2.3. Let S be a simplicial set. The co-category P(S) of presheaves on S admits all small

limits and colimits.

5.1.3 Yoneda’s Lemma

In this section, we will construct the co-categorical analogue of the Yoneda embedding, and prove that it is
fully faithful. We begin with a somewhat naive approach, based on the formalism of simplicial categories.
We note that an analogoue of Yoneda’s Lemma is valid in enriched category theory (with the usual proof).
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Namely, suppose that € is a category enriched over another category €. Then there is an “enriched Yoneda
embedding”
i:C— et

X > Mape(s, X).
Consequently, for any simplicial category C, one obtains a fully faithful embedding ¢ of € into the simplicial

category Mape,; , (€, 8eta) of simplicial functors from € into Seta. In fact, i is fully faithful in the strong
sense that it induces isomorphisms of simplicial sets

MapC(Xv Y) - MapScthp (Z(X)v Z(Y))v

rather than merely weak homotopy equivalences. Unfortunately, this assertion does not necessarily have
any oo-categorical content, because the simplicial category Setgop does not generally represent the correct
oo-category of functors from €% to Seta.

Let us describe an analogous construction in the setting of co-categories. Let K be a simplicial set, and
let € = €[K]. Then C is a simplicial category, so

(X,Y) — Sing |Home(X,Y)]

determines a simplicial functor from €°? x € to the category Kan. The functor € does not commute with
products, but there exists a natural map €[K° x K] — €° x €. Composing with this map, we obtain a
map of simplicial sets

C[K? x K] — Kan.

Passing to the adjoint, we obtain a map of simplicial sets K°? x K — §, which we can identify with
j: K — Fun(K°?, 8) = P(K).
We shall refer to j (or, more generally, any map equivalent to j) as the Yoneda embedding.

Proposition 5.1.3.1 (co-Categorical Yoneda Lemma). Let K be a simplicial set. Then the Yoneda embed-
ding j : K — P(K) is fully faithful.

Proof. Let €' = Sing|€[K°"]| be the “fibrant replacement” for € = €[K°]. We endow Setg with the
projective model structure described in §A.3.3.
We note that the Yoneda embedding factors as a composition

K 2 N((8et)°) L Fun(K°?, 8),

where j” is the map of Proposition A.3.6.1 and consequently a categorical equivalence. It therefore suffices
to prove that j' is fully faithful. For this, we need only show that the adjoint map

J 1 €[K] — Set§ .

is a fully-faithful functor between simplicial categories. We now observe that J is the composition of an
equivalence €[K] — (€')°? with the (simplicial enriched) Yoneda embedding (€')°? — Set% , which is fully
faithful in virtue of the classical (simplicially enriched) version of Yoneda’s Lemma. O

We conclude by establishing another pleasant property of the Yoneda embedding:

Proposition 5.1.3.2. Let C be a ( small ) oo-category, and j : € — P(C) the Yoneda embedding. Then j
preserves all limits which exist in C.
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Proof. Let p: K — C be a diagram having a limit in €. We wish to show that j carries any limit for p to a
limit of j o p. Choose a category J and a cofinal map N (J°?) — K°P (the existence of which is guaranteed
by Proposition 4.2.3.14) Replacing K by N(J), we may suppose that K is the nerve of a category. Let
P : N(J)? — € be a limit for p.

We recall the definition of the Yoneda embedding. It involves the choice of an equivalence €[C] — D,
where D is a fibrant simplicial category. For definiteness, we took D to be Sing | €[€]|. However, we could just
as well choose some other fibrant simplicial category D’ equivalent to €[C] and obtain a “modified Yoneda
embedding” 7' : € — P(C); it is easy to see that j’ and j are equivalent functors, so it suffices to show that j’
preserves the limit of p. Using Corollary A.3.6.2, we may suppose that p is obtained from a functor between
simplicial categories G : {z}xJ — D by passing to the nerve. According to Theorem 4.2.4.1, g is a homotopy
limit of ¢ = g|J. Consequently, for each object Z € D, the induced functor

Gz 1~ Homyp(Z,q(1))

is a homotopy limit of gz = g,|J. Taking Z to be the image of an object C of €, we deduce that

v

N@) = e L pe) -8

is a limit for its restriction to N(J), where the map on the right is given by “evaluation at C”. Proposition
5.1.2.2 now implies that 5/ o p is a limit for j' o p, as desired. O

5.1.4 Idempotent Completions

Recall that an co-category C is said to be idempotent complete if every functor Idem — € admits a colimit in
C (see §4.4.5). If an oo-category C is not idempotent complete, then we can attempt to correct the situation
by passing to a larger co-category.

Definition 5.1.4.1. Let f : € — D be a functor between oco-categories. We will say that f exhibits D as
an idempotent completion of C if D is idempotent complete, f is fully faithful, and every object of D is a
retract of f(C), for some object C' € C.

Our goal in this section is to show that co-category € has an idempotent completion D, which is unique
up to equivalence. The uniqueness is a consequence of Proposition 5.1.4.9, proven below. The existence
question is much easier to address.

Proposition 5.1.4.2. Let C be an oco-category. Then C admits an idempo