I am an Assistant Professor in the Mathematics Department at MIT (Massachusetts Institute of Technology).

My main research interests are extremal and probabilistic combinatorics.

I received my PhD in mathematics from Stanford University in 2019. My PhD advisor was Jacob Fox. After graduating, I stayed for one year as a Szegő Assistant Professor at Stanford, and then I spent one year at the Institute for Advanced Study (IAS). In summer 2021, I joined MIT.

My research is supported by NSF Award DMS-2100157.

E-mail: lsauerma [@] mit [dot] edu

- L. Sauermann,
**Rota's basis conjecture holds for random bases of vector spaces**, submitted. (arxiv) - L. Sauermann,
**On the probability of a Condorcet winner among a large number of alternatives**, preprint. (arxiv) - L. Sauermann,
**Finding solutions with distinct variables to systems of linear equations over \mathbb{F}_p**,*Mathematische Annalen*, to appear. (arxiv) - L. Sauermann and Y. Wigderson,
**Polynomials that vanish to high order on most of the hypercube**,*Journal of the London Mathematical Society*, to appear. (arxiv) - A. Ferber, M. Kwan, and L. Sauermann,
**List-decodability with large radius for Reed-Solomon codes**,*IEEE Transactions on Information Theory*, to appear. (arxiv)

Preliminary version appeared in the Proceedings of*FOCS 2021 (IEEE Symposium on Foundation of Computer Science)*, pp. 720-726. - M. Kwan, L. Sauermann, and Y. Zhao,
**Extension complexity of low-dimensional polytopes**,*Transactions of the American Mathematical Society*, to appear. (arxiv) - A. Ferber, M. Kwan, and L. Sauermann,
**Singularity of sparse random matrices: simple proofs**,*Combinatorics, Probability and Computing*31 (2022), 21-28. (arxiv) - M. Kwan and L. Sauermann,
**On the permanent of a random symmetric matrix**,*Selecta Mathematica*28 (2022), Article 15, 29 pp. (arxiv) - L. Sauermann,
**On the speed of algebraically defined graph classes**,*Advances in Mathematics*380 (2021), Article 107593, 55 pp. (arxiv) - L. Sauermann,
**On the size of subsets of \mathbb{F}_p^n without p distinct elements summing to zero**,*Israel Journal of Mathematics*243 (2021), 63-79. (arxiv) - J. Fox, M. Kwan, and L. Sauermann,
**Anticoncentration for subgraph counts in random graphs**,*Annals of Probability*49 (2021), 1515-1553. (arxiv) - J. Fox, M. Kwan, and L. Sauermann,
**Combinatorial anti-concentration inequalities, with applications**,*Mathematical Proceedings of the Cambridge Philosophical Society*171 (2021), 227-248. (arxiv) - J. Fox, L. Sauermann, and F. Wei,
**On the inducibility problem for random Cayley graphs of abelian groups with a few deleted vertices**,*Random Structures and Algorithms*59 (2021), 554-615. (arxiv) - M. Kwan and L. Sauermann,
**An algebraic inverse theorem for the quadratic Littlewood-Offord problem, and an application to Ramsey graphs**,*Discrete Analysis*2020:12, 34 pp. (arxiv) - J. Fox and L. Sauermann,
**A completion of the proof of the Edge-statistics Conjecture**,*Advances in Combinatorics*2020:4, 52 pp. (arxiv) - L. M. Lovász and L. Sauermann,
**A lower bound for the k-multicolored sum-free problem in \mathbb{Z}_m^n**,*Proceedings of the London Mathematical Society*119 (2019), 55-103. (arxiv) - E. Bates and L. Sauermann,
**An upper bound on the size of avoidance couplings**,*Combinatorics, Probability and Computing*28 (2019), 325-334. (arxiv) - L. Sauermann,
**A proof of a conjecture of Erdős, Faudree, Rousseau and Schelp on subgraphs of minimum degree k**,*Journal of Combinatorial Theory Series B*134 (2019), 36-75. (arxiv) - J. Fox, L. M. Lovász, and L. Sauermann,
**A polynomial bound for the arithmetic k-cycle removal lemma in vector spaces**,*Journal of Combinatorial Theory Series A*160 (2018), 186-201. (arxiv) - J. Fox and L. Sauermann,
**Erdős-Ginzburg-Ziv constants by avoiding three-term arithmetic progressions**,*Electronic Journal of Combinatorics*25 (2018), no. 2, Paper 2.14, 9 pp. (arxiv) - L. Sauermann,
**On the \mu-admissible set in the extended affine Weyl groups of E_6 and E_7**,*Journal of Algebra*451 (2016), 526-543. (arxiv) - C. Reiher and L. Sauermann,
**Nash-Williams' theorem on decomposing graphs into forests**,*Mathematika*60 (2014), 32-36. (arxiv)

Accessibility (link mandatory on MIT websites)